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Abstract

Context and Questions: Global climate change is predicted to cause widespread shifts in the
distribution and composition of forests, particularly in mountain environments where climate
exerts strong controls on tree community arrangement. The upslope movement of vegetation has
been observed in association with warming temperatures and is especially evident in ecotones—
the transition zones between vegetation types. We explored the role of drought and tree mortality
on recent changes in high-elevation forests.

Location: Greater Yellowstone Ecosystem, U.S.A.

Methods: We established 19 forest demography plots along an elevational gradient spanning

dominant high-elevation vegetation types.
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Results: Tree establishment dates indicated the upslope movement of Pinus albicaulis
(whitebark pine) treeline and ecotone shift from meadow to forest starting in the 1950s. An
expansion of the growing season likely contributed to the upward expansion of the treeline.
Comparisons between overstory and understory tree composition suggested ongoing succession
in the absence of fire at lower elevations, namely the replacement of Pinus contorta (lodgepole
pine) by Abies lasiocarpa (subalpine fir). P. contorta seedlings were distributed at higher
elevations than overstory trees of the same species, suggesting some potential for upslope
movement with warming conditions; P. albicaulis seedlings, conversely, were distributed
throughout all elevations of the transect. Significant tree mortality occurred in Pinus spp. and
disproportionately affected P. albicaulis, as a result of a regional Dendroctonus ponderosae
(mountain pine beetle) outbreak (2008-2012). Mortality events were strongly associated with
drier than average conditions 2-3 years prior to tree death.

Conclusion: Rising sensitivity to arid conditions in the mid-20th century amid already dense,
aging forests appears to have increased susceptibility to beetle-induced mortality during the most
recent drought. Tree species in the study area responded individually to global change stressors,
which acted on these forests in complex ways and led to both ecotone shifts and stability. This
work highlights the interplay between succession, forest disturbances, and climate-related growth

responses in driving forest compositional change in subalpine and treeline environments.

Keywords: ecotone shift, mountain pine beetle, climate change, whitebark pine,

dendrochronology

Nomenclature: Vegetation: USDA Plants Database (USDA, 2021). Insects: Wood (1982).

Birds: Lesica (2002).
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1. Introduction

Ongoing climate change has resulted in novel temperature gradients, modified resource
availability, and altered disturbance regimes in forested systems across the world (Anderegg et
al., 2013; Allen et al., 2015) In high-elevation mixed-conifer forests of North America, mortality
events have occurred with increased magnitude and frequency in recent decades (Loehman et al.,
2018). While multiple hypotheses exist about the causes of this mortality (Trugman et al., 2021),
the specific drivers are likely a complex interaction among temperature stress, moisture stress,
and disturbance agents (e.g., insect outbreaks, fire) acting on older and denser forests (Allen et
al., 2010; Rocca et al., 2014). Mortality that results from these interactions ranges in intensity
from individual trees to entire stands, which can alter forest dynamics depending on stand
structure and composition. Increased mortality can also create opportunities for regeneration,
migration, and colonization of forest species across spatial scales (Brice et al., 2019).

When new colonization opportunities are presented (e.g., disturbances, tree mortality), a
reshuffling of tree species composition could occur (Bell et al., 2014). Models have predicted
vegetation shifts poleward and up elevational gradients (e.g., Iverson and McKenzie, 2013),
indicating that many vegetation types may experience type conversions as temperatures warm.
Examples of poleward and upslope movement of vegetation have already been observed in some
forested systems (Johnstone and Chapin, 2003; Beckage et al., 2008; Brashears et al., 2008;
Smithers et al., 2018). Given that forests are slowly but continuously changing (Christensen,
2014), identifying climate-driven community shifts of long-lived species is a challenging task.

Shifts in forest composition are thought to be especially evident in ecotones—transition
zones between vegetation types (Hufkens et al., 2009)—particularly in mountainous

environments where climate can act as a strong control on tree community arrangement (Smith et
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al., 2009). In the central Rocky Mountains, the Greater Yellowstone Ecosystem (GYE) includes
thousands of hectares of subalpine forest and alpine environments. These systems are
characterized by a suite of ecological legacies driven by climate (Krause and Whitlock, 2017),
disturbance dynamics (Romme and Despain, 1989; Hatala et al., 2010), and competitive
interactions (Tomback et al., 2001a) that act as strong filters for tree species composition.
Ecotone shifts have already been observed in some lower-elevation forests of the GYE (Donato
et al., 2016), but the role of climate change and disturbance in these shifts remains unresolved.
The principal disturbance agents in the GYE are bark beetle outbreaks, wildfire, and
drought. In the early 2000’s there was a widespread Dendroctonus ponderosae (mountain pine
beetle) outbreak in the region, affecting Pinus albicaulis (whitebark pine) in particular, with
nearly half of the GYE population estimated to have severe tree mortality (Macfarlane et al.,
2013). While large D. ponderosae outbreaks are a cyclical occurrence in the GYE, the extent and
severity of this most recent outbreak was likely amplified by climate change. In high elevation
environments, warming temperatures interact with bark beetle dynamics by increasing
overwintering survival and larval development rates (Bentz et al., 2010). Water-stressed trees are
less able to defend against beetle attack via two main mechanisms: 1) less allocation of
secondary metabolites to defense and 2) less hydraulic pressure to pitch out beetles (Franceschi
et al., 2005; Anderegg et al., 2015). The period from 2000-2010 has been termed a ‘mega-
drought’ of likely unprecedented severity in the Upper Missouri River Basin, reflecting more
arid conditions and reduced snowpack in its headwaters, the Rocky Mountains (Martin et al.,
2020). In addition to amplifying bark beetle activity, increased aridity interacts with wildfire
frequency and severity. Historical fire regimes in subalpine forests of the interior Rockies are

infrequent and mixed- to high-severity, driven by periods of prolonged drought sufficient enough
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to dry long-term fuel accumulations (Schoennagel et al., 2004). Fire suppression has altered
more historically mixed-severity forest types in the GYE and has likely contributed to the decline
of P. albicaulis forests (Tomback et al., 2001a).

In this study, we investigated changes in overstory and understory forest composition and
structure (i.e., for tree species only) across a 500 m elevational gradient of common forest types
in the GYE to determine how and why high-elevation ecotones have changed over the past
several decades. Our objective was to characterize the role of drought and recent beetle-caused
mortality on possible changes in tree species composition and structure, and determine whether
those changes reflect ecotone shifts, successional change, or some combination of both. We
analyzed forest and dendrochronological data characterizing species-specific demography to
identify species distribution changes and ecotone shifts, expecting upslope movement across all
elevations and species, and in particular amongst more drought-sensitive species. We further
investigated climate-growth relationships and patterns in tree mortality to help explain observed

compositional shifts.

2. Methods
2.1 Study Area

We selected a forested slope on the southwest aspect of South Bird Mountain in the Shoshone
National Forest in northwest Wyoming, as our study area (Figure 1). The climate in the region is
characterized by a mean annual temperature of 1.2°C, with mean minimum and maximum
monthly temperatures of -14.5°C and 22.5°C respectively, and a mean annual precipitation of
775.1 mm (extracted from climateWNA, Wang et al., 2016). The predominant tree species in the
study area are Pinus contorta (lodgepole pine) and Pinus albicaulis, with a lesser component of

Abies lasiocarpa (subalpine fir), Picea engelmannii (Engelmann spruce), and Pseudotsuga
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menziesii var. glauca (Douglas-fir). The transects sampled during the study spanned the
following ecotones from lowest (2,558 m) to highest (3,028 m) elevation: sagebrush steppe, P.
contorta-dominated forest, P. albicaulis -dominated forest, and alpine meadow. P. contorta-
dominated forests initiated in the early-to-mid 19" century, and could be described as late-
successional with complex structure and advanced regeneration of shade-tolerant A. lasiocarpa
in the understory. P. albicaulis-dominated forests initiated in the early 19" century and
progressively earlier with higher elevations, with early-successional forests above 3000 m.

The alpine meadows were sparsely populated with large, dead remnant P. albicaulis and P.
engelmannii stems dating to many centuries ago (Rochner et al., 2021).

[Figure 1 Location]

2.2 Study Design and Data Collection

To assess changes in forest composition, we established two parallel study transects on
South Bird Mountain. We used aerial imagery to identify a transect location that appeared
representative of the subalpine forests of the GYE and included an elevational gradient of
multiple ecotones. We selected a living forested area, thus our scope of inference does not
include the post-disturbance dynamics of those ‘ghost’ forests severely impacted by the bark
beetle outbreaks in the early 2000’s. The first transect consisted of six plots, ranging in elevation
from 2,866 m to 3,006 m, while the second transect consisted of 13 plots, ranging in elevation
from 2,561 m to 3,020 m (Figure 1). Plots were spaced 250 m apart across the elevational
gradient within each transect. We sampled the first transect in 2017 and the second transect in
2018 and 2019. Of the 19 plots, two were in meadows at the elevational extremes of the transect.

At each forested plot, we measured two forest demographic groups: (1) trees and (2)

seedlings and saplings. Trees were defined as stems >5 cm diameter at coring height (DCH) and
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>1.37 m in height. Seedlings and saplings were defined as stems <5 cm DCH, with saplings
>1.37 m in height. We applied N-tree distance sampling (Moore, 1954), in which we sampled the
10 trees (live or dead) nearest to the plot center. We established each plot radius by measuring
from plot center to half the distance between the 10th and 11th trees. Across the dataset, the
average forested plot radius was 5.3 m, with radii ranging from 3.8 m to 7.4 m. We identified
species and status (e.g., live or dead) for all trees sampled, and recorded observations for canopy
position (dominant, codominant, and suppressed) and tree condition (e.g., evidence of bark
beetles, fungal fruiting bodies, physical damage). We used increment borers to collect two cores
per tree at a coring height of 30 cm. For dead trees that were not sound enough to core, we
collected cross-sections. We identified and destructively sampled all seedlings and saplings

within the plot radius determined as above.

2.3 Sample Preparation and Tree-Ring Chronologies

We processed increment cores and cross-sections from overstory trees according to
standard dendrochronological methods described by Stokes and Smiley (1968) and Speer (2010).
Cores were mounted and sanded using progressively finer grit (40, 120, 220, 320, and 400) and
finished with 30, 15, and 9 micron sanding film until cell structure was discernible. We
developed skeleton plots for a subset of individual series to identify marker years for each
species. We then used the memorization method to crossdate the remaining cores (Douglass,
1941). Tree-ring widths were measured (resolution: 0.001 mm) using a Velmex TA Measuring
Machine with J2X software, and via scanned images (1200 dpi) processed with CooRecorder
(Cybis Elektronik, 2010). We statistically validated the visually crossdated cores with
COFECHA software (Holmes, 1983). Of the five species present on the study transect, increment

core sample depth was large enough to develop final tree-ring chronologies for P. albicaulis (142
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series from 89 trees) and P. contorta (121 series from 66 trees). The expressed population signal
for the chronologies used in climatic analyses were 0.92 and 0.89 for the P. albicaulis and P.
contorta, respectively (Table S1). We used an age specific smoothing spline with a fixed
stiffness of 30 years to detrend the ontogenetic growth patterns (Klesse, 2021), and
autoregressive modeling to remove temporal autocorrelation. All chronology building was done
in the R package dp/R (Bunn, 2008).

To age each of the harvested seedlings and saplings > 30 cm tall, we prepared two cross
sections from each sample, one at the base (0 cm height) and another at 30 cm stem height.
Seedlings smaller than ~1cm in diameter were cut with a razor blade and the rings were visually
counted under a microscope. Cross-sections of seedlings 1-5 cm in diameter were sanded, rings
were counted under the microscope, and the memorization method was used to crossdate tree-

rings when possible.

2.4 Analytical Approach

2.4.1 Forest Demography

Live and dead trees > 5 cm diameter at coring height (i.e., overstory) were assigned a plot
scaling factor based on the radius calculated from the N-tree design. Live and dead total basal
area, trees per hectare, quadratic mean diameter, and stand density index (Vacchiano et al., 2013)
were calculated. Trees per hectare for the understory trees were calculated on a per-species basis
using the N-tree scaling factor.

Overstory tree cores that intersected the pith were noted, otherwise the number of rings to
the pith were estimated using pith locators developed by Applequist (1958). We used the

seedling and sapling cross-sections taken at 0 cm and 30 cm to develop an equation for
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extrapolating the number of years for a seedling to grow from 0 to 30 cm. We estimated tree
establishment year by subtracting the modeled number of years to grow to 30 cm from the pith
year measured at 30 cm measurement height. The establishment years of seedlings were the pith
year of the cross section at 0 cm.

Dates of tree death were assumed to be the calendar year in which a standing dead tree
formed a tree ring. In cases where the latest calendar year did not match across the two core
samples for a given tree, the date of death was assigned the most recent year. Additionally, bark
beetles (assumed Dendroctonus ponderosae) were ascribed as a factor associated with death if
blue-stain fungus (assumed one of, Grosmannia clavigera Robinson-Jeffrey and Davidson,
Ophiostoma montium Rumbold, or Leptographium longiclavatum S.W. Lee, J.J. Kim & C.

Breuil) was present in the sapwood of increment cores of standing dead trees.

2.4.2 Forest Change

We compared patterns of establishment by tree species and status (e.g., live or dead)
graphically. To aid graphical interpretation, we binned establishment years into decades, and
forested plots into five elevational groups. Elevation bands were assigned by rounding to the
nearest 100 m (e.g., “2800 m” includes plots ranging from 2750-2849 m in elevation). To assess
possible changes in the distribution and composition of overstory trees relative to understory
seedlings and saplings of the same species, we used non-metric multidimensional scaling
(NMDS; vegan package in R; Oksanen et al., 2013) on tree density (stems/ha) by species and
form for the 17 forested plots. NMDS results were assessed for the overall reduction of stress.
Ordination bi-plots were assessed graphically, and the relationship between NMDS axes
(expressed as MDS1 and MDS?2) and associated environmental variables were calculated. We

then plotted the relative amount of change for each species over the NMDS axes.
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2.4.3 Climate Response

To assess relationships between climate variables and the residual chronologies we used
response function analyses in the R package treeclim (Zang and Biondi, 2015). We explored
monthly, seasonal, and water-year responses of tree-ring widths to precipitation, minimum
temperature, maximum temperature, and the Palmer Drought Severity Index (PDSI) extracted
from the Parameter-elevation Regressions on Independent Slopes Model (PRISM Climate
Group, 2020). After preliminary testing, we settled on presenting results for growth responses to
monthly minimum and maximum temperature and PDSI using a moving correlation analysis
with a 35-year window. We settled on species-specific climate-growth patterns grouped across
all elevations because they did not differ substantially when separated into upper and lower
elevation groups, perhaps because the majority of stems for each species occurred in a smaller
elevational range than the whole transect at large (Figures S1,S2).

To examine possible correspondence of tree mortality with year-to-year drought
variability we conducted a superposed epoch analysis (SEA) using tree death dates and historical
time series (1895-2019) of summer seasonal drought (June-August) developed from gridded
PDSI data (PRISM Climate Group, 2020). We identified 16 unique mortality event years and
used the sea function in the R package burnr (Malevich et al., 2018) to analyze each focal year in
relation to the 10 years before and after to test the null hypothesis that drought conditions in the
years surrounding a mortality event do not significantly differ from the mean drought conditions

over the time period tested (1934-2017).

3. Results

3.1 Forest Demography

11
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We determined establishment dates for 91 P. albicaulis trees, 91 P. contorta trees, 5 A.
lasiocarpa trees, 2 P. engelmannii trees, and 1 P. menziesii tree. Establishment dates of live and
dead overstory trees revealed clear successional patterns of species recruitment at lower
elevations along our study transect, with stand initiation dominated by P. contorta typically
followed by establishment of P. albicaulis (largely after 1879; Figures 2,S2). Basal area and
stem density of P. contorta ranged from 2.9 m*/ha to 51.3 m?/ha and 163 stems/ha to 720
stems/ha respectively, with the greatest basal area around 2,700 m and the greatest stem density
around 2,800 m (Tables 1, 2, S2, S3). Basal area and stem density of P. albicaulis ranged from
1.9 m?/ha to 23.9 m?/ha and 29 stems/ha to 992 stems/ha respectively, with the greatest basal
area around 2,900 m and the greatest stem density around 3,000 m (Tables 1,2, S2, S3). Stocking
of P. albicaulis and P. contorta at all plots was high, with stand density index (SDI) values
ranging from 313.7 to 864.5 (Tables 3, S4). 4. lasiocarpa, P. engelmannii, and P. menziesii were
only minor components of the overstory at all but the highest elevations (Tables 1, 2). Tree
establishment year was positively related to elevation, with the oldest trees at the lowest
elevations and predominantly younger trees at higher elevations (Figures 2, S3).

[Figure 2 Location]

[Tables 1, 2, and 3 Location]

3.2 Forest Change and Potential Drivers

3.2.1 Ecotone Shift

Age structure and tree species composition of the forest across different elevation bands
highlighted areas on the transect where understory communities did not reflect overstory

composition. Across the P. contorta -dominated stands, 8.5% of total seedling density was P.
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contorta, while 45.1% was A. lasiocarpa and 44.2% was P. albicaulis, suggesting the potential
for ecotone shift if heterospecific seedlings and saplings accede to the overstory (Figure 2;
elevation bands: 2600-2800 m). P. albicaulis -dominated stands had similar overstory and
understory communities, suggesting relative stability in composition (Figure 2; elevation bands
2900-3000 m)

NMDS ordination comparing densities of overstory trees and understory populations of
the same species suggested both stability and the potential for ecotone shift. These populations
separated most strongly along the axes of elevation (MDS1, = -0.85) and total basal area (=
0.58; Table S5), with a stress of 0.02. Comparisons of MDS1 axis scores between overstory and
understory trees of the same species suggested an upslope shift in establishment of P. contorta
and a downslope shift in P. albicaulis (Figure 3). Slight downward shifts were suggested for A.
lasiocarpa, P. engelmannii, and P. menziesii; however, these results must be viewed in light of
limited tree densities in most plot overstories and some plot understories.

[Figure 3 Location]

We found clear evidence of an ecotone shift in plots greater than 3,000 m in elevation,
from meadow to closed-canopy forest. Virtually all of the understory recruitment at the highest
elevations occurred in the 20th century, and a substantial majority occurred after 1950 (Figure 4).
P. albicaulis dominated the understory recruitment signal, in particular at high elevation where it
was nearly the only species recruiting.

[Figure 4 Location]

3.2.2 Pine Mortality

Tree mortality across all elevations ranged from 0.4 to 27.2 m?/ha, was concentrated

exclusively in Pinus spp. (Tables 1, S2-S4). At higher elevations, 48.0% of the total forest basal
13
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area were P. albicaulis standing dead, and at lowest elevations, 37.9% of the total forest basal
area was P. contorta standing dead (Tables 1, S2). Mortality on the transect disproportionately
occurred in P. albicaulis (62% of total, compared to 38% of P. contorta), where P. albicaulis
standing dead also tended to be older on average (p < 0.05; Figure 5).

[Figure 5 Location]

Drought and D. ponderosae were the main drivers of mortality patterns in the study area.
Indeed, 42% of mortality events fell within the 2000-2010 time period, characterized as the
recent ‘mega-drought’, and fully 77% died post-2000. Mortality of Pinus spp. was largely
attributed to the D. ponderosae outbreak in 2008-2012. Of the 26 dead trees we were able to
assign a year of death, 58% had evidence of blue-stain fungus, 19% did not have blue-stain
fungus, and the remainder were undetermined. The average diameter at coring height of beetle-
killed P. contorta was 29.0 cm, while the average diameter at coring height of beetle-killed P.
albicaulis was 20.5 cm. Finally, the timing of mortality for the dead trees encountered on the
transect was significantly (p <0.01) associated with drier than average drought conditions 2-3
years prior to tree death (Figure 6), refuting the null hypothesis that deaths occurred randomly
over temporal variability of summer drought.

[Figure 6 Location]

3.2.3 Climate and Tree Growth

Ring-width growth relationships with climate variables suggested both a strengthening of
limiting temperature conditions and an emerging and strengthening response to monthly PDSI
(Figure 7). Throughout the record, P. albicaulis growth had a positive relationship with cool
season maximum temperatures. The strength of this relationship was variable but consistent (i.e.,

positive) over time (Figure 7a). In contrast, P. contorta growth had a strong negative response to
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previous warm season (August and July) monthly maximum temperatures throughout the
historical record, indicative of the lagged effect of previous growing season climate conditions
on the following growing season, caused by determinate growth (Figure 7b). P. contorta
exhibited a positive and temporally stable relationship to late-growing season temperature
(Figure 7b). Both species exhibited a strengthening positive relationship to previous growing
season and fall PDSI in recent decades. The growth response of P. albicaulis shifted from a
negative to positive relationship with PDSI during the mid-20th century (Figure 7a). P. contorta
exhibited a negative relationship to current year growing season PDSI in recent decades (Figure
7b).

[Figure 7 Location]

4. Discussion

Demographic changes and elevational movement in long-lived trees can be challenging
to decipher. Pairing forest demographic transects with dendroecological data offers insight into
the past and possible future trajectories of the forest when long-term, repeated observations are
not available. We measured overstory and understory composition as well as live and dead age
structure across a transect spanning 500 m in elevation to assess the potential for ecotone shift in
the high elevation forests of the GYE. Trees at the highest elevations (>3000 m) established after
1950, indicating ecotone shift from high elevation meadow to P. albicaulis -dominated forest.
We attribute this shift to an upward advance of P.albicaulis rather than regeneration following a
mortality event, due to the paucity of dead stems of snags in plots above 3000 m (Tables S2-S4).
This shift was synchronous with and positively related to warming winter maximum

temperatures, suggesting a relaxing of environmental conditions previously limiting to P.
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albicaulis establishment. Comparisons between overstory and understory tree composition at
different elevational bands suggested compositional stability at higher elevations and ongoing
successional patterns in the absence of fire at lower elevations, though our results should be
interpreted with the understanding that stochastic effects could influence observed demography
at the plot level. Our analysis also revealed that P. contorta seedlings were distributed at higher
elevations than trees of the same species, which suggested some potential for expected upslope
movement with warming conditions. Conversely, P. albicaulis seedlings were distributed at
lower elevations than P. albicaulis overstory trees, possibly a combined result of seed caching
and canopy gaps due to extensive tree mortality. At lower elevations dominated by P. contorta,
about one third of the total basal area were snags that were likely created via drought- and beetle-
caused mortality exacerbated by warming temperatures and higher stand densities. At higher
elevations mortality on the transect was greatest in P. albicaulis -dominated stands, despite lower
stand densities. This combined with snag age structure reflects a disproportionate level of

mortality amongst old P. albicaulis trees.

4.1 Vegetation Change and Potential Drivers

4.1.1 Ecotone Shift

Differences between overstory and advanced regeneration composition may approximate
ecotone shifts in GYE subalpine forests. If current disturbance and climate trends continue, we
expect understory seedling composition to estimate future overstory composition as fire
exclusion, warmer temperatures, greater aridity, and bark beetle attacks shape recruitment into
the canopy. Aging P. contorta stands, which typically establish after stand-replacing

disturbances such as wildfire, are being predictably replaced by 4. lasiocarpa and P. albicaulis,
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and to a lesser extent, P. engelmannii and P. menziesii (Figure 2). We speculate that high stand
densities created conditions less favorable for shade-intolerant P. contorta seedlings and more
favorable for shade-tolerant 4. lasiocarpa seedlings as predicted by successional theory
(Clements, 1910). This is consistent with the findings of Chai et al. (2019) and Brice et al.
(2019), who demonstrated the replacement of shade-intolerant pioneer species by shade-tolerant
species in the absence of disturbance via a different study design involving permanent plots with
multiple censuses. The distribution of P. contorta also appears to be moving upslope (Figure 3),
coincident with elevated levels of P. albicaulis mortality that created light gaps in the canopy at
higher elevations (Table 1).

In contrast, P. albicaulis may establish in denser forests at lower elevations, in large part
due to dissemination from Clark’s nutcracker. Goeking and Izlar (2018) found that the majority
of P. albicaulis stems in the western U.S. occur in forest types dominated by other species,
including the forest types: P. contorta; spruce-fir; A. lasiocarpa; P. menziesii; nonstocked (<
10% of full stocking of live trees), and P. engelmannii. However, P. albicaulis seedlings are less
shade tolerant than A. lasiocarpa (Minore, 1979), so long-term survivorship may be expected to
be lower in most areas on our study transect except for the young, sparse, leading edge of P.
albicaulis stands. These successional processes, as well as climate trends and disturbances like
bark beetle outbreaks and fire will likely dictate which understory trees accede to the canopy in
future forests.

The upward expansion of P. albicaulis forest into high elevation meadows is likely a
consequence of changing climate and fire suppression. We posit that a general warming trend
that started around the mid-twentieth century has allowed for P. albicaulis establishment.

Increasing winter temperatures were also positively correlated with P. albicaulis growth,
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possibly due to accelerated snowmelt and expansion in the length of the growing season. This is
consistent with other studies that have related the expansion of forest treeline to warming climate
(e.g., Klasner and Fagre, 2002; Millar et al., 2008; Kullman, 2016). However, Schrag et al.
(2008) modeled a decrease in treeline P. albicaulis under climate change scenarios of a 4.5°C
increase in temperature and a 35% increase in precipitation, suggesting a climate envelope that
would eventually inhibit expansion at treeline. We also suspect that 20th century fire suppression
played a role in limiting fire in the region that encouraged greater seedling establishment rates in
our transects during this period (Brown et al., 2020). The lack of fire may have also played a role

in the ecotone shift we observed, as young trees are unlikely to survive fire of any severity.

4.1.2 Pine Mortality

Patterns in stand density generally coincided with areas of high mortality across the two
transects. Observed densities suggested imminent density-dependent mortality at all but the
highest elevations (i.e., stand density of P. contorta stands >420; McCarter and Long, 1986;
stand density of P. albicaulis stands >370; Shaw, 2017). High densities create stressful
competitive environments that increase the risk of spread of biotic disturbance agents such as
bark beetles (Perkins and Roberts, 2003; Das et al., 2011). Mortality, largely due to D.
ponderosae, was high at the lowest elevations characterized by a P. contorta overstory and high
stand density index (Table 3). In lower-density, higher elevation P. albicaulis stands, mortality
was better explained by drought stress in conjunction with D. ponderosae activity. Despite
seemingly better growing conditions, areas converted from alpine meadow to P. albicaulis forest
experienced mortality in nearly half the total stand basal area (Table 1).

The results of the SEA suggest a drought-driven mortality spiral for the Pinus spp. in this

study (Figure 6). Though the ‘fading record’ of long dead trees that decomposed prior to this
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study limits our inference to more recent decades, it is notable that nearly half of the mortality
events we observed fell within the 2000-2010 time period, characterized as the recent ‘mega-
drought’ (Martin et al., 2020). Given that D. ponderosae has a one-year life cycle and takes
several years to build to epidemic levels, (Bentz and Powell, 2014) the 2-3-year lag between
extremely dry conditions and mortality suggests that these trees died from the combined pressure
of drought and D. ponderosae attack. Drought can act in dual capacity to enable tree death: 1)
reducing host vigor due to increased vapor pressure deficit, and lower soil moisture available to
trees, and 2) by increasing the population of the ultimately poikilothermic bark beetles. This lag
in timing between tree death and environmental variability has been found for other D.
ponderosae hosts (e.g., Boutte et al., 2016), and also for other Dendroctonus spp. host species

like P. engelmannii (Mast and Veblen, 1994; DeRose and Long, 2012; DeRose et al., 2017).

4.1.3 Climate and Tree Growth

Warming temperatures and drought both played a role in forest change in the GYE.
Correlations between radial growth and climate suggested an increasingly positive relationship to
monthly maximum temperature in P. albicaulis, coincident with an expansion of the P.
albicaulis treeline since 1950. This observation follows expectations, as tree growth in subalpine
elevations was historically constrained by the length of the growing season and snow cover
(Peterson, 1998). Mid-twentieth century, P. albicaulis growth switched from a negative to a
positive relationship with PDSI (negative values correspond to drier conditions), suggesting a
switch to a more limiting, arid environment following an especially long, cool period (Rochner et
al., 2021). For both P. albicaulis and P. contorta the positive relationship to previous growing
season PDSI strengthened in recent decades, likely exacerbating the Pinus spp. mortality during

the 2008-2012 D. ponderosae outbreak. P. contorta growth also had a negative relationship to
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current growing season PDSI in recent decades, a counterintuitive finding that merits further
inquiry. Interestingly, the high elevation changes in P. albicaulis that we have observed on our
transect may be a relatively short-term snippet of a multi-centennial shift in ecotones that often
occurs in harsh environments. Upslope of our transects, extensive P. albicaulis and P.
engelmannii forest existed until the middle-to-late part of the Little Ice Age (Rochner et al.,
2021). Recruitment of these forests occurred nearly 1,000 years ago, but experienced widespread
die-off in the mid-1800s during the coolest conditions of the last millennium, putatively due to

climatic causes (Rochner et al., 2021).

4.2 Implications for P. albicaulis Decline

The decline of P. albicaulis in the GYE has been the cause of much concern in recent decades
(Tomback et al., 2001b; Keane et al., 2017; Goeking and Izlar, 2018), leading the US Fish and
Wildlife Service to propose it be listed as threatened under the Endangered Species Act in
December 2020. P. albicaulis is considered a keystone species because it promotes biodiversity
by providing habitat to many species and a central food source via its large, nutritious seeds
(Tomback and Kendall, 2001). Given recent declines and ongoing climate change, studies that
assess P. albicaulis stability and upslope movement are important to help managers target
restoration efforts. We found a disproportionate level of mortality in P. albicaulis in our study
area, with virtually all mortality events attributable to D. ponderosae. While we did not make
explicit comparisons (e.g., genetics) between living and dead P. albicaulis, death dates suggested
that climate change-driven drought played a role in creating conditions that resulted in elevated
beetle-related mortality (Six et al., 2018). Despite the elevated levels of mortality in mature trees,

there was substantial P. albicaulis in the understory, some of which was making its way into the
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high elevation meadows. The slow march toward higher elevations could portend the return of P.

albicaulis to a niche it realized prior to the Little Ice Age cooling (Rochner et al., 2021).

5. Conclusions

We observed a forest undergoing compositional change across different elevations,
mediated by an interplay of climate-related stressors, bark beetle outbreak, and successional
processes. Non-stable temperatures and increased sensitivity to aridity during the mid-20th
century, in combination with increasing stand density associated with aging forests, likely
created conditions of increased susceptibility to beetle-induced mortality during the most recent
two decades. In the context of these compound stressors, forest age, structure, and composition
sampled across an elevational gradient suggested evidence for both ecotone shifts for some
species and stability for others. Our assessment of tree species movement in the context of
climate change and disturbance history advances understanding of the drivers of tree community

change in the subalpine forests of the GYE.
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667 Tables and Figures

668 TABLE 1. Average live and dead basal area (m?/hectare) for all trees in the study transect > 5
669  cm diameter at coring height, grouped by elevation band. Species codes: ABLA: Abies
670  lasiocarpa; PIAL: Pinus albicaulis; PICO: Pinus contorta; PIEN: Picea engelmannii; PSME:

671  Pseudotsuga menziesii.

Live basal area (m?/ha) Dead basal area (m?/ha)
Elev (percent of total live) (percent of total live + dead)
Band ABLA PIAL PICO PIEN PSME Total PIAL PICO
3000 0(0) 9(77.6) 2.6(224) 0(0) 0() 11.6 10.9 (48) 0.2 (0.9)
2900 0(0) 23.9(80.2) 4.7(15.8) 124 0(0) 298 13.5(31.2) 0(0)
2800 0(0) 4.1(09.6) 36.6(86.1) 1.2(2.8) 0.6(1.4) 425 0(0) 9.8 (18.7)
2700 0(0) 2.8(52) 51.3(%4.8) 0(0) 0(0) 54.1 0(0) 0.4 (0.7)
2600 5.7 (12.8) 1.9 (4.3) 36.9(82.9) 0(0) 0(0) 445 0(0) 27.2(37.9)
Avg: 1.1 8.3 26.4 0.5 0.1 36.5 4.9 7.5

672
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673 TABLE 2 Average live and dead stem densities (trees/hectare) for all trees in the study transect
674 > 5 cm diameter at coring height, grouped by elevation band. Species codes: ABLA: Abies
675  lasiocarpa; PIAL: Pinus albicaulis; PICO: Pinus contorta; PIEN: Picea engelmannii; PSME:

676  Pseudotsuga menziesii.

Dead stem density

Live stem density (trees/ha) (trees/ha)

Elev.

Band ABLA PIAL PICO PIEN PSME Total PIAL PICO Total
3000 0 992 169 0 0 1160 271 23 294
2900 0 775 163 38 0 1002 343 0 343
2800 0 337 720 32 36 1124 0 85 &5
2700 0 346 626 0 0 972 0 48 48
2600 388 29 586 0 0 1004 0 388 388
Avg: 78 496 453 14 7 1052 123 109 232

677

33



678 TABLE 3 Average stand density index (SDI), quadratic mean diameter (QMD), live and dead
679  basal area (BA; m*/hectare), and live and dead stem density (trees/hectare) for all trees in the

680  study transect > 5 cm diameter at coring height, grouped by elevation band.

Elev. Live Dead Live Dead
Band SDI QMD BA BA  Density Density

3000 313.7 12 11.6 11.2 1160 294
2900 614.1 197 299 135 1002 343
2800 8289 21.8 424 9.8 1124 85
2700 961 244 542 0.4 972 48
2600 864.5 255 444 272 1004 388

Avg: 6642 19.6  33.1 12.1 1065 241
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FIGURE 1 The location of the study transect in relation to Grand Teton National Park (GTNP),

44°N

Yellowstone National Park (YNP), and the Greater Yellowstone Ecosystem (GYE). The transect

spans a 500 m elevational gradient and was sampled over a 3-year period, from 2017 to 2019.
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FIGURE 2 Species-specific tree densities (stems/ha) displayed by estimated establishment year
decade, grouped by 100 m elevation bands for (A) live and dead (designated by black hatch
marks) overstory trees and (B) understory seedlings. Species codes: ABLA: Abies lasiocarpa;
PIAL: Pinus albicaulis; PICO: Pinus contorta; PIEN: Picea engelmannii; PSME: Pseudotsuga

menziesii.
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FIGURE 3 NMDS ordination of species distributions. Overstory trees are represented by
capitalized species codes, while understory trees (seedlings and saplings) are represented by
lowercase species codes. Species codes are as follows: ABLA: Abies lasiocarpa; PIAL: Pinus
albicaulis; PICO: Pinus contorta; PIEN: Picea engelmannii; PSME: Pseudotsuga menziesii. (A)
Two-axis NMDS ordination of density (stems/ha) by species and form (overstory trees versus
seedlings and saplings) at each sampling plot (stress = 0.02), plotted along an elevational
gradient. Open circles represent plot locations, black circles represent centers of species forms

(trees, seedlings and saplings), and contour lines are at 50 m altitude intervals. (B) Difference
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703  and magnitude in MDS scores for overstory and understory species represented by plotting

704  MDSI scores x -1 (for ease of interpretation). For panel B, a negative slope (red) suggests the
705  center of the distribution of species seedlings is located at lower elevations than mature trees of
706  the same species, and a positive slope (green) suggests an upward shift in establishment by a
707  species.

708
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709
710  FIGURE 4 Estimated establishment year of overstory trees by plot elevation. Regression lines
711  are shown for the two most prevalent species on the transect. Species codes: ABLA: Abies

712 lasiocarpa; PIAL: Pinus albicaulis; PICO: Pinus contorta; PIEN: Picea engelmannii; PSME:

713 Pseudotsuga menziesii.
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714

715 FIGURE 5 (A) Snag mortality year (n = 26) by plot elevation. Of the five species present on the
716  transect, tree mortality was concentrated exclusively in Pinus contorta (PICO; n = 10) and Pinus
717  albicaulis (PIAL; n = 16). We assessed tree core samples for bluestain fungus as an indicator of
718  Dendroctonus ponderosae presence (Y: Yes, N: No, U: Undetermined). Mortality year had a

719  positive relationship with elevation in P. contorta (p = 0.047) and no relationship in P. albicaulis
720  (p =0.443). (B) Snag mortality year by estimated tree age. Recent mortality events tended to

721  affect older P. albicaulis trees on average (p = 0.003).
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FIGURE 6 Superposed epoch analysis results of drought conditions surroundingtree mortality
events (n= 26) in the study area from 1895-2019. A composite of all mortality event dates and
their associated Palmer Drought Severity Index (PDSI) values (year “0”) is presented with a +/-
10-year lag with 95% (dashed lines) and 99% (solid lines) bootstrapped confidence intervals.
Bars represent mean departures in PDSI for the years surrounding a mortality event from mean
conditions across the entire time series, with a significant departure exceeding the confidence
intervals. Two to three years prior to the mortality event years, conditions were much drier than

average (p <0.01).
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width growth relationships to monthly maximum temperature and the Palmer Drought Severity
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737  the year prior to that of the ring width measurement. Asterisks indicate significance (p <0.05)

738  using the 95% percentile range method (Dixon, 2001).
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