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ABSTRACT: Computing accurate reaction rates is a central
challenge in computational chemistry and biology because of the
high cost of free energy estimation with unbiased molecular dynamics.
In this work, a data-driven machine learning algorithm is devised to
learn collective variables with a multitask neural network, where a
common upstream part reduces the high dimensionality of atomic
configurations to a low dimensional latent space and separate
downstream parts map the latent space to predictions of basin class
labels and potential energies. The resulting latent space is shown to be
an effective low-dimensional representation, capturing the reaction
progress and guiding effective umbrella sampling to obtain accurate
free energy landscapes. This approach is successfully applied to model
systems including a 5D Müller Brown model, a 5D three-well model, the alanine dipeptide in vacuum, and an Au(110) surface
reconstruction unit reaction. It enables automated dimensionality reduction for energy controlled reactions in complex systems,
offers a unified and data-efficient framework that can be trained with limited data, and outperforms single-task learning approaches,
including autoencoders.

1. INTRODUCTION

Computing accurate reaction rates is one of the most
important challenges in computational physics, chemistry,
and biology. Reactions are rare events in which a system
transitions from one metastable state to another. Reactions
with high barriers can have time scales of microseconds or
longer, such that conventional unbiased molecular dynamics
(MD) is too slow to accumulate enough statistics on
transitions to calculate accurate reaction rates. Enhanced
sampling methods, such as umbrella sampling1,2 and
metadynamics,3,4 address this challenge by accelerating
sampling of phase space using biasing applied along several
low-dimensional collective variable (CV) directions. These
methods require one to first reduce the high-dimensional
configuration space to a low-dimensional manifold of CVs in
order to evaluate the free energy landscape where metastable
states correspond to local minima basins and transition states
correspond to high free energy separation ridges. The reaction
rate can then be estimated within the transition state theory
framework.
Good CVs need to discern different metastable states and

transition paths; they can be simple geometrical variables such
as atomic coordination numbers5 or combinations of bond
distances and bond angles.6 Reaction coordinates (RCs) are a
type of CV that need to be one-dimensional and that strictly
preserve the reaction progress from one metastable state to

another metastable state. Linear combinations of simple
geometrical variables are usually not sufficient when the
transition paths are complex, and poor choices of CVs result in
inefficient sampling and inaccurate reaction rates. However,
designing good CVs is a laborious trial-and-error process
typically requiring intuition and prior knowledge of the
relevant reaction mechanisms.1−4

In the spirit of data-driven analysis, a number of methods
have recently been employed to design CVs and RCs with
machine learning (ML),7−21 but reactions with high barriers
are often difficult to analyze with these ML approaches. For
example, methods that identify slow CVs separate slow
motions from fast vibrations by monitoring structural evolution
over time8,9,11,12 or by clustering metastable states.22,23

However, these methods are not practical for high-barrier
reactions because their training requires long MD trajectories
with a sufficient number of transitions. These transitions are
hard to obtain for high-barrier reactions unless enhanced
sampling techniques with CVs are used in the first place. This
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chicken-and-egg problem requires the development of iterative
adaptive approaches.
There are also methods that learn one-dimensional RCs ξ(x)

= f(q(x)) from the committor function q(x) ∈ [0, 1] which
describes the progression of a reaction between two predefined
basins A and B.19,24,25 The training data typically come from
transition path sampling (TPS)24,26,27 or relaxation trajectories,
in which most configurations are near the transition state and
have relatively high free energies. These methods maximize a
likelihood of the committor function in the transition path
ensemble18 or transition state ensemble.28,29 Because the
committor function perfectly preserves the reaction progress, it
is often considered the ideal reaction coordinate and used to
grade the quality of other reaction coordinates.28,30,31

However, most committor learning frameworks require a
numerical estimation of the commitor function, q(x), for
supervised training, which can be data inefficient. For example,
to obtain one q value for one configuration x, Ma and Dinner29

used 100 trajectories of MD simulation, which is 250 ns in
total, to obtain a training set of 2100 configurations x and their
q(x). In other words, 125,000 configurations were computed to
obtain 2100 training points, with less than 2% data utilization.
Moreover, in these methods, the q values need to change
smoothly from 0 to 1 in order to provide sufficient information
for the training.
For high-barrier reactions, the committor function has a

sharp change from 0 to 1 around the transition hypersurface,
while in the majority of the phase space, the committor is close
to 0 or 1. Numerical estimation of the committor function is
computed by the counts of trajectories that commit to a basin
divided by the total number of trajectories. In a high-barrier
reaction, any configuration that is slightly away from the
transition state will only commit to the same basin, which
means the estimated values are almost always 0, 1, and values
around 0.5. This makes it difficult to accurately estimate the
committor function and the CVs derived from it, as discussed
in more detail in Section 2.3.
Essentially, these two groups of methods both suffer from

limited training data or slow convergence in statistics for high-
barrier reactions. Therefore, we identify two requirements for
approaches to learning robust CVs. First, the method needs to
learn from a limited amount of training data, including
configurations from basins and transition states. Second, the
CVs need to capture the distinction and progression of
intermediate states along the reaction path.
We introduce an approach to simultaneously fulfill the above

goals using a multitask machine learning model. Multitask
machine learning models consist of a common upstream part
that processes the input data and separate downstream parts
that produce several outputs, where a joint loss function is used
for training. The output of the common upstream part is called
latent space. The latent space of the optimized model will then
encode the union of all the downstream information. This
training strategy has been used in the field of image
classification32,33 and natural language processing34 for
dimensionality reduction and improving generalization per-
formance.
In this work, we represent the simultaneous requirements of

the CVs as multiple loss functions, design separate downstream
parts for each loss function, and use the latent space as CVs.
Unlike previous methods, which typically ignore potential
energies, here the multitask learning exploits the potential
energy label and uses it as a way to measure the reaction

progress for high-barrier reactions. The model is trained with a
combination of short MD trajectories, including relaxation
from the transition state to the basins and ones that are
confined to the basins with no transitions. The learning
algorithm is applied to several model systems, including a 5D
Müller-Brown model, a 5D three-well model, and the alanine
dipeptide. The latent space is shown to be an effective low-
dimensional representation of atomic configurations, identify-
ing the important dimension for the reactions and yielding
accurate reaction free energies. In addition, the multitask
learning framework is shown to be more data efficient than
conventional commitor learning methods and to outperform
single-task learning frameworks, such as an autoencoder.

2. MULTITASK LEARNING APPROACH
2.1. Architecture. In the multitask learning framework,

both the network architecture and the loss function should be
designed to reflect the training data’s nature and the RC/CV
learning objectives. We can break CV learning into three tasks:
(T1) dimension reduction, (T2) separating basins, and (T3)
preserving atomic structural evolution from basins to TS
hypersurface. The multitask neural network contains three
parts corresponding to these three tasks.
An encoder is designed as the common upstream part to

handle T1. This encoder is a neural network whose hidden
layers have progressively fewer nodes, as the layer is closer to
the latent layer output. It takes as input the Cartesian
coordinates of atomic configurations x and maps them to a
low-dimensional latent space ξ. For T2, as discussed in Section
2.3, we assign a basin label n to each x, so that one of the
downstream networks is a classifier trained with supervised
learning; and for T3, the potential energy labels are exploited.
In a high-barrier reaction, the system has to go through low
potential energy states before climbing to the higher potential
energy transition states. Therefore, potential energies V can be
used as an indicator of the reaction progress. The later
discussion in Section 4 will show that potential energy
outperforms the geometry-based indicator. Here, the second
downstream part is a network that predicts potential energy.
Therefore, the multitask neural network has three separate

networks: an encoder, a potential energy predictor (PEP), and
a basin classifier (Figure 1). The encoder maps the x to the

Figure 1. Illustration of the multitask neural network. The input x is
the Cartesian coordinates of the atomic configuration. The latent
space ξmt is the output of the encoder. The classifier and the PE
networks predict the basin label ñ and potential energy Ṽ from the
latent space output.
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latent space ξmt = Enc(x). From the latent space ξmt, the PEP
predicts the potential energy Ṽ = h(ξmt), and the classifier
network predicts the basin label encoded via a one-hot vector
n n g( )mtξ∼ = [∼ ] =α , where α denotes the basin label, and ñα ∈
[0,1]. In the following, a tilde is used to indicate predicted
quantities, and the absence of a tilde is used to indicate actual
true quantities.
2.2. Learning Objectives. The learning objective L is a

joint loss function that sums several loss functions Lp with
coefficients cp.

L c L p, clf, pe, reg, ...
p

p p∑= =
(1)

L w n n n nlog( )) (1 ) log(1 )
i

i i i i iclf ∑= − [ ∼ + − − ∼ ]
(2)

L u V V( )
i

i i ipe
2∑= ∼ −

(3)

These components are the classification error Lclf, potential
energy error Lpe, and regularization on the encoder weights
Lreg. All terms in eqs 2 and 3 sum over all atomic
configurations i in the training data.
The classification error uses the cross-entropy loss, as in eq

2. This term is used to guarantee that different basins are
linearly separable in the latent space. The weights of
configurations wi are normalized such that their sum is unity
for each basin.
Although the above loss function is written for a two-basin

scenario, assuming the true basin label to be integer n = 0, 1
and the predicted label as a scalar ñ ∈ [0,1], it can be extended
to multiple metastable states with multiclass classification cross
entropy.
The potential energy loss term is used to preserve the

reaction progress from low energy basins to high energy
transition states in the latent space. Here, we choose the form
for the potential energy loss as the L2 norm. In eq 3, the
weights ui are adjusted such that each potential energy interval
[Emin, Emin + ΔE], [Emin + ΔE, Emin + 2ΔE], ..., [Emax − ΔE,
Emax] contributes equally to the loss function.
2.3. Basin Classification Learning. While obtaining the

potential energy labels V is straightforward, obtaining the basin
labels is not trivial, because the transition state (TS)
hypersurface is not known in advance.
As mentioned in the Introduction, maximizing the likelihood

related to the committor function can be used to learn an RC
ξmt(x) = f(q(x)).18,31 In these methods, only two-basin
reactions are concerned. For each TPS shooting point
configuration x, the probability of starting at x and arriving
first at the n = 1 basin is defined as the committor function

x xp n q( 1 ) ( )1 = | ≡ (4)

The committor can be estimated by maximizing the join
likelihood xp n( 1 )i i1= ∏ = | over all training data i.
Mathematically, the loss function of these methods is

equivalent to the cross-entropy classification loss. The
committor estimator can hence be a basin classifier that
classifies atomic configurations by the predicted basin labels
ñ(x) = q(x) (see the proof in Supplementary Section 1). By
definition, the classification boundary ñ = 0.5 is the transition
state hypersurface separating the two basins.

However, these frameworks are very data-inefficient for
high-barrier reactions. Only the shooting point configurations
are utilized which constitute less than 1% of all computed
configurations, and it is also hard to statistically estimate the
committor function in the remaining region where q is close to
0 (or 1). It requires ∼1/q (or

q
1

1 −
) trajectories for a good

estimation of q. Otherwise, with only a small number of
trajectories, the estimator cannot discern any slight change of
q, because the labels for the same x will be either all zero or all
one.
In this work, data utilization is 100%: all computed

configurations are used for training, regardless of shooting or
nonshooting point configurations. In the presence of a high
energy barrier, we can utilize the considerations that (1) the
reaction transitions do not occur in a short MD simulation and
(2) basin recrossing rarely happens in a short relaxation
trajectory starting near the TS.
Therefore, in an unbiased MD simulation, trajectories are

trapped at the basin, and all configurations are labeled by the
corresponding starting basin. For short relaxation trajectories,
each configuration is labeled by the ending basin. For example,
a one-way shooting move starts from a chosen high potential
energy configuration (shooting point (xsp, vsp)) close to the TS
with randomly assigned velocities. The system commits/
relaxes toward one of the basins. If a shooting move commits
to basin A, all the configurations between the shooting point
and the end point are labeled as A (n = 0). For configurations
close to transition state hypersurfaces, the same configuration
can appear in several trajectories with different (xsp, vsp) that
commit to different basins and thus are labeled differently.
This method can then be used to statistically sample the basin
label for each configuration.
The resulting arrival probability learned with eq 2 is different

from the committor q. Because the basin label of nonshooting
point configurations depends on the shooting point (xsp, vsp),
the learned probability distribution p2 is

p n c q d dx x v x v( 1 ) ( , )2 sp sp sp sp∫= | =
Ω (5)

where Ω contains the starting configurations that lead to a
trajectory that arrives at x before committing to a basin, and c
is the normalizing factor. However, in the case of a one-
dimensional reaction tube, it can be shown that p2 is a
monotonic transformation of q (in Supplementary Section 1).
More importantly, this monotonic dependency is inherited by
the latent space variable ξ when the classifier monotonically
transforms ξ to p2 with g(ξ) = p2. In other words, ξ is a
monotonic transformation of q if g is a monotonic function of
ξ. To ensure this, it is sufficient that all the classifiers used in
Sections 3 and 4 are purely linear.
Nonetheless, p2 is still a good approximation to q

numerically in the TS region where q ≈ 0.5, as confirmed by
the results in Sections 3 and 4. This is because the majority of
the data around the TS region are shooting point
configurations. Thanks to this correlation, the decision
boundary of our classifier p2 = 0.5 is close to actual transition
states, where p1 = 0.5. In the remaining region where q is close
to 0 (or 1), p2 suffers from the same numerical accuracy
problem as q = p1. Because both p1 and p2 will be either 0 or 1
in these regions, the learned CVs may not be able to
differentiate different intermediate states from the basin to the
TS, mapping them to the same CV value; but later in the
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discussion, it will be shown that the potential energy label can
help remedy such numerical issues by separating these
intermediate states while preserving their order in the reaction
progress.
2.4. Iterative Training Procedure. The neural network

and training framework are implemented with Tensorflow
1.14.35 The encoder, classifier, and PEP are trained together by
the Adam algorithm36 with a learning rate which is reduced by
5% every 20 epochs. The number of nodes used for the
encoder and PEP are listed in Supplementary Tables 1 and 2.
In the first 100 epochs, the prefactors cp are varied randomly
with a uniform distribution as follows:

c M pUnif(0, ), clf, pe, regp p∼ = (6)

The magnitude Mp is chosen such that Lclf and Lpe contribute
equally to the initial loss function value, while regularization
terms contribute less than 5%. The choice of starting learning
rates, numbers of epochs, and the magnitudes Mp are listed in
Supplementary Table 3.
The initial training data is obtained from short unbiased MD

simulations, including those that are trapped in a basin or those
from TPS. However, depending on the complexity of the
reaction, it can be difficult to collect sufficient training data
purely using short MD simulations. For example, TPS
trajectories may be strongly constrained by the initial path
and thus not covering all relevant configurational space, or
there are unknown competing reaction paths or basins not
included in the initial training data. In order to solve this
problem, we introduce an iterative training procedure to
collect more training data and converge the latent space for
free energy calculations.
As shown in Figure 2, the training procedure includes the

following steps:

1. Collect initial training configurations x n V, ,i i i(0) (0) (0){ }
from short unbiased MD simulations.

2. Train a multitask network with latent space ξ(m) =
Enc(m)(x), PEP Ṽ(m) = h(m)(ξ), and classifier ñ(m) =
g(m)(ξ), where m is the iteration number.

3. Expand the exploration of the configuration space with
biased simulations using ξ(m) as the CV. In this work,
around 50−100 umbrella sampling simulations are used,
where the biases of each simulation are centered at the
grid points in latent space close to the training data that
are collected in the previous iterations.

4. Short MD simulations (10−100 ps) are run by restarting
from the umbrella sampling simulations in Step 3 but
without the bias. Each simulation is run until it (a)
reaches a known basin or (b) the number of time steps
exceeds a predefined maximum value. All structures in
the same simulation are then assigned a label
corresponding to the destination basin or “unknown”,
for cases (a) and (b), respectively. The basin class and
potential energy labels of these new configurations are
then collected x n V, ,i i im m m( 1) ( 1) ( 1){ }+ + + .

5. Compute the misclassification rate and potential energy
error using Ṽ = h(m)(Enc(xi(m+1))) and ñ = g(m)(Enc-
(xi(m+1))) and compute the free energy landscape on
ξ(m). If the errors are high or the free energy landscape is
vastly different from the last iteration, meaning that
convergence is not reached, add n Vx , ,i i im m m( 1) ( 1) ( 1){ }+ + + to
the training data and repeat Steps 2−5.

6. Once the CV ξ(m) is converged, use it to estimate the
free energy with umbrella sampling (or another
enhanced sampling method).

More details of the implementation and the training
protocol can be found in Supplementary Sections 2 and 3
and the Harvard Dataverse repository.37−40

3. CASE STUDIES
In this section, the multitask learning framework is applied to
three model systems: a 5D Müller-Brown model, a 5D three-
well model, and the alanine dipeptide in vacuum. These three
model systems all have well-defined ideal CVs that can be used
to accelerate sampling and compute accurate free energies. Our
goal is to examine the model’s ability to learn complex reaction
paths, and hence the CVs in these models are nonlinearly
related to the input features, i.e., Cartesian coordinates.

3.1. 5D Müller-Brown and Three-Well Models. We first
consider two variations of a model parametrized by five
dimensions. The potential energy V5d(x1, x2, ..., x5) is taken as a
nonlinear transformation from a two-dimensional function V2d
as follows

V x x x V x y( , , ..., ) ( , )1 2 5 2d= ∼ ∼ (7)

x x x x101
2

2
2 7

5
2∼ = + + −

(8)

y x x3
2

4
2∼ = + (9)

The 2D subspace (x̃, ỹ) unambiguously determined the
potential energy, while the derived 5D model is made largely
degenerate in energy.
The underlying 2D potential function is defined as

V x y A x a x a y b

y b D x d E y e

( , ) exp ( ) ( )( )

( ) ) ( ) ( )

i
i i i i i i

i i

2d
1

4
2

2 3 3

∑ α β

γ

∼ ∼ = [ ∼ − + ∼ − ∼ −

+ ∼ − ] − ∼ − − ∼ −
=

(10)

Two sets of coefficients, listed in Supplementary Tables 4 and
5, are used to generate a double-well model (so-called Müller-

Figure 2. Iterative training workflow to explore and compute free
energy landscapes.
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Brown model) and a three-well model. These coefficients are
originally devised by Müller and Brown41 and Metzner et al.,42

but we scaled them up to increase the reaction barrier height
for dynamics at the temperature T = 300 K. The Müller-Brown
model (Figure 3(a)) has two metastable states (A and B) and

one minimum energy path between the two basins with a
transition barrier of 0.9 eV (3̃0kBT) from A to B and 0.6 eV
(2̃3kBT) from B to A. In the three-well model (Figure 3(b)),
two basins (A and B) have lower potential energy than the
third basin, C. The transition barrier is 1.0 eV from A/B to C
and 1.2 eV from A to B.
Even though the basins for these two models are separable in

the 2D (x̃, ỹ) subspace, their structure in the 5D space is
obscured by the nonlinear embedding and degeneracy. For
example, a linear path in the (x̃, ỹ) subspace (Figure 4(a) and
5(a)) is equivalent to a hypersurface in the 5D space (Figure
4(b) and 5(b)).
For each model, 300,000 configurations were collected from

MD trajectories near the basin (without transitions) and
trajectories from transition path sampling (Figure 4(a,b)),
respectively. The simulation details are documented in
Supplementary Section 4, and the data is uploaded to online
database.38,40 In order to test how well the model is able to
learn and generalize the transition dynamics, the training and
test sets are initialized with different x1/x̃ and x3/ỹ ratios, such
that the two sets have no overlap in the 5D space but overlap
significantly in the (x̃, ỹ) subspace (Figure 4(a,b)). The
intention is to test whether the algorithm correctly reduces
dimensionality to discover the “true” CV which is given by the
1D minimum energy path connecting the basins in the first
model and the 2D (x̃, ỹ) subspace in the second model. The
expectation is that if the low-dimensional manifold is identified
correctly from the training set, the model will be able to
generalize (achieve low prediction error) on the test set even in
the presence of degeneracy.
For the Müller-Brown model, the latent space variable ξmt is

chosen to be one-dimensional. After training, the classifier
achieves an accuracy of 98% on the test set. As shown in Figure
4(d), the 2% misclassified configurations are located around
the transition state ξmt = 0. This misclassification is hard to
avoid, due to the slow variation of the potential energy
landscape around the transition ridge. A slight velocity change
can lead the system to a different basin, and thus, the
configurations around that region can be labeled as both A and
B. Figure 4(a,b) shows configurations with label A mixing with

configurations with label B around the transition state in both
the (x̃, ỹ) and (x3, x4) subspaces. Thus, this vague separation
boundary is kept in the latent space ξmt. The PEP predicted
potential energy Ṽ closely follows the ground truth values with
a test set mean absolute error (MAE) of 0.04 eV (Figure
4)(d)). The change of Ṽ along ξmt is similar to the actual
potential energy V change along the path from A to B. In
particular, V is maximized at the decision boundary of the
classifier (ξmt = 0 in Figure 4(d)).
As shown in Figure 4(c), ξmt is relatively smooth, and more

importantly, ξmt is seen to monotonically tracks to the reaction
progress. Especially in the area covered by the test set, the ξ
contours are perpendicular to the reaction path and tangential
to the potential energy isosurface.
Umbrella sampling is employed to compute the free energy

profile along ξmt and in the (x̃, ỹ) subspace, which is
summarized in Table 1, with detailed plots given in
Supplementary Figure 1. Free energies computed with the
latent space variable ξmt are reasonably close to the one
estimated with the “true” CVs with an error of 0.05−0.08 eV.
For the three-well model, a 2-D latent space (ξ1, ξ2) is

learned because a single dimension is not enough to
differentiate three different transition paths (A ↔ B, A ↔ C,

Figure 3. Potential energy landscape of the (a) Müller-Brown model
and (b) three-well model in the (x̃, ỹ) subspace.

Figure 4. 5D Müller-Brown model. (a) Training data plotted in the
(x̃, ỹ) subspace. The configurations labeled with basins A and B are
colored as red and blue, respectively. The dots with paler colors are
obtained from TPS simulations, while the darker ones are from MD
simulations at the basins. The background color contours depict the
potential energy V2d(x̃, ỹ). (b) Training and test sets in the (x1, x2)
subspace, colored gray and orange, respectively. (c) Contour of ξmt in
the (x̃, ỹ) subspace. The ξmt value of each (x̃, ỹ) value is averaged from
five sets of (x1, x2, ..., x5). The black dots are configurations from the
test set. The gray lines are true potential energy contours. (d) The
predicted/actual potential energy (Ṽ/V) and basin label (ñ/n) as a
function of ξmt.
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B ↔ C). The trained classifier is able to divide the (ξ1, ξ2)
subspace into three regions with an accuracy of 90% (Figure
5(d)). In this case, the boundaries between these regions are
linear because a linear classifier is used. It is worth noting that
this 90% accuracy is close to its theoretical limit because the
potential energy landscape is relatively flat around basin C.
This is because when using the “true” CVs (x̃, ỹ) as the input,
the classification accuracy is seen to be limited to 90%. The
PEP prediction for the three-well model has a mean absolute
error of 0.07 eV. As shown in Figure 5(c), the PEP reflects the
energy rise and fall along all three transition paths.
3.2. Alanine Dipeptide. The multitask learning algorithm

is also applied to a real molecular system, the alanine dipeptide
in the vacuum. This 22-atom molecule is often used as a model
system to demonstrate protein folding and to test dimension
reduction algorithms.16 Compared to the above toy models,
the alanine dipeptide is more complex due to its higher input
dimension (66 Cartesian coordinates). To train the multitask
model, the configurations are shifted and rotated such that the
center carbon atom locates at (0, 0, 0), the two connecting C

atoms lie on the x − y plane, and one of them lies on the x-axis.
Thus, the input feature dimension is, in fact, 63.
This molecule has three metastable states in vacuum, C7ax,

C7eq, and β states.43 The bottom of these three metastable
states can be identified in the 2D Ramachandran plot using
two backbone dihedral angles ϕ and θ as coordinates, a well-
known widely used set of good CVs for this system. At
temperatures below 150 K, no transition between states occurs
in a 1-ns long unbiased MD simulation (details in
Supplementary Figure 2). C7eq ↔ β transitions are observed
above 200 K. As the temperature increases, the C7eq-β basin
and the C7ax basin grow larger. Above 600 K, some transition
events from and to the C7ax can occur within 1 ns. Because the
multitask is particularly aimed at dealing with high-barrier
transitions, we choose to study the C7eq to C7ax transition at a
relatively low temperature, 50−100 K.
Using the 700 K transition events as seeds, transition path

sampling can find two different transition paths connecting
these three metastable states at 120 K. The transition path
ensemble is visualized in the Ramachandran plot in Figure 6.

The C7eq ↔ β transition has a lower potential energy at the
saddle point than that of the C7eq ↔ C7ax transition. The
training data set includes 2 ns MD simulations at the basins
and 100 TPS trajectories, each with a 2-ps length. Including
some warm-up runs, the total length of simulation used to
generate the training set is around 2.5 ns. The test set is
obtained in a separate TPS simulation at a slightly lower
temperature of 100 K.
The multitask network learned a one-dimensional CV, ξmt,

using the atomic Cartesian coordinates as input. The classifier
achieves 86% accuracy, and the PEP network predicts potential
energy with a mean absolute error of 0.1 eV. Similar to the 5D
models, ξmt can separate the three basins and reflect the change
of potential energy from the saddle points to the basin (Figure
7). Moreover, when trained using the multitask architecture,
the encoder can learn the important structural features, the ϕ
and θ dihedral torsion angles, from the Cartesian coordinates.
This is reflected in Figure 7(a) which shows that the leaned ξmt
is smoothly connected to the two torsion angles ϕ and θ. In
contrast, we find that a variety of single-task learning
procedures results in a much less smooth connection between
ξmt and the (ϕ, θ) set (see Section 4 and Supplementary
Section 5.2).

Figure 5. 5D three-well model. (a) Training data in the (x̃, ỹ)
subspace. The configurations labeled with basins A, B, and C are
colored as blue, orange, and green, respectively. The dots with paler
colors are obtained from TPS simulations, while the darker ones are
from MD simulations. The background color contours depict the
potential energy V2d(x̃, ỹ). (b) Training and test sets in the (x3, x4)
subspace, colored gray and orange, respectively. (c, d) Potential
energy and basin labels in the latent space (ξ1, ξ2). The background
colors represent (c) the predicted potential energy Ṽ and (d) the
predicted basin ñ. The scatter points represent the test set, colored by
(c) actual potential energies V and (d) actual basin labels n.

Table 1. Reaction Free Energy from Basin A to Basin B of
the 5D Müller-Brown Model Computed with Umbrella
Sampling along the “True” Collective Variables x̃,y ̃ and the
Latent Space Variable ξmt

a

case ΔFA→B FB − FA

(x̃, ỹ) 0.89 ± 0.02 0.51 ± 0.02
ξmt 0.94 0.43

aUnits: eV.

Figure 6. Illustration of training data of the alanine dipeptide in the
torsion angles (ϕ, θ) subspace. The molecule structure of the alanine
dipeptide is plotted as a subset in (a). ϕ and θ are two torsion angles
of the C−N chain. Each point in the plot represents one atomic
configuration, and they are colored by (a) the potential energy and
(b) the basin label.
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Compared to the previous 5D models, the classification and
potential energy accuracy is lower for the alanine dipeptide due
to a larger ratio between thermal fluctuations and the reaction
barrier. As a result, many configurations around the C7eq basin
are mapped to a small range of ξmt (Figure 7(a)). However, the
ξmt − ϕ and ξmt − θ correlation is still relatively smooth in this
region. We also note that the training can be much easier with
training data obtained using a lower temperature of 50 K since
thermal fluctuations are smaller and potential energy is
described better with the reaction progress (see Supplementary
Table 6).
The learned latent space variable ξmt from the 50 K training

data is then used as a reaction coordinate for the transition
between C7eq and C7ax. Because the torsion angle ϕ is enough
to describe this reaction progress, only ϕ is used as the
conventional CV reference. To compare ξmt and ϕ, two
umbrella sampling simulations are employed to estimate the
free energy landscape: using either ξmt as the CV (Figure
8(a,c,e)) at 50 K or ϕ as the CV (Figure 8(b,d,f)) at 300 K.
We use LAMMPS44 and PLUMED45 codes with an additional
interface to load the TensorFlow neural network CV model.37

Details of the umbrella sampling settings can be found in
Supplementary Section 5.3. The resulting umbrella sampling
trajectories are analyzed with the bin-less multistate free energy
estimation method46 and UWHAM.47 For each set of
trajectories, two free energy profiles at 50 K are obtained
using ξmt and ϕ (Figure 8(a,b)) for integration. Because CVs
are used twice in this procedure, we denote the CV used in
umbrella samplings as the sampling CV (SCV) and the one
used in reweighting analysis to reconstruct the free energy
landscape as the reweighting CV (RCV).
As a reference, ϕ is used as the SCV to sample

configurations at 300 K (Figure 8(b,d,f)); the free energy
profiles are computed at 50 K. Because the sampling
temperature is higher, configurations occupy a larger region.
The free energy barriers of the forward/backward transitions
between C7eq and C7ax are 0.42/0.33 using ξmt as the RCV and
0.41/0.32 using ϕ as the RCV.
When ξmt is used as the SCV at 50 K, the sampled

configurations form a narrow path in the ϕ − θ subspace. As
expected, the potential energy in this path increases from C7eq
to the transition states and then decreases, while ξmt
monotonically increases from C7eq to C7ax (Figure 8(c,e)).
The two free energy profiles with the RCV = ξmt and RCV = ϕ
are almost the same with a forward/backward reaction free
energy of 0.46/0.35 eV (Figure 8(a) and Table 2). The free
energy is only 0.07/0.04 eV different from the one from the

SCV/RCV = ϕ (Figure 8(b)), which can be a result of low
sampling efficiency at 50 K and numerical errors. We conclude
that in evaluation of free energy barriers and sampling of
reaction paths, the learned ξmt performs as effectively as the
reference ϕ coordinate and thus can serve as a good SCV and
RCV for estimating reaction rates. Finally, it also worth noting
that the amount of data required to train this multitask neural
network is 2 orders of magnitude lower than that used by Ma
and Dinner29 for the same system.

3.3. Au (110) Surface. As an example of an application to
a realistic extended system, the learning framework is applied
to a unit restructuring reaction on the Au(110) surface under
vacuum, which is known to exhibit a missing-row reconstruc-

Figure 7. (a) Torsion angles ϕ and θ and (b) predicted basin label ñ,
actual basin label n, predicted potential energy Ṽ, and actual potential
energy V as a function of the latent space variable ξmt. The training
data is obtained at 120 K, and the test data is obtained at 100 K.

Figure 8. Umbrella sampling for the C7eq-C7ax transition. The
multitask model is trained with 50 K data. (a, c, e) use ξmt at 50 K as
the CV to define the bias, while (b, d, f) use torsion angle ϕ at 300 K.
(a, b) The free energy profile at 50 K along ξmt (blue line) and ϕ
(purple dashed line). (c−f) Sampled atomic configurations plotted in
the torsion angles (ϕ, θ) subspace. The configurations are colored by
(c, d) potential energy and (e, f) the latent space variable ξmt.

Table 2. Reaction Free Energy from C7eq to C7ax (Fforward)
and from C7ax to C7ax (Fbackward) of the Alanine Dipeptide
and the Free Energy Difference between the Two States ΔF
along the Reweighting CV (RCV) Direction by Analyzing
Trajectories from Umbrella Samplings Biased along the
Sampling CV (SCV)a

SCV RCV Fforward Fbackward ΔF
ϕ ϕ 0.39 0.31 0.08
ϕ ξmt 0.42 0.36 0.06
ξmt ϕ 0.46 0.35 0.11
ξmt ξmt 0.46 0.35 0.11

aThe simulation temperature is 50 K for the umbrella sampling using
ξmt as the SCV and 300 K for the ones using ϕ as the SCV. The free
energy is always estimated at 50 K. Units: eV.
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tion.48 The deconstruction of this missing-row reconstruction
can happen at elevated temperatures,49 upon charge
modulation,50 or with surface molecule adsorption.51 The
intermediate metastable states of the reconstruction/decon-
struction process are thought to control the surface reactivity
of Au catalysts but are hard to detect experimentally due to
their transient nature and the limited time resolution of
microscopic techniques.
In this section, we focus on studying the free energy

landscape at 300 K for a two-atom reconstruction event, shown
in Figure 9, an important unit reaction for the transition

between missing-row reconstructed surface and the flat (110)
surface with terraces. During the transition from basins A
(Figure 9(a)) to B (Figure 9(b)), a top surface atom (marked
as 1) moves into the subsurface layer, popping a subsurface
atom (marked as 2) up to the top surface and increasing the
missing-row reconstructed area.
First, the nudged-elastic-band (NEB) method is used to

search for the transition path at 0 K (Figure 9(c)). The initial
training data includes short MD trapped at both basins A and
B, as well as TPS at 300 K, using the NEB path images to
initialize the starting trajectories. A two-dimensional latent
space ξmt = (ξmt,1, ξmt,2) is used in the multitask network. In
order for the model input to satisfy periodic boundary
conditions, we choose to transform the x- and y-coordinates
of each atom to (lx sin(x/lx), lx cos(x/lx)) and (ly sin(y/ly), ly
cos(y/ly)), where lx and ly are periodic supercell dimensions.
The transformed x- and y-coordinates, as well as the z-
coordinates of all 144 atoms, are used as the encoder input.
We perform 6 training iterations to converge the CV latent

space. As shown in Figure 11, the resulting two-dimensional
latent space (ξmt,1, ξmt,2) is able to successfully separate basins
A and B and other “unknown” states (see below), with a
classification accuracy of 91.3% (Figure 11(c) and potential
energy mean absolute error of 3.3 meV/atom (Figure 11(d)).
The free energy barrier is computed to be 0.4 eV using (ξmt,1,
ξmt,2) as the SCV and RCV. The free energy landscape is
depicted at Figure 10.
We emphasize that unlike the other two systems, for which

obvious or exactly known CV references exist, it is hard to find

simple CVs in this realistic system for comparison, because
multiple metastable states are closely connected to this
reaction path. Because we are only interested in the free
energy barrier between basins A and B, the other metastable
states are all marked as the “unknown” basins. These
“unknown” basins post a challenge in the free energy barrier
estimation. Due to their adjacency to the basins A and B in the
real space, umbrella sampling simulation can easily cross the
barriers to these “unknown” basins. However, the classification
accuracy on these basins is not ideal because they are not
included in the training set. Therefore, the encoder can map
them to basin A or basin B, which affects the free energy
calculations, either lowering the free energy in the basins or
lowering the free energy at the transition states. This problem
can be solved by using the iterative training framework. As
shown in Supplementary Figures 3 and 4 and Supplementary
Tables 7−9, the iterative training framework gradually
improves the multitask network’s accuracy on classification
and potential energy for these “unknown” basins. As a result,
the free energy barrier between basins A and B converges to a
constant value.
In order to visualize these “unknown” basins, the z-

coordinate of atoms 1 and 2 (written as z1 and z2) are used
here, only to demonstrate how label (Figure 11(a)) and
potential energy (Figure 11(b)) vary in the Cartesian
coordinate space. In this (z1, z2) subspace, basins A and B
are well separated, and the potential energy increases in the
proximity of the transition states. However, the other basins
appear during TPS and umbrella sampling simulations,
visualized in Figure 10 and the Supporting Information.
Some of these “unknown” basins share the same (z1, z2)
coordinate combination as basins A and B, and thus, (z1, z2) is
not a good collective variable due to the overlap of basins. In
fact, using (z1, z2) as the RCV, the free energy barrier is
estimated as 0.25 eV, significantly lower than the value using
(ξmt,1, ξmt,2) as the RCV.

4. DISCUSSION
The key to efficient learning of collective variables is to
combine dimensionality reduction using the encoder with the
downstream parts handling tasks T2 and T3 discussed in
Section 2, which infuse physical information about the system
into the learning process. To compare the performance of all

Figure 9. A model Au(110) surface. (a, b) The top view and (c) side
view of the two metastable states and (d) the connecting reaction
pathway found by NEB. The atoms with the biggest displacement in
reaction (d) are colored as blue and red, while in (a, b) they are
marked as 1 and 2, respectively. The crystal orientations are noted in
(a) and (c). The top layer, subsurface, and bulk Au atoms are
represented by yellow, orange, and brown spheres, respectively. The
supercell boundary is depicted as the black frame.

Figure 10. (a) The free energy landscape of the Au(110) missing row
desconstruction event. (b−e) Examples of “other” basins, obtained at
the last CV training iteration. The color code is the same as in Figure
9.
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three models discussed in Section 3, two single-task neural
networks are trained: with only the classifier or the PEP
downstream parts.
For the sake of brevity, only the case of the 5D Müller-

Brown model is presented in the main text, and the remaining
data sets are left to Supplementary Sections 4 and 5

(Supplementary Figures 5−7). Similar to Sections 2 and 3,
where the latent space variable ξ learned with the multitask
framework is denoted as ξmt, the latent space variables learned
with alternative architectures will also be noted with a
subscript.
In the first single task learning setup, the neural network has

an encoder of the latent space ξclf and a classifier trained with
only the Lclf loss function. The latent space ξclf in this case can
still identify and separate the two basins with 95% accuracy
(Figure 12(a, e)). Around the transition states, the potential
energy V is sharply concentrated around its conditional mean
on ξclf, and its contour is perpendicular to the reaction path
around the saddle point region. However, outside of the
transition region, the contour is tangential to the reaction path
and different energy states mixed at the same ξclf value. The
free energy derived from this ξclf is 0.52 eV, prominently lower
than the ground truth value 0.89 eV. The free energy difference
between basin A and B is also greatly underestimated.
The mixing of high energy and low energy states and

underestimated reaction free energy indicate that the single
task network fails to learn the reaction path in the underlying
(x̃, ỹ) subspace, and ξclf cannot preserve the reaction progress.
It misses the nuance of the reaction progress exactly because of
the numerical accuracy issue affecting estimation of the
committor mentioned in Section 2.3, i.e., the classifier function
has very small variation close to the basins. This problem is less
severe for the region around the transition state because most
of the training data around that area are generated from the
TPS shooting point configurations. That is why the potential
energies around the transition state (ξclf ≈ 0) in Figure 12(e)
are closely correlated with ξclf.
Next, we consider a single-task learning framework where

the network has an encoder and a PEP, trained with only the

Figure 11. Sixth iteration training data in (a, b) the (z1, z2) space and
(c, d) the latent (ξmt,1, ξmt,2) space, where z1 and z2 are the z-
coordinates of atoms 1 and 2 marked in Figure 9, respectively. Each
data point is colored by (a, c) basin labels and (b, d) potential energy.

Figure 12. Comparison among different single-task architectures consisting of (a, e) an encoder and a classifier, trained with Lclf; (b, f) an encoder
and a PEP, trained with Lpe; (c, g) an encoder, trained with Lpe

pair; (d, h) an encoder and a decoder, trained with Lreconst. (a−d) The spatial
distribution of the latent space variable ξ in the (x̃, ỹ) subspace. The black dots represent the location of the training and test sets, and the
background contours are colored by the ξ value. We note that a single (x̃, ỹ) value can correspond to many (x1, ..., x5) values. For each (x̃, ỹ) in
these plots, only one set of (x1, ..., x5) is randomly chosen to satisfy eqs 8 and 9. (e−h) Predicted potential energy Ṽ, predicted label ñ as a function
of ξ.
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Lpe loss. The contours of ξpe in Figure 12(b) are close to the
true potential energy. However, Figure 12(f) shows that while
the encoder clearly orders configurations by their potential
energy in the latent space, it assigned many of the
configurations from two different basins onto the same values
of ξpe.
The success of multitask learning originates from the

synergistic effect among all parts of the loss function. The
effect of the Lclf loss dominates around the transition state
hypersurfaces (ξ ≈ 0) and removes the energy degeneracy
across basins by separating them in the latent space.
Simultaneously, minimizing the Lpe loss tends to order the
configurations by potential energy so that the reaction progress
from the bottom of the basin toward the transition states is
preserved.
There is the freedom to choose the exact expressions for Lpe

and Lclf as long as they accomplish tasks T2 and T3 listed in
Section 2.1. In fact, T3 (preserving atomic structural
evolution) can be achieved by any loss function and
architecture that captures information about the proximity
between configurations along the reaction path. We demon-
strate below a successful example with an alternative form of
the loss depending on the potential energy Lpe

pair and an
unsuccessful example of an autoencoder reconstruction loss
Lreconst.
In the first example, potential energy is used to measure the

proximity of configurations, whereby the pairwise distance
between two configurations i and j in the latent space is trained
to match their potential energy difference. Thus, Lpe

pair is taken
as the L2 norm for differences between Vi − Vj and dij

(l),
written as

L v d V V( ) ( )
i j n n

ij ij
l

i jpe
pair

,

( ) 2 2 2

i j

∑= [ − − ]
{ | = } (11)

Here Vi − Vj is the potential energy difference between two
data points i and j, and dij

(l) = ∥ξi − ξj∥ is the pairwise
Euclidean distance in the reduced l-dimensional latent space.
Only (i, j) pairs where both points are within the same basin
class are considered. Unlike ui in eq 3, which is defined for a
single data point, the weight vij is defined for a pair of data
points

v s
V V V

V
1ij

i j 0= −
| − | −

Δ (12)

where s is a sigmoid function. This weight drops to zero when
the potential energy difference of the pair is much greater than
V0 (|Vi −Vj| ≫ V0). The parameter ΔV is used to control how
fast the weight drops to zero around V0.
In the second example, an autoencoder52 is tested, which

maps atomic configurations to the latent space variable ξreconst
with an encoder and then maps ξreconst onto a reconstructed
atomic configuration x̃i with a decoder. Autoencoders are often
used for dimension reduction and manifold learning. It is
generally believed that the latent space can preserve the
proximity of configurations by minimizing the Euclidean

distances dij
N(3 )a between the original and reconstructed atomic

configurations. The reconstruction loss Lreconst is defined as
follows

L x x
i

i ireconst
2∑= | − ∼|

(13)

where Na is the number of atoms in the atomic configurations.
For L = Lpe

pair, Figure 12(g) shows that the encoder still
orders the configurations by potential energy in the latent
space, with the additional feature that the two basins are
separated, thanks to the fact that only same-basin pairs are
used in eq 11. The resulting ξpe

pair is very closely correlated to
the actual potential energy landscape in (x̃, ỹ) (Figure 12(c)).
More interestingly, such correlation extends beyond the
training and test set region in the (x̃, ỹ) space. In this sense,
it is more robust than the multitask latent space.
However, this observed robustness is purely fortuitous; it

does not work well on other models. For the 5D three-well
model, Lpe

pair mixes basins A and B as seen in Supplementary
Figures 6, 7(g). For the alanine dipeptide, also it mixes the
class labels for all three basins (Supplementary Figure 5g), but
this problem can be remedied by introducing additional terms
in the loss function to separate pairs of configurations
belonging to different basins. Eq 11 is just an example.
For the autoencoder with Lreconst, the basin labels and

potential energies are entangled in the latent space ξreconst.
From Figure 12(d), it appears that ξreconst has negligible
correlation with the “true” CVs x̃ or ỹ.
A successful loss function must guide the latent space to

preserve the proximity between configurations in the reaction
progress. Because the autoencoder directly uses Euclidean
distances |xi − x̃i|, it can have difficulty capturing reaction
progress in the presence of large displacements near the free
energy landscape basins. In the two 5D models, points that are
close in the 2D (x̃, ỹ) subspace can be far away from each other
in the 5D space. In particular, x5 has little impact on x̃ and the
potential energy, but its fluctuation can dominate the 5D
Euclidean distance between configurations. Therefore, the
Lreconst loss is likely to fail due to the interference of x5. In fact,
for the two 5D models, almost all standard dimension
reduction techniques that are based solely on Euclidean
distances in the 5D space are expected to struggle. Using
potential energy as the distance function can help the model
assign correct reaction progress to these large displacement
configurations. It is especially useful for energy-activated
transitions, because potential energy is closely related to the
reaction progress in the configuration space around the
reaction path. That is why including Lpe or Lpe

pair in the
multitask joint loss along with the basin label information
tends to work well.
In addition, the limited dimensionality of the latent space

may inhibit the performance of autoencoders. Autoencoders
may have a better chance if the dimensionality of ξreconst
exceeds the intrinsic dimension of the data manifold.53 For
example, Chen et al.13 used an autoencoder with a 2D latent
space for exploring the energy landscape of the alanine
dipeptide, while Wang et al.54 used a 9-dimensional latent
space to coarse grain the same molecule.
The multitask framework introduced in this work can take

training configurations from different types of simulations, as
long as the basin class and potential energy labels are available.
The training data do not need to follow the Boltzmann
distribution, as required by methods for finding the committor
function, or be Markovian, as required by the methods for
finding slow eigenmodes. As noted in Section 3.2 for the
alanine dipeptide, this flexibility increases the data efficiency of
the training framework. It has 100% data utilization and needs
orders of magnitude lower amount of training data compared
to conventional committor learning frameworks. Including the
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potential energy label can also improve the convergence in the
iterative training framework, which further enhances its data
efficiency. This is exemplified with the Au surface reconstruc-
tion reaction discussed in Section 3.3. As shown in
Supplementary Table 9, the multitask case converges faster
than the single-task case in reaction free energies. Furthermore,
the multitask learning framework can also be generalized to
accommodate additional downstream parts with other
manifold learning loss functions that utilize time correlations
of configurations.55

We note that our learning objective is limited to reactions
that involve a substantial change in potential energy. It assumes
the data is distributed around reaction tubes whose potential
energy correlates well with reaction progress or around the
bottom of basins whose potential energy does not vary
significantly. For diffusion-dominated processes or reactions
with entropy bottlenecks, potential energy is not a good
distance metric, and our learning procedure may not have
advantages over existing methods.

5. SUMMARY

In summary, we propose to use a multitask training algorithm
to learn collective variables from configurations labeled by the
basin class and potential energy. These can be obtained, for
instance, from MD trajectories and transition path sampling
trajectories. The neural network architecture contains an
upstream encoder that maps atomic configurations onto a low-
dimensional latent space and two other downstream networks
that predict the basin labels and potential energy from the
latent space value, which is optimized for the classification of
configurations among the basins and the prediction of the
potential energy. The resulting free energy barrier can be a
useful input for kinetics Monte Carlo modeling, where the
transition rate for each reaction in the reaction network needs
to be explicitedly listed.
The algorithm is applied to study a 5D Müller-Brown model,

a 5D three-well model, the alanine dipeptide, and a Au(110)
surface reconstruction step. We show that due to the synergy
in the multiple learning objectives, the multitask model can
perform nonlinear dimensionality reduction and identify
collective variables that represent well the reaction progress
between the basins. The multitask model requires significantly
less training data compared to conventional methods. Finally,
we demonstrate that the learned collective variables can be
used in enhanced sampling methods, such as umbrella
sampling, to obtain accurate free energy barriers. This
approach opens the possibilities for automated discovery of
low-dimensional coordinates for describing a variety of
chemical reactions and computing their rates.
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