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Abstract

We propose novel randomized optimization methods for high-dimensional convex problems based on restrictions of variables to
random subspaces. We consider oblivious and data-adaptive subspaces and study their approximation properties via convex duality
and Fenchel conjugates. A suitable adaptive subspace can be generated by sampling a correlated random matrix whose second
order statistics mirror the input data. We illustrate that the adaptive strategy can significantly outperform the standard oblivious
sampling method, which is widely used in the recent literature. We show that the relative error of the randomized approximations
can be tightly characterized in terms of the spectrum of the data matrix and Gaussian width of the dual tangent cone at optimum.
We develop lower bounds for both optimization and statistical error measures based on concentration of measure and Fano’s
inequality. We then present the consequences of our theory with data matrices of varying spectral decay profiles. Experimental
results show that the proposed approach enables significant speed ups in a wide variety of machine learning and optimization
problems including logistic regression, kernel classification with random convolution layers and shallow neural networks with

rectified linear units.

Index Terms
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I. INTRODUCTION

IGH-dimensional optimization problems are becoming ever more common in applications such as computer vision,
H natural language processing, robotics, medicine, genomics, seismology or weather forecasting, where the volume of the
data keeps increasing at a rapid rate. It is also standard practice to use high-dimensional representations of data measurements
such as random Fourier features [2] or pre-trained neural networks’ features [3], [4]. In this work, we are interested in solving
a convex optimization problem of the form

. . A2
x*:= argmin {F(x) = f(Ax) + ||a:||2} , (1)
z€R4 2
where A € R™*? is a data matrix and f is a convex function. Such convex optimization problems are typically formulated to
fit a linear prediction model, or, they may occur as the subroutine of an optimization method, e.g., proximal optimization [5];
prox-linear method for convex-smooth composite objectives [6]. Moreover, several standard non-convex neural network training

problems can be equivalently stated as convex optimization problem in higher dimensions [7]-[10]. In the large-scale setting
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d > 1, random projections are an effective way of performing dimensionality reduction [11]-[16], and the common practice
is to employ oblivious sampling or sketching matrices, which are typically randomized and fixed ahead of time. Furthermore,
sketches can be iteratively applied [17]-[20] or averaged in independent trials [21]-[23] to reduce the approximation error.
However, it is not clear whether one can do better by adapting the sketching matrices to data. In fact, we will show that
adaptive sketching matrices can significantly improve the approximation quality of the optimal solution of a convex smooth
optimization problem, and we will characterize the recovery error in terms of the smoothness of the objective function and
the spectral decay of the data matrix. Furthermore, we establish lower-bounds on the performance of the oblivious sketch that
exhibit its fundamental limitations..

Although the oracle complexity of first-order optimization methods has the property of being dimension-free [24], the cost
of forming gradients and manipulating data matrices may be computationally prohibitive in large-scale settings, let alone
second-order methods involving hessian computations. As a result, many sketching-based algorithms [20], [25]-[28] have
been specifically designed to address the computational issues of the Newton method by reducing the cost of solving the
linear Newton system. The Newton sketch algorithm [20] addresses the case where n > d and f is separable, and solves an
approximate Newton system based on a sketch of the data matrix. Stochastic Dual Newton Ascent [25] requires knowledge of a
global upper bound on the Hessian and then solves an approximate Newton system using random principal sub-matrices of that
upper bound. The Randomized Subspace Newton (RSN) method [28] uses, at each iteration, an approximate descent direction
S(STHS)TSTg where ST is a m x d random embedding with m < d and H and g are respectively the Hessian and gradient at
the current iterate. The Randomized Block Cubic Newton method [26] addresses block-separable convex optimization problems
and combines the ideas of randomized coordinate descent [29] and cubic regularization [30].

In this work, we take a perspective which is agnostic to the optimization algorithm. Our goal is to formulate a low-dimensional
optimization problem of the form

a* € arguin { F(Sa) = f(450) + Fal3} @

acR™

where S is a d x m random embedding, and then to construct a (potentially nonlinear) recovery map ¢ : R™ — R? such that

Z:= ¢(a*) is a close approximation of z*, as measured by the relative recovery error

|7 — .
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The low-dimensional formulation (2) draws connections with the aforementioned randomized Newton methods: using the linear
reconstruction map () = Sa, the Newton method applied to (2) yields the update as 1 = c;—1; (ST V2F(S)S) STV EF(Say),
ie., Sazp1 = Say — 0 S(STV2F(Say)S) STV F(Sa;) which is the update of the RSN method. However, our perspective

is different, as one is free to use any optimization method to solve for a* and any reconstruction map .

Our approach falls within the scope of random subspace optimization methods, where we restrict the range of the optimization
variable to a random lower-dimensional subspace. In the context of convex smooth optimization, the authors of [31], [32]
propose to project the d-dimensional features of the data matrix A using an oblivious random embedding S € R%*™  chosen
independently of the data. Based on the solution af of a low-dimensional optimization problem similar to (2), they compute
the dual solution y* = V f (ASa}‘) and then set 7:= —\~!ATy*. Interestingly, the resulting recovery error is smaller than the
error of the linear estimator .S oz?:, although these guarantees hold under some arguably restrictive assumptions (e.g., low-rank

data matrix A, or, * approximately lies in the span of the top singular vectors of A). On the other hand, such a linear estimator



has been considered in [33] in the context of generalization bounds for empirical risk minimization of convex Lipschitz loss
functions. They use an adaptive (data-dependent) random embedding S of the form S = ATS, where S is itself oblivious.
The authors study the generalization error of the approximate solution, and relate it to the norm of the tail singular values of
A. Our approach draws connections with these two works: similarly to [33], we will consider adaptive random embeddings
of the form S = AT S; similarly to [31], [32], we will consider a non-linear dual mapping ¢ and study the recovery error of
p(a*). As for the intriguing connection between the RSN method and the linear recovery map ¢(«) = Sa, the dual recovery
map has been shown [34] to be equivalent to the Hessian sketch [35] applied to the Fenchel dual program.

The dual recovery map has also been analyzed in the specific context of sparse recovery. The authors of [31], [32] establish
that, with an oblivious random embedding S, accurate recovery is guaranteed for a sketch size scaling at least as the sparsity
level of z* (i.e., its number of non-zero entries), under the assumption that the support set of z* includes the most important
coordinates of the data matrix (see Theorem 4 in [32]). In the context of support vector machines (SVM) classification where
the dual solution may be sparse (as measured by the number of support vectors), the authors of [36], [37] propose to add
a sparsity-promoting regularization term to the dual of the low-dimensional problem (2), and provide recovery guarantees in
terms of the sparsity of the dual solution.

Besides accurate recovery in convex smooth optimization through a low-dimensional formulation, random subspace optimiza-
tion with oblivious embeddings has been used and analyzed for SVM-classification and the preservation of margins [38]-[40],
for large-scale trust region problems with oblivious embeddings [41], for scaling up linear systems solvers [42] and for
statistically optimal prediction through kernel ridge regression [43]. In the latter work, the authors approximate an empirical
kernel matrix K by sketching its columns with an oblivious embedding S. For a kernel based on a finite-dimensional feature
space, i.e., K = DT, the sketch K S satisfies KS = ®S where S = &S, Hence, this corresponds to a sketch of the data
matrix ® with the adaptive embedding S.

Adaptive embeddings of the form S = ATS (where S is itself oblivious) are reminiscent of randomized low-rank approx-
imations methods [44]-[47]. More precisely, let us denote Pg:= S(STS)'ST the linear projector onto the range of S and
Pé- := I — Pg the projector onto its orthogonal complement. Then, for commonly used embeddings S € R™™ guch as

Gaussian or the subsampled randomized Hadamard transform (SRHT), it holds with high probability that

1
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where A,, is the best rank-m approximation of A. Unsurprisingly, the aforementioned generalization error guarantees based on

1P5 ATll2 < 1A = A2 +

adaptive sketching proposed in [33] depend on S through the critical quantity ||P§-AT |l2, and so do the guarantees we develop
in this manuscript. In other words, our randomized adaptive subspace optimization method is an approximate way of restricting
the optimization variable to the span of the top m singular vectors of A. Naturally, using the deterministic embedding S = V,,,,
where V,,, is the matrix of top m right singular vectors of A, could yield stronger guarantees than our adaptive sketch method.
However, there are strong computational benefits in using a randomized embedding [44] instead of an exact singular value
decomposition (SVD) algorithm, and the right combination of this randomized method along with the dual recovery map is
not yet understood in the case of convex smooth optimization.

Our work relates to the considerable amount of literature on randomized approximations of high-dimensional kernel matrices
K. A popular approach consists of building a low-rank factorization of the matrix K, using a random subset of its columns [48]—

[51]. The so-called Nystrom method has proven to be effective empirically [52], and many research efforts have been devoted



to improving and analyzing the performance of its many variants (e.g., uniform column sub-sampling, leverage-score based
sampling), especially in the context of regularized regression [53]-[55]. For conciseness of this manuscript, we will not consider

explicitly column subsampling matrices, although most of our results may extend to them.

A. Notations and assumptions

We work with a data matrix A € R"*¢ and we refer to n as the sample size and d the features’ dimension. We denote by
p < min{n, d} the rank of A, and by o1 209 > ... > o, > 0 its non-zero singular values. Given an embedding S € Rdxm
we define the linear projector Ps onto the range of S and the linear projector P5+ onto the orthogonal complement of the

range of S as
Pg:=S(STS)TST, Pg:=1I,— Ps, (5)

where the superscript T denotes the pseudo-inverse. For a matrix M € RP*? with arbitrary dimensions p, ¢ > 1, we denote
by || M|z its operator norm (i.e., its largest singular value), and by ||M||r its Frobenius norm. For a real number 1 > 1, we
denote the L,-norm of a vector w € R as ||wl|,, = (}7_, \wi|")%’, and the corresponding unit L,-ball as B := {w € R? |
|lw|l; < 1}. We introduce several measures of the size of a set 7' C R?: its radius is rad(T") := sup,cr ||t||2, its diameter is
diam(T):= sup, e ||t — '|2, and its Gaussian width is

w(T) = Eg{sup , g>} , ©)

teT
where g ~ N(0, I,).
We work with a real-valued objective function f which is defined over R™. Unless stated otherwise, we will assume the

function f to be convex, differentiable and p-strongly smooth for some p > 0, i.e.,

IVf(y) = V@)llz < p-lly — zl2 (7

for any x,y € R™. We introduce the convex (or Fenchel) conjugate of f, defined as

f*(z):= sup {{w,2) — f(w)} . (8)

weRn

We recall a few results from convex analysis (we refer the reader to the books [56], [57] for more background and details).
The domain of f* is defined as dom f*:= {z € R" | f*(z) < +oo} and is a closed convex set. The function f* is convex.
Smoothness of f implies that f* is (1/u)-strongly convex, i.e., (¥ — 2,9y — g2) = ;% - |ly — z||3 for any y, z € dom f* and
for any g, € 0f*(y) and g, € 0f*(z), where 0f*(-) denotes the subgradient operator of f*. We denote by int dom f* the
interior of the domain of f*.

We work with an arbitrary regularization parameter A > 0. For comparing our guarantees with other methods, we will
typically assume that % is within the range of the eigenvalues of the matrix AAT, ie., % ~ o2 for some threshold rank
1 < K < p. This corresponds to a common (or desirable) choice of A in practice, when the goal is either to improve the
condition number of the primal program (1) for numerical stability purposes (a.k.a. Tikhonov regularization), or, to discard the
effect of the small singular values of A (i.e., noise) for statistical estimation (a.k.a. £o-shrinkage).

For arbitrary dimensions p < ¢, we say that U € RPX9 is a (partial) Haar matrix in R? if UU T = I,, and the range of U is

uniformly distributed among the p-dimensional subspaces of RY.



B. Randomized sketches

Given a dimension p € {n,d} and a sketch size m < p, we work with two oblivious classes of m-dimensional random
embeddings S € RP*™ namely, Gaussian embeddings with independent and identically distributed (i.i.d.) Gaussian entries
Sij ~N(0,1/m), and, the SRHT [58]-[61], defined as S = /£ -D-H-R where R € RP*™ is a column subsampling matrix,

D € RP*P js a diagonal matrix with independent entries uniformly sampled from {£1} and H € RP*? is the Walsh-Hadamard

H H
transform. The k-th Walsh-Hadamard transform H = H), is obtained by the recursion Hy = [1] and Hy 1 = b F R
H, —Hy

so that the dimension of Hj is 2% x 2F. This requires the dimension p to be a power of 2. If not, a standard practice for
sketching a matrix M with p columns is to form the matrix M = [M, 0] which has an additional number of p — p columns
filled with zeros, where p is the smallest power of 2 greater than p (note that p < 2p), and to use the sketch MS with a SRHT
S € RPX™ For conciseness, in our formal statements involving a SRHT, we will implicitly assume that the relevant dimension
p is a power of 2, although this does not restrict the applicability of our results thanks to the aforementioned zero-padding
trick. In contrast to a Gaussian embedding, the SRHT verifies the orthogonality property S'S = L. I . Furthermore, the
recursive structure of the Walsh-Hadamard transform enables fast computation of a sketch M S, in time O(nnz(M)logm)
where nnz (M) is the number of non-zero entries of M (see, for instance, [45] for details), as opposed to a Gaussian embedding

which requires time O(nnz(M)m) (using classical matrix multiplication).

C. Oblivious vs Adaptive Sketches

Data adaptive sketches of the form S = AT§, where S is an oblivious sketching matrix, aim to mirror the correlation
structure of the original data matrix A. For instance, for a Gaussian embedding S, we observe that the columns of S = ATS
are distributed as S; ~ N'(0, AT A). Furthermore, in many statistical applications, assuming that the rows of A are independent
(and normalized) data sample vectors in R<, the matrix AT A corresponds to the d x d empirical covariance matrix. Therefore,
one can expect the adaptive sketch to provide a more faithful summary of the data. However, this increased accuracy comes

with the price of an additional pass over the dataset to compute the product AT S, which is typically negligible.

II. AN OVERVIEW OF OUR CONTRIBUTIONS

We introduce the Fenchel dual of the primal program (1),

1
2" € argmin {f*<z> ; |ATz|§} 7 ©)
e 2

and the Fenchel dual of the sketched primal program (2),

y* € argmin § f*(y) + 5+ PsATyl5 ¢ - (10)

yeR" 27
Proposition 1 (Strong Fenchel duality). There exist a unique primal solution x* € R? to (1) and a unique dual solution
z* € dom f* to (9), and these solutions are related through the Karush-Kuhn-Tucker (KKT) conditions x* = —AT)\Z* and

z* = Vf(Ax*). If the function f is strictly convex, then z* € int dom f*.

Proposition 2 (Strong Fenchel duality on sketched program). There exist a sketched primal solution o* € R™ to (2) and a

sketched dual solution y* € dom f* to (10), and these solutions are related through the KKT conditions ST Sa* = —w

and y* = V f(ASa*). If the function f is strictly convex, then y* € int dom f*.



Strong Fenchel duality is critical to understand the influence of the right-sketch AS on the high-dimensional problem (1).
By duality, the right-sketch is identical to employing a left-sketch Ps AT for the dual problem (10) where Pg = S(STS)7ST
is the range space projector of S. As it will be shown, the sketch is significantly more accurate when the adaptive embedding

S = ATS is employed.

A. Low-dimensional estimators

Based on a low-dimensional solution o* to (2), we focus on two candidate estimators of z*. The most natural candidate is

given by the linear mapping
7= Sa*, (11)

which we refer to as the zero-order estimator. On the other hand, the first-order optimality conditions z* = G (z*) where

Gi(z):= —3 ATV f(Az) suggest the estimator
70 .= GA(Sa™) (12)

and we refer to it as the first-order estimator of z*. We note that 1) = G (z(¥) = 2@ — 1VF(z(©), ie., the first-order

estimator Z() is the result of applying a gradient step correction to Z(°) with step size 1/\. Moreover, it holds that
o = -N"TTAT M = ATy (13)

In contrast to Z(?), the first-order estimator Z(1) is the result of a linear mapping of the sketched dual solution y*. Except for
a quadratic function f, this corresponds to a non-linear transformation of o*. The estimator Z(*) is computed solely based on
the sketched data matrix AS, whereas Z(!) uses an additional call to A through the mapping G5. These observations would

suggest a better performance for Z(1).

B. Main contribution

Our analysis involves a canonical geometric object in convex analysis, namely, the tangent cone of the domain of f* at the

dual solution z*, defined as
Tooi={t-(y—2") |t >0, y € domf*}. (14)

The tangent cone is the intersection of the supporting hyperplanes of the domain of f* at z*. A critical quantity in our error

guarantees is the maximal singular value Z; of the matrix PSLAT restricted to the spherical cap

Cor =T NBY (15)
and formally defined as

Zp:= sup |P3ATA. (16)

z

Our main result is the following deterministic upper bound on the relative recovery error of the first-order estimator (1),

which shows in particular that Z(1) has better performance than Z(°), at least by a factor one half.



Theorem 1 (Recovery error of the first-order estimator). Let S € R¥™ be an embedding matrix, and let o be a minimizer

of the sketched program (2). Under the condition \ > 2122, it holds that

120 — 2|, i ‘ { f<0>—x*||2}
2L Zp omind 1, —— 2 L (17)
ERE Vax =/ ERP

PEATA

Naturally, we have supac7.. ngp [P ATA|: < SUPAeBp 2, 1., Zy < ||PgAT|]2. When 2* is an extreme point
of the tangent cone 7, then one may expect 7« to have a small size and Z; < ||P¢ AT ||2. We discuss such instances in
Section III. On the other hand, when z* belongs to the interior of the domain of f*, then C,« = BY so that Z; = ||[Pg AT ||2. For
an adaptive embedding S = AT S, we can then leverage well-known upper bounds [44], [45] on the residual error HPSLAT Il2

of the form

where the spectral residual Rs(A) of the matrix A at level § > 0 is defined as

19)

As an immediate consequence, we establish in Theorem 2 in Section III high-probability upper bounds on the recovery error,

2 — g
M /S \/E Rm/2(A)7 (20)

12

provided that A 2 R ,(A).

C. Comparison to existing work and oblivious sketching

The recovery method most related to ours is based on the first-order estimator §§1) =G, (Qa}k) introduced in [31], [32], where
aj = argmin,cpn{f(AQa) + 3[|a/|3} and @ € R**™ is an oblivious embedding with i.i.d. Gaussian entries N'(0,1/m).
In contrast to (2), the regularization term does not involve the sketching matrix (), and this incurs performance guarantees

different from ours: under several stringent assumptions (see Theorem 6 in Section IV for details), a best-case upper bound

(1)
T
~(1 *
HI'(f ) — X ||2 < d/\/P« (21)
Iz~ Vom

where the effective dimension dy /,, — a critical quantity in many contexts for sketching-based algorithms [62]-[64] — is defined

on the recovery error of Z, ’ is given as

as

trace(Dy )
dy,, = ————2H (22)
M Dyl

and Dy, := A(%Id + AT A)~1AT. The characteristic measure of error for our adaptive estimator (1) is \/% - R,, 2(A) as

(1)

[d .. . ~ .
opposed to *7/‘ for the oblivious estimator zy . In Table I, we compare these two measures for spectral decays which are

common [43], [65] in machine learning, e.g., polynomial o; < j % or exponential o; =< e*%j, for some v > 0 (the proofs

. . . . . d .
of these results involve simple summations and we leave details to the reader). The ratio % scales in terms of m as

O(m™?2) regardless of the spectral decay, whereas the term V5 Ry j2(A) has the better scaling O(m~"%") for a polynomial

decay and O(e~"%") for an exponential decay.



TABLE I
COMPARISON OF THE CHARACTERISTIC MEASURES OF ERRORS FOR POLYNOMIAL AND EXPONENTIAL SPECTRAL DECAYS. WE ASSUME THAT
FOR SOME THRESHOLD RANK 1 < K < p, AND THAT m > 2K.

A

Ao 42
M,\UK

‘ Extimator Embedding ‘ Characteristic error ‘ Polynomial o; = j—HTV Exponential o; < e~ —vi
) m
2 (Ours) Adaptive, Gaussian ViEz(A4) (%) ? e ET0
2V ([31], [32]) | Oblivious, Gaussian 2/ \/g \/g

D. Statement of additional contributions

In addition to our main result (Theorems 1 and 2) on the recovery error of Z(!), we have the following contributions. In
Section III, by leveraging the equivalence between adaptive sketching of the data matrix A and oblivious sketching of the Gram
matrix AAT, we extend our results to kernel methods (Theorem 3). In Section IV, we establish lower bounds (Theorems 4
and 5) on the recovery error of the estimators Z(°) and Z(!) with oblivious embeddings. We show that these recovery errors
are bounded away from 0 unless m = d, which would defeat the purpose of sketching. In Section V, we provide a prototype
algorithm for adaptive sketching (Algorithm 1), and we show that our proposed low-dimensional formulation is at least as
numerically stable as the original program (1). Furthermore, we extend Algorithm 1 to an iterative version (Algorithm 2) with
the following guarantee (see Theorem 7). Based on a single sketch AS, it returns after 7" iterations a solution f(Tl ) which

satisfies with high probability

T

~(1 " 7

B0 oy _ (127
[[z* | 2A

. NN T 22
provided that A > 2MZJ%. Consequently, one can construct an approximation :vgpl ) with linear convergence rate l;—/\f based on

a single sketch of the data matrix A, a number 7" of matrix-vector multiplications of the form ATV f(-) (which is equivalent to
a gradient call to the function F'), and through solving a number 7" of low-dimensional optimization programs. In Section VI,
we extend our analysis to the case of a non-smooth objective function f. We show how to construct a first-order estimator z(*)

based on a low-dimensional optimization program and which satisfies the following high-probability guarantee (see Theorem 8),
~(1) 1
125 =22 S 5 - 2y 24)

Lastly, we show in Theorem 9 and Corollary 2 that, as A — 0, the zero-order estimator 7(® with an oblivious embedding

achieves the minimax rate of optimality for a fundamental statistical problem, namely, estimating the mean of a Gaussian
. . . 2 . . . .

distribution NV'(Axp, %-I,,) under the smoothness assumption ||z ||2 < 1. In contrast to our main results, this suggests different

benefits of the linear reconstruction map and oblivious embeddings for small values of the regularization parameter .

ITII. SMOOTH, CONVEX OPTIMIZATION IN ADAPTIVE RANDOM SUBSPACES
A. Restricted singular value with adaptive random embeddings
According to Theorem 1, the relative recovery error depends on the restricted singular value Z;, and we provide next an
upper bound on Z; in the case of an adaptive Gaussian embedding. Let A = U Y VT be a thin a singular value decomposition

of A, where U € R™*P and V € R%*? have orthonormal columns, and ¥ € RP*” is the diagonal matrix of the non-

zero singular values of A in non-increasing order. For a given target rank 1 < k < 4, we define Xy := diag{o1,..., 01},



Y,k := diag{o)41,...,0,}, the matrix Uy, € R"*¥ with the first k columns of U and U,_;, € R"*(*=k) with its last (p— k)

columns.

Lemma 1 (Restricted singular value with adaptive embeddings). Let S = ATS where S € R™™ has i.i.d. Gaussian entries

and m = 2k for some target rank 1 < k < g Then, it holds that
2y <) rad(UL C) - Ri(A) + sup [5,-iU 1Al (25)
eC =

with probability at least 1 — 6e~*, where ¢!

o Is a universal constant which satisfies c; < 25. This implies in particular that,

with probability at least 1 — 6e™F,
<|PgAT |2 < - Ri(A), (26)

where cg4 is a universal constant which satisfies cg < 26.

The upper bound (25) on Z; involves the quantities rad(U, C.-) and supacc_. ||Ep_kUpT7 1All, which are deterministic
(they do not depend on the randomness of .S). These quantities depend on the coupling between the matrix U and the spherical
cap C,~ which may vary based on the problem at hand. Under some (idealized) assumptions, we are able to characterize their

typical values, and thus a bound on Z; which decouples A and the spherical cap C.-

Lemma 2. We assume the matrix U € R"*? of left singular vectors of A to be a random Haar matrix in R", and the dual

solution z* to be independent of U. Under the hypotheses of Lemma 1, there exists universal constants cg,c1,co > 0 such that

w(Ce) +vm
N

Zy<co- Ry2(A), (27)

cam

with probability at least 1 — cie™

(Cex)

The upper bound on the ratio % decreases down to “’le as m decreases down to w?(C.~), and then

plateaus at “(5% ). The smaller the Gaussian width w(C,~), the more favorable the statistical-computational trade-off in terms

w(Cx)+vVm
N

of the sketch size. For instance, suppose that the domain of f* is the Li-ball (e.g., {-regression; see Example 2), and
denote by s* the number of non-zero entries of the dual solution z*. It is known (see, for instance, Section 2.2.2 in [16]) that

C,- C {A eR™ | |AlL € 2\/>} and thus, w(C,+) < v/s* - logn. Consequently,

V& Togn + Vim
f

The inequality ||Pg AT || < ¢,Ri(A) in (26) is well-known: it is in fact a simplified statement of the result of Corollary 10.9

Z<

Ry y2(4). (28)

in [44]. We do not aim to derive a high-probability bound on Z; with the SRHT as this would involve a different machinery

of technical arguments, but a high-probability bound on ||PsAT || already exists in the literature.

Lemma 3 (SRHT spectral residual [45]). Let k > 2 be a target rank and pick the sketch size m:= 19(v/k+4+/Togn)? log(kn).
Let S = ATS where S € R"™™ is a SRHT. Then, it holds with probability at least 1 — 3 that |Pg AT |, < cs - Rip(A) for

some universal constant cg < 5.

Gaussian width based results established in this section complement the analysis of left-sketching in terms of the Gaussian
width of the tangent cone [35]. However, the results are quite different due to the extra regularization terms, the projection

matrix Pg appearing in the dual problem and the effect of the spectral residual term Ry (A).



B. Recovery error in randomized adaptive random subspaces
Combining the upper bound (17) on the recovery error of Z(!) along with the results of Lemmas 1 and 3, we obtain the

following high-probability guarantees in terms of the spectral residual of A.

Theorem 2 (High-probability upper bound on Z(!) with adaptive sketching). For a Gaussian embedding, under the hypotheses
of Lemma 1 and provided that \ > QMCSRz (A), it holds with probability at least 1 — 6e™* that

|20 —ally _ [eGn nd 1 BV ="
2 </ L Rp(A) -ming 1, =2 5 (29)
T, 21 Tl

For a SRHT embedding, under the hypotheses of Lemma 3 and provided that \ > Qﬂchi (A), it holds with probability at

least 1 — % that

Hf(l) - x*Hz 02# . ||£(O) - x*||2
=2y o JSE Ra). I Sl P 30
T, oy k(A ming L 7me (0

The regime \/u < R?(A) corresponds to a sketch size which is too small relatively to the regularization parameter A and
the spectral decay of A. In this regime, it can be shown that ”5(“1;%‘2“2 < & - Ri(A), and this is a weaker bound for small

values of %

C. Extension to kernel methods
The first-order optimality conditions z* = —A\"' ATV f(Az*) yield that z* € range(A ). Therefore, the primal program (1)
can be solved through the kernel formulation

A
w* € argmin {f(Kw) + 2wTKw} , (31)
weR™

where K = AAT, and then setting =* = ATw*. Given an embedding = R™*™  we consider the sketched version of (31),

aj; € argmin {f(Kga) + ;\aTgTKga} . (32)

aER™

The sketched program (32) is equivalent to (2) with the adaptive embedding S = ATS, ie., of = o and M) = ATgW
where @1 ;= —\"1Vf (K 504}(). In other words, we have equivalence between adaptive sketching of the data matrix A
and oblivious sketching of the Gram matrix K. This equivalence naturally extends to any kernel method with a smooth loss
function. We recall the concepts necessary to the exposition of our results, and we refer the reader to the books [65]-[67]
for more details and background. Given a measurable space ) endowed with a probability distribution P, we consider the
space L2(£2,P) of real-valued functions over {2 which are square-integrable with respect to P, and we let H C L%(,P)
be a reproducing kernel Hilbert space (RKHS) with reproducing kernel K :  x @ — R and associated norm || - ||3. Given
wi,...,w, €, we aim to solve the (infinite-dimensional) kernel program h* := argminy, ¢y, f({h(w;)};) + 5 ||h]|3,. This
kernel program occurs in many widely used machine learning contexts (e.g., kernel ridge regression, kernel support vector
machines with smooth hinge loss or kernel logistic regression). The representer theorem [68] states that h* belongs to the
span of the functions K(-,w1),...,K(-,wy), ie., there exists w* € R™ such that h* = Y | K(-,w;)w}, and one can solve
instead the finite-dimensional program (31) with the empirical kernel matrix K := {K(w;,w;)}; ;. Based on a low-dimensional

solution o, to (32), we define the zero- and first-order estimators of h* as h(©) = S K(~,wi)@§0) where ©(*) := §a}‘(,



and, KD := " K (- w) @) where @) := A1V f(KSa%). Let K}, be a square-root of K, i.e., K = K, KT, and we

introduce its corresponding restricted singular value

— g T
ZﬁK.— Aselé[z)* || KTS’Kh AHQ (33)

where 2} := argmin, {f*(2) + 552 Kz}. We recall that || > | K(-,w;)w;|lx = Vw Kw for any w € R™. We obtain the

following recovery guarantee as a function of the spectral decay of Z; .

Theorem 3. Let S € R"*™ be an embedding matrix, and let o be a minimizer of the sketched kernel program (32). Under

the condition \ > ZMZJ%’K, it holds that

[P — bl [ B R Y
— < —-Z, -ming 1, ———— > . (34)
17| on K [

Proof. Define z* := argmin, f(K,z) + 3||z||3, and S := KTg. Note that af € argmin,cpm f(KpSa) + 3[|Sall3. Set
D g
M = ALKV f(KpSaj) and 2% = Sa’,. Then, using the results of Theorem 1 with A = K}, we obtain 20—, o

lz=1l,
20) g ~
Vax 21K mln{l I ‘Tﬂu 2 } provided that A > QMnyK. We conclude by using the identities |[2()) — h* || = 12V — %o,
1R = h*llay = 3 — 2% and [|h* ][5 = [[*]|2- O

Similarly to Theorem 2, the results of Theorem 3 along with the concentration bounds in Lemmas 1 and 3 yield high-
probability bounds on the recovery error ”?L(Hl%ﬁ{”” in terms of the spectral decay of the kernel class /C. Typical decays
encountered in practice are polynomial (e.g., Sobolev kernel) and exponential (e.g., Gaussian kernel).

Oblivious sketching of kernel matrices with Gaussian embeddings or the SRHT has already been considered in [43], in the

context of kernel ridge regression: the authors analyze the statistical performance of the zero-order estimator A(®) as measured

by the in-sample predictive norm \/ S (Tz(wz) — h*(w;))?. We contribute to this set of results by showing that the first-order
estimator A1) has better recovery error than 1(® in the RKHS norm. We leave as an open problem a more extensive comparison

of R and 2(© in the predictive norm.

IV. SMOOTH, CONVEX OPTIMIZATION IN OBLIVIOUS RANDOM SUBSPACES
A. Limited performance of T and ) with oblivious sketching
We first provide an upper bound on the restricted singular value Z; for an oblivious Gaussian embedding, which is

significantly weaker than in the adaptive case.

Lemma 4 (Restricted singular value with oblivious embeddings). Let S € R™™ be a matrix with i.i.d. Gaussian entries.

Then, it holds with probability at least 1 — 2e~@=™) that

w(ATC.~) d—m
Z <ec- N A2 | 35
for some universal constant ¢ > 0.
Even for a small width w(ATC.+), the upper bound (35) scales at least as \/9=™ - ||A||2, and this is large unless d ~ m,

which defeats the purpose of sketching. This suggests a limited performance of the estimators Z(°) and Z(1) with oblivious

embeddings. We formalize this statement by deriving lower bounds on their respective recovery error. For conciseness, we



focus on the expected relative error, where the expectation is taken with respect to the randomness of the embedding matrix

S.

Theorem 4 (Lower bound on the recovery error of Z(®) with oblivious sketching). It holds for both Gaussian embeddings and

the SRHT that

12O — 2|3 m
Eg{ —————= 3 >1— —. 36
S{ EEE d 0)

Proof. Note that (%) = Pgz(®) and thus, |2 —2*|2 = || Ps (2 — 2*)||2 + || Pg2*|3. ie., |7 —2*|3 > || Ps*|]3. Using

that Eg||Pgz*||3 = (1 — Z)||z*||3 for both embeddings yields the claim. O

The estimator Z(?) lies in a low-dimensional oblivious random subspace and does not recover the residual projection of z*

[Py |I3

onto Pgr: the error s
[ERIE

~ 1 — "7 is large unless m ~ d. We provide next a lower bound on the worst-case recovery error
of (), for which we assume the function f to be y-strongly convex, i.e., f(y) > f(z)+ (Vf(z),y — z) + 3|y — z||3 for
any z,y € R, Although a similar result could hold for the SRHT, the proof would involve different technical arguments and

we specialize our result to Gaussian embeddings for conciseness.

Theorem 5 (Lower bound on the recovery error of Z(1) with oblivious sketching). Let S € RY*™ be a matrix with

i.i.d. Gaussian entries. Then, it holds that

||’f(1) _ l‘*”%} ma 3 0'411
sup ES{ P (1 - 7) NESEEL K 37)
FE€Fy 213 d (02 + %)2

where F., ,, is the set of real-valued functions defined over R", which are ~y-strongly convex and p-smooth.

As for the zero-order estimator, the first-order estimator (1) with oblivious embeddings has a (worst-case) recovery error

bounded away from 0, unless m ~ d. In both lower bounds (36) and (37), the limiting factor 1 — 7 is primarily due to the

bias E{Pg} = (1 — %) I4 # 0, which we aim to address next.

B. Improved performance through unbiased oblivious embeddings

We consider a variant of the sketched primal program (2), given by

A
o 1= argmin {f(AQozT) + 2|aT||§} , (38)

aTERm

where Q € R¥™™ js a sketching matrix. The low-dimensional formulations (2) and (38) only differ in the choice of the
regularization term, that is, 3 ||Sc[|3 versus 3 ||a;||3. We define the corresponding zero- and first-order estimators based on the

(unique) low-dimensional solution aif‘ as
~ " ~ 1 .
#=Qa;, 7= _XATV F(AQa}). (39)

The next result relates the two low-dimensional programs (2) and (38) more precisely. For an embedding matrix .S, we denote

by U, SESVST a thin SVD of S, and we define its whitened version as

Qs:=UsVy , (40)



Lemma 5. Let S € R™™ be an embedding matrix, and let o be the low-dimensional solution of (38) with the whitened
matrix Qg. Then, it holds that the vector o™ := VSEglVST a?r‘ is a solution of (2) with the embedding matrix S. Furthermore,

the corresponding zero- and first-order estimators of o* and a;’i are respectively equal, i.e.,

+(0) _ @%0) 7 1) — le) . (41)

Proof. We have by first-order optimality conditions that Q§ A"V f(AQsa}) + Aaj = 0. Multiplying by Vs¥sVy and
plugging-in the definition of a*, we obtain ST ATV f(ASa*) +ASTSa* =0, i.e., a* is a solution of (2). On the other hand,
we have QSQT USVS VSESVS o = Sa, which further implies that z0 = JZT ) and (1) = f(l) O

The low-dimensional formulation (2) is equivalent to (38) with the whitened matrix (g, in the sense that they yield the same
zero- and first-order estimators. In addition to the whitened matrices () which are in general biased (e.g., E{QSQE} =21
for an oblivious Gaussian embedding S5), the formulation (38) can incorporate any sketching matrix (), and in particular,
random matrices such that E{QQ T} = I,. This yields a larger class of zero- and first-order estimators, which may overcome

(1)

the aforementioned limited performance of Z(?) and Z(!) with oblivious embeddings. The estimator E’r with an unbiased

oblivious Gaussian embedding has already been considered in [31], and we recall their main result (Theorem 6 in [31]).

Theorem 6 (Recovery error of the unbiased oblivious estimator xT )) Suppose that the function f is separable and that the
solution x* lies in the span of the top k right singular vectors of A. Let Q € R¥™™ be a matrix with i.i.d. Gaussian entries

N(0,1/m). Then, provided that m > 32dy,,1og(2d/9), it holds that
~(1)
x — " A
”Ti < \/12810g(2d/6) - */‘ 1+4/25 ], (42)
[Eag|P
with probability at least 1 — 6.

d*/n

The best-case upper bound (42) scales as . That is, the sketch size m needs to scale at least as the effective dimension

which can be much smaller than the ambient dimension d. This significantly improves on the guarantees for Z(?) and Z(!) with
oblivious embeddings. Furthermore, the oblivious zero-order estimator x% ) has worse performance than E](Ll) (see Theorem 3
in [31]). The assumptions of Theorem 6 in [31] have been slightly relaxed by the same authors (see Theorem 2 and Corollary
3 in [32]): provided that the projection of z* onto the subspace orthogonal to the top k right singular vectors of A has small
enough norm, then the recovery error scales as \/% .

Let us now compare the guarantees for the oblivious estimator Ev\frl) and for the adaptive estimator Z(1). Besides being
independent of any assumption on x*, the upper bound (29) scales as \/g “ Ry j2(A). In light of the comparison between the
characteristic quantities \/E and ﬁ - R, /2(A) provided in Table I, the guarantees for the adaptive estimator (M) are in
general stronger than the best-case guarantee (42) for the unbiased oblivious estimator x( ),

In light of the results of Theorems 1, 2, 4, 5 and 6, we obtain that among the different possible estimators Z(?) and Z(!) with

~(0) (1)

oblivious and adaptive sketching, and, . and T with unbiased oblivious sketching, the strongest guarantees are obtained for

the first-order estimator Z(*) with an adaptive embedding. We compare numerically the performance of the adaptive estimator
Zz( and the unbiased oblivious estimator Efrl) with Gaussian embeddings and for polynomial and exponential decays. We use
n = 1000, d = 2000 and we generate data matrices with respective spectral decay o; = /ne=%%7 and o; = \/nj~'. We

consider two convex smooth loss functions: the logistic function f(w) =n"1'3Y "  log(l + e ¥") where y € {£1}", and

a second loss function f(w) = (2n)~' 37", (w;)% — 2w;y; (where ay := max{a, 0} for a € R) which can be seen as the



convex relaxation of the penalty %||w+ — y||§ for fitting a shallow neural network with a ReLU non-linearity [7], [9], [69].

We report results in Figure 1. The adaptive estimator Z(!) has better empirical performance than the oblivious one 70,

T
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-
. 10°2 102 e 1
10 ;k 3;\
4 10~ 104 RN 107
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(a) ReLU - polynomial (b) ReLU - exponential (c) Logistic — polynomial (d) Logistic — exponential

Fig. 1. Relative recovery error versus sketching dimension m € {2 | 3 < k < 10} of Z(!) (red diamonds) and f](Ll) (green circles), for the ReLU-type

and logistic loss functions, and the exponential and polynomial decays. We use A = 104 for all simulations. Results are averaged over 10 trials. Bar plots
show (twice) the empirical standard deviations.

V. ALGORITHMS FOR SMOOTH CONVEX OBJECTIVES IN ADAPTIVE RANDOM SUBSPACES
A. Prototype algorithm for adaptive sketching

A standard quantity to characterize whether a convex program can be solved efficiently is its condition number [56], which,

for the primal (1) and sketched program (2), is respectively given by

o A+ 01 (ATV2f(Az)A) o o1(ST(Ma+ ATV2f(ASa)A)S) 4
S Ao ATVEf(An)d) ST MR G (ST, + ATVEf(ASa)A)S) @
o1(ST89)

The latter can be significantly larger than &, up to kg ~ K - o (5TE) > K According to Lemma 5, we can solve instead the
optimization problem (38) with the whitened matrix () g, and we have zM) = _\"1ATVf (AQ Sa? ). Fortunately, the re-scaled
sketched program (38) with ) = Qg is numerically well-conditioned: in fact, it is even better conditioned than the original

primal program (1).

Proposition 3. The condition number ki of the re-scaled sketched program (38)

A +01(Q5AT V2 f(AQsa)AQs)

Kii= su 44
H O X+ 0 (QUATV [(AQsa) AQs) 0
satisfies ki < Kk almost surely.
Proof. Fix oo € R™. Using ||Qs]|]2 < 1, we obtain
T AT o2 T2
01(Qs A V7 f(AQsa)AQs) < 01(A V7 f(AQsa)A),
om(QSATV?f(AQsa)AQs) = 0a(AT V2 f(AQs)A).
Consequently,
A+ 01(Qg ATV f(AQsa)AQs) _ A+ 01(ATV?f(AQsa)A)
A+ om(QFATV2f(AQs)AQs) ~ A+ 0a(ATV2f(AQsa)A)
Taking the supremum over v € R™ in both sides of the latter inequality, we obtain s+ < sup,cgpm iig;g’::gzﬁggi ng‘; We
conclude using the fact that the latter right-hand side is smaller than k. [

Algorithm 1 is decomposed into three steps: forming the sketch AQg, solving the low-dimensional program (38), and,

mapping o to #(), The last step is, in general, relatively cheap, as it only requires a matrix-vector multiplication with A"



Algorithm 1: Prototype algorithm for adaptive sketching in the smooth case.

Input: Data matrix A € R"*?, random _matrix S € R™™ and regularization parameter A > 0.
1 Compute the sketching matrix S = AT S.
2 Compute a thin SVD S = USESVST and set Qg = USVST.

3 Solve the convex optimization problem (38) with @ = Qg, and return 2) = —1 ATV f (AQSaZF).

and a gradient call to f. In total, the algorithm requires three passes over the entire data matrix A. Depending on the choice
and structure of the random embedding, the sketching part has different computational costs, as discussed next. We denote by
nnz(A) the number of non-zero entries of A.

1) Computational complexity for Gaussian embeddings: Forming S = AT S takes time O(m-nz(A)). The cost of computing
the SVD of S is O(d - m?). The matrix multiplication A - Qs takes time O(m - nnz(A)). Therefore, the total complexity is

given by
O(2-m-nnz(A) +d-m?). (45)

For a dense matrix A, this results in O(2mnd + dm?) = O(2mnd) floating point operations, and the cost is dominated by
the sketching part. For a sparse enough matrix A with nnz(A) < dm, the total cost is O(dm?).
2) Computational complexity for the SRHT: Differently from dense and unstructured embeddings, forming S = AT S takes

time O(logm - nnz(A)). The total time complexity is then given by
O(logm -nnz(A) +m -nnz(A) + d - m?) = O(m - nnz(A) +d - m?), (46)

which is always smaller than the cost of Gaussian embeddings. For a dense matrix A, this results in O(mnd) floating point
operations, and this is half the cost with Gaussian embeddings. For a sparse enough matrix A with nnz(A) < dm, the cost

similarly scales as O(dm?).

B. Improved algorithms

1) Iterative method and almost exact recovery of the optimal solution: The estimator Z(!) satisfies a guarantee of the form
|z — 2*||o < ||z* |2 with high probability, and with & < 1 provided that m is large enough relatively to % and the spectral
decay of A. Here, we extend Algorithm 1 to an iterative version which takes advantage of this error contraction, and which

does not incur additional memory requirements, at the expense of additional time complexity.

Algorithm 2: Prototype iterative method for adaptive sketching in the smooth case

Input: Data matrix A € R”™*4 random matrix S e R™ ™ jterations number T', regularization parameter A > 0.
1 Compute the matrices Qs € R¥*™ and AQs as in Algorithm 1. Set :?((Jl) =0.
2fort=1,2,...,7T do

3 Solve the low-dimensional convex optimization problem
* . A )\ A~
o= angain { £(AQsas + A7) + Sl + Q5B @)
ateR™

Update the solution z{") = —3ATVf(AQsai, + Az,
4 end

5 Return the last iterate ’x\(Tl ).




A key advantage of Algorithm 2 is that, at each iteration, the same sketching matrix S is used, i.e., the matrices (Jg and

AQgs need to be computed only once, at the beginning of the procedure. The output Eg,} ) satisfies the following recovery
property, whose empirical benefits are illustrated in Figure 2.

Theorem 7. After T iterations of Algorithm 2, provided that X > 2uZ2, it holds that

T
~(1) o ZQ 2
| PR (N f) ' (48)

[Eaad[P 2

For an adaptive Gaussian embedding, under the hypotheses of Lemma 1 and provided that \ > 2uc§R% (A), it holds with

probability at least 1 — 6e™" that

T
~(1 " i
135 — o, _ (GuRRA)® o)
[ PR 2 '

For an adaptive SRHT, under the hypotheses of Lemma 3 and provided that X > 2pc? Rz (A), it holds with probability at least
1— 2 that
n

|75 —a*ll, _ (GuRpA)\*
T 2 < <Csu k > )
=T 2\

(50)

Let us compare the oracle complexities of Algorithm 2 and first-order methods applied to the high-dimensional program (1)

under the assumption that ﬁ < 1 is small, so that the high-dimensional objective function F' in (1) is ill-conditioned. After
1

a number T' of matrix-vector multiplications of the form ATV f(-) (which is equivalent to a gradient call to F), Algorithm 2
T

(1) pZ3
T

3
Y ) . In comparison, given a similar budget

returns an approximate solution Z~.’ whose relative error is upper bounded by (
of T gradient calls to the objective function F', first-order methods applied to the high-dimensional program (1) return an
approximate solution  whose relative recovery error is upper bounded by (1 — m)% (see, for instance, Theorem 3.10
in [24]). The latter convergence rate is close to 1, whereas the convergence rate of the sequence 25,11 ) is bounded away from 1
provided that the sketch size is large enough.

2) Shrinking the spectral residual with the power method: An immediate extension of Algorithms 1 and 2 consists in using
the so-called power method [44]. Given ¢q € N, the adaptive sketching matrix at power ¢ is defined as S:= (ATA)qATg. The
larger g, the smaller the approximation error HP§-AT |l2- More precisely, for a Gaussian embedding S with m = 2k, we have

according to Corollary 10.10 in [44] that

1
2q+1

14T 1 g 2eaty
[PeA o Son |1+ ,] % — (51)

with high probability. The above right-hand side decreases as ¢ increases. Of practical interest are data matrices A of the
form A = A+ W, where A is a signal with a fast spectral decay, and W is a noise matrix with a relatively small

and flat spectral profile. The power method reduces the noise contribution to the spectrum, i.e., it shrinks the error factor
1

ok

\2@2at+1) ) T
14 \/ % Zj> b (J]) ) . Our algorithms readily incorporate the power method, and we illustrate its empirical

benefits in Figure 2.
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Fig. 2. Relative recovery error versus sketching dimension m € {2* | 3 < k < 10} of adaptive Gaussian sketching for (a) the iterative method (Algorithm 2)
and (b) the power method. We use the MNIST dataset with 50000 training images and 10000 testing images, and we map images through 10000-dimensional
through random cosines 1 which approximate the Gaussian kernel [2], i.e., (¢0(a), ¥ (a’)) = exp(—7|la — a?||3), with v = 0.02. We perform binary logistic
regression for even-vs-odd classification of digits. For the iterative method, we use the sketching matrix S = (AT A)2AT S, where S is Gaussian i.i.d. That
is, we run the iterative method on top of the power method, with ¢ = 2. We use A = 10~5. Results are averaged over 20 trials. Bar plots show (twice) the
empirical standard deviations.

VI. NON-SMOOTH, CONVEX OPTIMIZATION IN ADAPTIVE RANDOM SUBSPACES

We extend our analysis to the case where the function f is Lipschitz continuous but not necessarily smooth nor even
differentiable. In contrast to the smooth case, the dual map Jf (AQsaﬁ is set-valued and this makes the recovery through
dual mapping more challenging. On the other hand, according to Proposition 1, when the function f is strictly convex, the
dual solution z* lies within the interior of the domain of f* and consequently, Z; = ||[Pg A" ||2. As strict convexity holds for
most smooth convex objective functions f of practical interest, one may instead expect the tangent cone 7.+ to have a small

size in the case of a non-smooth objective function.

A. Undeterminate estimator through dual mapping

Theorem 8 (Deterministic upper bound for non-smooth objectives). Suppose that f : R™ — R is convex and L-Lipschitz but
not necessarily smooth nor differentiable. Let S € RY*™ be an embedding matrix, and y* be any sketched dual solution, and

set T .= —X\"YATy*. Then, for any \ > 0, it holds that

~ X L 1 L
B -l <2 R[22 L zgpeatio <6 B pan,. (52

Further, under the additional assumption that inf,, f(w) > —oo, we have the improved upper bound

~ L
(R PR <2 (53)
The upper bound (53) is, for most cases of interest, weaker than (17) as it scales as (9(%) in contrast to the bound

O(%) in the smooth case: for small A, the former scaling is worse. Furthermore, the upper bound (53) controls the recovery

—z* |2

Hf(l)
[ENP

error [|2(1) — 2*|| whereas the upper bound in the smooth case controls the relative recovery error . The latter is
contractive and enables an iterative version for (almost) exact recovery of z*, whereas this approach does not readily extend
to the non-smooth case. More importantly, when f is smooth and thus differentiable, the mapping between a low-dimensional
solution a?f and the estimator 7)) = —\"1ATV f (AQSa?C) is well-defined. However, in the non-differentiable case, we only
know that the sketched dual solution y* belongs to the set 8f(AQSa$), ie, z() e —A‘lATaf(AQsai), and one cannot
directly compute Z(*) based on the low-dimensional solution ai and the dual mapping. Furthermore, picking an arbitrary

subgradient g € 0f (AQSQ?) yields an estimator 7 = —\A~'AT g with weaker recovery guarantees.



Corollary 1. Suppose that inf,, f(w) > —oc. Let of be a minimizer of the sketch primal program (38) with Q = Qs. Pick

any estimator T in the set —A_lATaf(AQsai). It holds that
~ L . _ .
1z —2*|]2 < V6 - N Zy + diam(\ 1AT8f(AQSozT)) . (54)

Proof. Fix ¥ € —A’lATaf(AQSa%’C). The first-order estimator (1) = —\=1ATy* also belongs to —A’lATaf(AQSa?), o)
that ||z — 2 ||y < diam (A_lAT(')f(AQso@)). According to Theorem 8, we also have [|Z(!) — z*[|s < v/6- £ - Z;. The claim

then follows from the triangular inequality |7 — 2*||2 < |7 — 2V ||o 4 |21 — 2*||2. O

According to Corollary 1, an arbitrary estimator 7 € —\"tATOf (AQsa; ) may perform poorly, even when Z; is small,
as soon as the diameter of the set \"'ATOf (AQSa?) is relatively large. One may wonder whether this upper bound is tight:
although we do not provide a lower bound, we carried out extensive numerical simulations with some commonly used non-
smooth loss functions, and we obtained poor performance when we picked the easiest-to-compute subgradient in 0 f (AQsoz?r‘)

(see Figure 3).

B. Resolving the indeterminacy of the set-valued dual mapping through the sketched dual program

Based on an adaptive sketch AQ)s and a low-dimensional solution o, the dual map yields a set of candidate approximate
solutions —\"1ATOf (AQsaj). We aim to resolve this indeterminacy by computing the optimal subgradient y* € 0f(AQsaf)
and thus the first-order estimator Z(1) = —\~1ATy*,

1) Easy-to-compute subgradient set O f (AQSa?r‘) and restricted sketched dual program: We propose to (i) compute a low-
dimensional solution «f, (ii) to compute the subgradient set 0 f (AQSa?), and finally, (iii) to solve the restricted sketched dual
program

ve amgmin {0+ 31QIATE 59)

yedf(AQsa;)

This procedure is especially relevant when the function f is separable and when there are only a few number k of indices
i € {1,...,n} such that the function f is not partially differentiable at (ASaj);. In this case, the restricted sketched dual
program (55) only involves k dual variable’s coordinates. This is reminiscent of the Stochastic Dual Newton Ascent (SDNA)
method [25] which selects at each iteration a random subset of coordinates of the dual variable y. Differently, we use the
low-dimensional solution o} and the subgradient set af (AQSQ?) to determine a subset of coordinates of y to optimize and
which yields the exact optimal solution y*. Moreover, our perspective is, again, agnostic to the choice of the optimization
algorithm, whereas SDNA is itself an optimization method.

More generally, the restricted sketched dual program is relevant for practical cases where (i), given a low-dimensional
solution af, computing the subgradient set 0 f (AQSa?) can be done efficiently, and (ii) the subgradient set 0f(AQsa]) is,

in some sense, small. We discuss some examples below.

Example 1 (L;-regression). Given b € R™, we consider the objective function f(w) = ||w — b||1. The subgradient set of f
at some w € R" is the Cartesian product [[_, Z;, where I; = [—1,1] if w; = b; and I; = {sign(w; — b;)} otherwise. The

restricted sketched dual program (55) only involves the variables y; for the indices © such that (AS’a%’f)i =b;.

Example 2 (L..-regression). Given some target vector b € R", consider the objective function f(w) = ||w — b||leo. The

subgradient set of f at some w € R™ is the convex hull of the vectors sign(wy — by) - ey, where ey, ..., e, is the canonical



basis of R"™ and for all I € argmax,_; _, |w; — b;|. The restricted sketched dual program (55) only involves the variables y;

for the indices i such that |(ASay); — bi| = [|ASaf — b|cc.

Example 3 (Support vector machines). Given b € {£1}", we consider the hinge loss f(w) = > max{0,1 — w;b;}. The
subgradient set of f at some w € R™ is the Cartesian product [[;_, I;, where T; = {—b;} if 1 —w;b; > 0, Z; = {0} if
1 —w;b; < 0and Z; = [0, —b;] if 1 — w;b; = 0. The restricted sketched dual program (55) only involves the variables y; for
the indices i such that 1 = (ASay);b;.

For the loss functions of Examples 1, 2 and 3, we compare the empirical performance of the estimator () = —\~'ATy* and
an arbitrary estimator 2 € —A"'ATOf (AQsa’Tk), and we report results in Figure 3. We observe that Z(1) has an increasingly

stronger performance compared to T as the sketch size increases.

102<
loUA
10L

100<
1072<

10724

VB % | PgAT |2 VG- [P ATl VB % |Pg ATl

104

10-4] = =l R B = =l AR P 10734 =& 120 -2l
= =l R = =l B = Sl EEr
102 10° 102 10° 102 10°
(a) Ly regression (b) L regression (c) Hinge loss
Fig. 3. Recovery error versus sketching dimension m € {2% | 5 < k < 10} of the adaptive estimator Z(1) = —X~1ATy* versus an estimator

Z=-A"1ATg where g € Of(AQsa]’C) is an arbitrary subgradient (the ’easiest-to-compute’). We use A = 0.01, n = 1000 and d = 2000. We generate
a data matrix A with exponential spectral decay o; = 0.987, and we use an adaptive Gaussian embedding S = AT S. We consider (a) Lq-regression

(Example 1), (b) Loo-regression (Example 2) and (c) SVM classification (Example 3). Results are averaged over 20 trials. Bar plots show (twice) the
empirical standard deviations.

2) Solving the plain sketched dual program: When the entire subgradient set 0 f (AQSa;‘) cannot be efficiently computed,
one can instead solve directly the plain sketched dual program without restricting y to lie within the subgradient set 9 f (AQ Sa?r‘ )
and without even computing a low-dimensional solution «}. Of practical interest are, for instance, the functions f which, up
to a translation, are the support function of a convex set C, i.e.,

fw) =sup z"(w—1D), (56)
zeC

for which 9f(w) = argmax,c. 2" (w — b). This class of function includes in particular distributionally robust objective
functions (e.g., conditional Value-at-Risk) and deterministic robust counterparts [70]-[72] for which computing the entire
set of worst-case distributions is, in general, expensive. Hence, one can alternatively obtain y* by solving the unrestricted
constrained quadratic program

y* € argmin {yTb + 21/\||QEATy||§} : (57)

yec

This approach corresponds to a left sketch of a constrained quadratic program: its computational benefits have been extensively
studied in the sketching literature and its statistical performance has been carefully analyzed in the case of oblivious embeddings
(see, for instance, [18], [35], [73]). Hence, our analysis extends the range of existing results of the left sketch approach to the

case of adaptive embeddings.
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VII. NUMERICAL EXPERIMENTS

Datasets. We evaluate Algorithm 1 on the MNIST and CIFAR10 datasets with logistic regression. First, we aim to illustrate
that the sketch size can be considerably smaller than the data dimension while recovering a close approximation to the optimal
solution which achieves a similar test classification accuracy. Second, we aim to achieve significant computational speed-ups.
To solve the primal program (1), we use two standard algorithms for empirical risk minimization, namely, stochastic gradient
descent (SGD) with (best) fixed step size and stochastic variance reduction gradient (SVRG) [74] with (best) fixed step size
and frequency update of the gradient correction. To solve the adaptive sketched program (2), we use SGD, SVRG and the
sub-sampled Newton method [75], [76]: we refer to them as Sketch-SGD, Sketch-SVRG and Sketch-Newton. The latter is
well-suited to the sketched program for a relatively small sketch size, as a low-dimensional Newton system can be efficiently
solved at each iteration. For both datasets, we use 50000 training and 10000 testing images. We transform each image a
using random Fourier features 1/(a) € R%, ie., (¢(a),¥(a’)) =~ exp (—7|la — a’||3) [2], [77]. For MNIST and CIFAR10, we
choose respectively d = 10000 and v = 0.02, and, d = 60000 and v = 0.002, so that the primal programs are respectively
10000-dimensional and 60000-dimensional. Then, we train a classifier via a sequence of binary logistic regressions, using a
one-versus-all procedure.

Adaptive Gaussian embeddings. We evaluate the test classification error of the first-order estimator (). We solve to
optimality the primal and sketched programs for values of A € {10745 107°,107°,5 - 1076} and sketch sizes m €
{128,256, 512,1024}. In Table II are reported the empirical means and standard deviations, which are averaged over 20 trials.
The adaptive sketched program yields a high accuracy classifier for most pairs (A, m): we match the best primal classifier with
values of m as small as 256 for MNIST and 512 for CIFAR10, which respectively corresponds to a dimension reduction by
a factor ~ 40 and ~ 120. These results also suggest that adaptive sketching induces an implicit regularization effect, which is
reminiscent of the benefits of spectral cutoff estimators [78]. For instance, on CIFAR10, using A\ = 107° and m = 512, we

obtain an improvement in test accuracy by more than 2% compared to z*.

TABLE II
TEST CLASSIFICATION ERROR OF ADAPTIVE GAUSSIAN SKETCHING ON MNIST AND CIFAR10 DATASETS. THE SUBSCRIPT IN ;’Eﬁé) REFERS TO THE
SKETCH SIZE m. RESULTS ARE AVERAGED OVER 20 TRIALS, AND WE REPORT THE EMPIRICAL MEAN AND STANDARD DEVIATION.

* ~(1) ~(1) ~(1) ~(1)
A ‘ LMNIST T128 Las6 T512 L1024

10~4 5.4 4.8+0.2 5.24+0.1 53+0.1 54+0.1
5-10~5 4.6 3.84+0.2 4.0+£0.2 4.3+0.1 4.5+0.1
1072 2.8 3.4+0.8 244+0.2 2.54+0.1 2.84+0.1
5.-1076 2.5 49+21 2.84+0.3 2.6 +0.2 244+0.1
* ~(1 ~(1 ~(1 ~(1
‘ A ‘ LCIFAR 3352)8 xéS)G $é1)2 JUgo)zz;
5-10~° 51.6 50.5+£0.3 50.6+0.3 50.8%£0.2 51.0+£0.2
10~ 48.2 54.5+32 47.7+06 459+0.2 46.2+0.2
5-10~6 47.6 59.84+35 51.94+21 47.74+06 45.8+0.6

Adaptive versus oblivious Gaussian sketching. We evaluate the test classification error of two baseline estimators, that

](Ll) with oblivious Gaussian embeddings as proposed in [31], [32] and described in Section IV-B,

is, the first-order estimator 7.
and, the first-order estimator z¥ with adaptive Nystrom embeddings for which S = ATS with S a uniformly random column
sub-sampling matrix. As reported in Table III, adaptive Gaussian sketching performs better for a wide range of values of sketch

size m and regularization parameter \.
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TABLE III
TEST CLASSIFICATION ERROR (IN PERCENTAGE) ON MNIST AND CIFAR10. RESULTS ARE AVERAGED OVER 20 TRIALS AND WE REPORT THE
EMPIRICAL MEAN. THE SUBSCRIPT UNDER EACH ESTIMATOR REFERS TO THE SKETCH SIZE m.

. ~(1 ~(1 ~(1 ~(1 AN ~N * ~(1 ~(1 ~(1) ~(1 ~N AN
‘ A ‘ TMNIST x(25)6 I(10)24 15\,%56 "L’S(,ioza; Tase L1024 H A ‘ TCIFAR méS)G 9‘7(10)24 x(f,256 12‘,;024 Tose L1024 ‘
5.107° 4.6 4.0 4.5 252 8.5 5.0 4.6 5.107° 51.6 50.6 51.0 88.2 70.5 55.8 53.1
5.1076 2.0 2.8 2.4 30.1 9.4 3.0 2.7 5.1076 47.6 51.9 45.8 88.9 80.1 57.2 55.8

Wall-clock time speed-ups. For the first-order estimator Z(*) with adaptive Gaussian embeddings, we compare the test
classification error versus wall-clock time of the aforementioned optimization algorithms. Figure 4 shows results for some
values of m and \. We observe that solving instead the low-dimensional optimization problem offers significant speed-ups on
the 10000-dimensional MNIST problem, in particular for Sketch-SGD and for Sketch-SVRG, for which computing the gradient
correction is relatively fast. Such speed-ups are even more significant on the 60000-dimensional CIFAR10 problem, especially
for Sketch-Newton, and a few iterations suffice to closely reach the approximate solution Z(!), with a per-iteration time which
is relatively small thanks to dimensionality reduction. Remarkably, it is more than 10 times faster to reach the best test accuracy
classifier using the sketched program. In addition to random Fourier features, we carry out another set of experiments with
the CIFARI10 dataset, in which we pre-process the images. That is, similarly to [79], [80], we map each image through a
random convolutional layer. Then, we kernelize these processed images using a Gaussian kernel with v = 2- 1075, Using our
implementation, the best test accuracy of the kernel primal program (31) we obtained is 73.1%. Sketch-SGD, Sketch-SVRG
and Sketch-Newton — applied to the sketched kernel program (32) — match this test accuracy, with significant speed-ups, as

reported in Figure 4.

—¥— SGD

Sketch-SVRG
—4— Sketch-Newton
—A— Sketch-SGD

—¥— SGD

Sketch-SVRG | 401
—4— Sketch-Newton
—A— Sketch-SGD

—¥— SGD
SVRG 601
Sketch-SVRG

—4§— Sketch-Newton

—— Sketch-SGD

10

. 30
5 50
481 27 -4
0 50 100 102 10° 102 10°
(a) MNIST, m = 512, A = 107°. (b) CIFAR, m = 256, A = 107°. (c) CIFAR (random layer), m = 1024, A = 5.1075.

Fig. 4. Test classification error (percentage) versus wall-clock time (seconds).

Additional numerical details. Experiments were run in Python on a workstation with 512 GB of memory. We use our own
implementation of each algorithm for a fair comparison. For SGD, we use a batch size equal to 128. For SVRG, we use a
batch size equal to 128 and update the gradient correction every 400 iterations. For Sketch-SGD, we use a batch size equal
to 1024. For Sketch-SVRG, we use a batch size equal to 64 and update the gradient correction every 200 iterations. Each
iteration of the sub-sampled Newton method (Sketch-Newton) computes a full-batch gradient, and, the Hessian with respect to
a batch of size 1500. For SGD and SVRG, we considered step sizes 1 between 102 and 102. We obtained best performance
for 7 = 10!. For the sub-sampled Newton method, we use a step size 7 = 1, except for the first 5 iterations, for which we
use 77 = 0.2. In Figure 4, we did not report results for SVRG for solving the primal (1) on CIFARI10, as the computation time

for reaching a satisfying performance was significantly larger than for the other algorithms.
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VIII. INFORMATION THEORETIC LOWER-BOUNDS AND OPTIMALITY FOR RIGHT-SKETCHING

We now consider the fundamental problem of estimating the mean of a random sample b = Az +w where w ~ N(0, %2 I,),
under the assumption that the planted vector x satisfies ||zp]|2 < 1. Given an estimator Z, we define its risk as R(7) :=
SUP|z,[lo <1 Ewl[ AT — 2p) ||3. A critical quantity to characterize the best achievable risk is the statistical dimension d, defined
as dg:= min{k > 1 | C’Zk > ak+1} It satisfies the scaling < ds = od 4 It is well-known (see, for instance, [43], [81], [82])
that the quantity A" b is sufficient to construct an optimal estimator.

Information theoretic lower bounds for left-sketching via SA, Sb were developed in [17]. Surprisingly, it was shown that
unless m = d, left-sketching based estimators are sub-optimal. In turn, an iterative sketching method based on the sketches
{S;A, AT (Ax; — b)}L, was shown to be statistically optimal for the broader class of constrained least squares problems,
including unconstrained least squares, Lasso and nuclear norm constrained problems.

In our context, we are given a sketch AS where S € R4*™, Note that right-sketched based optimization problem (2) for

the least squares objective is of the form
min || ASa — b||2 + ¢(a) = min ||ASa||? — 27 ST ATb + ||b]12 + H(a) (58)

where ¢(a) is an arbitrary regularization term. The preceding line shows that right-sketching estimators are functions of ST AT'b.
Therefore, bounds on the mutual information between ST A”b and z, can be leveraged to develop information theoretic lower
bounds under this observation model. Consequently, we consider right-sketching estimators based on the observation ST ATb,
and we aim to characterize the minimax risk 90g := infz 93(Z) where the infimum is taken over estimators z = Z(ST ATb).

Rdxm

We aim to show that for an oblivious Gaussian embedding S € , a sketch size m < ds and polynomial or exponential

decays, it holds with high-probability that

o2d,

n

Moreover, this minimax lower-bound is achieved by the right-sketching estimator. Our proof of the lower-bound is based on

the standard local Fano method.

Theorem 9. Let m > 1 be a sketch size and S € R¥*™ be a Gaussian embedding, and assume that ds > 4. Conditional on
the event ||PigA|3 < Jd*“, it holds that
2
od
9)?5>co~035+1xco~ ns’ (60)

where cq is a universal constant such that co > ngﬁ. Consequently, for a polynomial decay o; = j % withv > 0 for which
ds < (: )"’T” and for a sketch size m > &% - dy where Y =< (v=' 4+ 1)) it holds with probability at least 1 — 6e~%

that

14+v

9 0.2 24v
ms}CO'O'dS_,’_l =Co (n) . (61)

For an exponential decay o; = e~ with v > 0 such that nv/o? > 5408 for which ds < Llog(n/o?) and for a sketch size

m = 4ds, it holds with probability at least 1 — 6e~% rthat

o2 log(n/o?
Dﬁs>co-0§5+1xco-% (62)
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We show next that the risk of the zero-order estimator Z(°) with sketch size m = d achieves the above lower bound on the
minimax rate of estimation (60), as the regularization parameter A goes to 0.
Corollary 2. Let m > 1 be a sketch size and S € R¥*™ be a Gaussian embedding. Assume that ds > 4. For a polynomial
14

decay o; = j=72 and with a sketch size m = &l . dg where &% < (V! + 1)(1+”), we have with probability at least

1 — 6e % that

1 o?d
. /\(0) < oly . S
;m%) R(EWY) < <Cf, + 2) o (63)

For an exponential decay o; = e~ with v > 0 such that nv/o? > 5408, and with a sketch size m = 4d,, we have with

probability at least 1 — 6e~% that

2d
lim R(E©) < 5. 22

A—0 n (64)

Therefore we conclude that right-sketching is minimax optimal unlike left-sketching under this standard observation model.
This result complements the left-sketching lower-bounds from [17] and indicates that right-sketching is more advantageous for

problems with small statistical dimension.

IX. CONCLUSION

Through tighter performance bounds and analytical comparison, we have shown that the dual reconstruction method along
with adaptive embeddings yields an estimator Z(') which significant improves over the linear reconstruction map and oblivious
sketching in the context of convex smooth optimization, as usually considered in the literature. Furthermore, we have extended
this method to non-smooth optimization problems, and our method requires solving an additional dual optimization problem
with potentially very few variables: in contrast to optimizing over a random subset of dual variables (e.g., SDNA), our primal
low-dimensional approach selects the appropriate subset of dual variables. Most of our results mirror those established for
left-sketching methods [35], although they are fundamentally different due to the choice of the adaptive embedding and thus,

require a novel analysis technique.

APPENDIX A

ANALYSIS OF ADAPTIVE SKETCHES
A. Proof of Lemma 1

A proof of an upper bound on the singular value ||PsAT||5 is provided in [46], and our analysis is an adaptation of this
proof to the restricted case. For two real-valued random variables X and Y, we say that X is stochastically dominated by Y
ifP(X 27) <P >=7) for any 7 € R, and we write X % Y.

Let S € R™ ™ be a matrix with i.i.d. Gaussian entries N(0,1/m). We use the notation f(A,S) := P+

ATSAT, and we
introduce a thin SVD of A, denoted by A = UXV' T, where ¥ = diag{o1, ... ,0,}. Note that

Purg=ATS(STAATS)ISTA=VSUTS(STUSVTVEUTS)ISTUSV T = VPgrsV .
=1

Consequently, we have that

f(A,S) =T —Pyrg)AT = (I —VPsurgVVIUT =VEU' —VPgyrgV'VEUT =V (£ = PyyrgX)UT.
N N—————
G =f(ZUTS)
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That is, f(A,S) = VF(EZ,UTS)UT. Let G € R?*™ be a matrix with i.i.d. Gaussian entries N(0,1/m). By rotational
invariance of the Gaussian distribution, it holds that G < UT S. Therefore, f(A,S) iy F(2,G)UT. Since V is an isometry
(.e., [|[Vw|2 = |Jw||2 for any w € RP), it follows that

Z; < sup [ £(S,.G)UT A,
AEC«

tl 0
For ¢ > 0, we define M(t):= F . Note that ¥ < M (t) for any ¢ > o1. According to Lemma 2.5 in [46], it holds
0 X, &

that || f(31, G)w||y < ||f(X2, G)w]||, for any w € R and any two positive definite diagonal matrices ¥; and ¥, such that

¥; < . As a consequence, for any A € C.-, it holds almost surely that || f(2, G)UTAllz < limyoo ||f(M(t),G)U T A2,

and thus,
d
Zy < sup lim [|[f(M(t),)UTA|,. (65)
A€EC,« t—o00

The following fact has already been proved in [46]: it holds that

0 0
lim f(M(t),G) £
treo f(zp—k)XQ)X1A719 f(z,')—kaXQ)

where X; € RP—F)xk X, ¢ Re=F)xk A ¢ RF*F and Q € R¥** are independent random matrices, and, X; and X5 have
independent i.i.d. Gaussian entries, A is diagonal with entries distributed as the first & singular values of a k& x m Gaussian
matrix, and € is an orthogonal matrix. Plugging-in this limit in the right-hand side of (65), we obtain

d

Zp < Sup I1f(Sp—ie, X2) XiAT'QU A + f(Spp, X2)U, LAz
€C.

By triangular inequality, it follows that

d
Zp < Sup 1 (Zpk, Xo) Xs AT QU Alls + sup [|£(Zpk, X2)U,)_ 1 All2

z* z*

<rad{Uy Co} - | £ (Spk, Xo) X1 AT Q|5 + Sup 1 (Zp—rs X2)U,_ Al
€Cx*

<rd (U] Coo} - 2y XA o+ sup ([0, Al

and we used the fact that || f(X,_x, Xo)W||2 = HPZLpikszp_kWHg < ||Z,—xW |2 for any arbitrary matrix W. According to
Corollary 10.9 [44], it holds with probability at least 1 — 6e~* that

_ 9 1
12, 1k X1A ™ 2 17TV2 - o4y + v > 0 < max{17v2,9} - | okp1 + /kj;:a]? < 25- Rip(A).

>k <7

In summary, we have shown that with probability at least 1 — 6e ", we have
Z; <25 -1ad{U}/ C.- } - Rp(A) + sup [|S,xU, A2,
AEC, «
which is the first part of the claim. Furthermore, since C,- C B3, we always have that

rad{U, C.-} <1, and sup ||Zp_kU;—_kA||2 < Opy1 -

2%
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Therefore, Z; < 25 Ri(A) + op41 < 26 - Ry, (A) with probability at least 1 — 6e~*. This holds in particular when C,. = B,

which concludes the proof. O

B. Proof of Lemma 2

From Lemma 1, we know that with m = 2k and S = ATS where S € R"™™ has i.i.d. Gaussian entries, it holds with
probability at least 1 — 6e~* that
Zp < 25-rad(U) C.) - Ri(A) + sup ||Ep,kU;[kA||2,
A€EC,«
From Theorem 7.7.1. in [83] and using that rad(C.-) < 1, we have
w(Cer) +Vm
Vn ’

with probability at least 1—2e~*, for some universal constant ¢ > 0. It remains to control the term sup acc,. 1% p_kUpt kA||2 =

rad (U C.-) < ¢} (66)

Supacc.. tee (t U/;'—_kA>, where we define the ellipsoid £ = {¥£,_;z | ||2]|, < 1}. We use again a Chevet-type inequality [84],
which yields that

swp (LU LA) < - = (w(Cor) rad(€) + w(€) rad(Car)) | (67)

A€EC, «,teE \/ﬁ
with probability at least 1 — ;e (=) for some universal constants ¢4, cs > 0, and where we introduced the ellipsoid
1
& = {E¥,-kz| ||z]l < 1}. Using the facts that w(&) < (Zj:kH 03)2, rad(§) = opy1 and rad(C,-) < 1, the above

inequality becomes

C.+) k
s Ul A <d w(iz .
ASEuCIz* H p—kY p—k HQ Co | Ok+1 \/ﬁ + n
Cox
<o WC BV oy,

NG

with probability at least 1 — c4e~(P~%)_ for some universal constant ¢5 > 0. By union bound, we obtain the claimed result.

C. Proof of Lemma 3

We use Theorem 2.1 from [45], which states the following. Given a target rank 2 < k < p and a failure probability
0<6<1let S=ATS where S € R™™ is a SRHT with n > m > 19(Vk + /8log(n/3))2 log(k/8). Then, it holds

with probability at least 1 — 55 that |[P&AT |, < <4+ w/‘”’l"gm/‘inmg“’/(”) SOk /2B fSe o2, Picking

2
§ = <+ and using that n > p, we obtain for m > 19 (\/E+ 4+/log n) log(nk) and with probability at least 1 — % that

|[PgAT|, < (4 + \/%52(")) o1+ VB -y # ki1 07 We conclude by using that \/%52(”) < 1 and

log(n) 1
%n < ﬁ O

D. Proof of Theorem 1

From Propositions 1 and 2, we know that there exist g.- € 0f*(z*) and g,- € 9f*(y*) such that g, + %AATZ* =0 and

Gy + %APSATy* = 0. We define the error vector A:= y* — z*, which belongs to the tangent cone 7,+. Subtracting the two
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previous equalities, we obtain g, — g.- + + APsATA = + APg AT z*. Multiplying by AA T and using the fact that P2 = Ps,

it follows that
AMA, gy — goe) + [|PsATA| = (A, APF AT 2%) . (68)

1

Smoothness of f implies that its Fenchel conjugate f* is p~'-strongly convex, i.e., (A, gy« — g.+) > iHAH% By definition

of Z¢, we have that |Pg AT All2 < Z¢||A|l2, and consequently,
IPsATAlS = [ATAIZ — [Ps ATAZ > [IATA5 - ZF[IA]3 -
Plugging-in the previous inequalities into (68), we obtain
A 2 T L AT %
Lz IAJZ + AT Al < (A, APg ATZ").

Using the assumption A > QMZ]%, it follows that % — Z]% > ﬁ By Cauchy-Schwarz inequality, we have [(A, AP+ AT 2*)| <

| P& ATA|l2||[Pg AT 2*||2. Hence, we obtain the inequality
7HA”2 +[|ATA[S < |Pg ATA[2]| Py ATz

Using the identity a? + b% > 2ab with a = ,/Q%HAHQ and b = |ATAl|z and the inequality ||PgATAllz < Zf - |All2, it

2\ %
Vo 1Al AT Al < [All2- 25 - [ Ps AT 2"z

Using the identities 2* = —A\"'AT2* and £(") = —A~'ATy* and rearranging the above inequality, we obtain

* :u‘ *
170 —2"ll2 <4/ 53 - Zr - [ Pg "o (69)

(1) _ >
It always holds that ||[Pgz*|2 < [|z*||2, and consequently, we have W < /35 - Zy. On the other hand, we have

follows that

120 — & || = |Ps(z® — 2 )||2 + ||P§x*||2, which further implies || Pgz*||, < ||7(® — z*||,. Consequently, we also obtain
from (69) that ”m\l :ﬁ” 2 <oy 2y HI(H):\T ll2 , and this concludes the proof. O

E. Proof of Theorem 7

Using an induction argument, it suffices to show that for any ¢ > 0 and provided that \ > QyZJ%, we have

/\1 * :u’ ~(1 *
i Y - L Kl (70)

It should be noted that for ¢ = 0, since ff(()l) = 0, the latter inequality is exactly the regret bound (17). The proof for any ¢t > 0
follows steps similar to the proof of Theorem 1. Fix ¢ > 0. The Fenchel dual of the sketched program (47) is given by

. * T 1~(1) 1 T2
m —vy AP —||Ps A .
min {f (Y) —y APgzp + 5|1 Ps yz}

Using arguments similar to the proof of Proposition 2, we obtain that there exists a dual solution y; € R", and that o7 , and y
are related through the KKT conditions y; = V f (AQSaT t+AA(1)) Recall that, by definition, a?g 1= AT LATV f (AQsaT o+

AA(l)) ie., fﬁ) = —A"LATy*. We define the error vector A:= y; —z*, which belongs to the tangent cone 7. By first-order
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optimality conditions of y; and z*, we know that there exist g,» € 9f*(y;) and g.« € df*(z*) such that g, + + APsATy; —
APS :c§ ) =0and g + %AATZ* = 0. Subtracting both sides of the previous inequalities and multiplying by AAT, we obtain

that
AMA, gy — g20) + |PsAT A3 = (APg (A7) + AT2%), A). (71)

By definition of Zf, we have that |[Pg A" ||y < Z[|Alls, and thus, [PsATA[5 > [[ATA|3 — Z3[|A|3. Plugging-in this

inequality into (71) as well as the strong convexity inequality (A, g,» — g.«) > iHAH%, we obtain that
A ~(1 *
(5 - 22) 1413 + 1ATAIE < (8, APF {0 + A7),

Using the assumption A > 2u27%, we get that % -2;> > A Using further the identity a® + b* > 2ab with a = /2 [|Alf2

m 2
and b = [|[AT A2, we deduce that

2 ~ "
(7 Al - [ATAll2 < Z5 - A2 - 1A + AT2*l2 .

Using the identities :rgﬁl =-A1ATys 2% = - A"1AT2* and thus ATA = \(z* — f&)l), we finally obtain

~(1 ~(1)
862 — a*ll2 <4/ 55 - 21 - 136 = 2”e,

which is the claimed inequality (70), and this concludes the proof.

FE. Proof of Theorem 8

Using the same arguments as in the proofs of Propositions 1 and 2, we obtain that there exist dual solutions z* and y*
which belong to the image of 0f. The function f is L-Lipschitz, and this implies that ||2*|| < L and ||y*||2 < L. By
first-order optimality conditions, there exist subgradients g,~ € df*(y*) and g.- € 9f*(z*) such that g,- + %APSATy* =0
and g, + %AATz* = 0. We define the error vector A := y* — z*, which belongs to the tangent cone 7.~ and which
satisfies ||Alls < 2L. Subtracting the first-order optimality conditions on y* and z*, and multiplying by AT, we obtain
that (A, gy« — go+) + AH{A, APsATA) = A"1(A, AP# AT z*). By convexity of f, we have (A, g, — g.«) > 0. Using
(A, APF AT 2*)| < ||Pg AT Al2|| P& AT 2*||2, we further obtain that

IATA[ < [[Ps ATA|3 + || Ps AT All2]| P AT 2|2 - (72)

Since A € T.-, we have |[PgATAl> < ||All22; < 2LZ;. Moreover, we have |[PgATz*|s < [|2*]]2|Pg AT |2 <
L||Pg AT||5. Combining the two latter inequalities with (72), we find that ||AT A3 < 4L2Z7 + 2L*Z;||Pg AT ||,. Dividing

by A? and using the identities z* = —A\"'AT2* and () = —A"1ATy*, we obtain the claimed inequality

L
Hgg(l) —zflp <2<

1
X ~\/Z§+22f||PS+AT2.

On the other hand, under the assumption that inf,, f(w) > —oo, it holds that 0 € domf*. This implies that —z* € 7.+, and

consequently, ||PgATz*||2 < LZ;. Since A € T,-, we have |[Pg AT Al < 2LZ;. Combining the two latter inequalities
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with (72), we obtain the refined inequality
~(1) * L
130 a1, < V6 5 - 25,

and this concludes the proof. O

APPENDIX B
ANALYSIS OF OBLIVIOUS SKETCHES

A. Proof of Lemma 4

Let S € R%*™ be a matrix with i.i.d. Gaussian entries. By rotational invariance of the Gaussian distribution, there exists a ran-
dom Haar matrix @ € R4*(@=™) such that Pg = QQ . We have Z; = SUPaec,. PFATA| = SUPacc.. IQQTATA|, =

SUPacc.. |QT AT A2, where the last equality holds due to the fact that @ is an isometry. According to standard concentration

bounds (see, for instance, Theorem 7.7.1 in [83]), it holds with probability at least 1 — 2¢~(d=m) that

ATC,) d—m
s TAT(A — ANy < - [ LA C Y Al ),
N Q@ A ( N2 <e ( 7 7 4]

where ¢ > 0 is some universal constant. The claimed result follows from the fact that 0 € C.~ and thus,

sup |[QTATAll2 < sup  [[QTAT(A—A)2.
€C. AN EC,«

B. Proof of Theorem 5

1) Technical preliminaries:

Lemma 6. Suppose that z,y € R™ such that 3x "y > ||y||? for some B > 0. Then, there exists a symmetric matrix H such
that 0 < H X -1 and y = Hzx.

Proof. Set H = I+ =557 (y— Bx)(y — fx) . The matrix H is well-defined. Indeed, from the assumption Sz "y > ||y|1%,
we obtain that |y|| < B||z||. Consequently, y'z < ||y||[|z|| < B z||* so that the term (y — Bz) 'z in the denominator is
negative. This implies in particular that H < 3I. A simple calculation yields that Hx = y. It remains to show that H > 0.
This holds provided that 8 > ||y — z||?/(B|z||> — 2 Ty), i-e., ||ly||* < Bz Ty which is true by assumption. O

Lemma 7. Suppose that the function f is y-strongly convex and p-strongly smooth. Let z* be the solution to the dual program,
and y* the solution to the sketched dual program. Let g,- € Of*(z*) and g, € Of*(y*). Then, there exists a symmetric

matrix 0 < H =< % - I such that g, — g,- = H(y* — 2*).

Proof. From standard convex analysis arguments, the function f* is (1/7)-smooth: this implies that ||g,~ — g.~||3 < %(gy -
g-+) " (y* — z*). The function f* is also (1/u)-strongly convex: this implies that iIIy* —2*3 < gy —g=2) T (y* —2%). If
y* = z* then we obtain from the former inequality that g,~ = g.- and the matrix H = % - I trivially satisfies the claim. Hence,

we suppose that y* # z*. From the latter inequality, we have that (g,« — g--) T (y* — z*) > 0. Combining this with the former

inequality, we obtain the strict inequality || g, — g,

Lemma 6. O

2< %(gy — g.+) T (y* — 2*). Then, the claim immediately follows from
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Lemma 8 (Residuals of random projections). Let z € R? be a given vector such that ||z||2 = 1. Let Q € R™™ be a partial
Haar matrix in R%. Consider the matrix P+ = I — QQ". Then, we have the decomposition ﬁ =arx++V1l—-a2XZ,

2, X € R¥XUW=1) s an orthonormal complement to x (ie., [x,X] is an orthogonal matrix), and Z is a

where o = |[Ptx

(d — 1)-dimensional vector uniformly distributed onto the unit sphere S := {w € R? | |w|s = 1} and independent of c.

.
x
Proof. We use the orthogonal decomposition QQ 'z = [ac X} . QQTr = ||QTz|2z + XXTQQ Tz, so that

XT
it S 7 7 .— _X'0QTx 7 . :
P — %+ XZ where Z = [Pia], - Lhe vectors ax and XZ are orthogonal. Taking norms and using that
|XZ|2 = ||Z]|2, we obtain that || Z|| = v/I — 2. Setting Z = \/27, we obtain that ||Z]| = 1 and the decomposition

ﬁ =axz+ V1 —a2XZ. It remains to show that Z is uniformly distributed on the sphere S?~! and independent of a.

Let Q € R(¢=1*(4=1) be a Haar matrix independent of Q. Rotational invariance in distribution of the partial Haar matrix Q

. . T d x T T
implies that QQ ' = . QRQ [;p X }, and furthermore,
X

1 of fzf QQT[ X} 10 z’
T
0 Qf |[X7 Q X7

[

Q"+ x],
ie.,

z'QQTx T QQRTXO d z'QQTr zTQQTX

QXTQQ Tz QXTQQTXQ XTQQ Tz XTQQTX

Consequently, the joint random variable (2XTQQ "z, 2" QQ " x) has the same distribution as (X 'QQ " z,2'QQ "), ie.,
(avI—a2 -0Z,1—a?) £ (aW/T—a?- Z,1 — a?), which further implies that the distribution of ©Z conditional on « is
equal to the distribution of Z conditional on «. The vector 27 is uniformly distributed on the unit sphere and independent of

«, which implies the same for Z. O

2) Proof of Theorem 5: According to Propositions 1 and 2, there exist g,- € 0f*(z*) and g,- € 0f*(y*) such that
g + yAATZ* = 0 and gy» + $ APsATy* = 0. Subtracting the previous two equalities and multiplying by X, we obtain
that A(gy+ — g»+) + APsAT (y* — z*) = APg AT z*. Using the assumption that f is v-strongly convex, it follows from
Lemma 7 that there exists a symmetric matrix  such that 0 < H =< 2I and H(y* — z*) = gy — g.~. Substituting the

! and using the

latter equality into the former, left-multiplying both sides of the resulting equation by + AT (AH + APSAT)
identities z* = —A"1AT2z* and (V) = ~A\"1ATy*, we obtain that 1) — z* = AT(AH + APsAT)"LAPZz*. Multiplying

both sides by * " Pg- and using that (Pgz*, (1) — 2*) < || Pga*||o||Z¢

20 —a*ls _ [[Pga*l2 -4, Psa’
> AH + APgAT) 2487
Bl > Jol I R
[P a* |2 1 -3, Psz’
> W52 Hl2y )17, 4 44Ty 24 ST
5 T 14 ) Al
=M
In inequality (i), we used the fact that AT()\H + APsAT)"YA = M T M. According to Lemma 8, we have that ﬁ L

AT ” +v1 -XZ, where a::= || Pg HJ?*H |2, X € R®(4=1) s an orthonormal complement to and Z e R¥lisa

Hx H
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random vector which is uniformly distributed onto the unit sphere in R¢~! and independent of «. Consequently, we have that

IIA(1 — a2 o
— T +va(l—a2)MXZ|3

" > Eg ||a M=
T
i
= Es{a’}- M5 | g ta(l - o2)) - E|MXZ)2

lz*|3
>0
s [[Mz*3
> Eg{a?}3 . 112
(22) (|3

In inequality (i), we used that the cross-term in the expansion of the square is equal to 0 because of the independence of o

and Z and the fact that EZ = 0. In inequality (ii), we used Jensen’s inequality to obtain that Eg{a2}2 < Eg{c?}. Using that

2
Es{a’} =1 -, [[M]]3 = —%5x and taking the supremum over f € F, ,, we obtain that

i+
S(1) _ 2 e 2 3 4
x x z |2 m o
B (L 4 N (L ) L)
FEFy l[z*13 (i) fEFy . [EXE (07 +2)
where inequality (i) is a consequence of Jensen’s inequality. This concludes the proof. O
APPENDIX C
RIGHT-SKETCHING AND STATISTICAL OPTIMALITY
A. Technical preliminaries
Given a radius § > 0, we say that {z1,...,z)} C R? is a d-packing of B¢ in the metric |PagA - |2 if z; € BY for any

je{l,...,M}, and, |PasA(x; — z)||2 > d for any j # k. We say that the d-packing {z1,...,z)} is maximal if for any
x € BY, there exists i € {1,..., M} such that || PasA(z — z;)||2 < §. We recall that we denote the rank of the matrix A by p.

3, define 0k := /o2 — ||PigAl3 and let § €

(0,0 ). Then, there exists a $-packing {z 3L, of B¢ in the metric |PasA - ||2 such that log M > K -log2, and such that
|PasA(x; — xk)||2 < 20 forall j,ke{l,...,M}.

Lemma 9. Let K € {1,...,p} be any index such that 0% > ||P3gA

Proof. Let USVT be a thin SVD of P4gA and denote its rank by 7. Similarly, let USV T be a thin SVD of A. Let 5y > ... >

05> 0 (resp. o1 > ... > 0, > 0) be the singular values of PasA (resp. A). It holds that [0? — 57| < || P55 Al|3. Consider the

2 2 2
Euclidean ball BX(6%):= {9 € RX | Z] 1 52 < 1} For any f € R¥, we have E; 1357 (21) Zjil m (2) Zszl (%,
where inequality (i) follows from 62 < o2 — ||[P1gA|3 for all j = , KX and inequality (ii) follows from the fact that

02 =53] < ||[P1sAll3 for all j =1,..., K. Therefore, if § € B} (52) then 6:= [61,...,0x,0,...,0] belongs to the ellipsoid
53’3:: {9 €R? | Zj 1 J; < 1} Consequently, if {#}2L, is a $-packing of BL(6?) in the metric || -

5, then {#9}M is a

%—packing of Eg in the metric | - ||2- It is well-known that there exists such a packing {#?}} | with cardinality M > 2K.
Hence, there exists a $-packing {ga}é‘/[:l of Eg in the metric | - || with cardinality M > 2¥.
We are now ready to construct the claimed packing of B¢ in the metric ||[PasA - ||o. For each a = 1,..., M, we set x,:=

VS~16. Observe that ||z, 2 = [|[S7167|12 < 1, i.e., 24 € BY. For a # b, we have | PagA(zq — x3)||2 = ||UZVTVZ 1(fa —
%) |5 = [|67 — 6|5 > ¢. Furthermore, we have by construction that 64|l < &, which implies that ||PasA(ze — 2|2 < 20

and this concludes the proof. O
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B. Proof of Theorem 9

Our proof is based on the standard local Fano method. Given an arbitrary vector Z € R?, we denote by P the prob-
2
ability measure with respect to the distribution N (AZ, 2-1I,) and by Ez the corresponding expectation. Fix a sketch size
2
m > 1, an embedding S € R¥™ and let us assume that ||P1igAl3 < % Using that ||Pag|l2 < 1, we have Mg >

infz supyj,, |, <1 By [ PasA(@ — zp1)|13. 1t is thus sufficient to lower bound the latter quantity. We denote bg:= ST ATb, and

we let T = Z(bg) be an estimator. We introduce the radius d,,:= /03 ; — [|Pzgll3. By assumption, we have 4,,, > U”’%/gl
Using Lemma 9 with K =d;+1 and § = —m we obtain that there exists a maximal ——packlng {x1,..., x5} of BY in the

metric |[PasA - ||2 such that log M > d; - log 2, and, |[PasA(z; — zy)|2 < %= for all j, k. Then, we have

M
Om
DB |Pas AT — 20 MZE%HPASA(xfw])nz/322~ Z (IPasa@ -2l > 33 )

[lzall2<1 j=1 j=1

where inequality (i) follows from Markov’s inequality. We introduce the test function ¥ (%) := argmin,_;  / ||PasA(Z —

1,)||2. We claim that ||[PasA(Z — z;)|2 < 3z implies that ¢(Z) = j. Indeed, suppose that ||PasA(Z — ;)

using the fact that {z;}M, is a (d,,/16)-packing, we have for any k # j that |PasA(Z — xz)|l2 > ||PasA(z; — xk)||l2 —
|1PasA(Z — x;)|l2 > 0m /16 — 6,,/32 = 0,,/32, L., Y(Z) = j. It follows that

5 2 M 5 2
sup B |PasA® —ald > (35) + 57 L Pes0@ £ > (35) B {Bs, (000) 1) 17 = 5}
j=1

<1

where J is a uniformly distributed random variable in {1,..., M}. Fano’s inequality states that the testing error in the latter

I(bs;J)+log?2

right-hand side is lower bounded by the quantity (1 — Tog A7

), where I(bg;J) denotes the mutual information between

the random variables bg and J. Consequently, we obtain

2 .
PasA(@ — xp)|3 > <5> ~ (1 W) . (73)

E.
Sip | Hen 32 log M

lzlln<t

Introducing the mixture distribution P, := ﬁ Z;‘il P,;, denoting the Kullback-Leibler (KL) divergence between two
distributions P and Q by Dy(P || Q) and using the convexity of Q — Dy (P || Q), we have

1 M 1 M
j=1

k=1

Using that the KL divergence between two Gaussian distributions P,; and P,, is equal to 2%||[PagA(xz; — ay)|3, it follows

that
M
1 n 5 _ nd2,
I(bs; J) < 35 Z 2 llPasAlz; —zi)lla < 3575
J,k=1
where in the last inequality, we used the fact that |PagA(z; — zx)|l2 < 677" for any j, k. Combining these observations, we
obtain from (73) that
52 né?2 1
E, |PasA@ —ap)|2 = o2 (1 - ——om _ — )
o BenlPasAG =)l > 5o, ( 1602d, log 2 ds>
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2 2
nd,. N0ds+1

d5+1 2 2 a d 2 1
Using that <67, < 04.+1 and O’d T1s it follows that T602d.Tog2 S T602d log3 S T6log2’

and thus,

2
~ Od,+1 1 1
sup g, | PasAE — zp) 3 > 5% .<1 )7
lela<t P2 = g 322 16log2  d,

\%

1
and this concludes the proof of the lower bound.

Polynomial decay Consider a polynomial decay o; = j‘lTTU for some v > 0. The scaling relation "ZTd = ofls 41 yields
that d, ( "2) i . Fix a target rank £ > 1 and a sketch size m = 2k. According to Lemma 1 and using the inequality
(a +b)? < 2a2 + 2b? for any a,b € R, we have with probability at least 1 — 6e~* that

2

1 1 <&
|PasAll3 <26% | oxt1+ — NG Z <2-26% (0}, + z Z o3).
j=kt1 =kt 1

¢ have < - U = 1V.toowstat v 4+1)-k™ with probabilit
We have £ 527 02 < £ [T um (4 du = A Tt follows that | PAg Al < 2262 (' +1)-k~(1+) with probability
at least 1 — 6e™". Consequently, we have < =1 s+ 1)~ > (vt + - , for which 1t 1s

least 1 — 6e~*. Consequently, we have || PigAlj3 < "d;l if (dy 4+ 1)) > 2704 - (v~ + 1)k=+¥), for which it i
sufficient to have m > ([2 - (2704(v~1 + 1)) 4 1) -d,.

— C[,),ﬂy

o?ds _

Exponential decay. Consider an exponential decay o; = e=7 for some v > 0. The scaling relation % < o3 ., yields
that d, < L -log(n/o?). Fix a target rank & > 1 and a sketch size m = 2k. We have with probability at least 1 — 6e~* that

v

2
<2 (o + = . o7) S =—-e . Consequently, < === 1f ==e~ L e\ s
IPASAIB < 2267 (073 + 1 3f o 07) < 24 -e(FHD. Consequently, || PAg All < g if SFem(FHDv L em(derh
ie, m > 2-d,+ 21log(5408/v). Assuming that log(n/o?) > log(5408/v) and using that d, < L -log(n/o?), we get that

| PisAl3 < M with probability at least 1 — 6e~% for m > 4d,.

C. Proof of Corollary 2

Through a simple calculation, we obtain that the risk of Z(°), as A — 0, satisfies the bias-variance decomposition

. ~ o’m
lim K@) = E[| Paswll3 + sup |[PagAunl3 = —— +[|PisAl3. (74)
A—0 " |lzy2<1 n
=mo?/n
According to (26), the residual error verifies | PigAl3 < R2, /2(A), so that
o’m
Ms = inf R(7) < inf lim R(T ) < inf { + an/Q(A)} : (75)
T m n

Consequently, the sketch size m controls this bias-variance trade-off: the larger the sketch size m, the larger the vari-

2 . . .
ance term % and the smaller the bias an /2(A), and vice-versa. Furthermore, according to Theorem 9, under the event

[PisAl3 < 0‘““ , it holds that Mg > co - 03, ;.

Polynomial decay. Consider a polynomial decay o; = j~ 2~ for some v > 0. Picking m = & - d, and following the

s+1

same steps as in the proof of Theorem 9, we obtain that || P1gA||3 < with probability at least 1 — 6e~%:. Plugging-in

this value of m and this bound on the residual error || P1gA|3 into (74), it follows that

02 ds + 0—1215-1-1 0—2 ds

lim R(ZV) < &V .

1
g poly Y.
A—0 n 2 (™ + 2)
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with probability at least 1 — 6e~%.

Exponential decay. Consider an exponential decay o; = e~*% for some v > 0. Picking m = 4d, and following the same

2
steps as in the proof of Theorem 9, we obtain that ||PigAl3 < % with probability at least 1 — 6e~%. Plugging-in this

value of m and this bound on the residual error || P4gA||3 into (74), it follows that

2 2 2
lim m(@(o)) <4. o°ds Od,+1 <5- o°dsg
A—0 n 2 n

with probability at least 1 — 6e~%.

APPENDIX D

PROOFS OF FENCHEL DUALITY RESULTS
A. Proof of Proposition 1

The primal objective function is strongly convex, so that it admits a unique minimizer *. According to Corollary 31.2.1
in [57] whose assumptions are trivially satisfied, strong duality holds and there exists a dual solution z*. According to Theorem
31.3 in [57], we have the KKT conditions 2* = —AT2*/\ and z* = Vf(Az*). In particular, the relation z* = V f(Az*)
along with the uniqueness of z* imply that z* is unique. If the function f is strictly convex, according to Theorem 26.5
in [57], the mapping V f is one-to-one from R" to the interior of the domain of f*. Consequently, V f(Ax*) € int dom f*,

ie., z* € int dom f*. ]

B. Proof of Proposition 2

According to Corollary 31.2.1 in [57] whose assumptions are trivially satisfied, there exists a primal solution a* € R*,
strong duality holds, and there exists a sketched dual solution y* € dom f*. According to Theorem 31.3 in [57], we have the
KKT conditions ST Sa* = —% and y* = Vf(ASa*). If the function f is strictly convex, according to Theorem 26.5
in [57], the mapping V f is one-to-one from R" to the interior of the domain of f*. Consequently, V f(ASa*) € int dom f*,
ie., y* €int dom f*. O
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