
Computational Geometry: Theory and Applications 109 (2023) 101945

Contents lists available at ScienceDirect

Computational Geometry: Theory and

Applications
www.elsevier.com/locate/comgeo

Subquadratic algorithms for some 3Sum-hard geometric

problems in the algebraic decision-tree model !

Boris Aronov a, Mark de Berg b,∗, Jean Cardinal c, Esther Ezra d, John Iacono c,a,
Micha Sharir e

a Tandon School of Engineering, New York University, Brooklyn NY, USA
b Eindhoven University of Technology, Eindhoven, Netherlands
c Université libre de Bruxelles (ULB), Brussels, Belgium
d School of Computer Science, Bar Ilan University, Ramat Gan, Israel
e School of Computer Science, Tel Aviv University, Tel Aviv, Israel

a r t i c l e i n f o a b s t r a c t

Article history:
Received 20 January 2022
Received in revised form 10 August 2022
Accepted 10 September 2022
Available online 15 September 2022

Keywords:
3Sum-hard problems
Algebraic decision-tree model
Point location
Polynomial partitions
Order type

We present subquadratic algorithms in the algebraic decision-tree model for several
3Sum-hard geometric problems, all of which can be reduced to the following question:
Given two sets A, B , each consisting of n pairwise disjoint segments in the plane, and a
set C of n triangles in the plane, we want to count, for each triangle ! ∈ C , the number
of intersection points between the segments of A and those of B that lie in !. We present
solutions in the algebraic decision-tree model whose cost is O (n60/31+ε), for any ε > 0.
Our approach is based on a primal-dual range searching mechanism, which exploits the
multi-level polynomial partitioning machinery recently developed by Agarwal et al. (2021)
[3]. A key step in the procedure is a variant of point location in arrangements, say of lines
in the plane, which is based solely on the order type of the lines, a “handicap” that turns
out to be beneficial for speeding up our algorithm.

 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the
CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

3Sum is a classical problem in computer science, which can be stated as follows (see, e.g., [23]): Given three sets X ,
Y , Z , each with n numbers, determine if there exists a triple (x, y, z) ∈ X × Y × Z with x + y + z = 0. A quadratic-time
algorithm is not difficult to obtain and it had been long believed that 3Sum cannot be solved in subquadratic time. This was
disproven in [27] and later in [15], but a substantially subquadratic algorithm, that is, one running in time O (nc) for some
c < 2, remains elusive and there are reasons to believe that such an algorithm may not exist, in the standard real-RAM

! Work by B.A. was partially supported by NSF grants CCF-15-40656 and CCF-20-08551, and by grant 2014/170 from the U.S-Israel Binational Science
Foundation. Work by M.d.B. was partially supported by the Dutch Research Council (NWO) through Gravitation Grant NETWORKS (project no. 024.002.003).
Work by J.C. was partially supported by the F.R.S.-FNRS (Fonds National de la Recherche Scientifique) under CDR Grant J.0146.18. Work by E.E. was partially
supported by NSF CAREER under grant CCF:AF-1553354 and by grant 824/17 from the Israel Science Foundation. Work by J.I. was partially supported by
Fonds de la Recherche Scientifique FNRS under grant no. MISU F 6001 1. Work by M.S. was partially supported by ISF grant 260/18, by grant 1367/2016
from the German-Israeli Science Foundation (GIF), and by Blavatnik Research Fund in Computer Science at Tel Aviv University.

* Corresponding author.
E-mail addresses: boris.aronov@nyu.edu (B. Aronov), m.t.d.berg@tue.nl (M. de Berg), jcardin@ulb.ac.be (J. Cardinal), ezraest@cs.biu.ac.il (E. Ezra),

john@johniacono.com (J. Iacono), michas@tau.ac.il (M. Sharir).

https://doi.org/10.1016/j.comgeo.2022.101945
0925-7721/ 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.comgeo.2022.101945
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/comgeo
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comgeo.2022.101945&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:boris.aronov@nyu.edu
mailto:m.t.d.berg@tue.nl
mailto:jcardin@ulb.ac.be
mailto:ezraest@cs.biu.ac.il
mailto:john@johniacono.com
mailto:michas@tau.ac.il
https://doi.org/10.1016/j.comgeo.2022.101945
http://creativecommons.org/licenses/by/4.0/

B. Aronov, M. de Berg, J. Cardinal et al. Computational Geometry: Theory and Applications 109 (2023) 101945

model (also referred to as the uniform model) of computation [35]. We say that a problem is 3Sum-hard if 3Sum can be
reduced to it in substantially subquadratic (usually near linear) time.

Let A and B be two sets, each consisting of n pairwise disjoint line segments in the plane, and let C be a set of n triangles
in the plane. We study the problem of counting, for each triangle ! ∈ C , the number of intersection points between the
segments of A and those of B that lie inside !. We refer to this problem as within-triangle intersection counting. This is one
of four 3Sum-hard problems (among many others) studied by Chan [15].1 The other three problems are2:

(i) Intersection of three polygons. Given three simple n-gons A, B , C in the plane, determine whether A ∩ B ∩ C is nonempty.
(ii) Coverage by three polygons. Given three simple n-gons A, B , C in the plane, determine whether A ∪ B ∪ C covers a given

triangle !0.
(iii) Segment concurrency. Given sets A, B , C , each consisting of n pairwise disjoint segments in the plane,3 determine

whether A × B × C contains a concurrent triple.

Chan [15] presents slightly subquadratic algorithms for all four problems, whose running time in the uniform model is
O ((n2/ log2 n) logO (1) log n). He observes that questions (i)–(iii) can be reduced in near-linear time to within-triangle inter-
section counting, so it suffices to present an efficient subquadratic solution for the latter problem.

We study the within-triangle intersection-counting problem in the algebraic decision-tree model. In this model only sign
tests of polynomials of constant degree that access explicitly the endpoint coordinates of the input segments and vertices
of the input triangles count towards the running time. All other operations cost nothing in the model, but are assumed
not to access those real parameters specifying the input segments and triangles explicitly. Although originally introduced
for establishing lower bounds [9], the algebraic decision-tree model has become a standard model for upper bounds too.
By now it has been used in the study of many problems, including the 3Sum-problem itself [14,21,24,27,29] and various
3Sum-hard geometric problems [6,7,21]. One can interpret the decision-tree model as an attempt to isolate and minimize
the cost of the part of the algorithm that explicitly accesses the real representation of the input objects, and ignore the
cost of the other purely discrete steps. This can provide us with an insight about the problem complexity, which might
eventually lead to an improved solution in the uniform model as well. See also the recent work by Chan and Zheng [16],
and references therein, for problems where a subquadratic algorithm in the decision-tree model can be turned into a
subquadratic algorithm in the uniform model.

We show that within-triangle intersection counting and, hence, also problems (i)–(iii), can be solved in this model with
O (n60/31+ε) sign tests, for any ε > 0. Chan [15] also remarks (without providing details) that his algorithm can be imple-
mented in O (n2−δ) time in the algebraic decision-tree model, for some δ > 0 that he left unspecified. (As was communicated
to us, with some care one can obtain δ ≈ 0.01.) Our algorithm is rather different from Chan’s, and gives the concrete, im-
proved value for δ (any positive δ < 2/31), as mentioned above. Our techniques appear to be of independent interest and to
have the potential to apply to other problems, as we demonstrate in Section 4.

If the segments in A and B and the triangles in C were all full lines,4 then determining the existence of a concur-
rent triple of lines in A × B × C (the so-called concurrency testing problem) is the dual version of the classical 3Sum-hard
collinearity-testing problem. In the latter problem we are given three sets of points in the plane and wish to determine
whether their Cartesian product contains a collinear triple. Barba et al. [7] studied this question in a restricted version
where each of the three point sets is assumed to lie on a constant-degree algebraic curve; they described subquadratic
algorithms in the algebraic decision tree model for this case, as well as slightly subquadratic algorithms in the RAM model.
Recently, Aronov et al. [6] studied this problem in the algebraic decision-tree model, where only two of the three sets lie
on constant-degree algebraic curves; they obtained an algorithm performing roughly O (n28/15) sign tests.

The problems studied here can be regarded as other dual versions of collinearity testing, where restrictions of a different
kind are imposed. As noted by Chan [15], the additional disjointness properties that are assumed here make the problem
simpler than collinearity testing (albeit by no means simple), and its solution appears to have no bearing on the uncon-
strained collinearity-testing problem itself. In Section 5 we comment on the substantial differences between this work and
the work by Aronov et al. [6].

Our technique is based on hierarchical cuttings of the plane, as well as on tools and properties of segment-intersection
range searching. We also use the so-called Fredman’s trick in algebraic-geometric settings, in which the problem is solved
using a primal-dual range searching mechanism involving points and surfaces in R6. This reduction exploits the very recent
multi-level polynomial partitioning technique of Agarwal et al. [3] (see also a similar complementary technique of Matoušek
and Patáková [31]). Our range-searching mechanism for points and algebraic surfaces in higher dimensions is a by-product
of our analysis, which appears to be broadly applicable to other range-searching applications, and we regard it as a technique
of independent interest; see, for example, Proposition 3.2 and its proof.

1 Chan [15] refers to this problem as “triangle intersection-counting.”
2 The fact that these problems are 3Sum-hard, and the connections between them, are stated in [15].
3 The segments of one set, say C , need not be pairwise disjoint. Although not explicitly stated, the technique in [15] for the uniform model can also

handle this situation.
4 Disjointness then of course cannot be assumed, unless the lines in each set are parallel, as in the dual version of the 3sum-hard GeomBase problem [23].

2

B. Aronov, M. de Berg, J. Cardinal et al. Computational Geometry: Theory and Applications 109 (2023) 101945

Point location in arrangements. An additional key ingredient of our approach involves point location in an arrangement of
lines in the plane (or an arrangement of curves, or of hyperplanes in higher dimensions). This is of course a well studied
problem with several optimal solutions—see for example the survey by Snoeyink [34]—but we adapt and use techniques that
are handicapped by the requirement that each operation that examines the real parameters specifying the lines involves at
most three input lines. In contrast, the persistent data structure of [33], for example, needs to sort the vertices of the
arrangement from left to right, thus requiring comparisons of the x-coordinates of a pair of vertices, which are in general
determined by the parameters of four input lines. The persistent data-structure method has been used in [6,15] for the
study of other 3Sum-hard geometric problems. Here we replace this method with one that uses solely the relative positions
of triples of lines, the so-called order type of the arrangement. In this new approach each comparison involves only three
input lines, which eventually leads to improved performance of the algorithm.

In standard settings, separating the order-type computation from the rest of the processing makes no sense, since one can
compute the arrangement, which gives the full order-type information, in O (N2) time [10]. This makes the approach based
on the order type noncompetitive, as one can just do point location in the line arrangement, in the uniform model, with
O (N2) preprocessing. Nevertheless, in the applications considered in this paper (see Sections 3 and 4), the input lines have
a special representation, which allows us to avoid an explicit construction of their order type and obtain this information
implicitly in subquadratic time in the decision-tree model. The rest of the preprocessing, which still takes quadratic time
and storage in the uniform model, costs nothing in the decision-tree model.

The problem of determining how the order type of an arrangement can be used in order to construct an efficient point-
location data structure has, to the best of our knowledge, never been addressed explicitly. As we believe that this kind of
“handicapped” point location will be useful for other applications (some of which are mentioned in Section 4), we present
it in some detail in Section 2. We also present extensions of this technique to arrangements of constant-degree algebraic
curves in R2, and to arrangements of planes or hyperplanes5 in higher dimensions, which is used in the applications in
Section 4.

Paper organization. In summary, the remainder of this paper is organized as follows: In Section 2 we construct two different
point-location data structures based on the order-type information alone. The algorithm for solving the within-triangle
intersection-counting problem in the algebraic decision-tree model, and, consequently, also the other three problems listed
at the beginning of this section, is then presented in Section 3. Additional applications of our technique are described
in Section 4; they include: (i) counting intersections between two sets of pairwise disjoint circular arcs inside disks, and
(ii) minimum distance problems between lines and two sets of points in the plane. We conclude with a discussion in
Section 5.

2. Order-type–based point location in arrangements

Order types. An arrangement of non-vertical lines in the plane (and, later, curves in the plane, or hyperplanes in higher
dimension) can be described in the following combinatorial fashion. We use the notion of an order type, defined for a set L
of lines as follows: Given any ordered triple of lines ($1, $2, $3) from L, where both $2 and $3 intersect $1, we record the
left-to-right order of the intersections $1 ∩ $2 and $1 ∩ $3 along $1; note that the left-to-right order can also specify that
the intersections coincide. The totality of this information gives, for each line in L, the left-to-right order of its intersections
with every other line it meets. We also assume the existence of an “infinitely steep” line $∞ , placed sufficiently far to the
left, the order of whose intersections with the “normal” lines encodes the (reverse) order of their slopes. This information is
dual to the perhaps more familiar notion of an order type for a set of points in the plane [25]. A higher-dimensional analog
of this information involves recording the order in which a line that is the intersection of d − 1 hyperplanes in Rd meets
the remaining hyperplanes that meet but do not contain it. We also assume a suitable analog of the “infinitely steep line,”
replacing the line by a hyperplane, recursively defined over the dimension.

Back in the plane, the sorted sequences along each line of the intersection points with the other lines are called local
sequences [26]. This view allows us to extend the definition of the order type to unbounded x-monotone curves, where
each pair of curves is assumed to intersect in at most s points, for some constant s. To this end we label each intersection
between two curves γi , γ j , with i < j, by a triple (i, j, k), where the parameter k indicates that it is the kth leftmost
intersection point of γi and γ j . We allow the arrangement of curves to contain degeneracies, such as multiple curves
passing through a common point, two or more curves being tangent to each other, or even both occurring simultaneously.
Our encoding of the order type must accommodate such events. For example, the ordering of the intersections of γi with γ j
and with γ$ must include the possibility that some pair of these intersection points coincide. The kth intersection point
(i, j, k) of γi and γ j is further labeled so as to distinguish a proper crossing from a tangency. The order type for a collection
of curves then records, for each curve in the collection, the left-to-right order of the labeled intersection points. The order
type also includes the vertical order of the curves at x = −∞ (the order in which they intersect a suitably defined infinitely
steep line at x = −∞).

5 For compactness of presentation, we do not single out the case of lines in the plane, and obtain it as a special case of hyperplanes in d = 2 dimensions.

3

B. Aronov, M. de Berg, J. Cardinal et al. Computational Geometry: Theory and Applications 109 (2023) 101945

The significance of the order type is that (a) it only records information for (d + 1)-tuples of objects, and (b) it contains
enough information that lets us construct the arrangement and preprocess it for fast point location, without having to
further access the actual parameters that define the objects. See below for details concerning (b).

The problem we tackle now is the following: Given the order type of an arrangement, preprocess this information into
a point-location data structure. The preprocessing stage is not allowed to access the actual geometric description of the
objects, such as the coefficients of the equations defining the lines, curves, or hyperplanes, but can only exploit the discrete
data given by the order type. A query, in contrast, is allowed to examine the coefficients of the objects it encounters.

We present two solutions for this problem. First, we show that, for d-dimensional hyperplane arrangements, for any d ≥
2, the sampling method of Meiser [32] (see also [20]) can be implemented using only order-type information. Second, we
show that for arrangements of unbounded x-monotone curves in the plane, a simple variant of the separating-chain method
for point location [19,30] can be implemented such that only order-type information is used during the preprocessing.

2.1. Sampling-based approach for hyperplane arrangements

Let H be a set of N non-vertical hyperplanes in Rd , where d ≥ 2 is a fixed constant. We want to construct a point-
location data structure for the arrangement A(H) induced by H , where we are only given the order type of H . Essentially,
we are given, for each intersection line formed by d −1 hyperplanes, the order of its intersections with the other hyperplanes
not containing it. (Alternatively, we are given, for each simplex σ formed by d + 1 of the hyperplanes, the vertices of σ
sorted by their x1-coordinate.) We only require H not to contain vertical hyperplanes. In particular, we allow for two
hyperplanes to be parallel, for d hyperplanes not to intersect at all or intersect in a line or a higher-dimensional flat, and
for more than d hyperplanes to share a point.

We briefly sketch the randomized method first proposed by Meiser [32] and analyzed in detail by Ezra et al. [20] (see
also [14]), and show that the order type information is sufficient to construct the data structure.

Before considering the point-location structure, we note that the order type suffices to construct a discrete representation
of the arrangement A(H). In this representation each j-dimensional cell of A(H), for j = 1, . . . , d, stores the set of all (j −
1)-dimensional cells that form its relative boundary (and consequently of all cells, of all dimensions, on its boundary), with
back pointers from each cell to all higher-dimensional cells that contain it in their relative boundary. This can be done, e.g.,
by the Folkman–Lawrence topological representation theorem for oriented matroids [22], which, roughly speaking, implies
that, given the order type of H , one can construct a combinatorial representation for the arrangement A(H), consisting of
all sign conditions. That is, each face f of A(H) (of any dimension) is encoded by a sign vector {−1, 0, +1}|H | representing
the above (corresponding to +1), below (−1), or on (0) relation of f with respect to each hyperplane in H ; see [13] for an
inductive proof that such an encoding can be obtained using only order-type information for the planar case, and [12] for
its generalization to higher dimensions. Given this property, a naïve actual construction of the combinatorial representation
of A(H) is easy to derive, and is free of charge in the decision-tree model, once the order type of H is computed. When we
perform a point-location query we report a pointer to the sign vector of the cell of A(H) that contains the query point—see
below.

Preprocessing. Given the arrangement A(H) and a fixed ε > 0, we first construct a random sample S of O (d2

ε log d
ε) hy-

perplanes of H . We then compute a canonical triangulation of the arrangement A(S). To this end, for each face of A(S) of
dimension at least two, we fix a reference vertex p of this face, defined as its lexicographically smallest vertex, where each
vertex is represented by the lexicographically smallest d-tuple of (the indices of) the hyperplanes that contain it and whose
intersection is a single point. Triangulating a face f of A(S) is done by the fan obtained by adding the vertex p to each
simplex in the recursively constructed triangulations of the lower-dimensional faces composing the boundary of f and not
incident to p. Next, we construct the conflict list L(!) for each simplex ! of the triangulation, of any dimension, defined as
the set of hyperplanes of H that cross !. Here we say that h ∈ H crosses ! if h intersects ! but does not fully contain it.
L(!) can indeed be constructed using only the order type: Deciding whether a hyperplane h ∈ H belongs to L(!) amounts
to testing whether there exist two vertices u, v of ! that lie on different sides of h. This test can be implemented using
k + 1 orientation tests, where k is the dimension of !, one for each vertex6 for the (d + 1)-tuple consisting of h and the d
planes defining u. Two vertices u and v lie on different sides of h iff these are opposite orientations.

From standard results on ε-nets [28], a suitable choice of the constant of proportionality in the bound on the size of
the sample S guarantees that, with high probability, the conflict list sizes are not larger than εn, for all simplices !. We
continue resampling until this condition is met (note that this requires O (1) trials in expectation).

It remains to recurse, for each simplex ! of the triangulation, on the hyperplanes in L(!). If ! is not full-dimensional,
any query point directed to this recursive structure will lie in the affine span of !, but we still build a full-dimensional
structure for L(!); see [20] for a similar approach to handle cells ! of any dimension. This leads to a hierarchical data
structure in which the number of hyperplanes decreases by a factor of ε at each level. The construction continues until the

6 Note that, to ensure consistent orientation tests, to represent a vertex v in the arrangement, we pick lexicographically smallest tuple 〈h1, h2, . . . , hd〉 of
hyperplanes whose intersection is v and then we choose the order of the hi ’s so that a hyperplane h lies below (above) u iff the sign of det[h1, . . . , hd, h]
is positive (resp., negative).

4

B. Aronov, M. de Berg, J. Cardinal et al. Computational Geometry: Theory and Applications 109 (2023) 101945

number of hyperplanes falls below a suitable constant, at which point we simply store the remaining hyperplanes at !.
Let w be a leaf in this hierarchy. It will be convenient to further preprocess the set H(w) of hyperplanes stored at w into
a tree Tw that allows us to locate a query point in the arrangement A(H(w)). The structure Tw is simply a ternary tree
of depth |H(w)| = O (1), where a node at level j stores the jth hyperplane h j of H(w), so we can test if a query point is
below, on, or above h j . Observe that each leaf of Tw corresponds to a unique cell in the arrangement A(H(w)) and, hence,
also in A(H)—indeed, the sign with respect to every hyperplane in H \ H(w) is determined by the search path to the node
w in the hierarchy, and is therefore fixed.

Answering queries. Each point-location query returns the relatively open simplex,7 of the suitable dimension, in the canon-
ical triangulation of A(H) that contains the query point q. Queries are answered as follows. First, we locate the (open)
simplex ! of the canonical triangulation of A(S) containing the query point q. Since d is assumed to be constant, S is
also of constant size, and so locating ! can be done in O (1) time (e.g., by inspecting every simplex of the triangulation).
Next, we recurse in the data structure attached to !. When we reach a leaf w of the hierarchy, we continue to search
in the tree Tw . When we reach a leaf in Tw , we have located q and can report (a pointer to) the sign vector of the cell
containing q.

The overall number of these recursive steps is O (log n), and thus answering a query costs O (log n) arithmetic operations,
where the hidden constant8 is polynomial in d. As noted, in our applications we only need to determine whether q lies on
a hyperplane of H .

The following lemma summarizes the result.

Lemma 2.1. Let H be a set of n hyperplanes in Rd, where d ≥ 2 is a constant. Using only the order type of H, we can construct a
polynomial-size data structure that guarantees O (logn)-time point-location queries in the arrangement A(H); the implied constant
depends polynomially on d. The preprocessing time and storage of the data structure cost nothing in the decision-tree model.

2.2. Level-based approach for order-type–based point location in x-monotone curves in the plane

Let ' = {γ1, . . . , γn} be a collection of n unbounded x-monotone constant-degree algebraic curves in the plane, and let
A(') denote the arrangement induced by '. Let s = O (1) denote the maximum number of intersections between any pair
of curves of '. We assume that ' does not contain vertical lines. Note that we do allow multiple curves to pass through
the same point. Recall that the order type of ' gives us the following information:

• For each curve γ ∈ ', the left-to-right order of the intersection points of γ with the other curves of '; in case of
tangencies between curves, the intersection point is labeled as such.

• The vertical order of the curves at x = −∞.

As already mentioned, each intersection point p is labeled by a triple9 (i, j, k) of indices, where γi and γ j are the pair
of curves that intersect at p, and 1 ≤ k ≤ s is the index of p, meaning that p is the kth leftmost intersection point of the
two curves. Note that the order type tells us whether the kth leftmost intersection point of γi and γ j lies to the left or to
the right of, or coincides with the k′th leftmost intersection point of γi and γ j′ , for any quintuple of indices i, j, k, j′, k′ .
(Observe that the quintuple involves only three curves.) Here too we are not concerned with the actual construction of
the order type—we simply assume it is given to us in advance. Such a construction, in a special context that arises in our
applications, is considered when we discuss these applications, in Sections 3 and 4.

Recall that in the query phase we do have access to an explicit description of the curves. We assume a model of
computation in which the following operations can be performed in O (1) time by the query algorithm:

• Given a query point q and a curve γ j , decide whether q lies above, on, or below γ j .
• Given a query point q and an intersection point v that is labeled (i, j, k), decide whether the x-coordinate of q is

smaller than, equal to, or larger than, the x-coordinate of v .

Executing these basic operations is rather easy for lines (where we always have k = 1). When ' contains higher-degree
curves, however, executing the second operation is more involved. More concretely, comparing q to an intersection point
v , labeled as (i, j, k), amounts to testing whether a certain quantified Boolean predicate P is satisfied. This predicate P
depends on the real parameters specifying γi and γ j and on the coordinates of q. It involves O (k) quantified variables that

7 For our applications, as well as for the techniques in [14,20] on which we rely, the information that we actually want is whether the query point q lies
on any of the hyperplanes in H—this is provided by the point location.

8 The value of this constant depends on the storage allocated to the structure. For example, spending n2d log d+O (d) on storage guarantees query cost of
O (d4 logn) [20].

9 Actually, a 4-tuple, to distinguish proper crossings from tangencies. To simplify the notation we will ignore the fourth component and pretend we work
with triples.

5

B. Aronov, M. de Berg, J. Cardinal et al. Computational Geometry: Theory and Applications 109 (2023) 101945

Fig. 1. A binary search with the x-coordinate of the query point q in the set of x-coordinates of the vertices of level (j (in green) gives us the edge e (in
dark green) of (2 intersecting the vertical line through q. Comparing q to the curve γi containing e then tells us whether q is above, below, or on (j . (For
interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

represent the k intersection points of γi and γ j to the left of, and including, v , and consists of polynomial equalities and
inequalities, whose number depends on k, of constant degree (which depends on the degree of the curves of '). Still, since
k and the degrees of the curves are constant, the predicate P has constant complexity. Hence, its validity can be tested in
O (1) time [8].

Preprocessing. Our point-location data structure is based on the separating-chain method for planar maps, due to Lee
and Preparata [30], which was later refined by Edelsbrunner et al. [19]. For the case of unbounded x-monotone curves,
the separating-chain method is especially easy to implement, since we can simply use the levels in the arrangement as
separating chains. This allows us to carry out the preprocessing using only order-type information, as explained next.

Observe that a doubly-connected edge list (DCEL) representation [10] of the arrangement A(') can be constructed
in O (n2) time in the real-RAM model, and at no cost in our model, using only the given order-type information, without
further accessing the real parametric representation of the curves. Specifically, the order type gives us the local sequences of
intersection points along each curve, and, assuming for the moment that there are no concurrent triples, we can identify, for
each intersection point, its four incident edges. Using this data we can trace the boundary of each 2-face of the arrangement,
and consequently obtain the DCEL structure (observing that each face is x-monotone in this setup). If more than two arcs
meet at a vertex v , we also need to know the circular order of the incident curves around v , which we can deduce from
the order of the curves at x = −∞ and from the indices of v along each curve, as we have assumed that all the crossings
are proper (by our general position assumption described earlier).

Let (j , for j = 0, . . . , n − 1, denote the jth level in the arrangement A('); refer to Fig. 1. In other words, (j is the
closure of the set of points that lie on the curves of ' and have exactly j curves passing below them. Note that the levels
can easily be extracted from the DCEL of A('), as the rule for constructing a level is to follow it from left to right, switching
at each vertex to the other curve forming that vertex, when the intersection is a proper crossing. (This latter rule has to be
modified, in an easy manner, when more than two curves are incident to v or when a tangency is involved.) We store each
level (j as a sorted sequence of its vertices and edges, in left-to-right order, where each vertex is represented as a triple
(i′, j′, k′), as explained above—when more curves are incident to the vertex, any one of the representing triples suffices—and
each edge is represented by the index of its defining curve.

Answering queries. To answer a query, we perform a binary search on the levels (0, . . . , (n−1. At each step of this primary
binary search we need to decide whether the query point q lies above, on, or below a level (j . We can do this by a
secondary binary search, this time on the x-coordinates of the vertices of (j . This gives us an edge e of (j intersecting the
vertical line through q. By comparing q to the curve γi ∈ ' containing e, we can determine the position of q relative to (j .
If q lies on (j then we are done, otherwise we continue the primary binary search. When the query algorithm has finished,
we have either identified an edge (or vertex) of A(') containing q, or an edge immediately above (or below) q. Since the
DCEL gives us, for each edge e of A('), the two adjacent faces of A('), we can now answer the query, returning the (DCEL
pointer to the) face, edge or vertex containing q.

The cost of the search is O (log2 n), where the constant of proportionality depends on the degree of the curves of '.
Note that, unlike the technique in the preceding subsection, here we simply report the (pointer to the) face containing

q, as provided by the DCEL, rather than a pointer to the sign vector.

Lemma 2.2. Let ' be a set of n unbounded x-monotone constant-degree algebraic curves in the plane in general position. Using only
the order-type information of ', we can construct a data structure that uses O (n2) storage and that allows us to answer point-location
queries in the arrangement A(') in O (log2 n) time.

Note that the O (log n) query time of the procedure described in Section 2.1 for d = 2 is faster than the O (log2 n) time
of the procedure presented here for curves in the plane. However, the preceding sampling-based method does not extend
to non-straight curves, since there is no obvious way to extend the notion of a canonical triangulation to the case of
curves. The only viable way of doing this seems to use the standard vertical-decomposition technique. Unfortunately (for
us), constructing the vertical decomposition requires that we compare the x-coordinates of vertices defined by different,
unrelated pairs of curves. Such a comparison involves four input curves and it cannot be resolved from the order-type

6

B. Aronov, M. de Berg, J. Cardinal et al. Computational Geometry: Theory and Applications 109 (2023) 101945

information alone. For lines in the plane, however, the technique from Section 2.1 does yield the improved logarithmic
query time.

Remarks. (1) We have assumed that the given curves are algebraic of constant degree, but the same machinery applies if
the curves are arbitrary, provided we have constant-time black-box routines that perform the two basic operations: Testing
whether a point lies above, below, or on a curve, and testing whether a point lies to the left or to the right of a specific
intersection point of two curves.
(2) It is tempting to apply fractional cascading [18] to reduce the query time to O (log n). This is problematic in our con-
text, however, because to implement fractional cascading, we must be able to merge suitable sorted subsequences of the
sequences of vertices of different levels in the arrangement. Such a merge requires comparing the x-coordinates of two
vertices on different levels, which is not possible using order type only (see the discussion above).

3. The algorithm for within-triangle intersection counting

Our input consists of two sets A, B , each of n pairwise disjoint segments in the plane, and of a set C of n triangles in
the plane, with no segment of A overlapping a segment of B . It will be convenient to make the following no-degeneracy
assumptions: among the segments of A, B , and edges of triangles of C , no two share a supporting line, and no endpoint
of one segment lies on another. Before we present our algorithm, we explain how to eliminate such degeneracies using a
suitable preprocessing step.

First, all endpoints of a segment of A lying on a segment of B (or vice versa) are computed, which can be done in
O (n log n) time in the uniform model, since the segments in A (and, similarly, those in B) are pairwise disjoint. The seg-
ments with an endpoint on another segment are then slightly extended to eliminate the degeneracy. Note that this does
not change the number of within-triangle intersections. We also compute which endpoints of segments in A ∪ B lie on an
edge of C . Since these edges are not pairwise disjoint, this is slightly more difficult, but using standard range-searching
techniques we can still do it in O (n4/3+ε) time in the uniform model. Again, we extend the relevant segments from A ∪ B
to eliminate the degeneracy.

Next we identify the vertices of a triangle ! ∈ C that lie on a segment from A ∪ B . This can again be done in O (n log n)
times in the uniform model. We then slightly perturb ! to eliminate the degeneracy. We do this by slightly moving the
relevant triangle vertex in such a way that the perturbed triangle contains the original triangle !. Thus, no within-triangle
intersections are lost.

It remains to get rid of situations where two segments or edges share a supporting line. Such degeneracies can easily be
detected in O (n log n) time in the uniform model. We first eliminate the degeneracies involving a triangle edge, by slightly
expanding each triangle ! ∈ C so that we do not loose any within-triangle intersections. Finally we eliminate the collinearity
of segments in A ∪ B , by slightly shifting these segments. Note that we do not loose any within-triangle intersections here,
since we assumed that the segments in A ∪ B do not overlap.10

From now on we assume that degeneracies mentioned above do not occur. Note that we do allow a triple of segments
(one from A, one from B , and an edge of a triangle from C) to be concurrent; this is what happens in the special case of
concurrency testing.

A roadmap of the algorithm. As our approach is fairly involved, we start with a sketch of our procedure. The outline focuses
on the simpler segment concurrency problem, where C is a set of (not necessarily disjoint) segments, rather than proper
triangles, and the goal is to determine whether there is a triple (a, b, c) ∈ A × B × C of concurrent segments. To further
simply the description, we assume that the segments in C are actually full lines.

We fix a parameter g . n and put r := n/g (g will be the subproblem size when we apply the so-called “Fredman’s
trick” below). We construct a (1/r)-cutting)(A) for the segments of A, and another such cutting)(B) for the segments
of B . Since the segments of A are pairwise disjoint, we can construct)(A) so that it has size O (r), and similarly for)(B)
(see [11] and Fig. 2). We overlay the two cuttings and obtain a planar decomposition). While the complexity of) is O (r2),
any line of C crosses only O (r) of its cells, since it crosses only O (r) cell boundaries in each cutting.

Consider a two-dimensional cell σ of) (lower-dimensional cells are easier to handle). Define Aσ ⊆ A and Bσ ⊆ B to be
the sets of those segments that cross σ . Note that |Aσ |, |Bσ | ≤ n/r = g . We will preprocess Aσ ∪ Bσ into a data structure
that supports efficient queries, each specifying a line c and asking whether c passes through an intersection point of a
segment of Aσ and a segment of Bσ . We pass to the dual plane, obtain sets A∗

σ and B∗
σ of at most g points (dual to

the lines containing the segments) each. (Observe that “short” segments, which have an endpoint inside σ , require special
treatment; see below.) The query is a point c∗ and the task is to determine whether c∗ is collinear with a pair of points
(a∗, b∗) ∈ A∗

σ × B∗
σ . For a ∈ Aσ and b ∈ Bσ we define γa,b to be the line that passes through a∗ and b∗ , and let 'σ denote

the collection of these lines. The query with c∗ then reduces to point location in the arrangement A('σ), where we only
need to know whether c∗ lies on any of the lines.

10 With a suitable modification of what it means to “count intersections between segments of A and B within each triangle of C ,” our preprocessing can
be modified to deal with such overlaps.

7

B. Aronov, M. de Berg, J. Cardinal et al. Computational Geometry: Theory and Applications 109 (2023) 101945

Fig. 2. A cutting of a set of segments (shown in blue). Each (open) trapezoid in the cutting is intersected by at most n/r segments.

We cannot perform this task explicitly in an efficient manner in the uniform model, since the complexity of A('σ) is
O (g4) and we have O (r2) = O (n2/g2) such arrangements, of overall size O (n2 g2). We can do it, though, in the algebraic
decision-tree model, in an implicit manner, using the so-called Fredman’s trick; see [27] for a simpler yet representative
application of Fredman’s trick, as well as [6,7] for geometric applications of the trick. Concretely, we apply the order-
type–based machinery of Section 2 to construct A('σ) and preprocess it for fast point location. More precisely, we first
construct the order type of 'σ : this involves, for each triple of lines γa1,b1 , γa2,b2 , γa3,b3 , determining the ordering of their
intersection points along each of these lines. We express this test, in a straightforward manner, as the sign test of some
12-variate constant-degree polynomial G(a1, a2, a3; b1, b2, b3).

We map the triple (b1, b2, b3) to a point in a six-dimensional parametric space, and (a1, a2, a3) to an algebraic surface
ψa1,a2,a3 in this space, which is the locus of all triples (b1, b2, b3) with G(a1, a2, a3; b1, b2, b3) = 0. We now need to locate
the points (b1, b2, b3) in the arrangement of the surfaces ψa1,a2,a3 , from which all the sign tests can be resolved, at no
extra cost in the algebraic decision-tree model, thereby yielding the desired order type. The subsequent construction of the
arrangement A('σ), and its preprocessing for fast point location, using the machinery in Section 2, also cost nothing in our
model.

To make this process efficient, we group together all the points (b1, b2, b3), for b1, b2, b3 in the same cell σ , over all cells
of)(B), into one global set P , and group the surfaces ψa1,a2,a3 , for a1, a2, a3 in the same cell of)(A), into another global
set +. We have |P |, |+| = O (r) · O (g3) = O (ng2), since there are only O (r) cells of)(A) (resp., of)(B)) from which the
triples (a1, a2, a3) (resp., (b1, b2, b3)) are drawn.

Using the recent machinery of Agarwal et al. [3], or the alternative technique of Matoušek and Patáková [31], we can
perform this batched point location in 6-space in time

O
(
|P |6/7+ε|+|6/7+ε + |P |1+ε + |+|1+ε

)
= O

(
(ng2)12/7+2ε

)
,

for any ε > 0. Full details of this step are given in Section 3.1.
Searching with the dual points c∗ takes O

(
n2

g log g
)

time, because we have n query lines c, each line crosses O (r) =
O (n/g) cells σ , and each point location with c∗ in each of the encountered arrangements takes O (log g) time, by Lemma 2.1.
Balancing (roughly) this cost with the preprocessing cost, we choose g = n2/31, and obtain the total subquadratic running
time O (n2−2/31+ε) = O (n60/31+ε).

Quite a few issues were glossed over in this overview. Since the segments of A and of B are bounded, a cell σ may
contain endpoints of these segments, making the passage to the dual plane more involved. The same applies in the original
within-triangle intersection-counting problem, where the triangles of C may have vertices or more than one bounding edge
that lie in or meet σ . We thus need to handle the presence of such ‘short’ segments and/or ‘short’ triangles. Moreover, we
need to count intersection points within each triangle, and the number of cells in the overlay of the cuttings)A ,)B that
a triangle can fully contain is much larger than O (r). All these issues require considerably more careful handling, detailed
below. The overall runtime of the resulting algorithm remains O (n60/31+ε), for any ε > 0.

Hierarchical cuttings. This ingredient is needed for counting intersection points in cells that are fully contained inside a
query triangle. The application of hierarchical cuttings to our problem significantly reduces the query time—see below. Fix a
parameter g . n and put r := n/g . We construct a hierarchical (1/r)-cutting)(A) for the segments of A, which is a hierarchy
of (1/r0)-cuttings, where r0 is some sufficiently large constant. The top-level cutting)1(A) is constructed for A. Since the
segments of A are pairwise disjoint, we can construct)1(A) so that it consists of only O (r0) trapezoids—for concreteness,
we write this bound as tr0, for some absolute constant t—each of which is crossed by at most n/r0 segments of A, which
comprise the so-called conflict list of the cell σ , denoted as Aσ . The construction time of)1(A), in the real-RAM model, is
O (n log r0) = O (n). See [11, Theorem 1] for details.

8

B. Aronov, M. de Berg, J. Cardinal et al. Computational Geometry: Theory and Applications 109 (2023) 101945

Fig. 3. A hierarchical cutting and its interaction with a triangle. The dark gray cells are the ones inside the triangle at the top level of the hierarchy; the
medium gray cells are the ones inside the triangle at the second level (and whose parent cells are not inside the triangle). The light gray cells will be
refined and handled at lower levels, since they intersect the triangle boundary.

For each cell σ of)1(A), we clip the segments in its conflict list Aσ to within σ and apply the cutting-construction step
recursively to this set, clipping also the cells of the new cutting to within σ and ignoring cells, or portions thereof, that lie
outside σ (see below for a comment regarding the complexity of the clipped cells). We denote the union of all the resulting
(1/r0)-cuttings by)2(A). We continue recursively in this manner, until we reach a level s at which every cell is crossed
by at most n/r segments. We thus obtain a hierarchy of cuttings)1(A),)2(A), . . . ,)s(A), for some index s = O (log r). We
denote the collective hierarchy as !(A). Since we stop the recursion as soon as n/rs

0 ≤ n/r, the overall number of cells of all
the levels is O ((tr0)

s) = O (r1+ε), for any prespecified ε > 0, for a suitable choice of r0 = r0(ε). Technically, the trapezoids in
the cutting are relatively open, and the cutting also includes one- and zero-dimensional cells; as the latter are easier to deal
with, we will focus below on the two-dimensional cells of the cutting. At any level j of the hierarchy, the cells of) j(A)
are pairwise disjoint. As these cells partition the plane, each intersection point between a segment of A and a segment of
B lies in precisely one cell of a suitable dimension of each level. See Fig. 3 for an illustration.

We apply a similar hierarchical construction to B , and let !(B) = {) j(B)} j≤s denote the resulting hierarchical cutting,
which has analogous properties. (We assume for simplicity that the highest index s is the same in both hierarchies.)

We now overlay !(A) with !(B). More precisely, at each level j of the hierarchy, we overlay the cells of) j(A) with the
cells of) j(B). We denote the jth level overlay as) j , and the entire hierarchical overlay structure as ! = {) j} j≤s . Since
each of) j(A) and) j(B) consists of at most (tr0) j cells, the number of cells of) j is at most O ((tr0)

2 j). Since we have
rs

0 ≈ r (up to a factor of r0), it follows that the overall complexity of all the overlays is O (r2+2ε), provided that we choose
r0, as above, to be sufficiently large, as a function of ε.

As already mentioned, for simplicity of exposition, we ignore lower-dimensional faces of the cuttings, and regard each of
the overlays) j as a decomposition of the plane into pairwise openly disjoint convex polygons, each of complexity linear in
j ≤ s = O (log r) (indeed, due to the clipping, each convex polygon is the intersection of at most j trapezoids). Each cell σ of
the overlay is identified by the pair (τ , τ ′), where τ and τ ′ are the respective cells of) j(A) and) j(B) whose intersection
is σ ; we simply label σ = τ ∩ τ ′ as (τ , τ ′). Each bottom-level cell σ of the final overlay)s is crossed by at most n/r = g
segments of A and by at most n/r = g segments of B .

Classifying the segments and triangles. Let σ = (τ , τ ′) be a cell of) j , for any level j of the hierarchy. Call a segment e of
A long (resp., short) within σ if e crosses σ and neither of its endpoints lies in σ (resp., at least one endpoint lies in σ).
Let Al

σ (resp., As
σ) denote the set of long (resp., short) segments of A within σ . Apply analogous definitions and notations

to the segments of B . Denote by Cσ (resp., C (0)
σ) the set of triangles with at least one edge that crosses σ (resp., that fully

contain σ). Call a triangle ! ∈ Cσ long (resp., short) in σ if σ does not (resp., does) contain a vertex of !, and denote by
Cl

σ (resp., C s
σ) the set of long (resp., short) triangles in Cσ .

For each triangle ! ∈ C , each of its edges crosses only O ((tr0) j) cells of) j . Indeed, as such an edge crosses from one
cell of) j to an adjacent cell, it does so by crossing the boundary of either a cell of) j(A) or a cell of) j(B), and the total
number of such crossings is O ((tr0) j). In particular, the edge crosses at most O (r1+ε) cells of the final overlay)s . It follows
that

∑
σ∈! |Cl

σ | ≤ ∑
σ∈! |Cσ | = O (nr1+ε), but clearly

∑
σ∈! |C s

σ | is only O (n log r). In contrast, ! can fully contain many
more cells of)s , perhaps almost all of them, but the hierarchical nature of the construction allows us to deal with a much
smaller number of such interior cells, by collecting them at higher levels of the hierarchy, as illustrated in Fig. 3; see below
for details.

The algorithm: a quick review. The high-level structure of the algorithm is as follows. (This expands, and puts in more con-
crete form, the ‘roadmap’ overview given earlier.) We construct the hierarchies !(A) = {) j(A)} j≥1 and !(B) = {) j(B)} j≥1.

9

B. Aronov, M. de Berg, J. Cardinal et al. Computational Geometry: Theory and Applications 109 (2023) 101945

For each cell τ of) j(A), we compute its conflict list Aτ , which, as we recall, is the set of all segments of A that cross τ .
Similarly, we compute the conflict list Bτ ′ for each cell τ ′ of) j(B), which contains all segments of B that cross τ ′ . We then
form the hierarchical overlay ! = {) j} j≥1, and for each cell σ = (τ , τ ′) of any overlay) j , we compute the subset Aσ of
the segments of Aτ that cross σ , and the subset Bσ of the segments of Bτ ′ that cross σ . We partition Aσ into the subsets
Al

σ and As
σ of long and short segments (within σ), respectively, and apply an analogous partition to Bσ . The additional

overall cost for constructing these sets, over all hierarchical levels, is O (r2+ε ·n/r) = O (nr1+ε) = O (n2+ε/g). (The cost at the
bottom level dominates the entire cost over all levels.)

We then trace each triangle c ∈ C through the cells of each overlay) j ∈ ! that are crossed by its edges, and form, for
each cell σ of the overlay, the list Cσ of triangles of C with at least one edge that crosses σ . Cell-triangle interactions in
which the triangle fully contains the cell will be handled using the hierarchical structure of the partition—see Fig. 3 and
below. We partition Cσ into the subsets Cl

σ and C s
σ , as defined earlier. As we show below, we can handle, in a much simpler

way, the short triangles of C s
σ , as well as the triangles of Cl

σ all three of whose edges cross σ , simply because the overall
number of such triangle-cell interactions is small. We therefore focus on the triangles of Cl

σ that have only one or two
edges crossing σ . For triangles with two crossing edges we use a standard two-level data structure, where at each level we
consider only one crossing edge. This lets us assume, without loss of generality, that each triangle in Cl

σ is a halfplane. Each
of these halfplanes can be represented by its bounding line, that is the line supporting the appropriate crossing edge of the
triangle. We flesh out the details below.

We also assume, for now, that all the segments of Aσ and of Bσ are long in σ . This is the hard part of the analysis,
requiring the involved machinery presented below. After handling this case, we will address the much simpler situations
that involve short segments and/or short triangles (or triangles with three edges crossing σ , as well as triangles that fully
contain cells). The cost of handling short segments or short triangles within cells is smaller, even in the uniform model,
since the overall number of short objects within cells is smaller.

Handling the long segments. We preprocess each level j of the overlay, to compute, for each of its cells σ = (τ , τ ′), the
number of intersection points between the (long) segments of Al

σ and those of Bl
σ (which, due to the clipping, lie in σ).

This is a standard procedure that involves computing the number of pairs of segments from Al
σ × Bl

σ whose intersection
points with the boundary of σ interleave (these are precisely the pairs of intersecting segments), and can be implemented
to take O ((|Al

σ | + |Bl
σ |) log2(|Al

σ | + |Bl
σ |)) time [17].11 We store the resulting count at σ .

Consider a two-dimensional cell σ , a segment a ∈ Al
σ , a segment b ∈ Bl

σ , and a triangle ! ∈ Cσ . By assumption, ! has
only one edge c or two edges c1, c2 crossing σ . When a and b intersect inside σ , the intersection lies in ! if and only if the
triple (a, b, c), or each of the triples (a, b, c1), (a, b, c2), has a prescribed orientation, reflecting the condition that the point
a ∩ b lies on the side of c (or the sides of c1, c2) containing !. This orientation (or pair of orientations) can be positive,
negative, or zero, depending on the relative order of the slopes of a, b, and c (or of c1 and c2), and on whether ! lies to
the left or to the right of c (or of c1, c2).

For each halfplane c+ that represents a triangle ! ∈ Cσ (the halfplane contains ! and is bounded by the line supporting
the single (relevant) edge c of ! that crosses σ), we want either (i) to represent the set of pairs (a, b) ∈ Al

σ × Bl
σ that have

a prescribed orientation of the triple (a, b, c), as the disjoint union of complete bipartite graphs (bicliques), or (ii) to count
the number of such pairs. The subtask (i) arises in cases where ! has two edges crossing σ and is needed for the first level
of the data structure, which we query with the first crossing edge of !. The subtask (ii) arises in the second level of the
structure, which we query with the second crossing edge of !, and in cases where only one edge of ! crosses σ .

As described above, in O
(
(|Al

σ | + |Bl
σ |) log2(|Al

σ | + |Bl
σ |)

)
time, we count the number of intersections within σ . As a

matter of fact, with a simple modification of the procedure, we can, within the same time bound, represent the set of
all pairs of segments (a, b) ∈ Al

σ × Bl
σ that intersect each other (inside σ) as the disjoint union of bicliques12 of total

size O
(
(|Al

σ | + |Bl
σ |) log2(|Al

σ | + |Bl
σ |)

)
. This follows from standard planar segment-intersection range searching machin-

ery [17]. In what follows we focus on just one such graph, and to simplify the presentation we denote it as Al
σ × Bl

σ , with
a slight abuse of notation.

Preparing for Fredman’s trick. We use the infrastructure developed by Aronov et al. [6], but adapt it to the order-type context.
We preprocess A and B into a data structure that we will then search with the points dual to the lines supporting the edges
of the triangles of C . For each a ∈ A, b ∈ B , we define γa,b to be the line that passes through a∗ and b∗ , where a∗ (resp., b∗)
is the point dual to a (resp., b). By our general position assumption, a∗ 0= b∗ , so γa,b is well defined. Let '0 denote the set
of these n2 lines. Our goal in task (ii) is to count, for each cell σ of any of the overlays, for each point c∗ dual to an edge of
a triangle ! ∈ Cσ , the number of lines of '0 that lie above c∗ , the number of lines that are incident to c∗ , and the number
of lines that lie below c∗ . In task (i), we want to represent each of these sets of lines as the disjoint union of a small
number of precomputed canonical sets. This calls for preprocessing the arrangement A('0) into a suitable point-location

11 Counting these intersections costs only O ((|Al
σ | + |Bl

σ |) log(|Al
σ | + |Bl

σ |)
)

time, but in order to represent them efficiently one needs to pay an extra
logarithmic factor, and therefore we stick with the bound O

(
(|Al

σ | + |Bl
σ |) log2(|Al

σ | + |Bl
σ |)

)
. See also the discussion below.

12 To simplify the terminology, we refer to the combined size of the vertex sets of a biclique as the size of the graph.

10

B. Aronov, M. de Berg, J. Cardinal et al. Computational Geometry: Theory and Applications 109 (2023) 101945

data structure, which we will then search with each c∗ ∈ C∗ , and retrieve the desired data from the outcome of each query.
(That is, the compact representation of these sets of lines is derived from the point-location data structure, see, e.g., [2], for
this standard step.)

As in, e.g., [6], a naïve implementation of this approach will be too expensive, as there are too many lines. Instead, we
return to the hierarchical partitions !(A), !(B), and !, and apply the following approach to each of the cells σ = (τ , τ ′)
of the bottom level)s . To this end, define 'σ := {γa,b | (a, b) ∈ Aσ × Bσ }. In principle, we want to construct the separate
arrangements A('σ), over the cells σ , preprocess each of them into a point-location data structure, and search, for each
triangle ! ∈ C , in the structures that correspond to the cells of ! that are either crossed by (at most) one or two edges of
!, or fully contained in !. This is also too expensive if implemented naïvely, so we use instead Fredman’s trick (see below),
combined with the machinery developed in Section 2.

Preparing for the search with the triangles of C. We first observe that, for each triangle ! ∈ C , finding the cells σ (at any
level of the hierarchy) that ! fully contains (but does not contain their parent cell from the previous level) is easy
and inexpensive. We go over the hierarchy of the overlays) j . At the root we find, by brute force, all the (constantly
many) cells of)1 that ! fully contains, and add their intersection counts to our output counter. We then recurse,
in the same manner, in the at most tr0 cells of)1 that ! crosses. Thus the number of cells we visit is at most
O (r2

0) ·
(
1 + tr0 + (tr0)

2 + · · · + (tr0)
s
)
= O (r1+ε), so the overall cost of this step13 is O

(
nr1+ε

)
= O

(
n2+ε/g

)
.

We therefore focus, for each triangle ! of C , only on the cells that it crosses (at every level of the hierarchy), and restrict
the analysis for now to cells at which ! is long, with at most two of its edges crossing the cell (as promised, cells crossed
by all three edges and cells containing a vertex will be processed separately, later). Repeating most of the analysis just given,
the number of these cells is O (r1+ε) (with a smaller constant of proportionality, since we now do not have the factor O (r2

0),
as above).

Constructing A('σ) in the decision-tree model. Consider the step of constructing A('σ) for some fixed bottom-level cell
σ . Following the technique in Section 2, we perform this step using only the order type of 'σ , and we begin by con-
sidering the task of obtaining the order-type information itself. That is, we want to determine, for each ordered triple
(γa1,b1 , γa2,b2 , γa3,b3) of lines of 'σ , whether the point γa1,b1 ∩ γa2,b2 lies to the left or to the right of, or coincides with
the point γa1,b1 ∩ γa3,b3 . Let G(a1, a2, a3; b1, b2, b3) denote the 12-variate polynomial (of constant degree) whose sign deter-
mines the outcome of the above comparison. (The immediate expression for G is a rational function, which we turn into a
polynomial by multiplying it by the square of its denominator, without affecting its sign; our general position assumption
ensures that no denominator vanishes.)

Once the signs of all expressions G(a1, a2, a3; b1, b2, b3) are determined, we can apply Lemma 2.1. Recall that it yields
a preprocessing that constructs a discrete representation of the arrangement (say, in the DCEL format [10]), and turns
this representation into an efficient point-location data structure, and this latter part of the preprocessing can be car-
ried out at no cost in the algebraic decision-tree model. Next we describe how to determine the signs of all expressions
G(a1, a2, a3; b1, b2, b3) in an efficient manner.

We search the hierarchical overlay structure ! with each triangle ! ∈ Cσ . We may assume that ! is long in σ and
that only one or two edges of ! cross σ ; the other cases have been or will be handled separately. Assuming further that
there is only one such edge c, locating the dual point c∗ in A('σ) takes O (log g) time, as shown in Section 2 (noting that
'σ consists of only g2 lines). With suitable preprocessing, locating c∗ gives us, for free in our model, the three sets of the
lines that pass above c∗ , are incident to c∗ , or pass below c∗ . The case where two edges of ! cross σ is handled using a
two-level version of the structure; see below for details. The point-location cost now goes up to O (log2 g).

Consider then the step of computing the order type of the lines of 'σ , that is, of computing the sign of G(a1, a2, a3;
b1, b2, b3), for every triple of segments a1, a2, a3 ∈ Aσ and every triple of segments b1, b2, b3 ∈ Bσ . To this end, we play
Fredman’s trick. We fix a bottom-level cell τ of !(A). For each triple (a1, a2, a3) ∈ A3

τ := Aτ × Aτ × Aτ , we define the
surface14

ψa1,a2,a3 := {(b1,b2,b3) ∈R6 | G(a1,a2,a3;b1,b2,b3) = 0},
and denote by + the collection of these surfaces, over all cells τ . We have

N := |+| = O ((n/g)1+ε · g3) = O (n1+ε g2).

Similarly, we let P denote the set of all triples (b1, b2, b3), for b1, b2, b3 ∈ B3
τ ′ := Bτ ′ × Bτ ′ × Bτ ′ , over all cells τ ′ of !(B).

We have M := |P | = O (n1+ε g2). These bounds pertain to the bottommost level of the hierarchy; they are smaller at levels

13 It is for making this step efficient that we use hierarchical partitions. A single-shot partition would have forced the query to visit up to -(r2) such
cells, which would make it too expensive.
14 Note that we can have a1 = a2 for instance. Such cases can be handled in a similar manner as the general case, except that we now have to work with

a slightly different polynomial (e.g., the case where we only have a1 = a2 would result in a 10-variate polynomial). In what follows, and for the sake of
simplicity, we concentrate merely on the general case, which determines the final time complexity of the algorithm.

11

B. Aronov, M. de Berg, J. Cardinal et al. Computational Geometry: Theory and Applications 109 (2023) 101945

of smaller indices. Note that we can also dualize the setup, mapping triples (a1, a2, a3) to points, and triples (b1, b2, b3) to
surfaces.

We apply a batched point-location procedure to the points of P and the surfaces of +. The output of this procedure
is a collection of bicliques of P × +, so that, for each such subgraph Pα × +α , G(a1, a2, a3; b1, b2, b3) has a fixed sign for
all (b1, b2, b3) ∈ Pα and all (a1, a2, a3) ∈ +α , see, e.g., [5,17] for the use of such structures in similar contexts. This tells
us the desired signs of G(a1, a2, a3; b1, b2, b3), for every pair of triples (a1, a2, a3) ∈ A3

τ , (b1, b2, b3) ∈ B3
τ ′ , over all pairs of

cells σ = (τ , τ ′) ∈ !(A) × !(B) (with a nonempty intersection), and these signs give us the orientation (i.e., the order of
the intersection points) of every triple of lines γa,b . That is, we obtain the order type of the lines of 'σ . As remarked in
Section 2, we may assume that this also includes the sorting of the lines at x = −∞, but, for the sake of concreteness, we
will address this simpler task (which admits a more efficient procedure) in some detail later on.

Remark. This shuffling of the pairs (a1, b1), (a2, b2), (a3, b3) into the triples (a1, a2, a3), (b1, b2, b3) and the treatment of
the first triple as defining a surface in R6 and of the second triple as defining a point in R6 is the realization of Fredman’s
trick in our context.

3.1. The batched point-location step

We now spell out the details of the batched point-location procedure. It involves points and surfaces in a six-dimensional
parametric space, and proceeds by using the recent multilevel polynomial partitioning technique of Agarwal et al. [3, Corol-
lary 4.8].15 Specialized to our context, it asserts the following result.

Theorem 3.1 (A specialized version of Agarwal et al. [3, Corollary 4.8]). Given a set + of N constant-degree algebraic surfaces in R6,
a set P of M points in R6 , and a parameter δ, with 0 < δ < 1/6, there are finite collections /0, . . . , /6 of semi-algebraic cells in R6

with the following properties.

• For each index i, each cell ω ∈ /i is a connected semi-algebraic set of constant complexity.
• For each index i and each ω ∈ /i , at most N

4|/i |1/6−δ surfaces from + cross ω (meaning, as in the planar setup, that they intersect
ω but do not fully contain it), and at most M

4|/i |1−δ points from P are contained in ω.

• The cells partition R6 , in the sense that R6 =16
i=0 1ω∈/i

ω, where 1 denotes disjoint union.
• The sizes of the collections /0, . . . , /6 are bounded by a function of δ, and not of |P | and |+|.

The sets in /0, . . . , /6 can be computed in O (N + M) expected time, where the constant of proportionality depends on δ, by a
randomized algorithm. For each i and for every set ω ∈ /i , the algorithm returns a semi-algebraic representation of ω, a reference
point inside ω, the subset of surfaces of + that cross ω, the subset of surfaces that fully contain ω (for lower-dimensional cells ω), and
the subset of points of P that are contained in ω.

We compute the partition of Theorem 3.1, for a suitable choice of δ, and find, for each ψ ∈ +, the sets ω ∈ /i , over
all i = 0, . . . , 6, that it crosses, and those that it fully contains. For each i and ω ∈ /i , let Pi,ω denote the set of points of
P in ω, and let +i,ω denote the set of surfaces of + that cross ω. We form three bicliques Pi,ω × +0

i,ω , Pi,ω × ++
i,ω , and

Pi,ω × +−
i,ω , where +0

i,ω is the set of surfaces that fully contain ω (and thus also Pi,ω), and ++
i,ω (resp., +−

i,ω) is the set of
surfaces for which ω lies fully in their positive (resp., negative) side, that is, the side at which the corresponding values
of G are positive (resp., negative). As the parameters of the partition are all constant, the overall size of the vertex sets of
these graphs is O (M + N).

For each i and ω, we also have a recursive subproblem that involves Pi,ω and the subset +i,ω of the surfaces that cross
ω. Putting ri := |/i |, for i = 0, . . . , 6, we have, for each i and ω,

|Pi,ω| ≤ M

4r1−δ
i

and |+i,ω| ≤ N

4r1/6−δ
i

.

To handle each recursive subproblem, we pass to the dual 6-space, with the roles of a1, a2, a3 and of b1, b2, b3 swapped
(as already noted, such a swap is justified by the complete symmetry of the setup between the parameters a1, a2, a3 and
b1, b2, b3), and apply, using Theorem 3.1, a similar partitioning. (We now denote the resulting collections as /∗

i and their
respective sizes as r∗

i .) We obtain a second collection of bicliques, still of overall size O (M + N), now with a somewhat
larger constant of proportionality, and a new set of recursive subproblems. Each of these subproblems can be labeled by the
pairs (k, ω) and ($, ω∗), where k is the index i of the primal collection /i containing ω, and $ is the index j of the dual
collection /∗

j containing ω∗ (and therefore k, $ = 0, . . . , 6).

15 Alternatively, we could use the partitioning technique of Matoušek and Patáková [31], which in a sense is dual to that of [3].

12

B. Aronov, M. de Berg, J. Cardinal et al. Computational Geometry: Theory and Applications 109 (2023) 101945

For each quadruple ((k, ω), ($, ω∗)), the corresponding primal subproblem involves at most M
4r1−δ

k
points and at most

N
4r1/6−δ

k

surfaces, which switch their roles when we pass to the dual, so each cell of the resulting dual partition generates a

subproblem that involves at most M
16r1−δ

k (r∗
$)1/6−δ

dual surfaces (or primal points) and at most N
16r1/6−δ

k (r∗
$)1−δ

dual points (or

primal surfaces).
We keep flipping between the primal and dual setups in this manner, until one of the parameters (number of points or

number of surfaces) becomes smaller than some constant threshold n0 , which is chosen to be sufficiently larger than all
the (constant) parameters rk , r∗

$. When this happens, we solve the problem by brute force, where the running time, and the
overall size of the resulting collection of bicliques, are both proportional to the value of the other parameter (number of
surfaces or number of points, respectively).

The primal-dual recursion is applied whenever M ≤ N6 and N ≤ M6. If M > N6 we recurse only in the primal, and if
N > M6 we recurse only in the dual. We terminate, as before, when we reach subproblems where one of the parameters
M , N becomes at most n0.

The resulting recursion has the following performance bounds.

Proposition 3.2. Let T (M, N) denote the maximum possible sum of the sizes of the vertex sets of the bicliques produced by the recursive
process described above, over all input sets of at most M points and at most N surfaces. Then we have

T (M, N) = O
(

M6/7+εN6/7+ε + M1+ε + N1+ε
)

,

for any ε > 0, where the constant of proportionality depends on ε. The same asymptotic bound also holds for the cost (in the uniform
model) of constructing these graphs.

Proof. We fix ε, and show, using induction on M and N , that

T (M, N) ≤ A
(

M6/7+εN6/7+ε + M1+ε + N1+ε
)

, (1)

for a suitable constant coefficient A that depends on ε. We use δ := ε/2 in Theorem 3.1; to simplify the calculations a bit,
we will work with δ instead of ε, so we put ε = 2δ.

The base cases are when either M ≤ n0 or N ≤ n0. If, say, M ≤ n0, then we clearly have the ‘brute force’ bound T (M, N) ≤
n0N , which satisfies the bound in (1) if A is chosen sufficiently large. A symmetric treatment holds when N ≤ n0. Assume
then that (1) holds for all pairs M ′, N ′ such that M ′ ≤ M and N ′ ≤ N , where at least one of the inequalities is strict, for
some parameters M , N (both greater than n0), and consider an instance with a set P of M points and a set + of N surfaces.

Assume first that N1/6 ≤ M ≤ N6. We consider one phase of the primal decomposition followed by one phase of the
dual decomposition. Fix a pair (k, ω) (in the primal) and a pair ($, ω∗) (in the dual), where k, $ = 0, 1, . . . , 6, and follow the
notation introduced above. Apply the induction hypothesis to the dual subproblem at ω∗ . As argued above, this subproblem
involves at most M

16r1−δ
k (r∗

$)1/6−δ
dual surfaces (or primal points) and at most N

16r1/6−δ
k (r∗

$)1−δ
dual points (or primal surfaces).

Hence, by the induction hypothesis, the contribution of this subproblem to T (M, N) is at most

A




(

M

16r1−δ
k (r∗

$)
1/6−δ

)6/7+2δ (
N

16r1/6−δ
k (r∗

$)
1−δ

)6/7+2δ

+
(

M

16r1−δ
k (r∗

$)
1/6−δ

)1+2δ

+
(

N

16r1/6−δ
k (r∗

$)
1−δ

)1+2δ


 .

We assume that the numbers r∗
$ are the same at each primal subproblem. We make this assumption for simplicity and

clarity of presentation, but it can be removed with a more careful analysis. Multiplying by the number rkr∗
$ of subproblems

with the indices k, $, and simplifying the expressions, the contribution is at most

A



 M6/7+2δ N6/7+2δ

1612/7+4δ(rkr∗
$)

13δ/21−4δ2 + (r∗
$)

5/6+2δ/3+2δ2

161+2δrδ−2δ2

k

M1+2δ + r5/6+2δ/3+2δ2

k

161+2δ(r∗
$)

δ−2δ2 N1+2δ



 .

Recall however that we are in the range M ≤ N6 and N ≤ M6, so we have

M1+2δ ≤ M6/7+2δ N6/7+2δ

N2δ
and N1+2δ ≤ M6/7+2δ N6/7+2δ

M2δ
,

as is easily checked. The contribution is thus at most

AM6/7+2δ N6/7+2δ



 1

1612/7+4δ(rkr∗
$)

13δ/21−4δ2 + (r∗
$)

5/6+2δ/3+2δ2

161+2δrδ−2δ2

k

· 1
N2δ

+ r5/6+2δ/3+2δ2

k

161+2δ(r∗
$)

δ−2δ2 · 1
M2δ





<
A

49
M6/7+2δ N6/7+2δ,

13

B. Aronov, M. de Berg, J. Cardinal et al. Computational Geometry: Theory and Applications 109 (2023) 101945

provided that n0 (and thus M and N) are sufficiently large. Finally, multiplying this bound by the 49 possible choices of
k, $ = 0, 1, . . . , 6, the resulting bound is at most AM6/7+2δ N6/7+2δ , thereby establishing the induction step for this range of
M and N .

Consider next the case where M > N6. In this case we only work in the primal. After one level of recursion, for a fixed
pair (k, ω), we get rk subproblems, each involving at most M/(4r1−δ

k) points and at most N/(4r1/6−δ
k) surfaces. Applying the

induction hypothesis at each of these subproblems, the contribution of each subproblem to T (M, N) is at most

A




(

M

4r1−δ
k

)6/7+2δ (
N

4r1/6−δ
k

)6/7+2δ

+
(

M

4r1−δ
k

)1+2δ

+
(

N

4r1/6−δ
k

)1+2δ


 .

Multiplying by the number rk of subproblems, and simplifying the expressions, we get at most

A



 M6/7+2δ N6/7+2δ

412/7+4δr13δ/21−4δ2

k

+ M1+2δ

41+2δrδ−2δ2

k

+ r5/6+2δ/3+2δ2

k N1+2δ

41+2δ



 .

Since N < M1/6, the third term is dominated by the second term, provided that n0 is sufficiently large (recall that we have
chosen it to be much larger than the quantities rk). Using this fact and multiplying by the number, 7, of values of k, we
establish the induction step for this range.

The case N > M6 is handled in a fully symmetric manner, except that we only work in the dual.
The running time of the procedure obeys the same asymptotic upper bound, which is a consequence of the fact that the

multi-level cells in /0, . . . , /6 and their conflict lists can be computed in O (M + N) time. We omit the easy details.
This completes the proof of the lemma. !

Remarks.
1. We spell out all these technical details because the analysis in [3] did not handle batched range searching problems, so
we provide it for the sake of completeness, and also in the hope that it would find additional applications in the future.
2. Proposition 3.2 can be extended to any dimension d, with a similar proof, to obtain a primal-dual range searching
algorithm involving M points and N surfaces in d dimensions, assuming full symmetry between the points and surfaces, as
above. The running time of the algorithm (in the uniform model) is O (Md/(d+1)+ε Nd/(d+1)+ε + M1+ε + N1+ε), for any ε > 0.

3.2. Wrapping up

Using a similar and simpler technique, we can sort the lines of each of the arrangements A('σ), over all cells σ , at
x = −∞. (Note that this corresponds to sorting them in reverse order of their slopes.) Here each comparison is between
a pair of lines, say γa1,b1 and γa2,b2 , and its outcome is the sign of some constant-degree 8-variate polynomial (more
precisely, a rational function turned into a polynomial) H(a1, a2; b1, b2). Fredman’s trick for this setup leads to a batched
point-location procedure that involves O ((n/g)1+ε g2) = O (n1+ε g) points and O ((n/g)1+ε g2) = O (n1+ε g) surfaces in R4.
This task can be accomplished by a somewhat simpler variant of the technique presented above, whose running time bound
is subsumed in the above bound.

In summary, the information collected so far allows us to obtain the combinatorial structure of each of the arrangements
A('σ), over all cells σ of !, and subsequently construct an order-type–based point-location data structure for each of them,
at no extra cost in the algebraic decision-tree model. The overall cost of this phase, in this model, is thus O

(
(n1+ε g2)12/7+ε

)
,

for any ε > 0. By replacing ε by some small multiple thereof, we can write this bound as O
(
(ng2)12/7+ε

)
, for any ε > 0.

Fredman’s trick, as applied above, separates the handling of the conflict lists Aτ , over the trapezoids τ of !(A), and the
conflict lists Bτ ′ , over the trapezoids τ ′ of !(B). For a cell σ = (τ , τ ′) of !, not all the segments in Aτ necessarily cross σ ,
so we have to retain (for σ) only those that do cross it, and apply a similar pruning to Bτ ′ . The cost of this filtering step
is O (g) for each σ , for an overall cost of O ((n/g)2 · g) = O (n2/g). This cost is subsumed by the cost of searching with the
elements of C , discussed later.

Interpreted in the dual, the filtering step just described filters out all lines γa,b from 'σ that pass through a (dual) point
whose (primal) segment does not cross σ , but we also need to filter out lines γa,b , where the corresponding (long) segments
a and b do not meet inside σ (or do not meet at all). Filtering by inspecting all pairs (a, b) would be too expensive in the
uniform model, but, fortunately, we can implement this step free of charge in the decision-tree model. Indeed, consider the
bicliques in the compact representation of all the long pairs (a, b) that intersect inside σ (as described in the earlier quick
overview for handling long segments). Once this biclique decomposition is available, we simply keep in 'σ only those lines
that correspond to the edges of these graphs, a step that costs nothing in the decision-tree model, since it does not incur
any extra comparisons among the input segments. Once this filtration is performed, we can construct the arrangement of
the surviving lines, at no extra cost, and use the modified arrangement for the point-location searches with the elements of
C , discussed next.

14

B. Aronov, M. de Berg, J. Cardinal et al. Computational Geometry: Theory and Applications 109 (2023) 101945

Searching with the triangles of C. We now need to search the structures computed in the preceding phase with the duals of
the (lines containing) the edges of the triangles of C .

Each triangle ! ∈ C crosses only O (r1+ε) = O (n1+ε/g) cells of ! (without fully containing the cell). Recall that, for a
cell σ that ! crosses, we say that ! is long (resp., short) in σ if σ does not contain (resp., contains) a vertex of !. There
are at most three cells σ at the bottom level of the hierarchy, in which ! is short, and we simply inspect all the g2 pairs of
segments in Aσ × Bσ , and include those pairs that intersect inside ! in our output count for !, for a total cost of O (ng2).
It therefore suffices to focus on cells in which ! is long. ! is not processed at intermediate-level cells at which it is short;
it is only processed as a short triangle at the relevant bottom-level cells.

Let σ be a bottom-level cell. It is easy (and standard) to show that there is at most one cell σ that is crossed by all three
edges of !, so we can handle these cells as the cells where ! is short, with comparable efficiency. It thus suffices to assume
that σ is crossed by only one or two edges of !. In the former case we may replace !, for the purpose of searching within
σ , by the halfplane bounded by the single edge that crosses σ , and in the latter case we may replace ! by the intersection
wedge of the two halfplanes bounded by the two edges that cross σ . In the former situation we replace ! by the point c∗

dual to the line supporting the single crossing edge, and search the point-location structure constructed for A('σ) with c∗ .
In the latter situation we replace ! by the pair of points c∗

1, c∗
2 dual to the lines supporting the two crossing edges. We

prepare a two-level data structure (see, for example, [2]), where each level is based on the above point-location structure
for A('σ), except that the first level collects its output as the disjoint union of canonical sets, and the second level counts
intersections within the query triangle. We then search the top level with c∗

1 and search the resulting substructures of the
second level, for each relevant canonical subset, with c∗

2.
There are O (nr1+ε) = O (n2+ε/g) triangle-cell crossings, each requiring O (log2 g) search time, using (one or two lev-

els of) the above point-location data structure for each such arrangement, for a total of O

(
n2+ε log2 g

g

)

time. Adding

the time to construct the order-type–based point-location structure, the total time needed to handle the long segments

is O

(

(ng2)12/7+ε + n2+ε log2 g
g

)

. We (nearly) balance the terms in this bound by taking g = n2/31, so the cost of this

procedure, in the algebraic decision-tree model, is O (n2−2/31+ε) = O (n60/31+ε), for a slightly larger value of ε.
We next have to handle short segments and short triangles within cells of !, including triangles that have three edges

crossing the cell (for the latter we repeat and refine some of the details described earlier). As might be expected, this part
is less expensive than the handling of long segments and triangles, as we now show.

Handling short segments. There are two main tasks that we have to implement for short segments: (i) count the number
of intersection points that involve a short segment and another segment, at all cells of the overlays at all levels, and (ii)
preprocess them so that, for each bottom-level cell σ , we can count, for each query triangle !, the number of intersection
points with a short segment within σ that lie inside !. We start with the first task.

A segment of either A or B can be short in at most two cells, at each level of the hierarchy. For each cell σ at any fixed
level j, let nσ denote the number of short segments (from Aσ ∪ Bσ) in σ , so we have

∑
σ∈) j

nσ ≤ 4n. For each cell σ , the
overall number of segments that cross σ is at most 2n/r j

0.
Thus, at each cell σ at level j, we count the number of intersections between the nσ short segments and the at most

2n/r j
0 other (long or short) segments. Using an algorithm of Agarwal [1], this takes

O
(

n2/3
σ (n/r j

0)
2/3+ε + n1+ε

σ + (n/r j
0)

1+ε
)

time (also in the uniform model).16 Recall that the number of cells σ in) j is O ((tr0)
2 j), where t is an absolute constant.

Hence, by using Hölder’s inequality, the sum of the above bounds over the cells σ is at most

O




(

∑

σ

nσ

)2/3

(tr0)
2 j/3(n/r j

0)
2/3+ε + n1+ε + (tr0)

2 j · (n/r j
0)

1+ε





= O

(

n2/3 · t2 j/3n2/3

r jε
0

+ n1+ε + t2 jr(1−ε) j
0 n1+ε

)

.

Recalling that r j
0 ≤ rs

0 = O (r1+ε) = O (n1+ε/g), this can be upper bounded by O (n4/3+ε +n1+εr j
0) = O (n2+ε/g), for a slightly

larger ε (assuming that g < n2/3, as indeed will be the case), a cost that is subsumed by that of other steps of the algorithm.
Consider next the second task, of counting the number of intersection points inside a query triangle that involve a short

segment, at the bottom-level cells. The overall number of such intersection points is only O (ng), and we compute all of

16 The actual bound in [1] contains polylogarithmic factors rather than factors of the form nε . This, however, does not affect the bounds derived by our
analysis—see below.

15

B. Aronov, M. de Berg, J. Cardinal et al. Computational Geometry: Theory and Applications 109 (2023) 101945

them by brute force, and distribute them among the cells. For each bottom-level cell σ , let Pσ denote the set of these
points in σ , and let Cσ denote, as above, the set of triangles that cross σ , with only one or two crossing edges. To simplify
the presentation, we only consider triangle-cell crossings for which the triangle has just one crossing edge, so it behaves as
a halfplane in the cell. The case of two crossing edges is handled, as above, via a two-level data structure. Put Mσ := |Pσ |
and Nσ := |Cσ |, for each cell σ , and observe that (i)

∑
σ Mσ = O (ng), (ii)

∑
σ Nσ = O (n2+ε/g), and (iii) Nσ ≤ n for each

σ .
Applying the standard machinery for halfspace range counting [2,4], we can count the number of points of Pσ that lie

inside (the halfplanes representing) each of the triangles in Cσ , in time O
(

M2/3
σ N2/3+ε

σ + M1+ε
σ + N1+ε

σ

)
, for each cell σ .

Summing this bound over σ , using Hölder’s inequality, we get a total of
∑

σ

O
(

M2/3
σ N2/3+ε

σ + M1+ε
σ + N1+ε

σ

)

= O
(

n1/3+ε
)

·
∑

σ

M2/3
σ N1/3

σ + O
(

n1+ε g + n2+ε/g
)

= O
(

n1/3+ε(ng)2/3(n2+ε/g)1/3 + n1+ε g + n2+ε/g
)

= O
(

n5/3+ε g1/3 + n1+ε g + n2+ε/g
)

.

This bound is subsumed in the overall bound on the cost of the other steps of the algorithm (again, assuming that g is not
too large).

Handling short triangles and triangles with three crossing edges. As we have already noted, the overall cost of this part is
O (ng2). Indeed, each triangle ! is short in at most three cells, at each level of the hierarchy. However, we need to count
intersection points inside a short triangle only at the bottom-level cells where the triangle is short. For each such cell σ ,
we count for each triangle ! that is short in σ , by brute force, the number of intersection points inside ! ∩ σ . This has
a total cost of O (ng2), well below our overall bound. The same argument applies to triangles with three edges crossing a
bottom cell.

We remark that the analysis of these parts of the algorithm, which deal with short segments or triangles, also applies in
the uniform model.

Putting it all together. In conclusion, we finally have:

Theorem 3.3. Let A and B be two sets each consisting of n pairwise disjoint segments in the plane, and let C be a set of n triangles in
the plane. We can count, for each triangle ! ∈ C , the number of intersection points of segments of A with segments of B that lie inside
!, in the algebraic decision-tree model, at the subquadratic cost O (n60/31+ε), for any ε > 0.

Corollary 3.4. We can solve, in the algebraic decision-tree model, at the cost of O (n60/31+ε), for any ε > 0, each of the problems (i)
intersection of three polygons, (ii) coverage by three polygons, and (iii) segment concurrency, as listed in the introduction.

4. Extensions

In this section we present two additional applications of the paradigm developed in this paper.

4.1. Circular arc intersection counting

We have two sets A, B , each consisting of n pairwise disjoint circular arcs in the plane, and a third set C , consisting
of n circles in the plane. Our goal is to count, for each circle c ∈ C , the number of intersection points of an A-arc with a
B-arc that lie in the interior of c. Denote by γ̄ the circle containing γ , for each arc γ ∈ A ∪ B . Put Ā := {ā | a ∈ A} and
B̄ := {b̄ | b ∈ B}, for the respective sets of the containing circles.

Using the standard lifting transform, each circle ā ∈ Ā is lifted to a ‘red’ plane a∗ in R3, and each circle b̄ ∈ B̄ is lifted
to a ‘blue’ plane b∗ in R3. For each ā ∈ Ā and B̄ ∈ B̄ , the line λa,b := a∗ ∩ b∗ intersects the standard paraboloid 2 in at
most two points, and the lifted images of the at most two intersection points of the arcs supported by a and b form a
subset of zero, one, or two of these points. See Fig. 4(i). Let P denote the set of those points on 2 that correspond to actual
intersection points of an A-arc and a B-arc; we cannot afford to compute P explicitly. We have |P | ≤ 2n2. Given a circle
c ∈ C (call such circles ‘green’), we want to count the number of points of P that lie below or on the plane c∗ .

We dualize the setup in R3, using the standard duality that preserves the above/below relationship, and get a set P∗ of
at most 2n2 ‘red-blue’ dual planes (all tangent to 2). The goal is now to locate the points dual to the planes of C∗ in the
arrangement A(P∗) of the planes of P∗ . More precisely, we want to count how many planes pass below (or through) each
query point.

16

B. Aronov, M. de Berg, J. Cardinal et al. Computational Geometry: Theory and Applications 109 (2023) 101945

Fig. 4. Illustrating the setup for orientation testing. (i) The planes a∗ and b∗ , which are lifted images of a pair of intersecting circles ā ∈ Ā and b̄ ∈ B̄ ,
intersect in a line λa,b that crosses the paraboloid 2 twice. (ii) The setup in the plane: p is the projection of q and p′ is the projection of q′ . The circles ā
and b̄ meet at p and p′ , but only p is relevant, because it is also an intersection of the arcs a and b, and it lies inside the cell σ .

We thus face the problem of point location in a three-dimensional arrangement A(P∗) of a set P∗ of O (n2) ‘red-blue’
planes, each determined by a red arc in A and a blue arc in B . Of course, we cannot afford the construction of the full
arrangement, so we play Fredman’s trick, as in Section 3. That is, we construct a (1/r)-cutting)A for the A-arcs, and a
(1/r)-cutting)B for the B-arcs, each of complexity O (r) (which follows since the arcs in each set are pairwise disjoint;
the argument of [11] applies here), construct the overlay) of these cuttings, and process each cell σ of) separately. We
actually need to construct hierarchical cuttings, as in Section 3, and, at each cell σ of the overlay hierarchy of !, at any
level, we also need to count the overall number of intersections of A-arcs and B-arcs that lie inside σ (this information will
be needed when σ is fully contained inside a circle of C). As before, we classify each arc of A ∪ B at a cell σ as long (resp.,
short) if the cell does not contain (resp., contains) an endpoint of the arc. It suffices to focus on long arcs, as short arcs can
be handled in much the same way as in Section 3.

As demonstrated in Section 3, this subtask—counting the number of intersections between long arcs inside a give cell
σ —is very easy for (long) segments, but is more challenging for circular arcs. Still, using the algorithm of Agarwal et al. [5],
this can be done, for the long arcs within each cell σ , in O (N3/2+ε

σ) time, for any ε > 0, where Nσ := |Aσ | + |Bσ |, and Aσ

(resp., Bσ) is the set of (long) arcs of A (resp., B) that cross σ . We have |Aσ |, |Bσ | ≤ g := n/r, so Nσ ≤ 2g .
At each bottom-level cell σ of the hierarchy of !, we need to construct, and preprocess for fast point location, the

arrangement A(P∗
σ), where P∗

σ is the set of all dual red-blue planes in R3 that are determined by an arc of Aσ and an arc
of Bσ .

We now use the machinery developed in Section 2. Here we need to perform orientation tests for quadruples of planes in
P∗

σ , and Fredman’s trick allows us to represent each such test as a sign test of some constant-complexity algebraic predicate
G in 24 variables, 12 variables for the parameters of the four circles of A participating in the test, and 12 variables for the
parameters of the four circles of B .

In more detail, each plane participating in the orientation test is dual to a point that is the intersection of 2 with some
line λa,b . There are at most two such points, but for such a point to actually materialize, it needs to belong to the two
arcs a, b. We assume for now that each of these arcs is long in σ (the other cases are much easier to handle). We first
need to distinguish between the two possible points, which differ by the sign of the square root in the solution of the
resulting quadratic equation. Once that is done, and the four intersection points participating in the orientation test have
been identified (there are up to 16 possible such identifications of the quadruple), the test itself is the sign test of a fixed
algebraic expression. However, in order for the sign test to be meaningful, we need to assert that each of the four relevant
points p (within the xy-plane) exist and lie in σ (since we assume that our arcs are long in σ , this suffices to ensure that
the two arcs do indeed intersect at p). See Fig. 4 for an illustration. Put together, all these constraints define our desired
predicate G , which clearly is of constant complexity.

We transform these tests into point-location tests of g4 points, formed by quadruples of circular arcs of A, in an ar-
rangement of g4 surfaces, formed by quadruples of circular arcs of B , in R12, or the other way around (since we will also
use duality, in which we flip the roles of A and B , so that the dual points are determined by quadruples of arcs of B and
the dual surfaces are determined by quadruples of arcs of A). Again, since the arcs are assumed to be long, specifying the
three real parameters that define the containing circle, and knowing σ , uniquely identifies the arc. (The intersection of an
arc with a cell σ does not have to be connected. If it is not connected, we treat each of its connected components as a
separate arc.)

We group together all these points and surfaces, over the O (r) = O (n/g) bottom-level cells of)A (for the points) and of
)B (for the surfaces) into single respective collections Q , 3, consisting of O ((n/g)1+ε g4) = O (n1+ε g3) points and surfaces,
respectively. (As just mentioned, and as we did in Section 3, we use duality, so we also treat Q as a collection of dual
surfaces and treat 3 as a collection of dual points in R12.) Adapting the machinery in Section 3.1 (see the remark at the
end of that section), we can solve the latter point-location problem in time

O
(
(n1+ε g3)24/13

)
= O

(
n24/13+2ε g72/13

)
,

for any ε > 0. Handling short arcs is simpler and is done analogously to the treatment in Section 3. From the output of
this procedure we can construct, using the random sampling machinery in Section 2.1, and at no extra cost in the algebraic

17

B. Aronov, M. de Berg, J. Cardinal et al. Computational Geometry: Theory and Applications 109 (2023) 101945

decision-tree model, a data structure for point location in A(P∗
σ), for each bottom-level cell σ of), where the cost of a

query is O (log g). Arguing as in the preceding section, each circle of C has to perform this search at only O (n1+ε/g) cells,
so the total cost of the point-location searches with the circles of C is O

(
n2+ε log g

g

)
. Roughly balancing this cost with the

preprocessing cost, we choose g := n2/85, and the overall cost of the procedure is the subquadratic bound of O
(
n168/85+2ε

)
,

for any ε > 0. Scaling ε, we obtain the following theorem:

Theorem 4.1. Given sets A, B, each of n pairwise disjoint circular arcs in the plane, and a set C of n circles in the plane, we can count,
for each circle c ∈ C , the number of intersection points of an A-arc with a B-arc that lie in the interior of c, in O

(
n2−2/85+ε

)
=

O
(
n168/85+ε

)
time, for any ε > 0, in the algebraic decision-tree model.

4.2. Points and lines in the plane: minimum distance problems

In the problem studied in this subsection we have two sets A, B , each of n points in the plane, and a third set C of n
lines in the plane, and the goal is to determine whether there exists a triple (a, b, c) ∈ A × B × C , such that c contains a
point x that satisfies some property involving dist(x, a) and dist(x, b). For a concrete example, to be expanded below, given
a prescribed parameter t > 0, determine whether any line c ∈ C contains a point whose sum of distances to its nearest
neighbor in A and its nearest neighbor in B is at most t . Equivalently, determine whether any c ∈ C intersects any ellipse of
major axis t whose pair of foci lie in A × B .

The problem, in detail. Let A and B be two sets, each of n points in the plane, and let C be a set of n lines in the plane.
Consider predicates of the form (where a and b are points, c is a line, and t is a real number)

π(a,b, c; t) := ∃x ∈ c | F (dist(x,a),dist(x,b)) ≤ t, (2)

where F is a constant-degree bivariate piecewise algebraic function that is monotone increasing in both variables, and dist
is the Euclidean distance. Typical examples are F (u, v) = u + v , F (u, v) = max{u, v}, or F (u, v) = u2 + v2. Our goal is to
determine whether there exists a triple (a, b, c) ∈ A × B × C such that π(a, b, c; t) holds. For example, when F (u, v) =
max{u, v}, the goal is to determine whether there exists a line of C that contains a point that lies at distance at most t
from a point of A and from a point of B . Similarly, when F (u, v) = u + v , the goal is to determine whether there exists a
line c ∈ C that intersects any ‘bichromatic’ ellipse of major axis t that is spanned by a focus in A and a focus in B . Problems
of this kind are special instances of facility location, where we want to determine whether there exists a line of C that
contains a point whose distance from A and distance from B satisfy some property. Alternatively, we can aim at reporting
all lines of C with this property.

Problems of this kind arise in instances where the points of A contain one type of resource (e.g., milk) and those of B
contain another type of resource (e.g., honey), and we want to find on each element c ∈ C , say a road, a location from
which access to a type-A resource and to a type-B resource is cheap, in a specific sense according to the measure we use
(maximum distance, sum of distances, and the like).

A more ambitious goal (but perhaps not that much more) would be to find the minimum value of t for which there
exist (a, b, c) ∈ A × B × C such that π(a, b, c; t) holds, or for which every c has a pair (a, b) such that π(a, b, c; t) holds. For
example, for F (u, v) = u + v , find the smallest major axis of a bichromatic ellipse of this kind that is crossed by some line
of C , or find the smallest major axis of a bichromatic ellipse so that every line of C crosses such an ellipse.

We will consider here only the former setup, in which t is prespecified. It seems likely that the problem of optimizing t
could be solved using parametric search.

The problems studied here can be generalized in several ways, for example by replacing the lines of C by constant-degree
algebraic curves, or by replacing the Euclidean distance by more general distance functions, but we will deal only with the
problem as formulated above.

For each triple (a, b, c) ∈ A × B × C , eliminate x from the expression in (2) that determines π(a, b, c; t), to obtain a
semi-algebraic region G(a, b; t) in the dual plane (in which lines are represented as points), of constant complexity, so that
c ∈ G(a, b; t) if and only if π(a, b, c; t) holds.

The algorithm. We present a solution for the above problem, that runs in (strictly) subquadratic time in the algebraic
decision-tree model.17 We remark that the problem can be solved in quadratic time in the uniform model, as follows from
the algorithm that we derive; see a comment below to this effect.

By the preceding discussion, we face the problem of point location (of the points dual to the lines of C) in the planar
arrangement A(G) of the set G of the ‘red-blue’ regions G(a, b; t), each being a semi-algebraic set of constant complexity,
and determined by a pair of a red point a ∈ A and a blue point b ∈ B . As with the previous problems, we cannot afford the
construction of the full arrangement, so we play Fredman’s trick, similar to, but in a somewhat different context than, the
technique in Section 3.

17 We believe that these are 3Sum-hard problems, although we have not yet established this property.

18

B. Aronov, M. de Berg, J. Cardinal et al. Computational Geometry: Theory and Applications 109 (2023) 101945

We take a random sample R A of r points from A, and a random sample R B of r points from B , construct their Voronoi
diagrams Vor(R A) and Vor(R B), and triangulate each cell of the diagrams by triangles emanating from the site of the cell.
We denote the resulting triangulated diagrams as)A and)B , respectively. Each triangulated diagram has complexity O (r).
Each cell τ of)A (resp., of)B) has an associated conflict list Aτ (resp., Bτ), of those points of A (resp., of B) that can
be closer to a point in τ than the site of τ . With high probability, the size of each conflict list is at most O

(n
r log r

)
. We

overlay)A and)B , and obtain a subdivision) of the plane, with O (r2) constant-complexity cells. (Here there is no need
for a hierarchical decomposition, like the ones used in Sections 3 and 4.1.)

Let σ be a cell of), formed by the intersection of a cell τ of)A and a cell τ ′ of)B , and let Aσ (resp., Bσ) be the
points of Aτ (resp., of Bτ ′) that can be closer to points in σ than the corresponding sites.

A line c ∈ C crosses only O (r) cells of). Within each such cell σ , each point x ∈ c ∩σ needs to find its nearest neighbor
ax in A, among the points of Aσ , and its nearest neighbor bx in B , among the points of Bσ , and then test whether there
exists x ∈ c ∩ σ such that F (dist(x, ax), dist(x, bx)) ≤ t . To do so, within each of these O (r) cells, we need to locate the dual
point c∗ of c in the arrangement A(Gσ), where18 Gσ := {G(a, b; t) | a ∈ Aσ , b ∈ Bσ }. More precisely, we need to determine
whether c∗ lies in any of these regions.

We now use the machinery developed in Section 2. Here we need to perform orientation tests for triples of boundary
curves of the sets G(a, b; t), for (a, b) ∈ ' := ⋃

σ (Aσ × Bσ). The curves bounding the regions G(a, b; t) are not necessarily
x-monotone and may be bounded. This requires some modification of the technique of Section 2.2, which, albeit technically
somewhat involved, are nonetheless rather straightforward conceptually, and we omit their details, in the interest of brevity.

The construction of the order type of the curves bounding the regions G(a, b; t) amounts to performing various tests,
each of which involves three pairs in ', plus some additional parameters that specify which curves we test and what the
two intersection points that we compare are. We employ Fredman’s trick, which transforms each such test, involving three
pairs (a1, b1), (a2, b2), (a3, b3), to testing whether the point (b1, b2, b3) ∈ R6 belongs to a certain semi-algebraic region
Q a1,a2,a3 , which consists of all points (u1, u2, u3) such that (a1, u1), (a2, u2), (a3, u3) satisfy the conditions in the test.
Glossing over some technical issues, this amounts to batched point location of O (ng2) points in an arrangement of O (ng2)
surfaces in R6. Applying the machinery in Section 3.1, this can be done in time O

(
n12/7+ε g24/7+ε

)
, for any ε > 0. This

allows us to construct the arrangements A(Gσ), over the cells σ , preprocess each of these arrangements for fast point
location, as in the preceding applications, at no extra cost in the decision-tree model.

As before, searching with the lines of C takes O
(

n2+ε

g log2 g
)

time, and balancing the two costs yields the earlier bound
O

(
n60/31+ε

)
, for any ε > 0. That is, we have

Theorem 4.2. Let A and B be two sets, each of n points in the plane, let C be a set of n lines in the plane, let F be a constant-degree
bivariate piecewise algebraic function that is monotone increasing in both variables, and let t be a real parameter. We can determine,
for each line c ∈ C whether it contains a point x that satisfies F (dist(x, a), dist(x, b)) ≤ t, where dist is the Euclidean distance. The
algorithm works in the algebraic decision-tree model, and takes O

(
n60/31+ε

)
time, for any ε > 0.

Remark. As promised, we note that the above algorithm can be adapted, in a much simplified form, to obtain a quadratic
algorithm for the problem in the uniform model. To do so, we construct the full Voronoi diagrams Vor(A) and Vor(B), and
form their triangulated overlay). This step takes O (n2) time. For each cell σ of), all its points have the same nearest
neighbor aσ in A and the same nearest neighbor bσ in B . Then, for each c ∈ C , we find the O (n) cells of) that c crosses,
and, for each such cell σ , we need to test whether c∗ lies in G(aσ , bσ ; t), an operation that takes O (1) time. The overall
cost of this step is also O (n2).

5. Discussion

As promised in the introduction, we make some comments on the differences between this work and the work of
Aronov et al. [6], which tackle problems that have some features in common. Both works use Fredman’s trick, implemented
by a batched range-search mechanism, in which objects in one input set form points and objects in another set form surfaces
in some suitable parametric space. However, the analysis in [6] works in the dual plane and uses hierarchical polynomial
partitioning for points (dual to the lines in the input). This mechanism works efficiently only in the special case where one
of the input sets consists of arbitrary points in the plane, and the other two sets are contained in one-dimensional curves. In
this work, we apply a decomposition in the primal plane (the plane of the segments), and use hierarchical cuttings, where
the crucial property in the analysis is that each set A, B consists of pairwise disjoint segments. This results in a special, low-
complexity structure, which our analysis exploits. In addition, we present a new primal-dual range searching mechanism,
exploiting and expanding the recent multi-level polynomial partitioning technique of [3]. This mechanism is fairly general
and we feel that it could be used in other range-searching applications, and is therefore of independent interest.

Another major difference is the use of order types to construct the various arrangements A('σ). The fact that each
comparison that we make involves only three objects of A and three of B , allows us to transform it into a test that involves

18 Actually, there is no need to filter away points from Aτ , Bτ ′ , to get Aσ , Bσ . Keeping all the points from each set does not affect the solution.

19

B. Aronov, M. de Berg, J. Cardinal et al. Computational Geometry: Theory and Applications 109 (2023) 101945

a point and a surface in six dimensions. In contrast, the standard technique, based on persistent data structures, calls for
sorting the vertices of A('σ) in the x-direction, and then each test involves a point and a surface in eight dimensions.
This makes the resulting range-searching machinery considerably less efficient. It is an interesting topic for further research
to find additional applications of this paradigm. Puzzlingly, the use of order types seems inapplicable to the most efficient
method presented in [6].

Finally, it would be interesting to modify our techniques so as to obtain (slightly) subquadratic algorithms for these
problems in the uniform model; see Chan [15].

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Data availability

No data was used for the research described in the article.

Acknowledgements

We thank Zuzana Patáková for helpful discussions on multilevel polynomial partitioning.

References

[1] Pankaj K. Agarwal, Partitoning arrangements of lines II: applications, Discrete Comput. Geom. 5 (1990) 533–573, https://doi .org /10 .1007 /BF02187809.
[2] Pankaj K. Agarwal, Simplex range searching, in: Martin Loebl, Jaroslav Nešetřil, Robin Thomas (Eds.), A Journey Through Discrete Mathematics, Springer,

2017, pp. 1–30.
[3] Pankaj K. Agarwal, Boris Aronov, Esther Ezra, Joshua Zahl, Efficient algorithm for generalized polynomial partitioning and its applications, SIAM J.

Comput. 50 (2) (2021) 760–787, https://doi .org /10 .1137 /19M1268550.
[4] Pankaj K. Agarwal, Jeff Erickson, Geometric range searching and its relatives, in: Bernard Chazelle, Jacob E. Goodman, Richard Pollack (Eds.), Advances

in Discrete and Computational Geometry, in: Contemp. Math., vol. 223, AMS Press, 1999, pp. 1–56.
[5] Pankaj K. Agarwal, Marco Pellegrini, Micha Sharir, Counting circular arc intersections, SIAM J. Comput. 22 (4) (1993) 778–793, https://doi .org /10 .1137 /

0222050.
[6] Boris Aronov, Esther Ezra, Micha Sharir, Testing polynomials for vanishing on Cartesian products of planar point sets: collinearity testing and related

problems, Discrete Comput. Geom. (2022), https://doi .org /10 .1007 /s00454 -022 -00437 -1, in press. Also in 36th International Symposium on Computa-
tional Geometry, SoCG 2020, pp. 8:1–8:14, https://doi .org /10 .4230 /LIPIcs .SoCG .2020 .8.

[7] Luis Barba, Jean Cardinal, John Iacono, Stefan Langerman, Aurélien Ooms, Noam Solomon, Subquadratic algorithms for algebraic 3Sum, Discrete Comput.
Geom. 61 (4) (2019) 698–734, https://doi .org /10 .1007 /s00454 -018 -0040 -y.

[8] Saugata Basu, Richard Pollack, Marie-Françoise Roy, Algorithms in Real Algebraic Geometry, 2nd edition, Algorithms and Computation in Mathematics,
vol. 10, Springer, 2006.

[9] Michael Ben-Or, Lower bounds for algebraic computation trees (preliminary report), in: Proceedings of the 15th Annual ACM Symposium on Theory of
Computing, 1983, pp. 80–86, https://doi .org /10 .1145 /800061.808735.

[10] Mark de Berg, Otfried Cheong, Marc J. van Kreveld, Mark H. Overmars, Computational Geometry: Algorithms and Applications, 3rd edition, Springer,
2008, https://www.worldcat .org /oclc /227584184.

[11] Mark de Berg, Otfried Schwarzkopf, Cuttings and applications, Int. J. Comput. Geom. Appl. 5 (4) (1995) 343–355, https://doi .org /10 .1142 /
S0218195995000210.

[12] Jürgen Bokowski, Simon King, Susanne Mock, Ileana Streinu, The topological representation of oriented matroids, Discrete Comput. Geom. 33 (4) (2005)
645–668, https://doi .org /10 .1007 /s00454 -005 -1164 -4.

[13] Jürgen Bokowski, Susanne Mock, Ileana Streinu, On the Folkman-Lawrence topological representation theorem for oriented matroids of rank 3, Eur. J.
Comb. 22 (5) (2001) 601–615, https://doi .org /10 .1006 /eujc .2000 .0482.

[14] Jean Cardinal, John Iacono, Aurélien Ooms, Solving k-SUM using few linear queries, in: 24th Annual European Symposium on Algorithms, ESA 2016,
in: LIPIcs, vol. 57, 2016, pp. 25:1–25:17, https://doi .org /10 .4230 /LIPIcs .ESA.2016 .25.

[15] Timothy M. Chan, More logarithmic-factor speedups for 3Sum, (median, +)-convolution, and some geometric 3Sum-hard problems, ACM Trans. Algo-
rithms 16 (1) (2020) 7:1–7:23, https://doi .org /10 .1145 /3363541.

[16] Timothy M. Chan, Da Wei Zheng, Hopcroft’s problem, log-star shaving, 2D fractional cascading, and decision trees, in: Proceedings of the 2022 ACM-
SIAM Symposium on Discrete Algorithms, (SODA’22), 2022, pp. 190–210, arXiv:2111.03744, https://doi .org /10 .1137 /1.9781611977073 .10.

[17] Bernard Chazelle, Herbert Edelsbrunner, Leonidas J. Guibas, Micha Sharir, Algorithms for bichromatic line-segment problems and polyhedral terrains,
Algorithmica 11 (2) (1994) 116–132, https://doi .org /10 .1007 /BF01182771.

[18] Bernard Chazelle, Leonidas J. Guibas, Fractional cascading: I. A data structuring technique, Algorithmica 1 (2) (1986) 133–162, https://doi .org /10 .1007 /
BF01840440.

[19] Herbert Edelsbrunner, Leonidas J. Guibas, Jorge Stolfi, Optimal point location in a monotone subdivision, SIAM J. Comput. 15 (2) (1986) 317–340,
https://doi .org /10 .1137 /0215023.

[20] Esther Ezra, Sariel Har-Peled, Haim Kaplan, Micha Sharir, Decomposing arrangements of hyperplanes: VC-dimension, combinatorial dimension, and
point location, Discrete Comput. Geom. 64 (1) (2020) 109–173, https://doi .org /10 .1007 /s00454 -019 -00141 -7.

[21] Ezra Esther, Micha Sharir, A nearly quadratic bound for point-location in hyperplane arrangements, in the linear decision tree model, Discrete Comput.
Geom. 61 (4) (2019) 735–755, https://doi .org /10 .1007 /s00454 -018 -0043 -8.

[22] Jon Folkman, Jim Lawrence, Oriented matroids, J. Comb. Theory, Ser. B 25 (2) (1978) 199–236, https://doi .org /10 .1016 /0095 -8956(78)90039 -4.
[23] Anka Gajentaan, Mark H. Overmars, On a class of O (n2) problems in computational geometry, Comput. Geom. 5 (1995) 165–185, https://doi .org /10 .

1016 /0925 -7721(95)00022 -2.
[24] Omer Gold, Micha Sharir, Improved bounds for 3SUM, k-SUM, and linear degeneracy, in: 25th Annual European Symposium on Algorithms, ESA 2017,

in: LIPIcs, vol. 87, 2017, pp. 42:1–42:13, https://doi .org /10 .4230 /LIPIcs .ESA.2017.42.

20

https://doi.org/10.1007/BF02187809
http://refhub.elsevier.com/S0925-7721(22)00088-8/bib13DD5366ED5F0098F6F581B7B8F24A1Fs1
http://refhub.elsevier.com/S0925-7721(22)00088-8/bib13DD5366ED5F0098F6F581B7B8F24A1Fs1
https://doi.org/10.1137/19M1268550
http://refhub.elsevier.com/S0925-7721(22)00088-8/bibEA8A1A99F6C94C275A58DCD78F418C1Fs1
http://refhub.elsevier.com/S0925-7721(22)00088-8/bibEA8A1A99F6C94C275A58DCD78F418C1Fs1
https://doi.org/10.1137/0222050
https://doi.org/10.1137/0222050
https://doi.org/10.1007/s00454-022-00437-1
https://doi.org/10.4230/LIPIcs.SoCG.2020.8
https://doi.org/10.1007/s00454-018-0040-y
http://refhub.elsevier.com/S0925-7721(22)00088-8/bib13A95F0CA973CEEA8A2399D87329C9D8s1
http://refhub.elsevier.com/S0925-7721(22)00088-8/bib13A95F0CA973CEEA8A2399D87329C9D8s1
https://doi.org/10.1145/800061.808735
https://www.worldcat.org/oclc/227584184
https://doi.org/10.1142/S0218195995000210
https://doi.org/10.1142/S0218195995000210
https://doi.org/10.1007/s00454-005-1164-4
https://doi.org/10.1006/eujc.2000.0482
https://doi.org/10.4230/LIPIcs.ESA.2016.25
https://doi.org/10.1145/3363541
https://doi.org/10.1137/1.9781611977073.10
https://doi.org/10.1007/BF01182771
https://doi.org/10.1007/BF01840440
https://doi.org/10.1007/BF01840440
https://doi.org/10.1137/0215023
https://doi.org/10.1007/s00454-019-00141-7
https://doi.org/10.1007/s00454-018-0043-8
https://doi.org/10.1016/0095-8956(78)90039-4
https://doi.org/10.1016/0925-7721(95)00022-2
https://doi.org/10.1016/0925-7721(95)00022-2
https://doi.org/10.4230/LIPIcs.ESA.2017.42

B. Aronov, M. de Berg, J. Cardinal et al. Computational Geometry: Theory and Applications 109 (2023) 101945

[25] Jacob E. Goodman, Richard Pollack, Multidimensional sorting, SIAM J. Comput. 12 (3) (1983) 484–507, https://doi .org /10 .1137 /0212032.
[26] Jacob E. Goodman, Richard Pollack, Semispaces of configurations, cell complexes of arrangements, J. Comb. Theory, Ser. A 37 (3) (1984) 257–293,

https://doi .org /10 .1016 /0097 -3165(84)90050 -5.
[27] Allan Grønlund, Seth Pettie, Threesomes, degenerates, and love triangles, J. ACM 65 (4) (2018) 22:1–22:25, https://doi .org /10 .1145 /3185378.
[28] David Haussler, Emo Welzl, ε-nets and simplex range queries, Discrete Comput. Geom. 2 (1987) 127–151, https://doi .org /10 .1007 /BF02187876.
[29] Daniel M. Kane, Shachar Lovett, Shay Moran, Near-optimal linear decision trees for k-SUM and related problems, J. ACM 66 (3) (2019) 16:1–16:18,

https://doi .org /10 .1145 /3285953.
[30] D.T. Lee, Franco P. Preparata, Location of a point in a planar subdivision and its applications, SIAM J. Comput. 6 (3) (1977) 594–606, https://doi .org /10 .

1137 /0206043.
[31] Jiří Matoušek, Zuzana Patáková, Multilevel polynomial partitions and simplified range searching, Discrete Comput. Geom. 54 (1) (2015) 22–41, https://

doi .org /10 .1007 /s00454 -015 -9701 -2.
[32] Stefan Meiser, Point location in arrangements of hyperplanes, Inf. Comput. 106 (2) (1993) 286–303, https://doi .org /10 .1006 /inco .1993 .1057.
[33] Neil Sarnak, Robert Endre Tarjan, Planar point location using persistent search trees, Commun. ACM 29 (7) (1986) 669–679, https://doi .org /10 .1145 /

6138 .6151.
[34] Jack Snoeyink, Point location, in: J.E. Goodman, J. O’Rourke, C.D. Tóth (Eds.), Handbook of Discrete and Computational Geometry, 3rd edition, CRC Press,

2008, pp. 1005–1028.
[35] V.V. Williams, On some fine-grained questions in algorithms and complexity, in: Procs. International Congress of Mathematicians, 2018, pp. 3447–3487,

https://doi .org /10 .1142 /9789813272880 _0188.

21

https://doi.org/10.1137/0212032
https://doi.org/10.1016/0097-3165(84)90050-5
https://doi.org/10.1145/3185378
https://doi.org/10.1007/BF02187876
https://doi.org/10.1145/3285953
https://doi.org/10.1137/0206043
https://doi.org/10.1137/0206043
https://doi.org/10.1007/s00454-015-9701-2
https://doi.org/10.1007/s00454-015-9701-2
https://doi.org/10.1006/inco.1993.1057
https://doi.org/10.1145/6138.6151
https://doi.org/10.1145/6138.6151
http://refhub.elsevier.com/S0925-7721(22)00088-8/bibF33A04EA301E21E40801FF393CD96E04s1
http://refhub.elsevier.com/S0925-7721(22)00088-8/bibF33A04EA301E21E40801FF393CD96E04s1
https://doi.org/10.1142/9789813272880_0188

	Subquadratic algorithms for some 3Sum-hard geometric problems in the algebraic decision-tree model
	1 Introduction
	2 Order-type--based point location in arrangements
	2.1 Sampling-based approach for hyperplane arrangements
	2.2 Level-based approach for order-type--based point location in x-monotone curves in the plane

	3 The algorithm for within-triangle intersection counting
	3.1 The batched point-location step
	3.2 Wrapping up

	4 Extensions
	4.1 Circular arc intersection counting
	4.2 Points and lines in the plane: minimum distance problems

	5 Discussion
	Declaration of competing interest
	Data availability
	Acknowledgements
	References

