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Abstract.—Understanding phenotypic disparity across the tree of life requires identifying where and when evolutionary
rates change on phylogeny. A primary methodological challenge in macroevolution is therefore to develop methods for
accurate inference of among-lineage variation in rates of phenotypic evolution. Here, we describe a method for inferring
among-lineage evolutionary rate heterogeneity in both continuous and discrete traits. The method assumes that the present-
day distribution of a trait is shaped by a variable-rate process arising from a mixture of constant-rate processes and uses
a single-pass tree traversal algorithm to estimate branch-specific evolutionary rates. By employing dynamic programming
optimization techniques and approximate maximum likelihood estimators where appropriate, our method permits rapid
exploration of the tempo and mode of phenotypic evolution. Simulations indicate that the method reconstructs rates of trait
evolution with high accuracy. Application of the method to data sets on squamate reptile reproduction and turtle body size
recovers patterns of rate heterogeneity identified by previous studies but with computational costs reduced by many orders
of magnitude. Our results expand the set of tools available for detecting macroevolutionary rate heterogeneity and point
to the utility of fast, approximate methods for studying large-scale biodiversity dynamics. [Brownian motion; continuous
characters; discrete characters; macroevolution; Markov process; rate heterogeneity.]

The uneven distribution of phenotypic diversity among
different clades of organisms is one of the most
prominent large-scale biodiversity patterns of life on
earth. Identifying where and when evolutionary rates
change on phylogeny is a key step in understanding
the causes underlying this variation, as both ecological
and developmental controls on clade-level differences
in phenotypic disparity predict that evolutionary tempo
and mode vary over phylogeny in response to ecological
opportunity and developmental constraints or enablers
(Christin et al. 2013; Stroud and Losos 2016). Quantifying
among-lineage variation in rates of phenotypic evolution
is therefore a primary methodological challenge in
macroevolution.

The growth of methods for modeling evolutionary
rate heterogeneity has seen substantial progress in both
continuous (O’Meara et al. 2006; Revell and Collar 2009;
Eastman et al. 2011; Revell et al. 2012; Thomas and
Freckleton 2012; Landis et al. 2013; Rabosky et al. 2014;
Mitov et al. 2019; Fisher et al. 2021b; Revell 2021) and
discrete traits (Lloyd et al. 2012; Marazzi et al. 2012;
Beaulieu et al. 2013; Zanne et al. 2014; Davis Rabosky et al.
2016; Fisher et al. 2021a). Broadly, these methods fall into
two classes: supervised approaches, which require an
a priori hypothesis of phylogenetic rate variation, and
unsupervised approaches, which automatically learn
the distribution of phylogenetic rate variation from data.
Methodological advances in both types of approaches
have made describing patterns of among-lineage evolu-
tionary rate heterogeneity relatively routine, and this in
turn has enabled researchers to investigate mechanisms
underlying broad-scale differences in phenotypic dis-
parity such as ecological opportunity (Alhajeri et al. 2016;

Price et al. 2016), phenotypic integration and modularity
(Goswami et al. 2014; Watanabe et al. 2019), and the
origin of key innovations (Werner et al. 2014; Barua and
Mikheyev 2020; Simões et al. 2020).

Despite much methodological progress, however,
there are still a number of limitations that hinder
investigations of phylogenetic variation in tempo and
mode. Supervised approaches are useful for targeted
hypothesis testing (e.g., Butler and King 2004; O’Meara
et al. 2006; Lloyd et al. 2012), but the large number of
potential hypotheses discourages their use in large com-
parative data sets where phylogenetic variation in tempo
and mode is most likely. Unsupervised approaches have
the ability to automatically evaluate many possible hypo-
theses of phylogenetic rate variation (e.g., Eastman et al.
2011; Uyeda and Harmon 2014; Grundler and Rabosky
2020), but the frequent use of Bayesian techniques
typically requires long computation times. Moreover,
methods suitable for organismal traits that can only be
represented as categorical variables have primarily been
developed for use in phylogenetic inference, typically in
a Bayesian context (e.g., Drummond and Suchard 2010),
and have seen limited application in macroevolutionary
studies (but see Beaulieu et al. 2013; King and Lee 2015a;
Davis Rabosky et al. 2016). Compared with continuous
phenotypes, therefore, there is a relative shortage of
unsupervised methods available for discrete traits. As a
result, a substantial amount organismal trait complexity
remains underexplored by studies seeking to identify
phylogenetic variation in tempo and mode.

In this article, we describe a likelihood-based, unsu-
pervised method for inferring evolutionary rate het-
erogeneity that can be applied to both discrete and
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2 SYSTEMATIC BIOLOGY

continuous organismal traits. The method is similar to
many related methods in that the general approach
assumes the present-day distribution of trait is shaped
by a variable-rate process that arises from a mixture
of constant-rate processes. Unlike most related meth-
ods, however, our maximum likelihood approach does
not require long running, computationally intensive
Bayesian techniques to detect rate variation. By employ-
ing dynamic programming optimization techniques and
closed-form (sometimes approximate) maximum likeli-
hood estimators, our approach is capable of evaluating
the phylogenetic distribution of many possible rate-
shift configurations with a single tree traversal and
permits rapid exploration of data sets for variation in
the tempo and mode of phenotypic evolution. Using
simulations, we show that the method reconstructs rates
of trait evolution with high accuracy, particularly in
large phylogenies where the evolutionary process is most
likely to vary among lineages in empirical data sets.
When we apply the method to empirical data sets on
turtle body size and squamate reproductive mode, we
achieve order-of-magnitude speedups recovering pat-
terns of rate variation nearly identical to those inferred
from much more computationally intensive Bayesian
analyses. Overall, our results help to expand the set
of tools available for detecting macroevolutionary rate
heterogeneity and point to the utility of fast, approximate
methods for studying large-scale biodiversity dynamics.

MATERIALS AND METHODS

Notations

We let T be a rooted binary tree and we write |T| for
the number of nodes in T and �(T) for the root of T.
For all nodes u∈T, we write tu for the length of branch
ending at u, au for the parent of u,vu for the left child
of u,wu for the right child of u, and Tu for the subtree
of T rooted at u (excluding the branch leading to u). For
any subset of nodes M={m1,m2,...,mN}, we write T¬M
to denote the induced subtree that results from pruning
the set of nodes spanned by the subtrees Tm1 ,...,TmN .
The set of terminal nodes in T is represented by �T and
we let X represent a map from �T to the set of real
numbers (for a continuous character) or to a finite set
of integers (for a discrete character), so that the values of
X

(

�T
)

={X(u)|u∈�T} are the character states at the tips
of T. Finally, we write L(�T |X(�T)) for the log likelihood
that X(�T) was generated by a process with rate �T .
For the moment we postpone specification of the exact
form of L.

General Approach

Our general approach derives from Kapli et al. (2017)
and assumes there is a background constant-rate process
of character evolution that experiences a series of shifts
to a new independent constant-rate process, each such
process having a distinct rate. We further assume that
each rate-shift occurs at the crown-node of a clade,

and we disallow nested rate-shifts. Importantly, this
constraint means that the model cannot fully capture the
rate heterogeneity that might be present in an empirical
phylogeny because it imposes a limit on the number
and complexity of rate-shift configurations. However,
we will describe a way to mitigate this constraint in our
presentation of the algorithm used to fit the model in the
next section.

Given a set of internal nodes ST ={s1,s2,...,sJ} that
represent rate-shift locations, the function we seek to
maximize is

L
(

�T¬ST
|X

(

�T¬ST

))

+

J
∑

j=1

L
(

�Tsj
|X

(

�Tsj

))

. (1)

The left term represents the log likelihood of the
background process whereas the right term is the log
likelihood of all rate-shift processes inside T. Although
not explicit in equation (1), calculating the likelihood
of the background process requires conditioning on
the character states of the subset of nodes ST that are
internal nodes of the full phylogeny T but that are
terminal nodes in the induced subtree T¬ST

. In effect,
we are decomposing the original tree into J+1 subtrees
by pruning the clades subtended by rate-shifts and
treating the crown-node roots of the pruned clades as
terminal nodes in the induced subtree governed by the
background process. For each rate-shift, we therefore
estimate two parameters. In addition to the rate of the
process, we also estimate the state at the root of the
process. This unobserved state is then treated as known
for the purposes of estimating the rate of the background
process. Note that these ancestral state estimates are not
maximum likelihood estimates but locally parsimonious
estimates computed via the methods of Fitch (1971) and
Felsenstein (1973) for discrete and continuous characters,
respectively.

A Dynamic Programming Algorithm

Because there is no simple solution to directly
maximize equation (1), we opt for a greedy dynamic
programming approach modified from Kapli et al.
(2017). The basic algorithm requires only a single pass
over the phylogeny, visiting each internal node of T
in a postorder traversal, and is illustrated in Figure 1.
For all nodes u∈T we maintain an array of entries
fu,i for 0≤ i≤|Tu| that contain the maximization of
equation (1) under the assumption that i branches in
Tu belong to the background rate process and using
only character state values in X(�Tu

). Note that the
entries recorded for each node do not depend on the
traversal order of the node’s subtree. For entry i=0 the
clade Tu is part of a rate-shift process and for entry
i=|Tu| the clade Tu is part of the background process.
The maximization of equation (1) for entries i>0 is
performed by considering all combinations of j and k
such that i= j+k+2 and using information stored in the
corresponding entries for fvu,j and fwu,k . The plus two
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FIGURE 1. Illustration of the dynamic programming algorithm
used for fitting multirate processes of character evolution. Each entry
in a node’s array contains a configuration of rate-shift processes (red
branches) on a background process (gray branches). Array indices
indicate the number of branches in the node’s subtree that belong to the
background process. To fill in an array entry for an ancestral node, the
algorithm looks at all valid combinations of array entries in the node’s
immediate descendants and chooses the combination that confers the
highest likelihood on the character state data in the node’s subtree. A
valid combination is any pair of descendant indices whose sum added
with two equals the ancestral index. In the current illustration, pairs
(a, d), (b, e), and (c, f) are a few of the valid candidate combinations of
entries in the (previously optimized) N and M arrays for optimizing
entry (12) of the A array. A color version of this figure appears in the
online version of this article.

term accounts for the fact that, as we move down T
toward the root, we add two branches to the background
process for every node visited. Each entry fu,i stores
the sufficient statistics needed for maximizing the log
likelihood of the background process as well as the
log likelihood of all character state data generated by
rate-shift processes inside Tu, which is obtained by sum-
ming the corresponding log likelihoods in entries fvu,j

and fwu,k .
More concretely, consider a single node u and its left

(vu) and right (wu) child nodes. To fill in an array entry
for an ancestral node, the algorithm looks at all valid
combinations of array entries in the node’s immediate
descendants and chooses the combination that confers
the highest likelihood on the character state data in
the node’s subtree. A valid combination is any pair of
descendant indices whose sum added with two equals
the ancestral index. Thus, the score for entry i>0 is

computed as

fu,i
(

Q
)

= max
j,k :

i= j+k+2

fu,i
(

A
)

+fvu,j
(

B
)

+fwu,k

(

B
)

,

where fu,i
(

A
)

is the maximized log likelihood of the
background process rooted at u(the left term in equa-
tion (1)) and fu,i

(

B
)

= fvu,j
(

B
)

+fwu,k

(

B
)

is the maximized
log likelihood of all rate-shift processes inside Tu (the
right term in equation (1)). For i=0 we set fu,i

(

Q
)

=

fu,i
(

A
)

= fu,i
(

B
)

because Tu is assumed to evolve under a
single process in this case. If u is a terminal node, we set
fu,i

(

Q
)

= fu,i
(

A
)

= fu,i
(

B
)

=0.
When the traversal finishes, the algorithm will have

recorded |T|/2 entries for the root array. One of these
entries corresponds to a constant-rate process with no
rate-shifts, whereas the others are distinguished by the
number and configuration of rate-shifts. The relative
likelihood of different configurations can be compared
using Akaike weights, and these weights can be used
to assign each edge in T a model-averaged rate. Model-
averaged branch rates can be used to partially mitigate
the constraint that each individual configuration disal-
lows nested rate-shifts because average rates are capable
of reconstructing patterns of phylogenetic rate variation
consistent with a true pattern of nested rate-shifts when
the rate processes leave distinct signatures in comparat-
ive data. Nonetheless, the non-nested constraint imposes
a limit on the complexity of phylogenetic rate variation
that the method is capable of discovering and model-
averaged branch rates may miss finer scale phylogenetic
rate variation that lies beyond this limit.

Likelihood Equations

So far, the discussion has avoided specifying the
forms of the log likelihood function and therefore
any indication of how to perform the maximization
required in the previous section. When the data are
continuous we assume that the evolutionary process is a
Brownian motion. In that case, the log likelihood can be
computed using Felsenstein’s (1973) independent con-
trasts procedure, which leads to closed-form maximum
likelihood parameter estimates reviewed in Freckleton
(2012). The sufficient statistics necessary for performing
these estimates can be easily tracked while computing
the contrasts. When the data are discrete we assume
that the evolutionary process is a fully symmetric
Markov process. Although the log likelihood can be
computed using Felsenstein’s (1981) peeling algorithm,
this approach does not admit a closed-form maximum
likelihood estimate for the rate of the process. However,
if we are willing to assume that the rate of the process �T
is small—that is, that the expected number of character
state changes on any given branch in T is typically
much less than one—we can derive an approximate log
likelihood function that admits a closed-form maximum
likelihood estimate for �T . We show in the appendix
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4 SYSTEMATIC BIOLOGY

that this approximation has the form (up to an additive
constant)

L
(

�T |X
(

�T
))

=NX log�T −�T

∑

u∈T

tu, (2)

where NX is the minimum number of character state
changes needed to explain X(�T). This leads to the
(approximate) maximum likelihood estimate

�̂T =
NX

∑

u∈T tu
.

The value of NX is easily computed as we move down the
tree toward the root using Fitch’s (1971) maximum parsi-
mony algorithm. Although this estimator is expected
to have negative bias (especially at high rates) because
it assumes all character state changes are visible, it is
monotonically related to and highly correlated with
true rates and maximum likelihood rate estimates (r=
0.95; Supplementary Fig. S17 available on Dryad at
http://dx.doi.org/10.5061/dryad.wpzgmsbph).

Simulation Study

To assess how well the new method estimates branch-
specific rates of evolution, we simulated trait evolution
on empirical phylogenies under different rate-shift
regimes. To carry out the simulations, we generated 5000
phylogenies by randomly sampling internal nodes from
the genes-only ultrametric squamate reptile phylogeny
of Tonini et al. (2016). Nodes were assigned weights
such that all sizes (measured as the number of living
descendants) of extracted clades had an equal probab-
ility of being selected. We imposed a minimum clade
size of 100 for simulations. We chose to select subsets
of a large empirical phylogeny, rather than simulated
phylogenies, to introduce more realistic distributions of
branch lengths than might be obtained using simple
tree simulation models (e.g., Yule or constant-rate birth–
death models).

For each phylogeny, we determined the number of
rate-shift events to place on the tree by drawing a random
integer from a Poisson distribution with a mean of 3.
This ensured that most simulations would be variable-
rate but that enough would be constant-rate to allow
us to assess the method’s false-positive rate. This also
ensures that the shift-to-tip ratio is relatively low, a point
to which we will return in our Discussion section. For
variable-rate simulations, we determined the locations of
rate-shifts by selecting internal nodes randomly without
replacement, again using weights that gave all sizes of
subtrees an equal probability of being chosen. Clades
chosen as rate-shift locations were constrained to be no
smaller than 10% of the total tree size to avoid biasing
simulations with numerous rate-shifts that would be
undetectable due to their small size. Because rate-shift
locations were sampled independently with respect to
one another simulations contained both nested and
non-nested rate processes.

We used a two-step, double randomization procedure
to choose the rate of evolution for each rate-shift. For
each rate-shift, we first sampled a lower bound on
the phylogenetic signal produced by the rate process,
and in a second step, we sampled a rate of evolution
that satisfied that lower bound. The two-step approach
ensures that all simulations, regardless of differences
in underlying phylogenies, are sampling evolutionary
rates and the bound on phylogenetic signal produced by
those rates from a uniform distribution. For discrete trait
simulations, we sampled a lower bound for phylogenetic
signal uniformly between 0 and 1, defined as the
minimum probability of no character-state change event
occurring on any given branch in the clade subtended by
the rate-shift event. In other words, all descendant nodes
must have a probability of retaining the character state of
their ancestral node that is at least as large as this number.
This condition defines a maximum allowable rate for
the process, and we then chose a number uniformly
between 0 and this maximum to serve as the overall
transition rate for a particular rate-shift event. Similarly,
for continuous trait simulations, we sampled a lower
bound for phylogenetic signal uniformly between 0 and
1, defined as the minimum probability density of no
character-state displacement occurring on any given
branch in the clade subtended by the rate-shift event
(i.e., the height of the Gaussian transition kernel at 0).
This condition again defines a maximum allowable rate
for the process, and we then chose a number uniformly
between 0 and this maximum to serve as the overall rate
for a particular rate-shift event.

We conducted two additional sets of simulations to
assess robustness of the method to violations of the
assumptions it makes about the evolutionary process.
First, because the method assumes discrete characters
evolve under a fully symmetric Markov process, we car-
ried out a set of simulations with asymmetric transition
rates so that the equilibrium distribution departs from
the uniform expectation. Second, because the method
assumes continuous characters evolve under a Brownian
diffusion process, we carried out a set of simulations
where the diffusion is punctuated by discrete (normally
distributed) jumps in phenotypic space so that there
is excess variance relative to the Brownian expectation.
Although these scenarios are not exhaustive, they
represent obvious ways that biological data sets may
commonly depart from conditions assumed by the
model.

Performance Assessment

We used model-averaged branch-specific rate estim-
ates to assess the method’s performance in two ways. In
the first instance, we calculated the correlation coefficient
between the true branch rates and the model-averaged
branch rates, which provides a scale-independent metric
of the method’s ability to detect relative rate changes
across phylogeny. In the second instance, we computed
the mean proportional rate difference between the
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2022 GRUNDLER ET AL.—MACROEVOLUTIONARY RATE EVOLUTION 5

FIGURE 2. Product-moment and rank correlations between true and estimated branch-specific evolutionary rates across all discrete character
simulations. Each point represents a single branch and warmer colors indicate a greater density of points. Note the departure of points from
isometry toward the right of the plot, which results from underestimation errors when rates are high. Discrete characters lose phylogenetic
signal quickly and changes become saturated at high rates, so these underestimates are expected given the approximate rate estimator used in
the present study.

true branch rates and the model-averaged branch rates
for each simulated rate-shift event, which provides a
metric of how accurately the method estimates rates of
evolution. The mean proportional rate difference for a
rate-shift with true rate equal to r0 and model-averaged

branch rates r̄i was defined as exp( 1
N

∑N
i=1

[

log r̄i −logr0
]

.
For example, a mean proportional rate difference of one-
half indicates that rates are, on average, underestimated
by a factor of 2. Because individual rate-shift configura-
tions may also be of interest to researchers, we provided
the same performance assessments for the best rate-shift
configuration (as determined by AIC) in the supplement
(Supplementary Figs. S13–S16 available on Dryad).

Empirical Examples

We applied our new method to two previously ana-
lyzed empirical data sets. Eastman et al. (2011) developed
a Bayesian method for fitting multirate Brownian models
and used it to analyze body size (a continuous trait)
evolution for 226 species of turtles. They found strong
support for a heterogeneous rate process, with emydid
turtles in the genus Graptemys showing exceptionally
elevated rates of evolution. Additional but more modest
rate increases were also observed in tortoises (genus
Geochelone) and in several geoemydid genera. Pyron and
Burbrink (2014) assembled a data set of squamate reptile
reproductive modes (a discrete trait) for nearly 4000
species. Analysis of these data with a rate-homogenous
state-dependent speciation–extinction model strongly
supports a viviparous most recent common ancestor of
all squamates, a result that contrasts strongly with parsi-
mony analysis of the same data. King and Lee (2015a)
reanalyzed the data set but allowed for among-lineage

rate variation using random local clocks (Drummond
and Suchard 2010) and found strong evidence of rate
variation and strong support for an oviparous ancestor.
Thus, this example presents a clear case where biological
conclusions depend strongly on assumptions about the
phylogenetic distribution of evolutionary rates.

Implementation

Open-source code and documentation for the method
is available via R packages mk (for discrete traits;
available from https://github.com/blueraleigh/mk)
and bm (for continuous traits; available from
https://github.com/blueraleigh/bm).

RESULTS

Simulation Study

For discrete traits, the overall correlation across all
simulations between model-averaged branch rates and
true branch rates was high, with a rank correlation
approaching 0.9 (Fig. 2). This was true when using
only branches where the true rate decreased over the
background rate (rank correlation 0.85) and when using
only branches where the true rate increased over the
background rate (rank correlation 0.88) (Supplementary
Figs. S1 and S2 available on Dryad). Branch rate errors
were generally low, with a median proportional error
across all simulations of approximately 0.8, corres-
ponding to a slight negative bias (unbiased estimates
have a proportional error of 1). The modal behavior
of branch-rate correlations and branch-rate errors was
largely independent of tree size, but substantially more
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6 SYSTEMATIC BIOLOGY

FIGURE 3. Branch rate error (top) and correlation (bottom) between true and estimated branch-specific evolutionary rates as a function of tree
size (measured as the number of tips) in discrete character simulations. In the top panel, each point represents the average proportional branch
rate error for a single rate-shift event in a single simulation and warmer colors indicate a greater density of points. Unbiased rate estimates have
a proportional error of 1, represented by the horizontal dashed line. In the bottom panel, each point depicts the product-moment correlation
coefficient between true branch rates and model-averaged branch rate estimates in a single simulation. The solid lines in each panel depict the
smoothed median branch rate error or correlation.

variance is observed at smaller tree sizes, which lowers
average correlations and raises average errors (Fig. 3).
Over the range of values sampled in the simulations,
performance of the method appears largely independent
of the number of rate-shifts (Supplementary Fig. S3
available on Dryad). Of the 5000 simulated trait data
sets, 254 were generated under a constant-rate process.
Of these, AIC model selection favored (� AIC >0) a
variable-rate process over a constant-rate process in 17
cases for an overall false-positive rate of 0.067. However,
if we require stronger evidence (�AIC >3) to support
a variable-rate process over a constant-rate process, the
false-positive rate drops to 2 in 254 cases, or 0.008.
Allowing for asymmetric transition rates had no evident
impact on performance. The overall correlation across
all simulations with asymmetric transition rates between
model-averaged branch rates and true branch rates was
high (rank correlation of 0.9), and the distribution of
branch rate errors was essentially unchanged, with a
median proportional error across all simulations of
approximately 0.8 (Supplementary Figs. S4 and S5
available on Dryad). The false-positive rate remained
similarly low (0.08 at �AIC >0 and 0.008 at �AIC >3).

Similar results were obtained for continuous traits but
with generally greater performance overall compared
with discrete traits. The rank correlation across all
simulations between model-averaged branch rates and
true branch rates was 0.98 (Fig. 4) and remained
high when using only branches where the true rate
decreased over the background rate (rank correlation
0.97) and when using only branches where the true

rate increased over the background rate (rank correl-
ation 0.98) (Supplementary Figs. S6 and S7 available
on Dryad). The median branch rate error across all
simulations was essentially unbiased at approximately
1.02 and showed little variation with tree size, although
more variance in estimates is also observed at smaller
tree sizes (Fig. 5). Performance of the method was
again largely independent of the number of rate-shifts
(Supplementary Fig. S8 available on Dryad). Of the
5000 simulated trait data sets, 234 were generated
under a constant-rate process. Of these, AIC model
selection favored (�AIC >0) a variable-rate process over
a constant-rate process in 62 cases, for an overall false-
positive rate of 0.26. After requiring stronger evidence
(�AIC >3) to support a variable-rate process over a
constant-rate process, the false-positive rate drops to 21
in 234 cases, or 0.09. The impact of allowing for non-
Brownian jumps in phenotypic space appears driven by
the fraction of phenotypic variance attributable to the
jump process over the diffusion process (Supplementary
Fig. S9 available on Dryad). When most of the phenotypic
variance was attributable to gradual evolution, the
method performed well. As the jump process gained
in importance the method inferred higher evolutionary
rates to accommodate the overdispersion in pheno-
typic values, leading to generally lower branch rate
correlations, higher branch rate errors, and greater
false positive rates (Supplementary Figs. S10 and S11
available on Dryad). The rank correlation across all
simulations between model-averaged branch rates and
true branch rates was 0.89, and the median branch rate

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/s
y
s
b
io

/a
d
v
a
n
c
e
-a

rtic
le

/d
o
i/1

0
.1

0
9
3
/s

y
s
b
io

/s
y
a
c
0
3
5
/6

5
8
6
3
1
6
 b

y
 U

C
L
A

 B
io

m
e
d
ic

a
l L

ib
ra

ry
 S

e
ria

ls
 u

s
e
r o

n
 2

4
 J

u
n
e
 2

0
2
2



2022 GRUNDLER ET AL.—MACROEVOLUTIONARY RATE EVOLUTION 7

FIGURE 4. Product-moment and rank correlations between true and estimated branch-specific evolutionary rates across all continuous character
simulations. Each point represents a single branch and warmer colors indicate a greater density of points. In contrast to discrete characters,
continuous characters retain phylogenetic signal when rates are high, and we do not observe systematic underestimates with increasing rate.

FIGURE 5. Branch rate error (top) and correlation (bottom) between true and estimated branch-specific evolutionary rates as a function of tree
size in continuous character simulations. In the top panel, each point represents the average proportional branch rate error for a single rate-shift
event in a single simulation and warmer colors indicate a greater density of points. Unbiased rate estimates have a proportional rate error of
1, represented by the horizontal dashed line. In the bottom panel, each point depicts the product-moment correlation coefficient between true
branch rates and model-averaged branch rate estimates in a single simulation. The solid lines in each panel depict the smoothed median branch
rate error or correlation.

error across all simulations was 1.57. Higher errors were
most pronounced at small tree sizes.

Empirical Examples

Analyses of the squamate reproductive mode and
turtle body size data sets reveal strong evidence for
rate heterogeneity (Figs. 6 and 7). The distribution of

phylogenetic rate variation is in broad agreement with
results from prior analyses for both squamates (King
and Lee 2015a) and turtles (Eastman et al. 2011). In
particular, elevated rates of reproductive mode evolution
in squamates are observed among skinks, anguimorphs,
liolaemids, phrynosomatids, and snakes. Interestingly,
the distribution of Akaike weights is strongly bimodal,
and individual inspection of these peaks reveals the
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8 SYSTEMATIC BIOLOGY

FIGURE 6. Empirical analysis of reproductive mode evolution in squamate reptiles reveals strong evidence of phylogenetic rate variation. The
left panel depicts the relative likelihood scores (vertical axis) of different rate-shift configurations (horizontal axis). Rate-shift configurations are
indexed by the number of branches belonging to the background process. The middle panels illustrate the distribution of rates on the phylogeny
of squamate reptiles for each of the two best rate-shift configurations labeled in the left panel, which differ in the amount of rate heterogeneity
inferred among snakes (warm colors denote faster rates). In the right panel, branches are colored by rates that are weighted averages of all
rate-shift configurations indexed in the left panel. Substantial increases in the rate of evolution are observed in skinks, some iguanian clades,
and snakes, consistent with prior analyses (King and Lee 2015a). This example with nearly 4000 species runs to completion in less than 1 s on a
standard laptop computer.

FIGURE 7. Empirical analysis of body size evolution in turtles reveals strong evidence of phylogenetic rate variation. The left panel depicts the
relative likelihood scores (vertical axis) of different rate-shift configurations (horizontal axis). The right panel is the phylogeny of turtles with
branches colored by model-averaged rate estimates (warm colors denote faster rates). The distribution of phylogenetic rate variation is broadly
consistent with prior analyses (Eastman et al. 2011), with notable rate increases observed among emydid turtles and among tortoises.
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2022 GRUNDLER ET AL.—MACROEVOLUTIONARY RATE EVOLUTION 9

presence of two distinct, well-supported rate-shift con-
figurations that differ in the amount of rate variation
recovered among snakes. In contrast, for turtle body
sizes, the distribution of Akaike weights is unimodal
with evidence for increased rates of size evolution
occurring among the families Emydidae, Geoemydidae,
and Testudinidae.

This latter example also helps illustrate the computa-
tional efficiency of our approach compared with existing
alternatives. Using the recently described maximum
likelihood recursive clade partition algorithm (Mitov
et al. 2019) to infer rate shifts in turtle body size
evolution takes 762 s with a minimum rate-shift size of
6, compared with our approach that takes 0.003 s with
a minimum rate-shift size of 2 (2.3 GHz processor with
32 GB RAM). Inferences of phylogenetic rate variation
between the two methods are highly similar (Pearson’s
r=0.80, Supplementary Fig. S12 available on Dryad), but
our approach achieves an approximately 254,000-fold
speedup in this case.

DISCUSSION

We describe a method for automatic inference of
among-lineage evolutionary rate heterogeneity in both
continuous and discrete traits that allows researchers
to investigate causes underlying the uneven distribu-
tion of phenotypic diversity among different clades
of organisms. The method assumes that the present-
day distribution of a trait is shaped by a multirate
Brownian motion in the case of continuous traits or
by a multirate fully symmetric Markov process in the
case of discrete traits. Unlike many related methods, our
new approach automatically evaluates the phylogenetic
distribution of many possible multirate processes using
a single postorder tree traversal algorithm, thereby
permitting rapid exploration of data sets for variable
tempo and mode. Moreover, simulation results indicate
that the method is able reconstruct branch-specific
evolutionary rates with high accuracy, particularly in
large phylogenies where the evolutionary process is most
likely to vary among lineages in empirical data sets.

Comparison to Existing Methods

Our method is conceptually similar to existing meth-
ods that model heterogeneous macroevolutionary trait
dynamics as a series of shifts in evolutionary tempo
and mode. The majority of these methods have been
developed for continuous phenotypes and are imple-
mented in a Bayesian context. By contrast, our approach
uses an algorithmic framework that can be applied to
both continuous and discrete phenotypes in a max-
imum likelihood context. Although our approach uses
a maximum likelihood formulation, it does not return
a single best-fit multirate process. Instead, it evaluates
and returns many possible multirate configurations and
ranks them according to their relative likelihood. This

allows researchers to compute model-averaged branch-
specific evolutionary rates or to explore data sets for
multiple well-supported rate-shift configurations. In
this sense, the method is similar to many existing
Bayesian approaches but has the advantage of running
orders of magnitude faster. The method’s fast likelihood
calculations on even the largest phylogenies result
from our use of simple symmetric models of character
evolution as well as from simplifying assumptions and
approximations that allow us to devise a dynamic
programming algorithm for fitting multirate models
to data. This is an important point of departure from
some related methods, which can fit quite complicated
and variable evolutionary models to different parts of
a phylogeny. Indeed, questions related to variation in
evolutionary mode or to contrasting different models
of evolution are better addressed by existing software
(e.g., Khabbazian et al. 2016; Bastide et al. 2018; Mitov
et al. 2019), whereas the current method is best suited for
quickly identifying phylogenetic variation in evolution-
ary tempo. For data sets suspected of harboring com-
plex, fine-scale phylogenetic rate variation, the current
method may give only a coarse picture of this variation,
and existing methods that formally model nested rate-
shifts may be preferred. Importantly, though, our use of
model-averaged branch rates can help circumvent some
of our simplifying assumptions and approximations,
and analyses of simulated data suggest this to be the
case: over the range of parameter values examined
here model-averaged branch rates were generally quite
accurate.

Comparison of Continuous and Discrete Phenotypes

Simulation results indicate that the method gener-
ally estimates branch-specific evolutionary rates with
greater accuracy for continuous traits than for discrete
traits. This is unsurprising given that the likelihood
calculations for continuous traits are exact, whereas for
discrete traits, they are only approximate. In particular,
for discrete traits, we develop an approximation to the
likelihood function that uses the number of maximum
parsimony implied character state changes to derive
an approximate maximum likelihood rate estimate.
Explicit in this approximation is the assumption that the
rate of evolution is reasonably slow. Nonetheless, our
simulation results indicate that relative rate changes can
be accurately identified by the method even where this
assumption breaks down. The intuition here is that a
sufficiently large change in rate from slow to fast or vice
versa will still leave a signature in a maximum parsimony
reconstruction that is detectable even when the approx-
imate maximum likelihood estimator we use is biased.
Even in the absence of approximation error, however,
we may still expect rate estimates for continuous traits to
be more accurate than their discrete trait counterparts
because discrete traits lose phylogenetic signal with
increasing rates (Jukes and Cantor 1969; Wagner 2000),
although the lower limit to rates where this is actually
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10 SYSTEMATIC BIOLOGY

an issue may lay beyond values encountered in most
empirical data sets.

Our simulation results indicate a higher false-positive
rate for continuous traits than for discrete traits. One
explanation for this behavior may stem from the greater
information content of continuous traits compared with
discrete traits. Stochastically large divergences between
pairs of terminal taxa separated by short phylogenetic
path lengths may (incorrectly) be picked up by the
method as evidence for a rate increase. By contrast, a
difference in the state of a discrete character between
similar such taxon pairs is unlikely to contain enough
information to justify a rate increase. We recommend that
researchers carefully examine the evidence ratios in favor
of variable-rate processes before using model-averaged
branch rates in downstream analyses.

Reproductive Mode Evolution in Squamate Reptiles

Squamate reptiles evolved viviparity in approxim-
ately 100 independent instances (Blackburn 1992), and
numerous hypotheses have been advanced to explain
the repeated origins of this trait (Shine 2014; Watson and
Cox 2021). The conspicuous phylogenetic clustering of
viviparous lineages challenges traditional comparative
methods (Pyron and Burbrink 2014), and accounting
for among-lineage rate heterogeneity in reproductive
mode evolution has been critical in recent attempts
to understand its evolution (King and Lee 2015a,b).
Our reanalysis of this historically important data set
highlights several points. First, our model-averaged
results largely recapitulate previous Bayesian analyses of
rate variation in this group (King and Lee 2015a), identi-
fying snakes and several distantly related lizard clades
as hotspots of viviparity evolution. Second, inspec-
tion of individual models reveals two well-supported
alternative rate-shift configurations. Whereas one model
recovers a homogeneous rate dynamic among snakes,
the other, slightly more well-supported, model identifies
a substantially elevated rate of evolution among the
dangerously venomous viperid snakes. The evolution of
viviparity has been cited as a key innovation facilitating
the diversification of viperids during the Oligocene, a
time of global cooling (Lynch 2009). Elevated rates of
viviparity evolution would be consistent with this hypo-
thesis. Our study helps demonstrate how explorations
of phylogenetic rate variation can help shed light on
macroevolutionary hypotheses but also underscores the
position that definitive tests of such hypotheses will
need to draw on techniques from outside the standard
comparative method statistical toolkit (Uyeda et al. 2018,
2021).

Extensions to the Method

In the current implementation, we estimate the rate
of the background process by conditioning on ancestral
state estimates at the crown-nodes of rate-shift processes.
For this reason, it is important that these ancestral

states be both estimated accurately and few in number
compared with observed character states. In other
words, there should be many more tips in a phylogeny
than there are rate-shifts, and this is the most likely
explanation for the greater variance in estimation error
observed at smaller tree sizes in our simulated data
sets. In our simulated data sets, the shift-to-tip ratio
never increases beyond approximately 10%. As the
shift-to-tip ratio increases, there will be less and less
information available for estimating rates, both within
rate-shift processes and within the background process.
One avenue for future improvements to the method
may seek to explore alternative approaches that do not
require conditioning on ancestral character states when
estimating parameters of the background process, or to
devise a two-pass algorithm that more accurately estim-
ates these ancestral states by incorporating information
from the whole phylogeny. Currently, no attempt is made
to accommodate measurement error or intraspecific
phenotypic variation in continuous traits, making the
method potentially vulnerable to misleading estimates
of large rate increases among close relatives near the
present (Ives et al. 2007; Felsenstein 2008). Explicitly
accounting for this source of bias is therefore an obvious
area for improvement on the method.

In principle, the dynamic programming algorithm
used for fitting multirate processes can be extended to
more complex models than the Brownian motion and
equal-rates Markov processes used in the current study.
However, implementing these more complex multipara-
meter models would offset many of the advantages
that come with the current approach. In particular, the
lack of closed-form maximum likelihood or approximate
maximum likelihood estimates for parameters of more
complex models would require additional optimization
routines and increase computational runtimes. Further-
more, model-averaging of parameter estimates, whereas
straightforward for symmetric, single parameter models,
is much more fraught with interpretational difficulties
when extended to more complex models (Posada and
Buckley 2004; Cade 2015). The widespread availability, at
least for continuous phenotypes, of additional methods
for modeling heterogeneous tempo and mode under
more complex evolutionary processes argues against
extending the current approach beyond the simple
models currently used.

Finally, it would be straightforward to extend the
current approach to accommodate multiple traits simul-
taneously. However, given the concerns outlined above
any attempt to do so would most likely be constrained to
work within the confines of the simple models used in
the present study, thereby entailing the assumption that
a single rate parameter governs the evolution of multiple
traits (even if that rate is allowed to vary over phylogeny).
The widespread evidence of integration and modu-
larity in phenotypic evolution (Goswami et al. 2014)
suggests that the applicability of a multitrait approach
would need to be considered carefully for any given
data set.
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APPENDIX

Derivation of Equation (2)

Let ϒT be the set of all nodes in T and let X̂ be a map

from ϒT to a finite set of integers such that X̂
(

�T
)

=

X
(

�T
)

. X̂(ϒT) is called an extension of X(�T) and we
write P�T

to represent a probability parameterized by
�T . The probability of X(�T) is computed by summing
over all possible extensions as

P�T

(

X
(

�T
))

=
∑

X̂(ϒT )

P�T

(

X̂(ϒT)
)

=
1

k

∑

X̂(ϒT )

∏

u�=�(T)

P�T
(X̂(u)|X̂

(

au
)

)

where k is the number of character states. Ordinarily,
this probably is efficiently computed using Felsenstein’s
(1981) pruning algorithm. This approach does not admit
an analytic solution, however, and we therefore seek an
approximation that does.

To begin, we write down the lineage transition
probability by conditioning on the number of character
state changes N

(

tu
)

on edge u as follows (recalling that
these are Poisson distributed)

P�T
(X̂(u)|X̂

(

au
)

)

=

∞
∑

n=0

P�T
(X̂(u)|X̂

(

au
)

,N
(

tu
)

=n)P�T
(N

(

tu
)

=n)

=

∞
∑

n=0

Pn
X̂

(

au

)

→X̂(u)

(

�Ttu
)n

n!
e−�T tu

Here, Pn
X̂

(

au

)

→X̂(u)
is the probability of transitioning from

X̂(au) to X̂(u) in n steps. Recalling now our assumption
that �T is small (so that �Ttu is typically much less than
1), we have the approximation

P�T
(X̂(u)|X̂

(

au
)

)

∼

(

1

k−1

)I(X̂
(

au

)

�=X̂(u))
(

�Ttu
)I(X̂

(

au

)

�=X̂(u))
e−�T tu

where I(X̂
(

au
)

�= X̂(u)) is an indicator function that

equals 1 when X̂
(

au
)

�= X̂(u) and 0 otherwise. This follows
from the fact that when our assumption about the rate of
evolution holds, nearly all the probability mass will be
concentrated at 0 and 1 events of character state change.

Plugging this approximation in to the equation for the
probability of X

(

�T
)

gives

P�T

(

X
(

�T
))

∼
1

k

∑

X̂(ϒT )

∏

u�=�(T)

×

(

1

k−1

)I

(

X̂
(

au

)

�=X̂(u)
)

(

�Ttu
)I

(

X̂
(

au

)

�=X̂(u)
)

e−�T tu

=
1

k

∑

X̂(ϒT )

(

�T

k−1

)NX̂

e−�T�T
∏

u�=�(T)

(

tu
)I

(

X̂
(

au

)

�=X̂(u)
)

where N
X̂

=
∑

u�=�(T)I

(

X̂(u) �= X̂(v)
)

is the number of

character state changes in X̂(ϒT) and �T =
∑

u�=�(T) tu

is the sum of all edge lengths in T. When �T is small
it follows that this likelihood will be almost entirely
dominated by those extensions where N

X̂
is minimal. In

the limit as �T →0 we can drop the summation entirely
and consider only the single extension having the fewest
changes on the longest branches so that

logP�T

(

X
(

�T
))

∼NX log�T −�T�T +const,

where NX = min
X̂(ϒT )

N
X̂

and the constant collects terms that

do not depend on �T .
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