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Abstract— Task-dependent controllers widely used in ex-
oskeletons track predefined trajectories, which overly constrain
the volitional motion of individuals with remnant voluntary
mobility. Energy shaping, on the other hand, provides task-
invariant assistance by altering the human body’s dynamic
characteristics in the closed loop. While human-exoskeleton
systems are often modeled using Euler-Lagrange equations, in
our previous work we modeled the system as a port-controlled-
Hamiltonian system, and a task-invariant controller was de-
signed for a knee-ankle exoskeleton using interconnection-
damping assignment passivity-based control. In this paper, we
extend this framework to design a controller for a backdrivable
hip exoskeleton to assist multiple tasks. A set of basis functions
that contains information of kinematics is selected and corre-
sponding coefficients are optimized, which allows the controller
to provide torque that fits normative human torque for different
activities of daily life. Human-subject experiments with two
able-bodied subjects demonstrated the controller’s capability
to reduce muscle effort across different tasks.

I. INTRODUCTION

Lower-limb exoskeletons have proved to be powerful in
rehabilitation and restoring mobility, while their controller
design remains a challenge. Most commercial exoskeletons
like ReWalk and Ekso Bionics [1] fall into task-dependent
controllers tracking predefined trajectories, which are not
appropriate for people with remnant voluntary mobility.
Besides, the need of detecting users’ intention for the transi-
tion between task-dependent controllers makes it difficult to
perform a continuum of tasks and may cause injury when
detection goes wrong. Moreover, the controller parameter
tuning is a laborious, technical challenge, which hinders
applying exoskeletons to a larger population.

To overcome these limitations, task-independent control
frameworks have been introduced. In [2], an integral admit-
tance shaping controller for single degree-of-freedom (DoF)
exoskeletons was proposed, which provided assistance by
modifying the dynamic response of the coupled system.
Experiments showed that larger motion can be achieved
with the same muscle effort. Based on delayed output
feedback control, a unified controller was designed in [3],
which is capable to provide assistance under various walking
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speeds and environments. Learning-based methods have also
been investigated in [4], which allowed subject-independent
hip joint moment estimation over different tasks based on
wearable sensor data. However, the “black box” nature of
these learning-based algorithms make it difficult to guarantee
safety outside the training dataset.

As a trajectory-free control method, energy shaping pro-
vides task-invariant assistance by altering the human body’s
dynamics in the closed-loop system and has been extensively
investigated for exoskeleton control [5]. In [6], a potential
energy shaping-based control method was proposed to pro-
vide body-weight support (BWS) for exoskeletons using a
controlled Lagrangian. However, the control law depends on
contact conditions, which change with different gait phases.
A unified controller was proposed in [7], which provides
task-invariant assistance with respect to different human
input and contact conditions. While these potential energy
shaping methods only provided BWS, total energy shaping
can further regulate velocity by modifying the mass/inertia
matrix, which was investigated in [8]. The ability to provide
greater assistance compared with potential energy shaping
alone was shown by simulation. However, the control law
requires computationally-intensive inversion of the shaped
mass/inertia matrix, which is also susceptible to singularities
due to underactuation.

While the above energy shaping strategies used the con-
trolled Lagrangian method, one can also model the human-
exoskeleton system as a port-controlled Hamiltonian system.
Then the interconnection and damping assignment passivity-
based control (IDA-PBC) method can provide extra shaping
freedom compared with the controlled Lagrangian counter-
part [9]. By altering the interconnection structure of the
port-controlled Hamiltonian equations, additional velocity-
dependent assistance can be provided without modifying the
mass/inertia matrix. The IDA-PBC method has been applied
to control a knee-ankle exoskeleton in [10] and [11], which
proved its ability to achieve task-invariant control for primary
activities of daily life (ADL). In this paper, we extend the
method in [11] and design a task-invariant controller for a
commercial hip exoskeleton using IDA-PBC. Hip exoskele-
tons do not have access to kinematic information of knee and
ankle joints, which makes the previous kinematic models no
longer suitable. Instead of modeling the legs separately as
in [10] and [11], we adopt a complete point-footed biped
model including a trunk, stance leg, and swing leg. Since
the controller is based on the same model for both stance
and swing leg, this obviates the need for a foot force sensor
to switch between control laws for different legs.

The contributions of this paper are summarized as follows.



First, the IDA-PBC method is extended to control a hip
exoskeleton using the unified system model for both stance
and swing phase. Second, the proposed controller only needs
data from onboard sensors (hip joint encoders and thigh
IMU), which makes it more practical in daily life settings.
We begin in Section II by modeling the human-exoskeleton
system and reviewing the corresponding matching condition.
In Section III, a passivity-based data-driven method is used
to optimize the controller to fit normative human torques.
The hardware implementation and human subject experiment
are presented in Section IV, showing that the controller
is capable of assisting multiple tasks. Finally, Section V
concludes the paper.

II. ENERGY SHAPING OF HUMAN-EXOSKELETON
SYSTEM

In this section, we model the human-exoskeleton system
as a port-controlled Hamiltonian system and give the energy
shaping-based control law. We also review the matching
condition for feasible control laws derived in [11].

Fig. 1. Left: Movex hip exoskeleton produced by Enhanced Robotics. The
Raspberry Pi and IMU are added for research proposes. Right: Kinematic
model of human-exoskeleton system.

A. System Modeling

Consider the 5-degree of freedom (DoF) human-
exoskeleton system shown in Fig. 1. The Cartesian coor-
dinate of stance feet (px, py) is defined with respect to
the inertial reference frame (IRF). The angle between left
thigh and trunk is defined as θl , and the angle between
right thigh and trunk is defined as θr. The global thigh
angle φ is defined as the angle between right thigh and
the vertical axis. The generalized coordinate of the model is
q= [px, py,φ ,θl ,θr]∈R5 in the configuration space Q =R5.
Define the conjugate momenta as p = M(q)q̇ ∈ R5, where
M(q) ∈R5×5 is the positive definite mass/inertia matrix and
q̇ ∈R5 is the generalized velocity vector. Then we obtain the
port-controlled Hamiltonian (PCH) system characterized by
the Hamiltonian: H(q, p) = 1

2 pM−1(q)p+V (q), where V (q)
is the potential energy. The state-space form of the PCH
dynamics can be given as[

q̇
ṗ

]
=

[
05×5 I5×5
−I5×5 05×5

]
∇H +

[
0

τ +AT λ

]
, (1)

where ∇H = [∇qH,∇pH]∈R10 is the gradient of the Hamil-
tonian. The torque τ = τexo + τhum ∈ R5 is the sum of

exoskeleton input τexo = Bu and human input τhum = Bv,
where u,v ∈R2 are the exoskeleton and human input torque
applied to hip joints and B = [02×3, I2×2]

T ∈ R5×2 is the
mapping matrix. Since the number of actuated coordinates is
less than the number of generalized coordinates, the system
is underactuated. For sake of simplicity, we omit q and p
from now on.

The holonomic contact constraints in the system (1) can
be expressed as a(q) = 0c×1, where c is the number of
constraints. This can be written in a matrix form a(q) =
A(q)q. Since a(q) = 0 is independent of time, A(q) can
be obtained by solving ȧ(q) = ∇a(q)q̇ = A(q) q̇ = 0. In our
case, a(q) = [px, py]

T = 01×2, A = [Ac,02×2] = [I2×2,02×3].
The Lagrangian multiplier λ ∈ R2 represents the ground
reaction forces, which is mapped to the system through A.
By differentiating Aq̇ = 0 along time and plug (1) into the
equation, we obtain λ as

λ =W
{
−∇q

[
A(∇pH)T

]
(∇pH)T +A

(
∇

2
p2H

)
×
[
(∇qH)T − τ

]}
,

where W =
[
A
(

∇2
p2H

)
AT

]−1
∈ R2×2.

B. Review of Matching Conditions for Port-Controlled
Hamiltonian System

In this part, we briefly review the matching condition of
a 5-DoF system derived in [11]. Consider the closed-loop
system with u being controlled while v remains open-looped.
The desired closed-loop Hamiltonian H̃ = 1

2 pT M̃−1 p + Ṽ ,
where Ṽ = V + V̂ represents the desired potential energy
with shaping term V̂ . Therefore, Ñ =

(
∇qH̃

)T
= (∇qH)T +(

∇qĤ
)T

= N+ N̂, where N and N̂ represents the correspond-
ing gravitational vectors. We let M̃ = M remain unchanged,
which simplifies the matching process. However, with cer-
tain structure of the interconnection matrix being satisfied,
velocity-dependent shaping can still be achieved [12].

Consider the desired closed-loop system[
q̇
ṗ

]
=

[
0 I
−I J2

]
∇H̃ +

[
0

Bv+AT λ̃ +Text

]
, (2)

where Text denotes the external input which helps preserve
the passivity of (2). J2 = −JT

2 ∈ R5×5 is skew-symmetric
defined as J2 =

[
(∇q p)T − (∇q p)

]
+

[
(∇qQ)T −∇qQ

]
=

(∇qQ)T −∇qQ , since ∇q p = 0. Q(q) ∈ R5 is any smooth
vector-valued function with respect to q which allows it to
provide extra shaping DoF [13]. The closed-loop GRF can
then be expressed as

λ̃ =W
{
−∇q

[
A(∇pH)T

]
(∇pH)T +A

(
∇

2
p2H

)
·
[(

∇qH̃
)T − J2 (∇pH)T −Bv−Text

]}
.

By the standard form of matching condition in [14],
system (1) and (2) match if

−∇qH +B(u+ v)+AT
λ

=−∇qH̃ + J2∇pH̃ +Bv+AT
λ̃ +Text .

(3)



Plugging λ and λ̃ into (3) gives

Bu =(∇qH)T −
(
∇qH̃

)T
+ J2∇pH̃ +Text

+AT
{

WA
(

∇
2
p2H

)[
(−∇qH)T +

(
∇qH̃

)T

− J2∇pH̃ +Text
]}

,

which can be rewritten as

Bλ u = Xλ

[
(∇qH)T −

(
∇qH̃

)T
+ J2M−1 p+Text

]
,

where Xλ = I − ATWA
(

∇2
p2H

)
and Bλ = Xλ B. Note that

here we used
(
∇pH̃

)T
= (∇pH)T = M−1 p to simplify the

equation.
The matching condition of (1) and (2) can be given as

0 = B⊥
λ

Xλ

[
(∇qH)T −

(
∇qH̃

)T
+ J2M−1 p+Text

]
, (4)

where B⊥
λ
∈R3×5 is the full-rank left annihilator of Bλ such

that B⊥
λ

Bλ = 0 [13]. To solve the matching condition (4), we
first decompose M into submatrices as in [10]:

M =

[
M1 M2
MT

2 M4

]
,

where M1 ∈ R3×3 corresponds to the unactuated parts
(px, py,φ) and M4 ∈ R2×2 corresponds to the actuated
joints (θl ,θr). The Schur complement of M4 is ∆ = M1 −
M2M−1

4 MT
2 and we have det(M) = det(M4)det(∆), which

implies that ∆ is nonsingular since M and M4 are nonsingular.
Then we obtain

M−1 =

[
∆−1 −∆−1M2M−1

4
−M−1

4 MT
2 ∆−1 M−1

4 +M−1
4 MT

2 ∆−1M2M−1
4

]
.

Therefore, we have W =Ac∆−1AT
c and Xλ can be rewritten

as
Xλ =

[
I3×3 −Zλ Zλ M2M−1

4
02×3 I2×2

]
, (5)

where Zλ = AT
c WAc∆−1. Plugging (5) into Bλ gives

Bλ = [
(
Zλ M2M−1

4

)T
, I2×2]

T , which implies that B⊥
λ

=

[I3×3,−Zλ M2M−1
4 ]. Plugging Xλ and B⊥

λ
into (4) and using

the fact that
(
∇qH −∇qH̃

)T
= N − Ñ = N̂, we have the

following solution

0 =
[
I −Zλ 03×2

]
[−N̂ + J2M−1 p+Text ] . (6)

This implies that the first three terms of −N̂ + J2M−1 p+
Text , i.e., the unactuated parts, must equal zero to satisfy
the matching condition. Then we can obtain the following
feasible control law satisfying (6):

u = B† (−N̂ + J2M−1 p+Text
)
, (7)

where B† =
(
BT B

)−1 BT is the left pseudoinverse of B.
Moreover, with the unactuated parts of N̂ and Q being zero
and the actuated parts only depend on actuated state vari-
ables, the closed-loop system (2) is integrable with a well-
defined potential function [10]. This ensures the existence
of an equivalent Lagragian L̃(q, q̇) = 1

2 q̇T Mq̇+ q̇T Q−Ṽ that
guarantees passivity [13].

III. PASSIVITY-BASED DATA-DRIVEN CONTROLLER
DESIGN

In this section, we first introduce the controller design
that preserves the passivity and stability of the human-
exoskeleton system. Then we introduce the data-driven ap-
proach that allows the proposed controller resemble norma-
tive human joint torque.

A. Passivity and Stability Analysis

To satisfy the matching condition (6), the unactuated parts
of the controller must equal zero, which restricts the con-
troller to a virtual spring-damper like behavior and prevents
it from producing more normative torque. To overcome this
limitation, we follow [11] and introduce the new “power
leak” input Text . Define N̂act as the modified gravitational
vector that only depends on the actuated parts, then the
modified gravitational vector can be expressed as N̂ = N̂act +
Text , implying that both the actuated components and the
external input contribute to N̂. Our prior work [11] proved
that the human-exoskeleton system is passive with respect
to the human input port and the power leak port, and the
system is stable in the sense of Lyapunov with certain
human inputs. Note that although asymptotic stability can
not be guaranteed, Lyapunov stability ensures that the shaped
system remains in a neighborhood of the equilibrium point
under human’s control, which aligns with our objective that
the exoskeleton only provides partial assistance and the
human is responsible for ensuring stability.

B. Controller Optimization

Similar with [11], we now convert the controller design
problem into an optimization problem, where we form the
shaping terms in (7) using multiple basis functions. We
design N̂ = −α1ξ1 − ·· · − αiξi and J2M−1 p = αi+1ξi+1 +
· · ·+ αwξw, where {ξ1,ξ2, · · · ,ξw} are the basis functions
and {α1,α2, · · · ,αw} are the coefficients to be solve by
optimization. Then the control law in (7) can be rewritten as
u(q, p,α) = B† (α1ξ1 + · · ·+αwξw). To allow the controller
produce u that best fits the normative human kinematics in
[15], we design the optimization as

argmin
α

∑
k

∑
j

[
u
(
q j,k, p j,k,α

)
−Yj,k

]T Wj,k
[
u
(
q j,k, p j,k,α

)
−Yj,k

]
+u(0,0,α)T W0 u(0,0,α)+Λ∥α∥1 ,

where u
(
q j,k, p j,k,α

)
denotes the control law of k-th subject

with respect to the j-th task, and Yj,k is the corresponding
normative data. Wj,k and W0 are the weight matrices and Λ is
the coefficient for L1 regularization. In the objective function,
the first term is to minimize the error between control law
and the normative data from all subjects for all tasks, while
the second term is to minimize the torque provided when q=
p= 0, i.e., the user is standing straight. The L1 regularization
term is included to promote sparsity and prevent overfitting.
CVX, a package designed for convex optimization, was used
to solve the problem [16].

In this paper, two shaping strategies are considered: 1)
Hamiltonian without φ (WOP), where basis functions only
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Fig. 2. Comparison of across-subject averaged normalized command torque and normalized normative human torque for tasks: level ground walking (LG)
at 1.0 and 1.45 m/s, ramp ascending (RA) and ramp descending (RD) with incline 5.2◦ and 11◦, stair ascending (SA) and descending (SD). The solid
lines represent the normative human torque (from [15]), the dotted lines and dash-dotted lines represent command torque generated by WOP mode and
PHI mode, respectively. Positive torques represent hip flexion.

depends on θl and θr, and 2) Hamiltonian with φ (PHI),
where φ is also considered to form the basis functions. We
fit the controller output to the normative human torque of
10 subjects from tasks including level ground walking at
1.0 (LG 1.0) and 1.4 m/s (LG 1.4), ramp ascent/descent
with 5.2◦ (RA/RD 5.2), 11◦ (RA/RD 11) inclines and stairs
ascent/descent with 4 inches step height (SA/SD) in [15]
to obtain the optimal coefficients α∗, which will also be
used in the human subject experiments. The optimization
result is shown in Fig. 2. Note that the positive normative
torque for stair ascending is scaled up to provide more flexion
assistance. Overall, PHI fits normative data better due to the
extra flexibility provided by global thigh angle φ in basis
functions. For certain tasks like ramp ascending and stair
ascending, PHI provides more extension assistance, while
for stair descending PHI provides more flexion assistance.

To compare the two methods used in our optimization,
we use two metrics: Cosine Similarity (SIM) and Variance
Accounted For (VAF) as defined in [11]:

SIM(A,B) =
100 ·A ·B
∥A∥2∥B∥2

,

VAF(A,B) = 100 ·
[

1− var(A−B)
var(A)

]
.

The right and left sides are averaged together. Leave-one-
subject-out cross-validation with ten subjects in total was
performed to check the performance of proposed method
in the presence of inter-subject differences. As shown in
TABLE I, both methods perform well for all the tasks with
PHI being sightly better than WOP.

IV. PROOF OF CONCEPT EXPERIMENT WITH
ABLE-BODIED HUMAN SUBJECTS

In this section, we introduce the implementation of the
proposed controller on a commercial hip exoskeleton. Then
we present the able-bodied human subject experiment, which

TABLE I
SIM AND VAF COMPARISON: SHOWING MEAN (±SD) FOR DIFFERENT

TASKS (ROWS) AND METHODS (COLUMNS)

Task SIM [%] VAF [%]
Names PHI WOP PHI WOP
LG 1.0 86.5 (7.9) 82.7 (8.0) 71.4 (17.7) 62.9 (22.1)
LG 1.45 91.5 (2.5) 89.9 (3.3) 82.5 (4.8) 79.0 (6.1)
RA 5.2 87.3 (8.5) 83.6 (9.3) 71.2 (12.1) 63.5 (14.9)
RA 11 89.7 (3.9) 86.2 (5.6) 73.8 (9.1) 71.0 (13.3)
RD 5.2 84.7 (5.7) 81.3 (6.5) 70.7 (12.8) 64.9 (16.1)
RD 11 74.6 (11.6) 72.0 (12.7) 52.3 (13.5) 57.8 (9.8)

SA 86.2 (11.4) 80.4 (15.2) 62.5 (20.7) 47.2 (35.5)
SD 65.6 (16.8) 59.4 (11.0) 55.6 (22.6) 45.6 (21.3)

acts as a proof-of-concept to demonstrate the controller’s
ability to assist multiple tasks.

A. Hardware Implementation

The proposed controller was implemented on the Movex
hip exoskeleton (Enhanced Robotics, Shenzhen, China)
shown in Fig. 1. Movex has two hip joint actuators which
provide 12.8 Nm continuous torque using 125 W brushless
DC motors (ER-6510-S, Enhanced Robotics) with a 32:1
transmission ratio. This relatively low transmission ratio
ensures backdrivability. The joint angles are measured using
magnetic incremental encoders. Since Movex does not have
an inertial measurement unit (IMU), a 9-axis IMU (3DM-
CX5-25, LORD MicroStrain) was added to measure the
global thigh angle. The low-level motion control runs on
an custom designed STM32F405RG microcontroller (168
MHz, STMicroelectronics) and the high-level controller is
implemented on a Raspberry Pi 3B+ (1.4 GHz 64-bit pro-
cessor, 1 GB RAM, Raspberry Pi Foundation). The whole
system is powered by a 25.2V, 66.7 Wh Li-ion battery
(LiPo 18650 6S1P, Samsung), which allows at least 4 hr of
operation. The weight of the whole system is about 4 kg. The
assistance torques provided are determined by multiplying



the optimized command torque (in Nm/kg) with the subjects’
body mass and the level-of-assistance (% LOA). Software
and hardware saturation for output torque are set to ensure
the safety of human subjects and motors.

B. Experiment Method

As a proof-of-concept, two healthy human subjects were
enrolled (s1: male, mass: 80 kg, height: 1.78 m; s2: male,
mass: 62 kg, height: 1.67 m) to 1) demonstrate the capability
of proposed controller to assist ADL and 2) compare the
performance of WOP and PHI. The study was approved by
the Institutional Review Board at the University of Michigan
(HUM00164931). The muscle activation of Rectus Femoris
(RF), Biceps Femoris (BF) and Gluteus Maximus (GM)
was accessed via EMG (Trigno Avanti Sensor, Deslys Inc.),
where RF functions as a hip flexor and BF, GM function as
hip extensors [17].

The experiment comprised five tasks: level ground walk-
ing, ±6 deg ramp ascent/descent on an instrumented tread-
mill (Bertec Corporation), and stair ascent/descent over 6-
inch steps. The speed of walking were determined by the
subjects and a metronome was set with self-selected beats-
per-minute (BPM) to help subjects maintain their cadence.
Before the experiments, subjects were provided with training
sessions to acclimate to the exoskeleton and decide the speed,
BPM and %LOA. Subjects were allowed to use handrails to
prevent falling in the training session, but in experiments
using handrails was disallowed. For s1, the speed and BPM
for each task were: level ground (0.9 m/s with 95 BPM),
ramp ascent (0.65 m/s with 75 BPM), ramp descent (0.65
m/s with 90 BPM), and stairs (80 BPM). For s2, the values
were: level ground (0.9 m/s with 105 BPM), ramp (0.8 m/s
with 100 BPM), and stairs (95 BPM). The %LOA for s1 and
s2 was 40% and 35%, respectively. The video of experiment
is provided as supplemental material at [18].

All the tasks were repeated for three modes: bare (without
exoskeleton), active exoskeleton with φ (PHI), and active
exoskeleton without φ (WOP). For the treadmill trials, the
subject walked for 3 min, and data was collected during the
last 2 min for relatively consistent kinematics. For the trials
on stairs, subjects first ascended a staircase with 19 steps,
stopped, turned around and then descended the staircase,
which was repeated three times for each trial. Breaks lasting
at least 2 min were provided between trials to prevent fatigue
and were extended at the request of the subject.

All trials were cropped into gait cycles by heel strikes
detected by a heel-mounted IMU (not used for feedback con-
trol). The EMG for each muscle was first bandpass filtered by
a fourth-order Butterworth filter (20-200 Hz) and smoothed
with a 100 ms moving window RMS, then normalized with
respect to the maximum peak of the ensemble averages
of the three exoskeleton modes (separately for each task
and muscle). This converted the signals to a percentage of
the maximum voluntary contraction level (% MVC), which
was then integrated along time to obtain muscular effort
represented as % MVC.s, similar to [19]. According to the
result of Shapiro-Wilk normality test, the EMG data were not

normally distributed, so we performed the Kruskal–Wallis
test with a Bonferroni correction to check if the difference
of muscle efforts was statistically significant. When p< 0.05,
the null hypothesis was rejected.

C. Experiment Result
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Fig. 3. Individual subject comparison of mean effort across repetitions
for each muscle pair (RF, BF and GM) with bare, WOP and PHI modes. *
represents statistical significance with p < 0.05, ** represents p < 0.01 and
*** represents p < 0.001.

Fig. 3 presents the muscular effort comparison between
different modes for the five tasks. For most tasks the active
modes (PHI and WOP) generally reduced RF effort, which
is the dominant muscle of swing phase. For s1, the strongest
effort reduction appeared in RA and SA, which both require
much hip flexion, while for s2 this appeared in RA and LG.
For the stance phase, the dominant muscles are BF and GM,
which also exhibited effort reduction in the active mode. For
BF, effort reduction appeared in LG and RA for both s1 and
s2, while for s1 the BF effort also reduced in SA. For GM,
effort reduction appeared in RA and SA for both subjects,
and for s2 the GM effort also reduced in RD. However, for
SD the effect on muscle effort by the active exoskeleton was
not statistically significant.

There were also differences between WOP and PHI. In
RA (s1 and s2) and SA (s1), the hip extensors (BF and GM)
had less effort in the PHI mode than in the WOP mode,
which also appeared in SD for the hip flexior (RF). This
aligns with the optimization result in Fig. 2, which implies



that PHI can provide more assistance for certain tasks due to
the extra flexibility provided by the global thigh angle φ . Fig.
4 presents the ensemble-averaged EMG of RF, BF and GM
of s1 for bare and active modes with respective to LG, RA,
RD and SA tasks, where we also see significant reduction in
muscle effort and peak EMG compared with the bare mode.
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Fig. 4. Subject 1 EMG comparison between bare, PHI, WOP modes for
each muscle (RF, BF and GM) for four tasks (LG, RA, RD, SA). Solid
lines are the time-normalized ensemble averages across gait cycles.

Overall, the observations in Fig. 3 and Fig. 4 align with the
optimization result in Fig. 2 and demonstrate the potential
for assisting multiple tasks. However, for some tasks, the
active mode caused more muscle effort, suggesting that more
resistance than assistance was provided. For example, the
muscle effort of s1 slightly increased for RF and GM in
LG and for GM in RD, which is possibly caused by the
backdrive torque (about 0.7 Nm) and extra weight added
to the lower-limb. While this can be partially solved by
compensating backdrive torque as in [20], the active mode
muscle effort of s2 significantly increased for GM in LG
and BF in RD, which suggests the control torque resisted
the volitional motion of subject. This inter-subject difference
indicates that additional human subjects would be needed to
make more general conclusions about the effectiveness of
the controller, which is left to our future work.

V. CONCLUSION

In this paper, we proposed an energy shaping-based con-
trol strategy for a hip exoskeleton. Based on the IDA-
PBC method, the proposed controller provides both BWS
and velocity-dependent assistance. Analysis showed that the
system is stable and preserves the passivity of the human-
exoskeleton system. Optimization was used to fit the con-
troller output into normative human torques. A proof-of-
concept experiment with two able-bodied human subjects
was performed to demonstrate the proposed controller’s
ability of assist ADL. More extensive clinical testing with
the proposed controller will be included in our future work,
and this control method will also be extended to different
hip exoskeletons like M-BLUE [21].
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