
Minimum Cuts in Directed Graphs via Partial Sparsification

Ruoxu Cen
Department of Computer Science

Duke University
ruoxu.cen@duke.edu

Jason Li
Simons Institute for Theory of Computing

UC Berkeley
jmli@cs.cmu.edu

Danupon Nanongkai
Department of Computer Science

University of Copenhagen
danupon@gmail.com

Debmalya Panigrahi
Department of Computer Science

Duke University
debmalya@cs.duke.edu

Thatchaphol Saranurak
Computer Science & Engineering Division

University of Michigan Ann Arbor
thsa@umich.edu

Kent Quanrud
Department of Computer Science

Purdue University
krq@purdue.edu

Abstract—We give an algorithm to find a minimum cut
in an edge-weighted directed graph with n vertices and
m edges in Õ(n ·max{m2/3, n}) time. This improves on
the 30 year old bound of Õ(nm) obtained by Hao and
Orlin for this problem. Using similar techniques, we also
obtain Õ(n2/ε2)-time (1 + ε)-approximation algorithms
for both the minimum edge and minimum vertex cuts in
directed graphs, for any fixed ε. Before our work, no (1+
ε)-approximation algorithm better than the exact runtime
of Õ(nm) is known for either problem.

Our algorithms follow a two-step template. In the first
step, we employ a partial sparsification of the input graph
to preserve a critical subset of cut values approximately.
In the second step, we design algorithms to find the
(edge/vertex) mincut among the preserved cuts from the
first step. For edge mincut, we give a new reduction to
Õ(min{n/m1/3,

√
n}) calls of any maxflow subroutine, via

packing arborescences in the sparsifier. For vertex mincut,
we develop new local flow algorithms to identify small
unbalanced cuts in the sparsified graph.

I. INTRODUCTION

The minimum cut (or mincut) problem is one of
the most widely studied problems in graph algorithms.
In (edge-)weighted1 directed graphs (or digraphs), a
mincut is a bipartition of the vertices into two non-
empty sets (S, V \ S) so that the total weight of edges
from S to V \ S is minimized. This problem can be
solved by solving the s-mincut problem (also called
rooted mincut), where for a given root vertex s, we
want to find the minimum weight cut (S, V \ S) such
that s ∈ S. (We call such cuts minimum s-cuts or s-
mincuts.) This is because the mincut can be computed
as the minimum between two s-mincuts for an arbitrary
vertex s: one with the original edge directions in the
input digraph, and the other with the edge directions
reversed.

This paper combines, and improves on, two independent
manuscripts by Quanrud [26] and the other authors [2].

1We assume throughout that edge/vertex weights are polynomially
bounded integers.

A simple algorithm for s-mincut (and thus mincut) on
an m-edge, n-vertex digraph is to use n − 1 maxflow
calls to obtain the minimum s− t cut for every vertex
t #= s in the graph, and return the minimum among
these. A beautiful result of Hao and Orlin [16] showed
that these maxflow calls can be amortized to match the
running time of a single maxflow call, provided one uses
the push-relabel maxflow algorithm [15]. This leads to
an overall running time of Õ(mn). Since their work,
better maxflow algorithms have been designed, but the
amortization does not work for these algorithms. As
a consequence, the Hao-Orlin bound remains the best
known for the directed mincut problem almost 30 years
after their work.

A. Our Results
In this paper, we can solve the s-mincut—thus the

directed mincut problem—by essentially reducing it to
O(
√
n) maxflow calls. At first glance, this is worse

than the Hao-Orlin algorithm that only uses a single
maxflow call. But crucially, while the Hao-Orlin al-
gorithm is restricted to a specific maxflow subroutine
and therefore cannot take advantage of faster, more
recent maxflow algorithms, our new algorithm treats the
maxflow subroutine as a black box, thereby allowing
the use of any maxflow algorithm. Using state of
the art maxflow algorithms that run in Õ(m + n3/2)
time [28], this already improves on the Hao-Orlin
bound. Using some additional ideas, we further reduce
to O(min{n/m1/3,

√
n}) maxflow calls, which yields

our eventual running time of Õ(nm2/3 + n2):

Theorem I.1. There is a randomized Monte Carlo
algorithm that solves s-mincut (and therefore directed
mincut) whp in Õ(nm2/3 + n2) time on an n-vertex,
m-edge (edge-weighted) directed graph.

In fact, our reduction in general implies a running time
bound of Õ(min{mk, nk2}+ n

k ·F (m,n)), where k is
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a parameter that we can choose and F (m,n) is the time
complexity of maxflow (see Theorem II.1).

Our techniques also yield fast approximations for the
mincut problem in directed graphs. In particular, for any
ε ∈ (0, 1), we can find a (1+ ε)-approximate mincut in
Õ(n2/ε2) time:

Theorem I.2. For any ε ∈ (0, 1), there is a ran-
domized Monte Carlo algorithm that finds a (1 + ε)-
approximate s-mincut (and therefore directed mincut)
whp in Õ(n2/ε2) time on an n-vertex (edge-weighted)
directed graph.

Finally, we consider vertex-weighted digraphs. A
vertex cut in a digraph is defined as a tri-partition of
vertices into sets (L,X,R) such that there is no edge
from L to R. (In other words, removing the vertices in
X results in a digraph where the directed cut (L,R) is
empty.) A minimum vertex cut (or vertex mincut) is a
vertex cut (L,X,R) that minimizes the sum of weights
of vertices in X . We give an algorithm to find a (1+ε)-
approximate vertex mincut in Õ(n2/ε2) time:

Theorem I.3. For any ε ∈ (0, 1), there is a randomized
Monte Carlo algorithm that finds a (1+ε)-approximate
minimum vertex s-cut and the minimum global vertex
cut whp in Õ(n2/ε2) time on an n-vertex (vertex-
weighted) directed graph.

To the best of our knowledge, before this work, the
fastest algorithms for (1+ ε)-approximation of mincuts
in edge or vertex weighted directed graphs were the
respective exact algorithms themselves, which obtained
a running time of Õ(mn) [16], [17].Our approximation
results establish a separation between the best exact
and (1+ε)-approximation algorithms for both edge and
vertex mincut problems in directed graphs.

Our results are the first to break the O(mn) barrier for
directed mincut problems in general, weighted digraphs.
For all values of m except when m = n1+o(1), this is
immediate from the above theorems. If m = n1+o(1),
we can also break the O(mn) barrier by employing
the recent Õ

(
m1.5−1/328

)
-time max-flow algorithm of

[12] to obtain O
(
mn1−Ω(1)

)
-time algorithms for all

problems in Theorems I.1 to I.3.
Related Work: The directed (edge) mincut problem

has been studied over several decades. Early work
focused on unweighted graphs [6], [27] eventually re-
sulting in an O(mn)-time algorithm due to Mansour
and Schieber [21]. This was matched (up to log factors)
in weighted graphs by Hao and Orlin [16], whose
result we improve in this paper. For unweighted graphs
(and graphs with small integer weights), the current
record is a recent Õ(n2)-time algorithm due to Chekuri
and Quanrud [3]. A similar story has unfolded for
directed vertex mincuts. Early work again focused on

unweighted graphs [25], [6], [4], [11] until the work
of Henzinger, Rao, and Gabow [17] who obtained
an Õ(mn)-time algorithm for weighted graphs. The
current best for directed vertex mincut in unweighted
graphs is an Õ(mn11/12+o(1))-time algorithm due to
Li et al. [19]. Faster algorithms are known when the
mincut size is small and for (1 + ε)-approximations in
unweighted digraphs [24], [8], [3].

B. Our Techniques

Our results are obtained by solving the s-mincut prob-
lem. Let us consider the edge-weighted case. Gabow [9]
obtained a running time of Õ(mλ) for this problem
(assuming integer weights), where λ is the size of an
s-mincut. He did so via arborescense packing: Define
an s-arborescense to be any spanning tree rooted at
s with edges pointing toward the leaves. In Õ(mλ)
time, Gabow’s algorithm computes λ s-arborescenses
such that an edge e of weight w(e) is contained in
at most w(e) arborescenses (this is called arborescense
packing).2 Gabow’s algorithm is at least as fast as that
of Hao and Orlin for unweighted simple graphs (since
λ ≤ n − 1), but can be much worse for weighted
(or multi) graphs. Nevertheless, Karger [18] gave an
interesting approach to use arborescence packing for
the mincut problem even with edge weights, but only in
undirected graphs. Karger’s algorithm had three main
steps:
(a) sparsify the input graph G to H by random sam-

pling of edges to reduce the mincut value in H to
O(log n) while guaranteeing that the mincut in G
is a (1 + ε)-approximate mincut in H ,

(b) pack O(log n) s-arborescences3 in the sparsifier H ,
and

(c) find the minimum weight cut among those that
have at most two edges in an arboresence using
a dynamic program.

The last step is sufficient because the duality between
cuts and arborescences ensures that an s-mincut, which
is now a (1+ε)-approximate mincut after sparsification,
has at most two edges in at least one s-arborescence.4
Karger implements all these steps in Õ(m) time to
obtain an Õ(m)-time mincut algorithm in undirected
graphs.

Unfortunately, steps (a) and (c) in Karger’s scheme
are not valid in a directed graph. To begin with, directed

2Gabow actually constructs a directionless spanning tree packing,
which is a relaxation of an arborescence packing, but we ignore this
technical detail here since it is not relevant to our eventual algorithm.

3Since Karger’s algorithm considered undirected graphs, the ar-
borescences are simply spanning trees.

4The duality implies that if the undirected mincut is λ, then we
can pack λ spanning trees where every edge appears in at most two
arborescences.
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graphs do not admit sparsifiers similar to Karger’s spar-
sifier: while Karger’s sparsifier approximately preserves
all cuts in an undirected graph (after some scaling), it
is well known that a sparsifier with a similar property
does not exist in directed graphs (see, e.g., [1]). This is
mainly because we cannot bound the number of mincuts
and approximate mincuts in directed graphs while we
can do so in undirected graphs.

Partial Sparsification: Since it is impossible for
a sparsifier to preserve all cuts in directed graphs,
it is natural to try to preserve a partial subset of
cuts. Suppose we were guaranteed that the s-mincut
(S, V \ S) (recall that s ∈ S) is unbalanced in the
sense that |V \ S| ≤ k for some parameter k that we
will fix later. Let us randomly sample edges to scale
down the value of the mincut to Õ(k). In an undirected
graph, as long as k = Ω(log n), all the cuts would
converge to their expected values. This is not true in
digraphs, but crucially, all the unbalanced cuts converge
to their expected values since there are only nÕ(k) of
them. However, it is possible that some balanced cut
is (misleadingly) the new mincut of the sampled graph,
having been scaled down disproportionately by the ran-
dom sampling. So, we overlay this sampled graph with a
star rooted at s, and show that this sufficiently increases
the values of all balanced cuts, while only distorting
the unbalanced cuts slightly. After this overlay, we can
claim that we now have a digraph where (S, V \ S) is
a (1 + ε)-approximate mincut. We use one additional
idea here. We show that in the sparsifier, every vertex
in V \S has only Õ(k) incoming edges (note that each
edge can be weighted)—Õ(k) edges across the cut from
S and ≤ k edges from within V \S. By contracting all
vertices with unweighted in-degree > Õ(k) into s, we
reduce the number of edges in the digraph to Õ(nk).

But, what if our premise that the s-mincut is unbal-
anced does not hold? This case is actually simple. We
use a uniform random sample of Õ(nk ) vertices, and
find s − t mincuts for all vertices t from the sample,
using Õ(nk ) maxflow calls. It is easy to see that whp, the
sample hits V \ S, and hence, the minimum weighted
cut among these s− t mincuts will reveal the s-mincut
of the graph.

Let us, therefore, return to the case where the s-
mincut is unbalanced. Recall that we have already
sparsified the graph to one that has only Õ(nk) edges,
and where the mincut has weight Õ(k). The next step
is to create a maximum packing of edge-disjoint s-
arborescences. Because the graph is weighted, instead
of using Gabow’s algorithm described above, we create
a (fractional) packing using a multiplicative weights

update procedure (e.g., [30]). By duality,5 these ar-
borescences have the following property: if we sample
O(log n) random s-arborescences, then whp there will
be at least one arborescence T such that there is exactly
one edge in T that goes from S to V \S. In this case, we
say that the cut (S, V \ S) 1-respects the arborescence
T .

1-respecting cut algorithm: Our final task, there-
fore, is the following: given an arborescence, find the
minimum weight cut in the original graph among all
those that 1-respect the arborescence T . At first sight,
this may look similar to part (c) of Karger’s algo-
rithm which can be solved by a dynamic program or
other techniques (e.g. [23], [13], [14], [20]). However,
these techniques relied on the fact that if the s-mincut
(S, V \ S) has a single edge e in T , then S and
V \ S would be contiguous in an s-arborescence T
(i.e. removing e from T gives S and V \ S as the two
connected components). This is not true for a directed
graph: While an s-arborescence will contain exactly one
edge from S to V \ S, it could contain an arbitrary
number of edges in the opposite direction from V \ S
to S, thereby only guaranteeing the contiguity of V \S
but not S.

One of the main contributions of this paper is to
provide an algorithm to solve the above problem using
O(log n) maxflow computations. The main idea is to
use a centroid-based recursive decomposition of the
arborescence, where in each step, we use a set of
maxflow calls that can be amortized on the original
graph. The minimum cut returned by all these maxflow
calls is eventually returned as the s-mincut of the graph.

Approximation Algorithms: The ideas above also
lead to a quadratic time approximation algorithm for
edge mincuts. At a high level, if we execute each
(s, t)-max flow in the sparsifier instead of in the input
graph (both in the unbalanced and balanced settings,
with care), then we obtain a Õ(n2/ε2) time (1 + ε)-
approximation algorithm instead.

A similar approach can be taken for approximate ver-
tex mincuts. Our partial sparsification technique reduces
the graph to Õ(nk/ε2) edges while maintaining the
vertex s-mincut (with some additional adjustments for
vertex mincuts). For large k, we similarly run (s, t)-
max flow between Õ(n/k) pairs of vertices on the
sparsifier. For small k, we design a new local cut
algorithm from Õ(n/k) seeds each of which takes
Õ(k3/ε2) time. This local algorithm is inspired by local
algorithms for unweighted graphs [8], and speeds up the
running time by a factor of k by leveraging the structure

5By duality, we have that if the directed mincut is λ, then we
can pack λ arborescenses where each edge appears in at most one
arborescense. Note that this is different from the case of undirected
graphs where each edge appears in at most two arborescences.
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of our sparsifiers (beyond sparsity). We finally obtain
Õ(n2/ε2) running time by balancing the two cases and
calling the max flow algorithm by [28].

Summary: To summarize, our algorithms distin-
guish between balanced and unbalanced mincuts, solv-
ing the former using maxflows on randomly sampled
terminals. For unbalanced mincuts, we follow a two-
step template. In the first step, we employ partial
sparsification to preserve the values of unbalanced cuts
approximately, while suppressing balanced cuts using an
overlay. In the second step, we design algorithms to find
the (edge/vertex) mincut among unbalanced cuts. For
edge mincut, the sparsifier allows one to quickly obtain
an arborescence that 1-respects the directed mincut.
From this arboresence, we obtain the exact minimum
cut in O(log n) max flows via a centroid-based recursive
decomposition. For vertex mincut, we develop new local
flow algorithms to identify small unbalanced cuts in the
sparsified graph.

II. MINIMUM CUT ALGORITHMS IN
EDGE-WEIGHTED DIRECTED GRAPHS

Given a directed graph G = (V,E) with non-negative
edge weights w and a fixed root vertex s, we consider
the problem of finding an s-mincut. An s-arborescence
is a directed spanning tree rooted at s such that all edges
are directed away from s. For simplicity, we assume that
all edge weights w are integers and are polynomially
bounded. We denote U = V \ U . Let ∂+(U) be the
set of edges from U to U , ∂−(U) be the set of edges
from U to U , and let δ+(U) and δ−(U) be the weight
of the cut, i.e., δ+(U) =

∑
e∈∂+(U) w(e), δ

−(U) =∑
e∈∂−(U) w(e). Our goal is to compute the minimum

cut (S∗, T ∗) where s ∈ S∗ = argmins∈U⊂V δ+(U)
and T ∗ = S∗. Let F (m,n) denote the time complexity
of s-t maximum flow on a digraph with n vertices
and m edges. The current record for this bound is
F (m,n) = Õ(m + n3/2) [28]. We emphasize that our
directed mincut algorithm uses maxflow subroutines in a
black box manner and therefore, any maxflow algorithm
suffices. Correspondingly, we express our running times
in terms of F (m,n).

Theorem II.1. There is a Monte Carlo algorithm that
finds a minimum s-cut whp in Õ(min{mk, nk2} +
F (m,n)nk ) time, where k is a parameter and F (m,n)
is the time complexity of s-t maximum flow.

This section is devoted to prove Theorem II.1. If we
set k = m1/3+n1/2 and use the Õ(m+n3/2) max-flow
algorithm, the time complexity becomes Õ(nm2/3 +
n2), which establishes Theorem I.1. If we assume
an hypothetical Õ(m)-time max-flow algorithm, then
our result becomes Õ(min{nm2/3,mn1/2}) for k =
min{m1/3, n1/2}.

We obtain Theorem II.1 via a new s-mincut algo-
rithm. The algorithm considers the following two cases,
computing a s-cut for each case and returning the
minimum as its final output. The cases are split on |T ∗|
by a threshold k > 0.

1) The first case aims to compute the correct mincut
in the event that |T ∗| > k. In this case, if we
randomly sample t ∈ V , then with probability
at least 1/k, t ∈ T ∗. Then T ∗ can be obtained
via the maxflow from s to t. Repeating the sam-
pling O(nk log n) times, we obtain the minimum
s-cut whp. The total running time for this case is
O(F (m,n)nk log n).

2) The second case is for the the event that |T ∗| ≤ k.
Let λ denote the value of the minimum rooted
cut. By enumerating O(log n) powers of 2, we
can obtain an estimate λ̃ such that λ ≤ λ̃ ≤ 2λ.
For each value of λ̃, we apply Lemma II.5 to
sparsify the graph in the following manner. First,
Lemma II.5 returns a set of vertices V0 ⊆ V such
that s ∈ V0 and T ∗ ⊆ V0 whp. In particular,
one can safely contract any vertex v ∈ V \ V0

into s without affecting the minimum s-cut. We
contract G accordingly and, overloading notation,
let G denote the contracted graph with vertex
set V0 henceforth. Second, Lemma II.5 returns a
graph G0 = (V0, E0) in which T ∗ still induces
an (1 + ε)-approximate s-mincut, but the weight
of the cut is now reduced to O(k log(n)). We
note that G0 is not necessarily a subgraph of G.
We then invoke Lemma II.6 from Section II-B
to fractionally pack an approximately maximum
amount of O(k log n) s-arboresences in G0 in
Õ
(
m+min

{
mk, nk2

})
time. In a random sample

of O(log n) s-arboresences from this packing, one
of them will 1-respect the s-mincut in G (for
appropriate λ̃) whp:
Definition II.2. A directed s-cut (S, V \ S) k-
respects an s-arborescence if there are at most k
edges in the arborescence from S to V \ S.
Finally, for each of the O(log n) s-arborescences,
the algorithm computes the minimum s-cut that 1-
respects each arborescence. This algorithm is de-
scribed in Algorithm 1 and proved in Theorem II.7
from Section II-C. It runs in O((F (m,n) + m) ·
log n) time for each of the O(log n) arborescences.

Combining both cases, the total running time becomes
Õ(min{mk, nk2}+F (m,n)nk ), which establishes The-
orem II.1.

Fast approximations: The exact algorithm de-
scribed above can be modified to produce a randomized
Õ
(
n2/ε2

)
-time approximation algorithm that computes

a (1 + ε)-approximate minimum s-cut (hence also the
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global cut). With logarithmic overhead, we can obtain
a parameter k such that k/2 ≤ |T ∗| ≤ k, where
∂−(T ∗) is the minimum s-cut. We then follow the same
steps as in the exact algorithm, except whenever we
compute the max-flow, we compute it in the sparsifier
produced by Lemma II.5 instead. Since the sparsifier has
at most Õ

(
nk/ε2

)
edges, we obtain a running time of

the form Õ
(
min

{
nk2/ε2

}
+ F (nk/ε2, n)(n/k)

)
. For

F (m,n) = Õ
(
m+ n1.5

)
, this gives a running time of

Õ
(
n2/ε2

)
.

Theorem II.3. For ε ∈ (0, 1), an (1 + ε)-approximate
minimum s-cut (hence global minimum cut) can be
computed in Õ(n2/ε2) time whp.

We remark that Õ
(
n2/ε2

)
can also be obtained by

using a local connectivity algorithm similar to the
approach for vertex mincuts in Section III, instead of
via an arboresence packing. See [26] for details.

Organization: The rest of this section is organized
as follows. The following subsections present each step
of the algorithm described above. First, we establish the
partial sparsification subroutine in Section II-A. Next,
in Section II-B, we obtain an arborescence packing
from which sampling yields an arborescence that is 1-
respected by the mincut. Finally, in Section II-C, we
describe the algorithm to retrieve the mincut among
those that 1-respect a given arborescence.

A. Partial Sparsification

This section aims to reduce mincut value to Õ(k) and
edge size to min{m,O(nk log(n)/ε2}) while keeping
∂+(S∗) a (1 + ε)-approximate s-mincut for a constant
ε > 0 that we will fix later. Our algorithm in this
stage has three steps. First, we use random sampling
to discretize and scale down the expected value of all
cuts such that the expected value of the mincut δ+(S∗)
becomes Õ(k). We also claim that ∂+(S∗) remains
an approximate mincut among all unbalanced cuts
by using standard concentration inequalities. However,
since the number of balanced cuts far exceeds that of
unbalanced cuts, it might be the case that some balanced
cut has now become much smaller in weight than all the
unbalanced cuts. This would violate the requirement that
∂+(S∗) should be an approximate mincut in this new
graph. This is where we need our second step, where
we overlay a star on the sampled graph to raise the
values of all balanced s-cuts above the expected value
of ∂+(S∗) while only increasing the value of ∂+(S∗)
by a small factor. The third step leverages the fact that,
after scaling, the minimum edge weight is 1, and the
minimum cut is O

(
k log(n)/ε2

)
. It follows that any

vertex with in-degree at least a constant factor greater
than k log(n)/ε2 cannot be in the sink component, and

can be safely contracted into the root without affecting
the s-mincut.

The first two steps described above are implemented
in the next lemma, whose proof is deferred to the full
version.

Lemma II.4. Let G = (V,E) be a directed graph
with positive edge weights. Let s ∈ V be a fixed root
vertex. Let ε ∈ (0, 1), let λ > 0, and let k ∈ N be
given parameters. Suppose there is an s-mincut of the
form ∂−(T ∗), where s #∈ T ∗, λ/2 ≤ δ−G(T ∗) ≤ 2λ
and |T ∗| ≤ k. In randomized nearly linear time, one
can compute a randomized directed and reweighted
subgraph G0 = (V,E0), where V0 ⊆ V and s ∈ V0

with the following properties.
(i) G0 has integral edge weights and the minimum s-

cut has weight at most O
(
k log(n)/ε2

)
.

(ii) ∂−G0
(T ∗) is a (1 + ε)-approximate minimum s-cut

in G0.
(iii) Every α-approximate minimum s-cut in G0 induces

an (1 + ε)α-approximate minimum s-cut in G.

The preceding lemma importantly allows us to reduce
the weight of the minimum cut to roughly k, where k is
the number of the vertices in the sink component. How-
ever it has not actually reduced the size in the graph,
in terms of the number of edges. This is accomplished
by our third step, which we formalize in the following
lemma that reduces the number of edges to Õ(nk).

Lemma II.5. Let G = (V,E) be a directed graph
with positive edge weights. Let s ∈ V be a fixed root
vertex. Let ε ∈ (0, 1), λ > 0, and k ∈ N be given
parameters. Suppose there is a minimum s-cut is of
the form ∂−(T ∗), where λ/2 ≤ δ−G(T ∗) ≤ 2λ and
|T ∗| ≤ k.

In randomized nearly linear time, one can compute
a randomized directed and edge-weighted graph G0 =
(V0, E0), where V0 ⊆ V and s ∈ V0.

(i) G0 has integral edge weights and the s-mincut in
G0 has weight at most O

(
k log(n)/ε2

)
.

(ii) G0 has at most |E0| = min
{
m,O

(
nk log(n)/ε2

)}

edges.
(iii) G0 is a subgraph of the graph obtained by con-

tracting V \ V0 into s in G.
(iv) We have T ∗ ⊆ V0, and ∂−G0

(T ∗) is an (1 + ε)-
approximate minimum s-cut in G0.

(v) Every (1 + ε)-approximate minimum s-cut in G0

induces an (1 + ε)2-approximate minimum s-cut in
G.

Proof: Consider the reweighted subgraph produced
by Lemma II.4, which we denote by G1 = (V,E1).
We claim that every vertex v ∈ T ∗ has unweighted in-
degree at most O

(
k log(n)/ε2

)
. Indeed, at most k − 1

of these edges are from other vertices in T , and the
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remaining edges must be in ∂−G1
(T ∗). But ∂−G1

(T ∗) has
at most δ−G1

(T ∗) = O
(
k log(n)/ε2

)
edges by properties

(i) and (ii) of Lemma II.4.
Let G0 = (V0, E0) be the graph obtained from

G1 by contracting all vertices with unweighted in-
degree ≥ ck log(n)/ε2 for a sufficiently large constant
c that excludes all vertices in T ∗. It is easy to see
that G0 satisfies the claimed properties, particularly as
contractions into s do not decrease the s-mincuts, and
∂−G0

(T ∗) is preserved exactly as in G1.

B. Finding a 1-respecting Arborescence

In this section, we assume that there is an unbalanced
s-mincut and show how to obtain an s-arborescence that
1-respects the s-mincut. More formally, we prove the
following:

Lemma II.6. Given weighted digraph G and
a fixed root vertex s, suppose the sink side
of an s-mincut T ∗ has at most k vertices. In
O(m log n + min{mk log2 n, nk2 log3 n}) time, we
can find O(log n) s-arborescences on vertex set
V0 ⊃ T ∗, such that whp an s-mincut 1-respects at least
one of them.

The idea of this lemma is as follows. First, we apply
Lemma II.5 to our graph G and obtain the graph G0.
Whp, a minimum s-cut ∂−(T ∗) in G corresponds to a
(1 + ε)-approximate minimum s-cut in G0. It remains
to find an arborescence in G0 that 1-respects ∂−(T ∗).
To do this, we employ a multiplicative weight update
(MWU) framework. The algorithm begins by setting
all edge weights to be uniform (say, weight 1). Then,
we repeat the following for O(k log(n)/ε2) rounds: in
each round, we find a minimum weight arborescence
in Õ(m) time and multiplicatively increase the weight
of every edge in the arborescence. Using the fact that
there is no duality gap between arborescence packing
and mincut [5], [9], a standard MWU analysis implies
that these arborescences that we found, after scaling,
form a (1+ε)-approximately optimal fractional arbores-
cence packing. So our arborescence crosses T ∗ at most
(1 + O(ε)) < 2 times on average. Thus, if we sample
O(log n) arborescences from this set, one of them will
1-respect T ∗ whp.6 To obtain the running time bound,
we note that each iteration of the MWU framework
requires us to find the minimum cost s-arborescence,
for which an Õ(m)-time algorithm is known [10].

Since the argument above is a standard application
of the MWU framework, we defer the detailed proof to
the full version.

6This should be compared with Karger’s mincut algorithm in the
undirected case, where there is a factor 2 gap, and hence Karger can
only guarantee a 2-respecting tree in the undirected case.

Figure 1. Construction of auxiliary graph Gi in Algorithm 1.
Solid lines represent the arborescence T . Dashed lines are other
edges in the graph. Rectangles are sets formed by the first level of
centroid decomposition. Left: The original graph. Right: The part of
G1 solving the case that the mincut separates root and the centroid
of the middle subtree.

C. Mincut Given 1-respecting Arborescence

We propose an algorithm (Algorithm 1) that uses
O(log n) maxflow subroutines to find the minimum s-
cut that 1-respects a given s-arborescence. The result is
formally stated in Theorem II.7.

Theorem II.7. Consider a directed graph G = (V,E)
with polynomially bounded edge weights we > 0. Let
s ∈ V be a fixed root vertex and S ) s be the source
side of a fixed s-mincut. Given an s-arborescence T
with |T ∩ ∂+(S)| = 1, Algorithm 1 outputs a s-mincut
of G in time O((F (m,n) +m) · log n).

We first give some intuition for Algorithm 1. Because
s ∈ S, if we could find a vertex t ∈ S, then computing
the s-t mincut using one maxflow call would yield
a global mincut of G. However, we cannot afford to
run one maxflow between s and every other vertex
in G. Instead, we carefully partition the vertices into
& = O(log n) sets (Ci)"i=1. We show that for each Ci,
we can modify the graph appropriately so that it allows
us to (roughly speaking) compute the maximum flow
between s and every vertex c ∈ Ci using one maxflow
call.

More specifically, Algorithm 1 has two stages. In
the first stage, we compute a centroid decomposition
of T . Recall that a centroid of T is a vertex whose
removal disconnects T into subtrees with at most n/2
vertices. This process is done recursively, starting with
the root s of T . We let P1 denote the subtrees resulting
from the removal of s from T . In each subsequent
step i, we compute the set Ci of the centroids of the
subtrees in Pi. We then remove the centroids and add
the resulting subtrees to Pi+1. This process continues
until no vertices remain.

In the second stage, for each layer i, we construct
a directed graph Gi and perform one maxflow compu-
tation on Gi. The maxflow computation on Gi would
yield candidate cuts for every vertex in Ci, and after
computing the appropriate maximum flow across every
layer, we output the minimum candidate cut as the mini-
mum cut of G. The details are presented in Algorithm 1.
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Algorithm 1: Finding an s-mincut.
Input : An arborescence T rooted at s ∈ S

such that S 1-respects T .
1 // Stage I: Build centroid decomposition.
2 Let C0 = {s}, P1 = the set of subtrees obtained

by removing s from T , and i = 1.
3 while Pi #= ∅ do
4 Initialize Ci (the centroids of Pi) and Pi+1

as empty sets.
5 for each subtree U ∈ Pi do
6 Compute the centroid u of U and add it

to Ci.
7 Add all subtrees generated by removing

u from U to Pi+1.
8 Set & = i and iterate i = i+ 1.

9 // Stage II: Calculate integrated maximum flow
for each layer.

10 for i = 1 to & do
11 Construct a digraph

Gi = (V ∪ {ti}, E1 ∪ E2 ∪ E3) as follows
(see Figure 1):

12 1) Add edges E1 = E ∩ ∪U∈Pi(U × U)
with capacity equal to their original weight.

13 2) Add edges
E2 = {(s, v) : (u, v) ∈ E \ E1} with
capacity of (s, v) equal to the original
weight of (u, v).

14 3) Add edges E3 = {(u, ti) : u ∈ Ci}
with infinite capacity.

15 Compute the maximum s-ti flow f∗i in Gi.
16 For each component U ∈ Pi with centroid u,

the value of f∗i on edge (u, ti) is a
candidate cut value, and the nodes in U
that can reach u in the residue graph is a
candidate for S.

17 Return the smallest candidate cut value and the
corresponding (S, S) as an s-mincut.

We first state two technical lemmas that we will use
to prove Theorem II.7.

Lemma II.8. Recall that Pi is the set of subtrees in
layer i and Ci contains the centroid of each subtree in
Pi. If Cj ⊆ S for every 0 ≤ j < i, then S is contained
in exactly one subtree in Pi, and consequently, at most
one vertex u ∈ Ci can be in S.

Lemma II.9. Let Gi be the graph constructed in
Step 11 of Algorithm 1. Let f∗i be a maximum s-ti flow
on Gi as in Step 15. For any U ∈ Pi with centroid u,
the amount of flow f∗i puts on edge (u, ti) is equal to
the value of the minimum cut from U to u.

We defer the proofs of Lemmas II.8 and II.9, and first
use them to prove Theorem II.7.

Proof of Theorem II.7: We first prove the correct-
ness of Algorithm 1.

Because C0 = {s} and s ∈ S, and the Ci’s form
a disjoint partition of V , there must be a layer i such
that for the first time, we have a centroid u ∈ Ci that
belongs to S. By Lemma II.8, we know that S must be
contained in exactly one subtree U ∈ Pi, and hence u
must be the centroid of U . In summary, we have u ∈ S
and S ⊆ U .

Consider the graph Gi constructed for layer i. By
Lemma II.9, based on the flow f∗i puts on the edge
(u, ti), we can recover the value of the minimum cut
from U to u. Because S ⊆ U (or equivalently U ⊆
S) and u ∈ S, the cut (S, S) is one possible cut that
separates U and u. Therefore, the flow that f∗i puts on
the edge (u, ti) is equal to the s-mincut value in G.

In addition, the candidate cut value for any other
centroid u′ of a subtree U ′ ∈ Pi must be at least the
mincut value between s and u′. This is because the
additional restriction that the cut has to separate U ′ from
u′ can only make the mincut value larger, and the value
of this cut in Gi is equal to the value of the same cut in
G. Therefore, the minimum candidate cut value in all &
layers must be equal to the s-mincut value of G.

Now we analyze the running time of Algorithm 1.
We can find the centroid of an n-node tree in time
O(n) (see e.g., [22]). The total number of layers
& = O(log n) because removing the centroids reduces
the size of the subtrees by at least a factor of 2.
Thus, the running time of Stage I of Algorithm 1 is
O(n log n). In Stage II, we can construct each Gi in
O(m) time and every Gi has O(m) edges. Since there
are O(log n) layers and the maximum flow computa-
tions take a total of O(MF (m,n)·log n) time, the over-
all runtime is O(n log n + (MF (m,n) + m) log n) =
O((MF (m,n) +m) log n).

Before proving Lemmas II.8 and II.9 we first prove
the following lemma.

Lemma II.10. If x and y are vertices in S, then every
vertex on the (undirected) path from x to y in the
arborescence T also belongs to S.

Proof: Consider the lowest common ancestor z of
x and y. Because there is a directed path from z to x
and a directed path from z to y, we must have z ∈ S.
Otherwise, there are at least two edges in T that go
from S to S.

Because s ∈ S and z ∈ S, there is already an edge
in T (on the path from s to z) that goes from S to S.
Consequently, all other edges in T cannot go from S
to S, which means the entire path from z to x (and
similarly z to y) must be in S.
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Recall that Lemma II.8 states that if all the centroids
in previous layers are in S, then S is contained in
exactly one subtree U in the current layer i.

Proof of Lemma II.8: For contradiction, suppose
that there exist distinct subtrees U1 and U2 in Pi and
vertices x, y ∈ S such that x ∈ U1 and y ∈ U2.

By Lemma II.10, any vertex on the (undirected)
path from x to y also belongs to S. Consider the
first time that x and y are separated into different
subtrees. This must have happened because some vertex
on the path from x to y is removed. However, the set
of vertices removed at this point of the algorithm is
precisely

⋃
0≤j<i Cj , but our hypothesis assumes that

none of them are in S. This leads to a contradiction and
therefore S is contained in exactly one subtree of Pi.

It follows immediately that at most one centroid u ∈
Ci can be in S.

Next we prove Lemma II.9, which states that the
maximum flow between s and ti in the modified graph
Gi allows one to simultaneously compute a candidate
mincut value for each vertex u ∈ Ci.

Proof of Lemma II.9: First observe that the
maxflow computation from s to ti in Gi can be viewed
as multiple independent maxflow computations. The
reason is that, for any two subtrees U1, U2 ∈ Pi, there
are only edges that go from s into U1 and from U1 to
ti in Gi (similarly for U2), but there are no edges that
go between U1 and U2.

The above observation allows us to focus on one
subtree U ∈ Pi. Consider the procedure that we produce
Gi from G in Steps 12 to 14 of Algorithm 1. The edges
with both ends in U are intact (the edge set E1). If we
contract all vertices out of U into s, then all edges that
enter U would start from s, which is precisely the effect
of removing cross-subtree edges and adding the edges
in E2. One final infinity-capacity edge (u, ti) ∈ E3

connects the centroid of U to the super sink ti.
Therefore, the maximum s-ti flow f∗i computes the

maximum flow between U and u ∈ U simultaneously
for all U ∈ Pi, whose value is reflected on the edge
(u, ti). It follows from the maxflow mincut theorem that
the flow on edge (u, ti) is equal to the mincut value
between U and u in G (i.e., the minimum value w(A,A)
among all A ⊂ V with U ⊆ A and u ∈ A).

III. MINIMUM CUT ALGORITHMS IN
VERTEX-WEIGHTED DIRECTED GRAPHS

In this section we present the approximation algo-
rithm for the minimum rooted and global vertex cut.
Similar to Section II, the main focus is on rooted cuts,
and the algorithm is presented in three main parts. All
three parts are parameterized by values κ > 0 and
k ∈ N that, in principle, are meant to be constant
factor estimates for the weight and the number of

vertices in the sink component of the minimum rooted
vertex cut. The first part, in Section III-A, presents
the sparsification lemma that reduces the number of
edges to roughly nk and the rooted mincut to roughly
k in a graph with integer weights. This sparsifier is
used in the remaining two parts. The second part, in
Section III-B, gives a roughly nk2 time approximation
algorithm for the minimum rooted cut via a new local
flow algorithm. The third part, in Section III-C, gives
a roughly n2 + n2.5/k time approximation algorithm
via sampling and (s, t)-flow (as with minimum edge
cuts before). Finally, in Section III-D, we balance terms
to obtain the claimed running time for rooted cut. The
rooted vertex mincut algorithm then leads to a global
vertex mincut algorithm via an argument due to [17]
(with some modifications).

A. Partial Sparsification

The first part is a sparsification lemma that preserves
rooted vertex cuts where the number of vertices in the
sink component is below some given parameter. It is
similar in spirit to Lemma II.5, but with some necessary
changes as we are now preserving the vertex mincut
rather than edge mincut. We give a brief overview of
the algorithm, highlighting in particular the differences
from the partial edge cut sparsifier. The proof and
algorithmic details are deferred to the full version.

At a high level, the following sparsifier for vertex cuts
randomly samples the vertex weights so that the weights
are integral, and the weight of the minimum vertex cut
becomes O

(
k log(n)/ε2

)
. Similar to the partial edge

sparsifier, this rounding is calibrated to preserve s-
cuts with (roughly) k or fewer vertices in the sink
components. To pad the weight of vertex s-cuts with
large sink components, we add an weighted auxiliary
vertex on a short directed path between s and each
vertex (as opposed to just adding an edge from s, as
we did for edge cuts). If a sampled weight of a vertex
v is 0, we cannot simply drop the vertex from the graph
(in the way we can drop weight 0 edges) since the
vertex may be in the sink component of the min r-cut.
Instead we remove all outgoing edges from v. Also,
when we detect that a vertex v cannot be in the sink
component (by a similar counting argument as before),
rather than contract v into s (which may effect the min
vertex s-cut), we replace all of the incoming edges to
v with a single edge from s. The culmination of these
modifications is a similar net effect as for edge cuts:
a graph with O

(
nk log(n)/ε2

)
that preserves the sink

component of the minimum vertex s-cut. That said, the
following bounds are more detailed than the bounds for
preserving the edge cut in Lemma II.5. These additional
properties play a critical role in the customized local
flow algorithms presented later.
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In the following, let N+(v |G) denote the set of out-
neighbors of v in the graph G. We omit G and simply
write N+(v) when G can be inferred from the context.

Lemma III.1. Let G = (V,E) be a directed graph
with positive vertex weights. Let s ∈ V be a fixed
vertex. Let k,κ > 0 be given parameters. Let V ′ =
V \ ({s} ∪N+(s)). In randomized linear time, one
can compute a randomized directed and vertex-weighted
graph G0 = (V0, E0), and a scaling factor τ > 0, with
the following properties.

(i) s ∈ V0.
(ii) Let V ′0 = V0 \ ({s} ∪N+(s |G0)). We have V ′0 =

V ′.
(iii) G0 has integer vertex weights between 0 and

O
(
k log(n)/ε2

)
.

(iv) Every vertex v ∈ V0 has at most O
(
k log(n)/ε2

)

incoming edges.
(v) Every vertex v with weight 0 has no outgoing

edges.
(vi) With high probability, for all S ⊆ V ′, the weight of

the vertex in-cut induced by S in G0 (up to scaling
by τ ) is at least the minimum of the (1− ε) times
the weight of the induced vertex in-cut in G or
cκ (for any desired constant c > 1), and at most
(1 + ε) times its weight in G plus εκ|S|/k.

(vii) With high probability, for all S ⊆ V ′ such that
|S| ≤ k and the weight of the induced vertex in-
cut is ≤ O(κ), we have S ⊆ V ′0 . (That is, S is still
the sink component of an s-cut in G0.)

In particular, if the minimum vertex s-cut has weight
Θ(κ), and the sink component of a minimum vertex s-
cut has at most k vertices, then with high probability G0

preserves the minimum vertex s-cut up to a (1 +O(ε))-
multiplicative factor.

As stated above, the proof is deferred to the full
version.

B. Rooted vertex mincut for small sink components
This section presents an approximation algorithm for

rooted vertex mincut for the particular setting where
the sink component is small. In particular, we are given
an upper bound k on the number of vertices in the
sink component, and want to obtain running times of
the form n poly(k). When a similar situation arose
previously for small integer capacities in [3], [3] mod-
ified a local algorithm from [8] which works well for
unweighted graphs. Here, while Lemma III.1 produces
relatively sparse graphs with integral vertex capacities,
the vertex capacities imply imply that the algorithm
from [3], [8] would take roughly nk3/ε5 time. This
section develops an alternative algorithm that is inspired
by these local algorithms for (global and rooted) vertex

cuts, but reduces the dependency on k to k2. Compared
to [8], [3], the algorithm here is designed to take full
advantage of the properties of the graph produced by
Lemma III.1. These modifications have some tangible
benefits. First, it improves the dependency on k and
ε. Second, the local subroutine here is deterministic
whereas before they were randomized. Third and last,
as suggested by the better running time and the deter-
minism, the version presented here is arguably simpler
and more direct than the previous algorithms (for this
setting).

Lemma III.2. Let G = (V,E) be a directed graph
with positive vertex weights. Let r ∈ V be a fixed root
vertex. Let ε ∈ (0, 1), κ > 0 and k ∈ N be given
parameters. There is a randomized linear time Monte
Carlo algorithm that, with high probability, produces a
deterministic data structure that supports the following
query.

For t ∈ V ′
def
= V \({s} ∪N+(s)), let κt,k denote the

weight of the minimum (s, t)-vertex cut such that the
sink component has at most k vertices. Given t ∈ V ′,
deterministically in O

(
k3 log2(n)/ε4

)
time, the data

structure either (a) returns the sink component of a
minimum (s, t)-vertex cut of weight at most (1+ ε)κt,k,
or (b) declares that κt,k > κ.

Proof: Given s, κ, k, and ε, let ε′ = cε for a
sufficiently small constant c > 0. We first apply Lemma
III.1 to G with root s and parameters κ, k, and ε′. This
produces a vertex capacitated graph G0 = (V0, E0) with
V ⊂ V0. We highlight the features that we leverage. All
new vertices (in V0 \ V ) are in N+(s |G0); that is, V ′

equals V ′0
def
= V0\({s} ∪N+(s |G0)). Put alternatively,

none of the new vertices is in the sink component of
any s-cut. The vertex weights are integers between 0 and
O
(
k log(n)/ε2

)
. Every vertex has unweighted in-degree

at most O
(
k log(n)/ε2

)
. Every vertex with weight 0 has

no outgoing edges.
With high probability, we have the following guaran-

tees on the vertex s-cuts of G0. The vertex weights in
G0 are scaled so that a weight of κ in G corresponds
to weight O

(
k log(n)/ε2

)
in G0. Modulo scaling, every

vertex s-cut in G0 has weight no less than the minimum
of its weight in G and 2κ. Additionally, modulo scaling,
for every vertex s-cut in G with capacity at most κ
and at most k vertices in the sink component, the
corresponding vertex cut in G0 has weight at most a
c0εκ additive factor larger than in G, for any desired
constant c0 > 0. We consider the algorithm to fail if
the cuts are not preserved in the sense described above.

Given t ∈ V , the data structure will search for a small
(s, t)-cut in G0 via a customized, edge-capacitated flow
algorithm. This algorithm may or may not return the
sink component of (s, t)-cut. If the search does return
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a sink component, and the corresponding vertex in-
cut in G0 has weight that, upon rescaling back to the
scale of the input graph G, is at most (1 + ε/2)κ, the
data structure returns it. Otherwise the data structure
indicates that κt,k > κ.

Proceeding with the flow algorithm, let Grev be the
reverse of G0, and let Gsplit be the standard “split-graph”
of Grev modeling vertex capacities with edge capacities.
We recall that the split graph splits each vertex v into an
auxiliary “in-vertex” v− and an auxiliary “out-vertex”
v+. For each v there is a new edge (v−, v+) with
capacity equal to the vertex capacity of v. Each edge
(u, v) is replaced with an edge (u+, v−) with capacity7

equal to the vertex capacity of u. Every (s, t)-vertex
cut in G0 maps to a (t+, s−)-edge cut in Grev with the
same capacity. Any (t+, s−)-edge capacitated cut maps
to a (s, t)-vertex cut in G0 (with negligible overhead in
the running time). Now, recall that for each v ∈ V ′, the
sparsification procedures introduces an auxiliary path
(s, av, s−) where av is was given weight Θ(εκ/k). It is
convenient to replace the corresponding auxiliary path
(v+, a−v , a

+
v , s

−) in Grev with a single edge (v+, s−)
with capacity equal to the weight of av . This does not
effective the weight of the minimum (t+, s−)-edge cut
for any t ∈ V ′. This adjustment can be easily made
within the allotted preprocessing time.

In this graph, given t ∈ V ′, we run a specialization of
the Ford-Fulkerson algorithm [7] that either computes a
minimum (t+, s−)-cut or concludes that the minimum
(t+, s−)-cut is at least O

(
k log(n)/ε2

)
(which corre-

sponds to O(κ) in G) after O
(
k log(n)/ε2

)
iterations.

Observe that since every vertex initially has unweighted
out-degree at most O

(
k log(n)/ε2

)
in Grev (reversing

the upper bound on the unweighted in-degrees in G0),
and the flow algorithm updates the residual graph
along at most O

(
k log(n)/ε2

)
paths before terminating,

the maximum unweighted out-degree over all vertices
never exceeds O

(
k log(n)/ε2

)
. We specialize the Ford-

Fulkerson framework to take advantage of the auxiliary
(v+, s−) edges. Call an out-vertex v+ saturated if the
auxiliary edge (v+, s−) is saturated; that is, if (v+, s−)
is not in the residual graph. Call an in-vertex v−

saturated if the edge (v−, v+) is saturated and v+ is
not saturated. (A vertex v+ or v− is called unsaturated
if it is not saturated.) We modify the search for an
augmenting path to effectively end when we first visit
an unsaturated vertex v+ or an unsaturated v−. If we
visit an unsaturated v−, then we automatically complete
a path to s− via v+. If we find an unsaturated v+, then
we automatically complete a path to s− via the edge
(v+, s−). It remains to bound the running time of this
search. We first bound the number of saturated v+’s.

7Usually, this edge is set to capacity ∞, but either the weight of
u or the weight of v are also valid.

Claim 1. There are at most O(k/ε) saturated v+’s.
Indeed, each saturated v+ implies O(log(n)/ε) units
of flow along (v+, s−), and the flow is bounded above
O
(
k log(n)/ε2

)
.

Note that Claim 1 also implies there are at most
O(k/ε) v−’s such that v+ is saturated. The next claim
bounds the total out-degree of saturated v−’s.

Claim 2. The sum of out-degrees of saturated v−’s
is at most the amount of flow routed to s−.

Indeed, the out-degree of a v− in the residual graph is
bounded above by the amount of flow through (v−, v+),
since initially (v−, v+) is the only outgoing edge from
v−. Recall that if v− is saturated, then by definition v+

is unsaturated. As long as v+ is unsaturated, each unit
of flow through (v−, v+) goes directly to s− via the
edge (v+, s−), and can be charged to the total flow.

We now apply the above two claims to bound the
total running time for each search, as follows.

Claim 3. Every (modified) search for an augmenting
path traverses at most O

(
k2 log(n)/ε2

)
edges.

We first observe that every vertex visited in the search,
except the unsaturated vertex terminating the search, is
either (a) a saturated v−, (b) a saturated v+, or (c)
an unsaturated v− such that v+ is saturated. We will
upper bound the number of edges traversed in each
iteration based on the type of vertex at the initial point
of that edge. First, the amount of time spent exploring
edges leaving (a) a saturated v− is, by Claim 2, at
most the size of the flow at that point, which is at
most O

(
k log(n)/ε2

)
. Second, consider the time spent

traversing edges leaving either (b) a saturated v+ or
(c) an unsaturated v− such that v+ is saturated. By
Claim 1, there are at most O(k/ε) such vertices, and
each has out-degree at most O

(
k log(n)/ε2

)
. Thus we

spend O
(
k2 log(n)/ε2

)
time traversing such edges. All

together, we obtain an upper bound of O
(
k2 log(n)/ε2

)

total edges per search.
Claim 3 also bounds the running time for each iter-

ation. The algorithm runs for at most O
(
k log(n)/ε2

)

iterations before either finding an (t+, s−)-cut or con-
cluding that the weight of the minimum (t+, s−)-cut,
rescaled to the input scale of G, is at least a constant
factor greater than κ. The total running time follows.

We now present the overall algorithm for finding ver-
tex s-cuts with small sink components. The algorithm
combines Lemma III.2 with randomly sampling for a
vertex t in the sink component of an approximately
minimum s-cut. In the following, we let deg+(s) denote
the unweighted out-degree of s in G.

Lemma III.3. Let G = (V,E) be a directed graph
with positive vertex weights. Let s ∈ V be a fixed
root vertex. Let ε ∈ (0, 1), κ > 0 and k ∈ N be
given parameters. There is a randomized algorithm that
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runs in O
(
m+ (n− deg+(s))k2 log3(n)/ε4

)
time and

has the following guarantee. If there is a vertex s-cut
of capacity at most κ and where the sink component
has at most k vertices, then with high probability, the
algorithm returns a vertex (s, t)-cut of capacity at most
(1 + ε)κ.

Proof: Let T ∗ be the sink component of the min-
imum vertex s-cut subject to |T ∗| ≤ k. Assume the
capacity of the vertex in-cut of T ∗ is at most κ (since
otherwise the algorithm makes no guarantees). Let V ′ =
V \({s}∪N+(s)) and note that |V ′| = n−1−deg+(s).

Suppose we had a factor-2 overestimate & ∈
[|T ∗|, 2|T ∗|] of the number of vertices in T ∗. We apply
Lemma III.2 with upper bounds κ on the size of the cut
and & on the number of vertices in the sink component,
which returns a data structure that, with high probability,
is correct for all queries. Let us assume the data struc-
ture is correct (and otherwise the algorithm fails). We
randomly sample O

(
(n− deg+(s)) log(n)/&

)
vertices

from V ′. For each sampled vertex t, we query the data
structure from Lemma III.2. Observe that if t ∈ T ∗, then
the query for t returns an s-cut with capacity at most
(1 + ε)κ. With high probability we sample at least one
vertex from T ∗, which produces the desired s-cut. By
Lemma III.2, the total running time to serve all queries
is O

(
m+ (n− deg+(s))&2 log3(n)/ε4

)
.

A factor-2 overestimate & can be obtained by enumer-
ating powers of 2 between 1 and 2k, and the running
time is dominated by the maximum choice of &.

C. Rooted vertex mincut for large sink components
The third and final part (before the overall algorithm)

is an approximation for the rooted vertex cut that is
well-suited for large sink components.

Lemma III.4. Let G = (V,E) be a directed graph
with positive vertex weights. Let s ∈ V be a fixed
root vertex. Let ε ∈ (0, 1), κ > 0, and k ∈ N be
given parameters. There is a randomized algorithm that
runs in Õ

(
m+ (n− deg+(s))

(
n/ε2 + n1.5/k

))
time

and has the following guarantee. If there is a vertex s-
cut of capacity at most κ and where the sink component
has at most k vertices, then with high probability, the
algorithm returns a vertex (s, t)-cut of capacity at most
(1 + ε)κ.

Proof: Let T ∗ be the sink component of the mini-
mum s-cut subject to |T ∗| ≤ k. We assume the capacity
of the s-cut induced by T ∗ is at most κ. (Otherwise the
output is not well-defined.) Let V ′ = V \({s} ∪N+(s))
and note that |V ′| < n− deg+(s).

We apply Lemma III.1 to produce the graph G0.
Lemma III.1 succeeds with high probability and
for the rest of the proof we assume it was suc-
cessful. (Otherwise the algorithm fails.) We sample

O
((
n− deg+(s)

)
log(n)/k

)
vertices t ∈ V ′. For each

sampled t, we compute the minimum (s, t)-vertex cut
in G0. With high probability, some t will be drawn from
the sink component of the true minimum s-cut, in which
case the minimum (s, t)-cut in G0 gives an (1 + ε)-
approximate s-cut in G (by Lemma III.1). We use
the Õ

(
m+ n1.5

)
time vertex-capacitated flow algorithm

[29]. By Lemma III.1, we have m = O
(
nk log(n)/ε2

)
.

This gives the total running time.

D. Approximating the rooted and global vertex mincut

We now combine the two parameterized approxima-
tion algorithms for rooted vertex mincut to give the
following overall algorithm for rooted vertex mincut.
This establishes one part of I.3 concerning approximate
rooted vertex cuts. Due to space constraints, the proof
is deferred to the full version.

Theorem III.5. Let ε ∈ (0, 1), let G = (V,E) be
a directed graph with polynomially bounded vertex
weights, and let s ∈ V be a fixed root. A (1 + ε)-
approximate minimum vertex s-cut can be computed
with high probability in Õ

(
m+ n(n− deg+(s))/ε2

)

randomized time.

Next we use the algorithm for rooted vertex min-
cut to obtain an algorithm for global vertex mincut
and establish Corollary III.6. [17] showed that running
times of the form (n − deg+(s))T for rooted mincut
from a root s imply a randomized nT expected time
algorithm for global vertex mincut. Theorem III.5 gives
a Õ

(
m+ n(n− deg+(s))/ε2

)
running time, so some

modifications have to be made to address the additional
Õ(m) additive factor. This establishes the remaining
part of I.3. The proof is deferred to the full version.

Corollary III.6. For all ε ∈ (0, 1), a (1 + ε)-
approximate minimum weight global vertex cut in a di-
rected graph with polynomially bounded vertex weights
can be computed with high probability in Õ

(
n2/ε2

)

expected time.
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