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Abstract: Global warming and related disturbances, such as drought, water, and heat stress, are 

causing forest decline resulting in regime shifts. Conventional studies have combined tree-ring 

width (TRW) and the normalized difference vegetation index (NDVI) to reconstruct NDVI values 

and ignored the influences of mixed land covers. We built an integrated TRW-NDVI model and 

reconstructed the annual NDVI maps by using 622 Landsat satellite images and tree cores from 15 

plots using point-by-point regression. Our model performed well in the study area, as demonstrated 

by significant reconstructions for 71.14% (p < 0.05) of the area with the exclusion of water and barren 

areas. The error rate between the reconstructed NDVI using the conventional approach and our 

approach could reach 10.36%. The 30 m resolution reconstructed NDVI images in the recent 100 

years clearly displayed a decrease in vegetation density and detected decades-long regime shifts 

from 1906 to 2015. Our study site experienced five regime shifts, markedly the 1930s and 1950s, 

which were megadroughts across North America. With fine resolution maps, regime shifts could be 

observed annually at the centennial scale. They can also be used to understand how the Yellowstone 

ecosystem has gradually changed with its ecological legacies in the last century. 

Keywords: dendrochronology; regime shifts; NDVI; the Greater Yellowstone Ecosystem; model 

building 

 

1. Introduction 

Forests cover 30% of the world’s land surface and support ecosystem functioning 

and human societies [1]. Vegetation plays a vital role in stabilizing the ecosystem, yet its 

interaction with climate, human activities, and related disturbances trigger ecosystems to 

drift from the standard thresholds resulting in regime shifts [2]. The ecological regime 

shifts definition, according to Biggs et al. [3], emphasized three characteristics: large, ab-

rupt, and long-lasting changes in the ecosystems, which often have considerable impacts 

on human economies and societies. “Abrupt” refers to the instant variation possibly 

caused by short-term disturbances, such as fire, insect outbreak, or drought. These eco-

logical disturbances break down the balances in the previous ecological system. “Large” 

and “long-lasting” refer to persistent observation. 

Currently, the temporal observation of forest change on a broad scale comes from 

satellite imagery, such as Landsat series data [4,5], MODIS data [6,7], and SPOT data [8,9]. 

The earliest Landsat series satellite was launched in the 1970s [10]. Before the 1970s, there 

were no consistent high-resolution vegetation density data which influenced our long-

term observations to detect regime shifts in the forest. Tree-ring width (TRW) is a sensitive 

index representing the growth of the xylem as a response to canopy structure [11]. Annual 

tree-ring chronologies are a widely used proxy that allows us to reconstruct past climate, 

ranging from annual to centennial time scales [12,13]. The NDVI is a measure of the den-

sity of the vegetation based on the reflection of red light and infrared light [14]. The rela-
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tionship between NDVI and TRW is based on the assumption that the total leaf area rep-

resented by NDVI can determine the light interception and CO2 assimilation that goes into 

tree-ring widths. With enough nutrients, the xylem in tree rings can grow large during 

high NDVI years [15]. 

Currently, the NDVI reconstruction with tree-ring data is still in the phase of point-

by-point regression; however, the spatial resolution is coarse [16–18]. The reconstruction 

can reflect the regime shift on a broad scale and the global drivers causing the shift. How-

ever, there are still some subtle forest regime shifts at a finer scale and some regional driv-

ers are ignored by coarse resolution images. One coarse grid can contain different land 

cover types, such as forest, grassland, barren land, and water, while tree-ring data will 

just reflect the growth of the forests. There could be a mismatch between the NDVI and 

tree-ring data which could lead to some inevitable errors in the reconstruction. Brehaut 

and Danby [19] found an inconsistency between NDVI and TRW in Southwest Yukon and 

Canada but the reason was unclear. Correa-Díaz et al. [20] reconstructed correlation maps 

between tree-ring width and winter NDVI at the 250 m resolution, which displayed more 

landscape detail than the previous studies. We anticipated that more landscape structure 

and vegetation variation could be shown if we could reconstruct NDVI using finer reso-

lution images (30 m). Liu et al. [21] reconstructed cumulative NDVI with a single linear 

regression model, and they found that the climate factors influencing NDVI, such as pre-

cipitation and temperature, were also driving tree-ring width. To have a more robust 

model, it is also important to consider slope, elevation, and lag year effects when model-

ing. Thus, monitoring the forest regime shift on a finer scale and considering both topo-

graphic and temporal factors allows us to build more accurate models at a finer resolution. 

In this study, we not only reconstruct the NDVI maps but also explore the factors influ-

encing the correlation between NDVI and TRW. 

Based on our current understanding, we aimed to assess forest regime shifts on a 

longer time scale and at a finer spatial resolution than previous studies. The specific ob-

jectives of the study were to i) make a 100-year series of NDVI maps with tree-ring width 

to observe regime shifts; ii) explore the factors influencing the correlation between NDVI 

and TRW. We envision our results as a series of NDVI maps where we could vividly “see” 

the development of the forest structure and ecological succession of the Greater Yellow-

stone Ecosystem in the recent one hundred years. 

2. Materials and Methods 

2.1. Site Description 

Our study area (Figure 1) is located on the northeast of the Greater Yellowstone Eco-

system. The average temperature is around 8 °C in summer (June through August) and 

−7 °C in winter (December through February). The annual rainfall is 510 mm. The plot 

sites were located on the slopes of mountainous areas in the Greater Yellowstone Ecosys-

tem. The study site is laid out along an elevation gradient in a 12 km × 12 km area. The 

dominant trees are lodgepole pine (Pinus contorta Douglas) and whitebark pine (Pinus al-

bicaulis Engelm.), whose mortality increased a lot when the temperature reached around 

−10 °C in the growing season [22,23], and due to the mountain pine beetle (MPB, Den-

droctonus ponderosae Hopkins), and white pine blister rust (Cronartium ribicola J.C. Fisch.) 

outbreaks since 2000. Other common species include Engelmann spruce (Picea engelmannii 

Parry ex Engelm.), subalpine fir (Abies lasiocarpa (Hook.) Nutt.), and Douglas fir 

(Pseudotsuga menziesii (Mirbel) Franco). The study area was selected to represent the veg-

etation types and elevational changes in the Greater Yellowstone Ecosystem, with eleva-

tions ranging from 1170 m to 3087 m. Conventional studies have just used one pixel to 

represent the whole study area, and conventional research will regard the pixel as the 

forest where trees take up more than 50% of the area. However, instead of a pure forest 

pixel, the area also includes lakes, rock, and grass. We chose the 7 July 2015 Landsat 8 

image from the United States Geological Survey (USGS) (https://earthexplorer.usgs.gov/, 

https://earthexplorer.usgs.gov/,%20access
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accessed on 2 August 2020) as our base image to map the land use and land cover distri-

bution. We classified the whole area into four land covers (forest, grassland, barren land, 

and water) using the random forest method, which is an ensemble learning method to 

generate a series of decision trees for one pixel and assign it as one specific land cover 

with highest probabilities [24]. The whole classification had four land covers: forest, grass-

land, barren land, and water, with 200 samples for training and 100 samples for validation. 

 

Figure 1. The study area is located in the mountainous area in the Greater Yellowstone Ecosystem. 

The green circles represent the final 15 plots that we chose for this study. 

https://earthexplorer.usgs.gov/,%20access
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2.2. Tree-Ring Measurement, NDVI mapping, and Climate Data Collection 

Along the southwest aspect of South Bird Mountain, we placed a plot every 250 m 

along an elevational gradient and collected tree cores in 16 plots (ECO100, ECO200, 

ECO400, ECO500, ECO600, ECO800, ECO900, ECO1000, ECO1100, ECO1300, SBM200, 

SBM300, SBM400, SBM500, SBM600, and SBM700). Within each stand, we selected 10 trees 

closest to the center point whose diameters at breast height were more than 10 cm. We 

extracted two cores from each tree with an increment borer at 30 cm height. Samples were 

glued to prefabricated core mounts with water-soluble white glue, sanded with a progres-

sively finer sandpaper, (120, 220, 320, and 400 grit and hand sanded with 30-micron sand-

ing film), and then skeleton plotted for age dating [13]. 

In addition to the 16 plots, we also used tree-ring data from other studies from the 

North American Dendroecological Fieldweek on four sites (CBS, BTP, TOW, and RCCF1) 

[25,26]. We used the skeleton plot method to cross-date the samples with an internally 

derived master chronology for each species [13]. Once the cores were accurately dated, 

we used a TA4030H1-S6Velmex measuring system, (Velmex Inc., New York, NY, USA) to 

measure each core with a 0.001 mm precision, and measurement and dating quality were 

checked with the computer program COFECHA version 6.06P, (Laboratory of Tree-Ring 

Research, University of Arizona, Tucson, Arizona, AZ, USA) [27], and segments with low 

correlations were examined and corrected at the microscope. We detrended and stand-

ardized the series with the age-dependent spline in ARSTAN version 48d2_ (Win, Tree-

Ring Laboratory, Lamont Doherty Earth Observatory of Columbia University, New York, 

NY, USA) for each plot to remove the age-related tendency and the growth difference 

between each tree [28]. ARSTAN also calculated the autocorrelation and the Expressed 

Population Signal (EPS), and we cut off the species-level chronologies at an EPS of 0.85. It 

also calculated the rbar, which is a running correlation showing the synchrony of the spe-

cies-level chronologies in our study. We set up a threshold to choose the plots which con-

sidered two aspects: One is to cover as many plots as possible despite the narrow temporal 

range. The other is to cover as long a temporal range as possible, but it would exclude 

more tree cores with young plot age. Considering these two thresholds, we preferred to 

have old-aged trees over more numbers of plots. The tree-ring series were subset to span 

the time period from 1905 to 2015 thus, we excluded ECO100, ECO200, SBM200, SBM400, 

and SBM500 plots with young-aged trees. Finally, 15 plots were selected out of a total of 

20 plots (Figure 1). The autocorrelation showed that most plots had a first-order model, 

which indicated the previous year’s climate may influence the tree growth in the current 

year. 

We downloaded the Landsat series (Landsat 3–Landsat 8) images (622 images) from 

March to October from 1980 to 2015 from the USGS (https://earthexplorer.usgs.gov/, ac-

cessed on 2 August 2020). The images have a fine spatial resolution (30 m), enabling the 

identification of land cover on the landscape. We calculated NDVI using Equation (1). 

NDVI represents the density and health of vegetation and is a good indicator of the local 

climate, such as drought or precipitation [29,30]. Each grid (30 m × 30 m) in each year 

could have more than one NDVI value on different dates. We took the median of them to 

get annual NDVI for the growing season. We also collected the annual temperature, pre-

cipitation, and Palmer Drought Severity Index (PDSI) at 

https://wrcc.dri.edu/wwdt/time/spanning from 1905 to 2015 (accessed on 2 August 2020). 

NDVI = (InR − Red)/(InR + Red) (1) 

where the InR and Red are the infrared and red bands respectively from the Landsat sen-

sors. 

2.3. Model Building 

We developed a NDVI model derived from the forests and applied the model to each 

grid cell in the study area. We split the period of our study into two sub-periods of the 
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calibration sub-period (1980–2015) and reconstruction sub-period (1906–1979). TRW and 

NDVI both reflect vegetation growth and the local climate. The NDVI values in each grid 

could be correlated with plots with similar slopes and elevations. Conventional studies 

used latitude and longitude to define the distances between the grid and selected plots 

and ignored elevation effects. Our study area is small but has a large elevation gradient. 

We defined the distance using elevation and slope with the Digital Elevation Model 

(DEM) data from the USGS. To unify the various scales for elevation and slope, we stand-

ardized the units of elevation and slope with Min-Max scaling, which rescaled the two 

features (slope and elevation) into the same range [31,32], calculated the distances be-

tween each grid using Equation (2), and chose the five “closest” chronologies for each grid 

as potential candidates. The five potential candidate plots had similar elevation and slope 

with the grid, and their vegetation distributions were also similar. 

d = √ ((E − E_plot)2 + (S − S_plot)2) (2) 

where d is the comprehensive distance considering the relevant elevation and relevant 

slope, E and S are the rescaled elevation and slope for each grid, E_plot and S_plot are the 

rescaled elevation and slope for each plot. 

To make full use of those five chronologies, we reduced the redundancy and noise 

using principal component analysis (PCA) to extract the first component (FC), the second 

component (SC), and the third component (TC). Previous studies and the autocorrelation 

in our research suggest that reconstructing NDVI should also take into account a time lag 

(at least one year) [33,34]. In our study area, there are multiple types of land cover, so we 

built three models with increasing complexity to match the NDVI to different land covers 

(Equations (3)–(5)). The three sub-models were applied to each pixel. We used the AIC 

criteria to judge which sub-model was the best among those three and calculated the p-

value using the best sub-model. 

NDVI = a1 × FC + a2 × FC_pr + b  (3) 

NDVI = a1 × FC + a2 × FC_pr + a3 × SC + a4 × SC_pr + b  (4) 

NDVI = a1 × FC + a2 × FC_pr + a3 × SC + a4 × SC_pr+ a5 × TC + a6 × TC_pr + b  (5) 

where NDVIs are the simulated NDVI value; FC, SC, and TC are the first component, the 

second component, and the third component from the PCA in the current year, FC_pr, 

SC_pr, and TC_pr are those components in the previous year. a1, a2, a3, a4, a5, a6, and b 

are the parameters for each variable and constant values. 

After classifying the land cover and conducting linear regression for each pixel, we 

determined the NDVI values in each grid cell from 1906 to 1979. Among cells in the study 

area, we averaged annual NDVIs for each type of land cover (forest, grass, rock, and wa-

ter) and compared the overall NDVIs with them. Time series analysis for the NDVI from 

1906 through to 2015 was also performed using the strucchange package in R [35], the 

most widely used method to identify regime shifts. The program identifies breakpoints 

(step change in the mean) in the NDVI time series via an estimation based on the minimi-

zation of the residual sum of squares (RSS) within the series and the Bayesian Information 

Criterion (BIC) score for scoring the optimum number of breakpoints [35] along with the 

calculation of confidence intervals based on equations from [36]. We then explored the 

relationships between NDVI and local climate using precipitation, temperature, and PDSI 

in our model. 

2.4. Evaluating the Model Performance 

After computing regression for each grid cell (16,000,000 cells in total), we could ob-

serve the annual summer NDVI variation of the whole area and each land cover. Then we 

conducted three evaluations on the model and the simulated values: 
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(1) We evaluated the model performance on the whole area and each land cover. We 

calculated p-values for each cell to judge whether the p-value meets a significant level 

(p < 0.05, 0.05 < p < 0.1, and p > 0.1). This statistical analysis was conducted for each 

land cover. 

(2) We evaluated the model performance across the whole study time using leave-one-

out cross-validation. We chose one specific year as an independent dataset and in-

volved all years’ datum, excluding the specific year in the analysis. We calculated the 

p-value for the grid without that year’s data and judged whether the p-value met the 

significant level. Our study time covers 36 years (1980–2015), so we built 36 separated 

datasets to analyze the influence of the excluded year on the whole regression. If we 

exclude one year and the areas with low p-values (p < 0.05) increase, this indicates the 

data quality in that year is poor, and exclusion may improve the whole regression. If 

the areas with low p-values (p < 0.05) decrease, this indicates the data quality in that 

year is good, and exclusion may weaken the whole regression. The ideal situation is 

that for each exclusion, the size of low P areas is stable, which means the model per-

formance will be spoiled with low p-values or not too dependent on some years. 

(3) We evaluated the gap between NDVI in the whole area and NDVI in the forest areas. 

The TRW reflected the growth of the trees or forests but not the water or barren land, 

so it should match NDVI values in the forest. The previous studies [21,37] used coarse 

resolution images where all land cover was mixed and directly built the regression 

between the NDVI in the whole area and the TRW in the tree plots. We introduced 

the error rate to calculate the gap between those two NDVI values (NDVI for forest 

and NDVI for whole areas) (Equation (6)) and evaluated whether the gap will influ-

ence further analysis, such as the r-value, with other climate factors. 

Error rate =  
|Approximate value − Exact value|

|Exact value|
 × 100% 

                    

(6)  

where approximate values include NDVI values for the whole area, r-values for the whole 

area, and the exact value include NDVI values for forest. 

3. Results 

3.1. Reconstructed NDVI Maps and Land Cover Map 

With the tree-ring series from 1905 to 2015 and the NDVI images from 1980 to 2015, 

the regression could simulate the NDVI images from 1906 to 1979 (without imagery from 

1904, the time lag regression could not simulate the NDVI image for 1905). The annual 

NDVI maps in the growing season are available in Supplementary Material. From the 1906 

simulated image (Figure 2A), we found that most areas still had comparatively high veg-

etation density whose overall NDVI reached 0.32 (Figure 2E). 
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Figure 2. The simulated NDVI images for (A) 1906, (B) 1930, (C) 1945, and (D) real NDVI in 2015. (E) Distribution of the 

median NDVI values for the annual NDVI maps where the red dots correspond to the NDVI maps in 1906, 1930, 1945, 

and 2015. The green dots in the plot represent the simulated data from 1906 to 1979, and the yellow dots represent the real 

data from 1980 to 2015. The gray solid line and red dash line are the tendency lines from 1905 to 2015 and from 1980 to 

2015, respectively. The outliers (2012) were excluded due to the lack of available satellite images. The blue dashed lines 

represent the four breakpoints of a regime shift. 

From the 1920s to the 1930s, the vegetation in our study area dropped dramatically. 

The minimum NDVI year was 1930, whose overall value was 0.09. Then in the 1940s, the 

vegetation recovered very well and reached the maximum overall NDVI value, 0.43 in 

1945. Then the NDVI values declined and kept stable until 1979. The next decline occurred 

from 2009 (NDVI = 0.33) to 2015 (NDVI = 0.22). Two obvious degradations occurred in the 

1930s and 2010s, respectively. The gray tendency from 1905 to 2015 showed an increasing 

tendency (y = 0.0006x − 0.9116), and the red dash line from 1980 to 2015 showed a decreas-

ing tendency (y = −0.0004x − 1.0141). Five different ecological growth stages were identi-

fied: 1906–1921, 1922–1937, 1938–1953, 1954–1983, and 1984–2015 (Figures 2E and 3) with 

the four break dates (1921, 1937, 1953, and 1983) as indicated by the lowest BIC for the 

NDVI. The average NDVI decreased from 1921 to the mid-1930s, then increased from 1940 

through 1950, then declined and reached a mean level equal to 0.2628 until early 1980, and 

it again increased and reached a mean level equal to 0.3113 through 2015. 
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Figure 3. Observed NDVI trends with regime shift dates. The vertical dashed lines indicate the 

breakpoints, the blue line indicates the fitted NDVI trends, and the bottom red line indicates the 

95% confidence intervals for the breakpoints. 

In 2015, our study area consisted of mixed boreal forest (55.82%), grassland (15.82%), 

barren land (25.98%), and water (2.38%), with small lakes and rocks on the northeast and 

southwest of the study area, respectively (Figure 4). 

 

Figure 4. Land cover map for the study areas in 2015. 

As we previously assumed, most areas in our study field were forests. The conven-

tional classification would interpret those two pixels as the pure forest in the coarse-scale 

map and ignored other minor land covers. The whole classification had a satisfying over-

all accuracy (95%). The accuracies of the water and rock areas are good, but that of the 
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forest is a little lower (80%), which contributed to the mixture of the tree, brush, and grass 

(Table 1). 

Table 1. The areas for each land cover and their classification accuracy. 

Land cover Area (km2) Percent (%) Accuracy (%) 

Forest 80.38 55.82 80 

Grassland 22.78 15.82 98 

Barren land 37.41 25.98 92 

Water 3.43 2.38 100 

3.2. Spatial Effect to the Model Selection 

NDVI maps from 1906 to 1979 were reconstructed with the integrated model, and the 

performance of the simulation needs to be evaluated. In the p-value maps including all 

land cover types (Figure 5a), we classified all p-values into three levels (p < 0.05; 0.05< p < 

0.1; p > 0.1). We excluded barren land and water areas and generated the exclusion map 

(Figure 5b). 

 

Figure 5. Reclassified p-value map without exclusion and with exclusion. 

The p-value in the first level (71.14% for exclusion map) was less than 0.05, which met 

the conventional statistical requirement. The p-value in the second level (11.31% for the 

exclusion map) was between 0.05 and 0.1. If we excluded barren land and water, the ratio 

whose p-value (< 0.05) increased by 17% to 71.14%. 

The three-component sub-model fitted 92.81% of the forest and 53.20% of the grass-

land even though AIC had severe penalties to the redundant parameters (Figure 6 and 

Table 2). About 75.37% of the water and 66.92% of the barren land were described by the 

first component sub-model reflecting their simple characteristics. 

Table 2. The best sub-models for each land cover. 

Unit: % Water Forest Grassland Barren Land 

One component 75.37 6.87 45.24 66.92 

Two components 2.78 0.32 1.56 2.73 

Three components 21.84 92.81 53.20 30.36 

Total 100.00 100.00 100.00 100.00 
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Unit: % Water Forest Grassland Barren land 

 

Figure 6. The sub-model preference for each land cover. 

From the validation of the models, if we did not exclude the barren land and water, 

53.97% of the areas met the 0.05 standards. If we excluded the barren land and water, 

nearly 71% of the area met the 0.05 alpha level. We conducted a leave-one-out validation 

to verify that the good fit was not due to one good year increasing the general goodness 

of the regression fit (Table 3). If we excluded 2012 data, the ratio of good match areas 

resolved to be 76.97% because, in 2012, the only available Landsat series satellite was 

Landsat 7, but there were some data gaps in the images due to the failure of the Scan Line 

Corrector (SLC). However, on the whole, the fitness of each year was very even, which 

verifies that the model works well for the entire time series. 

Table 3. Leave-one-out validation from 1980 to 2015 excluding barren land and water (Unit: %). 

p-Value 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 

<0.05 72.96 70.12 66.63 69.71 71.24 68.48 66.81 69.78 72.19 70.58 

0.05–0.1 11.14 11.55 11.50 11.73 11.60 11.18 11.58 11.81 11.25 11.56 

>0.1 16.22 18.66 22.19 18.88 17.48 20.66 21.93 18.74 16.89 18.19 

Year 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 

<0.05 69.56 69.28 68.93 68.41 69.91 69.38 67.15 67.28 68.48 73.43 

0.05–0.1 12.07 11.28 11.85 12.02 11.72 11.99 12.07 11.68 12.40 11.47 

>0.1 18.37 19.44 19.22 19.57 18.37 18.62 20.78 21.04 19.12 15.11 

Year 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 

<0.05 72.15 69.52 70.19 69.17 69.14 65.84 69.37 71.54 68.86 67.76 

0.05–0.1 11.69 11.23 11.07 12.07 11.98 12.23 11.98 11.50 12.07 12.14 

>0.1 16.16 19.25 18.74 18.76 18.88 21.93 18.65 16.96 19.07 20.10 

Year 2010 2011 2012 2013 2014 2015 Full    
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<0.05 71.56 69.83 76.97 76.65 68.14 66.75 71.14    

0.05–0.1 11.03 11.78 9.54 10.13 12.80 13.58 11.31   
 

>0.1 17.41 18.38 13.49 13.23 19.06 19.66 17.55   
 

Note: The years in bold indicate when we simulate our data, we leave out that year in our simulation. 

3.3. The Similarities and the Difference between the Whole Area and Forest 

In most cases, overall, NDVI shares a similar pattern with the forest NDVI. In the 

precipitation analysis, overall NDVI and forest NDVI both reached significant positive 

relationships in June (Overall_Jun = 0.25, Forest_Jun = 0.25; Figure 7A). In temperature 

analysis, overall NDVI and forest NDVI both showed a significant negative correlation 

with temperature in June (Overall_Jun = −0.20, Forest_Jun = −0.21; Figure 7B). In the PDSI 

analysis, overall NDVI and forest NDVI both displayed significant positive correlations 

with PDSI in July, August, and September (Overall_Jul = 0.20, Forest_Jul = 0.20; Over-

all_Aug = 0.22, Forest_Aug = 0.21; Overall_Sep = 0.23, Forest_Sep = 0.22; Figure 7C). The 

absolute difference between overall NDVI and forest NDVI was not large, and the abso-

lute gap between overall correlation and forest correlation was also small. 

 

Figure 7. Correlations between chronology and climate factors. (A) Shows the correlations between monthly precipitation 

and NDVI values from 1906 to 2015. (B) Shows the correlations between monthly maximum temperature and NDVI values 
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from 1906 to 2015. (C) Shows the correlations between monthly PDSI and NDVI values from 1906 to 2015. The red circle 

highlights the differences in the error rates between the overall and forest in some extreme cases. The dash lines are the 

0.05 significant levels. PMonth indicates the specific month in the previous year. 

However, the range of NDVI (−1, 1) and r (0, 1) was small, so we introduced the rel-

ative error rate. The NDVI error rate between overall NDVI and forest NDVI was 10.36%. 

If we bring those NDVI values with high error rates into a correlation analysis with other 

climate factors (precipitation, temperature, and PDSI), it will cause high annual error rates 

for r values which average the correlations from January to December. The annual error 

rates for precipitation, temperature, and PDSI were 20.25%, 66.92%, and 11.00%. In some 

extreme months, such as precipitation in April and temperature in November, the error 

rates for correlations were 71.89% and 462.18%. Even though r values in these months did 

not meet significant levels, the error rates still indicated the big gap between forest NDVI 

and overall NDVI and spoiled the quality of our whole dataset. Water may play an im-

portant role in generating these big gaps because its correlation was usually opposite to 

those in the forest, such as precipitation and temperature in June (Water_preci = −0.10, 

Forest _Aug = 0.25; Water_temp = 0.23, Forest_temp = −0.21; Figure 7A,B). 

4. Discussion 

4.1. Regime Shift in NDVI from 1906 to 2015 

By analyzing century-long NDVI images from 1906 to 2015, our study site experi-

enced five periods of regime shifts in vegetation density during some specific dates: 1921, 

1937, 1953, and 1983 (the blue dashed lines in Figure 2E). The assumption that the vegeta-

tion density is decreasing (the red dashed line in Figure 2E) in the short term cannot tell 

the whole story because the available satellite images started from the 1980s. However, 

with our reconstructed NDVI data, we could identify a subtle increasing tendency (the 

gray solid line in Figure 2E, p < 0.05) over the long term. 

The periodic changes in the landscape mosaic, particularly the vegetation composi-

tion and structure in the Greater Yellowstone Ecosystem, have been attributed to multiple 

disturbances occurring through time and across spaces [38]. Disturbances range from fine-

scale, such as geomorphological changes, to broad-scale drought events driven by climate 

and intensive land-use management interventions in this region and across the western 

United States through centuries [39,40]. The study site did not experience any severe can-

opy replacing fire events after 1900 during the period of this study, as shown by a fire 

history study by Brown et al. [41]. 

With the motive of maintaining ideal wildlife populations in the park, the park has a 

history of intervening in conservation and hunting approaches to increase herds or to re-

duce them depending on the resources available [42]. Due to cold and lack of food avail-

ability during the winter of the late 1910s, the park experienced an unusually high die-off 

of the large grazing and browsing herbivores which recovered during the 1920s following 

care and winter-feeding programs by the park [42]. 

In the northern region of the Greater Yellowstone Ecosystem, increased browsing of 

the stem and root sprouts by a large number of elk and other ungulates and herbivores 

from 1886 to 1930 was found to affect forest regeneration of aspen [43,44]. The artificial 

reduction in elk populations was extensive during dry periods after the 1930s Dust Bowl 

drought. Intentional hunting of an overabundant number of elk and ungulate populations 

reduced their number to as low as 25% of their original populations by the late 1960s, 

resulting in the reduction in browsing, which favored regeneration of the vegetation in 

the area [43–45]. In addition, widespread mountain pine beetle outbreaks occurred across 

the USA and the Greater Yellowstone Ecosystem, heavily affecting whitebark pine stands 

in the 1930s [46]. The combined effects from a large number of elk, mountain pine beetle 

outbreaks, and the Dust Bowl drought contributed to the low vegetation density in 1930 

(NDVI = 0.09) in our study area. Then the drought passed, and the number of elk declined. 

This instigated forest recovery during the 1940s and maintained a high vegetation density 
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in the 1950s (Figure 2E). The average NDVI values for our study areas in 1906, 1930, and 

1945 (Figure 2A–C) experienced large NDVI variations. From the 1970s to the 2010s, the 

vegetation density was stable with some fluctuations. Then in the 2000s, there was a slight 

decline. Occurrences of the outbreaks of the mountain pine beetle and the white pine blis-

ter rust in the study site since 2000 have affected over 100,000 acres of forest dominated 

by whitebark pine, lodgepole pine, and limber pine in the study site [47]. 

4.2. Evaluating the Combined Model 

The integrated model took three measures to fit the data: reducing the redundant 

signals and signal-to-noise ratio, applying three sub-models on various land cover types, 

and taking into account the growth lag. We chose the “closest” five plots using their stand-

ardized elevation and slope and conducted a Principal Component Analysis on those 

plots to reduce the data dimension, extract useful information, and avoid overfitting of 

the regression. Unlike the conventional studies, which just regarded the whole area as a 

couple of pixels at coarse resolution, we took into account the mixed land cover, analyzed 

the images at a finer resolution (30 m), and each pixel was fit with three sub-models: one 

principle component sub-model, two principal components sub-model, and three princi-

pal components sub-model. The model with the lowest AIC value was selected as our 

final model fit. A high percentage of the low p-value (<0.05) areas indicated the combined 

(including three sub-models) model was robust in the study area and performed better in 

the vegetated areas. The gap (17%) between the ratios whose p-value was less than 0.05 of 

including and excluding water and barren land suggested that we should not neglect this 

spatial effect on the reconstruction of NDVI. This process demonstrated that forest and 

grasslands were more complex, needing a three-component model, while barren land and 

water were more basic, only needing a one-component model. We recommend this ap-

proach for future modeling attempts as it allows for a better fit depending on the land 

cover type, similar to what Brehaut and Danby [19] found. Cook et al. [48] put forward 

the point-by-point regression with the AIC standard to judge the performance for the den-

drochronology-climate model. In our study, the model with fewer variables fit the barren 

land and water pixels with low AIC values, which could indicate that barren land and 

water are not sensitive to tree-ring width variations. Barren land and water do not reflect 

the vegetation changes very well. However, a few water pixels tended to fit the three-

component model because of the inclusion of swamps in this land classification. Similarly, 

some barren land pixels also tended to choose the three-component model because of the 

presence of some sparse vegetation. Over 90% of the forest areas fit the three-component 

models because the NDVI and TRW are both incorporated very well in the forest areas. 

The coupling relationship between those two variables was very stable, which is sup-

ported by previous studies [37,49,50]. The percentage of grassland described by one and 

three-component models was found to be intermediate between the water and forest pix-

els. Half of the grassland pixels (53.2%) fit the three components model, and slightly less 

(45.25%) fit the one-component model because the grassland could present the NDVI var-

iation but could not completely reflect the TRW changes. 

Our model also considered the lag effect. According to the autocorrelation in our 

analysis and the results from Nothdurft et al. [51], the growth lag for pine usually lasts 19 

months. Nothdurft et al. [51] also claimed that pine in pure stands and mixed stands could 

both benefit from precipitation during the spring and summer months of the previous 

year. The possible explanation for the time lag is the stomatal closure during drought in 

the previous year. To avoid water loss in the summer, the stomata close, and meanwhile, 

the CO2 cannot be absorbed by the vegetation. Then the rate of photosynthesis would drop 

dramatically, and carbohydrate storage would reduce, which influenced the foliage 

growth the next year. The reconstructed NDVI and precipitation in the previous June 

showed a significant positive relationship (r = 0.27, p < 0.05; Figure 7A). 

The correlation for the forest and the correlation for the whole area in June were dif-

ferent (r_forest = −0.22; r_whole = −0.20; Figure 7B). The NDVI maps with fine resolution 
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generated by our models were affected by the local land cover and local climate. The main 

reason is the inclusion of water areas whose correlation reached 0.23 even though the wa-

ter areas took up only 2.38% of the whole area (Table 1). However, water presented a 

negative relationship with NDVI decreasing the skill of the model. If our study applied a 

coarser resolution and did not separate the water and forests in some areas where there 

were more lakes or rivers, the error between the forest and the whole area could be worse. 

Because of the finer resolution of the imagery that we used, the NDVI derived from the 

forest was not confounded by the inclusion of water or barren land in the pixel composi-

tion. 

4.3. Limiting Factors for the Coupling with NDVI and TRW 

For the NDVI simulation in the Greater Yellowstone Ecosystem, most areas (71.14%) 

achieved a significant level (p < 0.05). However, the robustness of the model is still under 

some constraints if we intend to apply the model in other seasons and other areas. Some 

studies failed to find consistent correlations between NDVI and TRW [19,52,53]. In our 

study, we found out that the stable relationship between NDVI and TRW only occurred 

in some scenarios, some of which are discussed below. The coupling between the NDVI 

and TRW should meet two conditions. The first one is that the forest areas should be under 

some regular climate stress. The stable correlation for NDVI and TRW was found in our 

research, which is consistent with Wang et al. [50], whose study areas are in the Western 

US and also experienced a lack of precipitation. A lot of studies successfully simulated 

NDVI from TRW in Russia and Alaska [16,54–56], which experienced enduring cold tem-

peratures. With correlations between NDVI and tree rings, Babst et al. [57] detected the 

outbreak of autumnal moth (Epirrita autumnata) in Northern Sweden, which caused defo-

liation but did not directly kill the trees. Other patterns of stressors were detected from 

NDVI using TR, respectively, heavy metal pollution in a heavily industrialized area [58]. 

With Leibig’s law of the minimum, the most limiting factor controls the main stress on 

forest growth and synchronizes the stress to the leaves (recorded by NDVI) and the xylem 

(recorded by TRW) [13]. In this case, the growth of the canopy and the cambium have a 

similar response resulting in a relationship between NDVI and ring width. The most com-

mon controlling factors are low temperature or lack of precipitation. When we analyzed 

the reconstructed NDVI and the PDSI in Figure 7C, the correlations were positive from 

June to September, which indicated that the drought was the main limiting factor. During 

drought events, the stomata close, and CO2 cannot enter into the leaf, which reduces the 

photosynthetic potential for the leaves and, therefore, the carbohydrates for ring growth. 

The NDVI and TRW both dropped during that time. 

Another pre-requisite is that the magnitude and the active period of the responses 

from the foliation and cambium should be similar. Between September and October, cam-

bium cells still grew, and positive correlations between NDVI derived in the forest and 

temperature were also found in Figure 7B even though the significant level did not meet 

0.05, which indicated that the low temperature was one of the stresses but not the major 

one. With various sensitivities to drought and low temperatures, the response magnitude 

to the multiple stresses to the cambium and leaves may be different. The main stress could 

be the decreasing temperature after October and the frost tolerant xylem cells suffered 

extracellular freezing, which resulted in the rupturing of the cell [59]. Although the cam-

bium was inactive, there was no defoliation of a great number of needles or yellowing of 

the needles, but the trees still photosynthesized at a low rate during that time (the magni-

tude of the response to decreasing was different between leaves and cambium affecting 

NDVI and TRW differently). The cambium cells and leaf cells showed an asynchronous 

active period, even though the cold period may cause the same stress for those two types 

of cells. The lags for the active time can occur in the early spring when the cambium cells 

are reactivated in springtime, but the new leaves are not matured enough to conduct pho-

tosynthesis effectively, and that is when there will not be a good fit between NDVI and 

TRW. Other factors could also lead to a poor fit, such as the presence of mixed stands or 
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mixed land cover types in the study area. The ratios of chosen tree cores for each species 

did not necessarily match the areas covered by the leaf for each species. In addition, there 

was the presence of mixed land covers in the study area. Brehaut et al. [19] verified that 

forest, tundra, and shrubland could have differing spectral signal characteristics, which 

could also influence the reconstructions, especially for the water areas, which will dra-

matically affect the final model fit. 

5. Conclusions 

From the reconstructed NDVI spatial distributions in 1906 through 2015, we found 

the tendency of mean NDVI was increasing from 1906 to 2015. Multiple disturbances and 

driving factors have influenced this forest over the past century, with drought dominating 

the vegetation dynamics. Similarly, browsing intensity determined by ungulate popula-

tion density could be attributed to the regime shift in vegetation density found in our 

study. 

Our models removed noise and redundancy, chose three sub-models for each land 

cover, and added the time lag into the equation. However, there are still some constraints 

that need to be considered before the model can be applied to other areas. The target areas 

should respond to a single and persistent stress, and during the stress, foliage and tree-

ring width should grow synchronously and react similarly to the stress. If the satellite 

images used in the research are coarse resolution images, we need to consider the effects 

of the mixed forest species and mixed land cover, especially for the water areas. 

Our model simulated the variations and made NDVI annual maps with fine resolu-

tion (30 m) one hundred years ago, which was the first time to consistently “see” regime 

shifts during that time. The reconstructed NDVI even rectified our assumption that the 

NDVI in our study areas was decreasing. The annual NDVI series of maps (1906–2015) 

could vividly display how some ecological disturbances modify the local forest construc-

tion and lead to vegetation succession. As the model could be applied in more areas, the 

effects of global climate change on forest ecosystems may show up, and the anthropogenic 

effects on the whole forest ecosystem could be quantitatively evaluated. 
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