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ABSTRACT

Structural characterization of intrinsically disordered proteins (IDPs) requires a concerted effort
between experiments and computations by accounting for their conformational heterogeneity.
Given the diversity of experimental tools providing local and global structural information,
constructing an experimental restraint-satisfying structural ensemble remains challenging. Here,
we use the disordered N-terminal domain (NTD) of the estrogen receptor alpha (ERalpha) as a
model system to combine existing small-angle X-ray scattering (SAXS) and hydroxyl radical
protein footprinting (HRPF) data and newly acquired solvent accessibility data via D,O-induced
fluorine chemical shifting (DFCS) measurements. A new set of DFCS data for the solvent
exposure of a set of 12 amino acid positions were added to complement previously acquired
HRPF measurements for the solvent exposure of the other 16 non-overlapping amino acids,
thereby improving the NTD ensemble characterization considerably. We also found that while
choosing an initial ensemble of structures generated from a different atomic-level force field or
sampling/modeling method can lead to distinct contact maps even when the same sets of
experimental measurements were used for ensemble-fitting, comparative analyses from these
initial ensembles reveal commonly recurring structural features in their ensemble-averaged
contact map. Specifically, nonlocal or long-range transient interactions were found consistently
between the N-terminal segments and the central region, sufficient to mediate the conformational

ensemble and regulate how the NTD interacts with its coactivator proteins.
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Introduction

Intrinsically disordered proteins (IDPs) are associated with various intracellular functions and
pathological diseases.'* Understanding the conformational properties of IDPs is of interest
requiring a concerted effort between experiments and computations.*® Due to the lack of a well-
defined folded structure and the intrinsic conformational flexibility, it is well acknowledged that
a notion of the conformational ensemble is required to characterize the heterogeneity of IDP
conformations.”'* Obtaining such a conformational ensemble has imposed a key challenge for
experimental measurements and theoretical or computational methods.

Various experimental techniques have been used to provide structural properties of IDPs. The
first type of methods provides information about the global protein conformation and nonlocal
pairwise distances between protein amino acids, with significant differences in the sensitivity of
the distance regime between these methods. For instance, small-angle X-ray scattering
(SAXS)': 16 and dynamic light scattering'? can provide the protein size and/or pairwise distance
distributions. In contrast, labeling techniques, such as Forster resonance energy transfer'” and
paramagnetic relaxation enhancement,'® provide the amino acid distances or dynamics for a few
or a large set of specific pairs each at their distance range of detection. The second type of
methods provides residue-specific or local structural properties such as backbone chemical

shifts,'” residual dipolar coupling,?® and relaxation measurements®" 2> from nuclear magnetic



resonance as well as circular dichroism?? spectroscopy for overall secondary structure
assessment. These methods are often combined with the first type of methods to provide a
complete picture of local and global structural properties of IDPs.% 2425 The third type of
methods probes solvent exposure of individual amino acids, including hydroxyl radical protein
footprinting (HRPF),?® D,0-induced fluorine chemical shifting (DFCS),?” and more
comprehensively, label-free solvent-PRE.?®2° They are sensitive to both local secondary
structure and nonlocal or long-range interactions can in principle provide complementary
information to existing methods, although it remains elusive how these diverse sparse data can
be combined for structural interpretation, the subjection of this work.

Computationally, a large set of degrees of freedom for an IDP makes it impossible to sample
its vast conformational space without the help of experimental restraints. Combining the
collective knowledge from computations and experimental measurements offers an alternative
strategy for investigating the conformational ensemble of IDPs.3° Typically, this integration is
achieved in the two following approaches: 1) ensemble fitting by first generating an ensemble of
structural candidates using molecular simulations and then selecting a subset of conformations
from the initial ensembles to fit against experimental restraints;”> % !> and 2) generating the
restraint-satisfying ensemble via biased molecular simulations.’! Ensemble fitting methods are
often used for their ease and simplicity without invoking the complication of simultaneous
biasing for a relatively large set of structures on the fly. One clear advantage of this ensemble-
fitting approach is that the initial ensemble only needs to be generated once and can be used for
fitting different experimental restraints’>. However, a disadvantage is that if the initial ensemble
fails to describe the experimental restraints accurately, the ensemble fitting methods would

require an enlarged pool of structural candidates for their fitting procedure, often in an iterative



fashion. Given sparse experimental restraints available, it remains unclear how the choice of the
initial ensemble of structures and related ensemble fitting method, affects an accurate description
of the IDPs*3.

Specifically, we here investigate the strategy of integrating experimental measurements
providing residue-specific solvent accessibility and size of the protein. To this end, the N-
terminal domain (NTD) of the estrogen receptor, critical for its hormone-independent ER
activation,* was used as a model system of intrinsic disorder.?> 3¢ Our previous work has pointed
out the compaction of this NTD disorder and its important nonlocal/long-range interactions by
integrating SAXS and HRPF data using an ensemble fitting method.3” While HRPF provided the
solvent accessibilities of 16 amino acids along its sequence (Fig. 1A), it is always a question of
whether additional restraints can be incorporated to improve the accuracy of such an IDP
conformational ensemble. In this work, a relatively new probing method DFCS was first
explored to provide extra information about site-specific solvent accessibility, complementing a
different set of amino acids probed by HRPF previously.?” As such, a key question becomes the
extent to which the DFCS data improve the structural description of the NTD compared to the
HRPF alone. Together with the existing SAXS data,’” we further evaluate the robustness of the
ensemble fitting method by using both atomic-level simulations and coarse-grained modeling for
initial structure generation and examine the extent to which the combination of these different
initial ensembles better interprets those experimental findings. Finally, we predict specific
nonlocal or long-range interactions from the conformational ensembles integrating multiple

sources of experimental measurements of the NTD.

Methods



Experimental measurements. Site-directed mutagenesis was conducted to introduce a cysteine
residue at comparable serine sites of the NTD. Protein expression and purification were
described previously?’. BTFA (3-Bromo-1,1,1-trifluoroacetone; Alfa Aesar Cat# A14948) was
used for the attachment of a trifluoromethyl (—CF3) group to the end of cysteine sidechains by
adding BTFA (1:100) into a resolubilization buffer (10 mM sodium phosphate, pH 7.2, 0.5 mM
EDTA, and 0.1 mM PMSF) with overnight incubation at 4 °C. Proteins were prepared in a range
of 1.2-2.2 mg/ml, each with a titration at 10%, 20%, 30%, 40%, and 50% D->0O. One-dimensional
9F chemical shift spectra were recorded on a Bruker Ascend 111 HD 500 MHz spectrometer
equipped with a nitrogen-cooled '°F tuned BBO probe. All spectra were acquired with 512 scans,
131K data points in the direct dimension, a pulse length of 15.0 usec, a spectral width of 468,750
Hz (*°F), a digital resolution of 3.5 Hz/point, and a relaxation delay of 1.0 s at 8 °C. Topspin 3.5
pl 7 was used for data processing, and free induction decay signals were apodized with an
exponential window function as to line broadening of 0.30 Hz.

Theoretical methods. Three different simulation methods were used for generating the initial
ensembles (see Supporting Methods for details). The first ensemble (hereafter AA-1 with 35,240
structures from a total accumulative time of 35 us) was generated from the combination of
replica exchange and Gaussian-accelerated molecular dynamics simulations (using the Amber
ff99sb force field*® and the TIP3P water model*®) as described in the previous literature.3” The
second ensemble (hereafter AA-2 with 20,000 conformations from a total time of 4 us) was
generated using a brute force simulation (using the Amber99sbws force field*® and the
TIP4P/2005 water model*"). The third ensemble (hereafter FM with 20,000 structures) was
generated using the Flexible-Meccano model*? to obtain a coarse-grained representation

including C, and Cp atoms. For each residue, its missing atoms including the rest of its sidechain,



were added via the FASPR algorithm.** Theoretical calculations for the SAXS intensity of each
simulated structure in the ensemble were achieved using Fast-SAXS-pro.** HRPF data were
interpreted via the solvent accessible surface area (SA) of individual residue sidechains.?® DFCS
data were evaluated via the SA of the CF3 group attached to each corresponding cysteine

sidechain. Details of computational methods were provided in the Supporting Methods.

Results and Discussion

The NTD structural properties probed by multiple experimental techniques
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Figure 1. Biophysical probing of the NTD disorder. A) The NTD consists of heterogeneous

amino acids with positive and negative charges highlighted in blue and red, respectively,



aromatic residues in cyan and hydrophobic residues in grey. Top, labeling positions by HRPF;
Bottom, labeling sites by DFCS. B) SAXS data acquisition. Left: Schematic of the SAXS setup
with an X-ray source, a biomolecular sample flow, and a photon detector. Right: A typical one-
dimensional SAXS profile as a function of ¢, the amplitude of momentum transfer. C) Solvent
exposure measurements via HRPF. Left: Schematic of HRPF measurements. Green dots,
reactive hydroxyl radicals generated from X-ray hydrolysis and their attachment with amino acid
sidechains. Right: Representative HRPF measurements via a dose-response curve before
conversion into a structure-based protection factor (PF). D) Site-specific solvent exposure
probed via DFCS. Left, schematic for a cysteine with a CF3 tag (in green) attached to its
sidechain; Right, peak changes in D>O-induced fluorine chemical shifts as a function of
increasing D>O concentrations from 10% to 50%. DFCS, the linear slope of the peak shift as a
function of D>O concentration. More details can be found in Methods.

We first inspected the sequence characteristics of the NTD (Fig. 1A), specifically the
distribution of charged and aromatic amino acids. They are clustered in three regions, the N-
terminal region before residue 50, the central region between residue 50-140, and the C-terminal
region after residue 140. We calculated a series of sequence descriptors of these three regions to
investigate the conformational properties of these regions shown in Table S1. Within both N-
terminal and C-terminal regions, positively and negatively charged amino acids are abundant
with a fraction of charged amino acids (FCR) of 22.0% and 34.1%, respectively, while the
central region only has five negatively charged amino acids with an FCR of 6.7%, suggesting a
more extensive electrostatic influence in the two terminal regions. Also, the charge patterning
using sequence charge decoration (SCD)* indicates net attractive interactions in the N-terminal

region, net repulsive interactions in the central region but relatively weak repulsive interactions



in the C-terminal region. Under the assumption that electrostatic interactions between these
charged amino acids are the sole driving force, the NTD would adopt a dumbbell-like
conformation where its two heads are each dominated by intra-region attractions but connected
via a long central region hanging with mostly repulsive electrostatic interactions. On the other
hand, a high percentage of the hydrophobic amino acids, especially abundant aromatic residues,
are localized within the central region (i.e., 13.3%), suggesting its regional tendency to collapse.
Sequence hydropathy decoration (SHD)*¢, which is based on the hydropathy patterning, further
suggests a much stronger hydrophobic effect in the central region, compared with the two
terminal regions. Using SCD and SHD analysese*, the scaling exponent for the central region is
predicted at 0.443, which is considerably smaller than the two terminal regions (i.e., 0.492 and
0.543, respectively). Of note, the overall scaling exponent predicted for the entire sequence is
0.415, which is even smaller than the central region of 0.443 alone, consistent with the overall
compaction we previously reported®’. This collapse of the entire chain appears to be driven by
the hydrophobic interactions within the central region (residues 51-140), further mediating
nonlocal electrostatic attractions between charged amino acids of the two terminal regions (see
Table S1). These simple sequence-based analyses provide an inspiring set of testable predictions
on nonlocal interactions within the NTD for further experimental validation.

In a recent work, we applied the SAXS and HRPF techniques to investigate the NTD structural
properties.’’” SAXS suggested roughly the size of an IDP (Fig. 1B). As for the NTD, the
obtained radius of gyration R, of 31.0 A is smaller than that of a typical IDP with 184 residues (~
38.6 A), estimated via a power law derived from the experimental observations of a large
number of IDPs,!® consistent with our previous observation regarding the attractive interactions

based on the sequence properties. The HRPF further probed the solvent accessibility of 16
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amino acids along the sequence (Fig. 1A top and Fig. 1C), and a few of them were observed to
be less solvent accessible (e.g., residues 33 and 124), departing from the behavior of a random
coil expected with high solvent exposure. These SAXS and HRPF data suggested transient
intramolecular interactions, whereas the challenge is to define a structural ensemble illustrating
these essential interactions, especially for specific amino acids. In the same literature, we
applied an ensemble fitting method to derive a reweighted conformational ensemble and found a
few nonlocal interactions, e.g., between residues 33 and 118, which were confirmed by site-
directed mutagenesis and '’F-NMR. However, whether additional experimental restraints can

lead to an improved structural ensemble with other significant transient interactions remains to

be seen.
A s10c* B s84C* C 0
€ s84c*
Q
=
m
=
<.0.1
s10c*
—_—— o= NS
-84.8 -84.9 -84.8 -84.9 10 20 30 40 50
% D20

19F chemical shift (ppm)
Figure 2. DFCS measurements for solvent exposure of individual NTD amino acids. A and B)
The '°F spectrum of SI0C* (A) and S84C* (B) at different D>O concentrations ranging from
10% DO (blue) to 50% (red). C) The DFCS values as the slope of '°F spectral peaks illustrated

for two representative S10C* and S84C* examples. Ad, peak values relative to that in the

absence of D;0.

TABLE 1. The DFCS values of 12 amino acid positions probed. * denotes '°F labeling.

Numbers in parentheses denote the errors in the last few digits.
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$10C* S46C* S47C* S84C* $102C* S104C*
-0.211 (5) -0.218 (24) | -0.186 (7) -0.167 (7) -0.124 (8) -0.185 (14)
S106C* S118C* S137C* S167C* S173C* $178C*
-0.184 (6) -0.192 (17) | -0.208 (9) -0.169 (9) -0.183 (10) | -0.163 (7)

We further sought additional information on position-specific solvent accessibility via a '°F
labeling technique, which we termed D>O-induced fluorine chemical shifting (DFCS). The
DFCS probes the solvent accessibility at amino acid positions not overlapped with HRPF (Fig.
1A). It uses a small molecule known as BTFA (3-Bromo-1,1,1-trifluoroacetone), so a
trifluoromethyl (—CF3) group is attached to the end of a cysteine sidechain with minimal
structural perturbation (Fig. 1D).?%47 Advantageously, the NTD has no native cysteine residue. A
fluorine tag can be attached at any serine amino acid position (comparable to cysteine) after
mutating to cysteine. More importantly, because of an isotopic effect of D>O water, increasing
concentrations of the isotopic D>O water lead to a peak shift of fluorine spectra, denoted as Ad
(see Fig. 2), dependent on the local solvent exposure.?”-*® Thus, the DFCS reports the exposure
to the solvent D,O via Ad (relative to that in the absence of D20, i.e., 100% H>0). For instance, a
larger Ad value of S10CBTFA indicates higher solvent exposure (Fig. 2A), while a smaller A
value of S84CBTFA indicates otherwise (Fig. 2B). We denote the DFCS value to represent the
linear slope between Ad and D>O concentrations (Fig. 2C), an indicator of the solvent exposure
of individual sites.

By taking advantage of the well-distributed serine amino acids along the NTD sequence, we
repeated this '°F labeling and related DFCS determination procedure for the set of 12 amino acid
positions one by one (Fig. 1A bottom), one by one. Their DFCS values are listed in Table 1. We
found that most '°F-tagged positions are fully solvent-exposed, except for positions S84C*

S102C*, S167C*, and S178C*, which are relatively solvent-protected. This high solvent
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exposure is in line with the HRPF measurements that only a few amino acids show little solvent
protection, and they are thus likely to be involved in transient intramolecular interactions while
most other amino acids remain as flexible as in a typical IDP. Nonetheless, DFCS and HRPF
provide a non-overlapping coverage of amino acid positions along the sequence, which offers an
unparalleled opportunity to evaluate whether these DFCS measurements provide additional and
complementary information to improve the NTD structural ensemble.

Generation of initial structural ensembles

Given the availability of additional site-specific information, a key question is whether the
initial ensemble of candidate structures is sufficiently diverse to satisfy the collective
experimental restraints from SAXS, HRPF, and DFCS data. We previously used two major
advanced sampling methods with a standard all-atom force field Amber ff99sb3® and the TIP3P
water model*® to generate the initial all-atom ensemble (see Methods) as our first option of
testing (referred to as AA-1). This combination of such an all-atom force field and a water
model is known to generate an overly compacted conformation*>#°. In our previous work,
however, a sufficient number of conformations were found close to the experimental radii of
gyration from SAXS.3” Such enhanced sampling was deemed to be helpful, without which the
simulation was often stuck in a few conformations due to an overestimation of amino acid
interactions. While no direct control was done, the fact we are able to find a restraint-satisfying
ensemble by the current sampled space indicates the sampling is well poised to provide a
sufficiently large pool of conformations with diverse amino acid interactions.

Due to the recent advance in the all-atom force field optimized specifically for IDP structures,
we also utilized an optimized Amber99sbws*’ and the TIP4P/2005 water model*! to generate an

alternative all-atom ensemble (referred to as AA-2). We are aware that there exist multiple sets
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of new all-atom force fields that are optimized for intrinsically disordered proteins.>%-34

However, the main focus of this work is to examine to which extent an all-atom ensemble can
best fit the experimental data for ensemble-structure characterization, as opposed to evaluating
the performance of different all-atom force fields. These previously developed force fields still
work reasonably well, as shown in the Result section; testing the performance of an initial
ensemble generated with newer force fields will be a topic of future studies. Since a coarse-
grained model is less computationally demanding, there is also a growing interest in using such a
model to investigate IDPs; we generated a third initial ensemble (hereafter FM) using the

Flexible-Meccano method.*?
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Figure 3. Comparison of the initial ensembles using three computational methods of AA-1 (all-
atom simulations with advanced sampling), AA-2 (brute-force all-atom simulations with an IDP-
optimized force field, and FM (the Flexible-Meccano method*?) (see Methods). A) Pair distance
distribution function (PDDR). B) Comparison of SAXS data with y? shown in the legend.
Dashed line, theoretical SAXS curve; g, the scattering vector amplitude; /(g), scattering intensity.
C) Comparison between the calculated SA value of each residue sidechain (SAsidechain) With

experimental HRPF data. R, Pearson correlation coefficient. D) Comparison between the solvent
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accessible surface area of each CF3 group (SAcr3) with experimental DFCS data. Dots with error

bars, experimental data with uncertainty.
Fig. 3A shows that the pair distance distribution function (PDDF) for these three initial

ensembles looks quite different. Notably, the AA-1 ensemble is relatively collapsed with an

averaging radius of gyration (R,) of ~22 A, the FM is more expanded (~42 A), and the AA-2 in-

between (~25 A). None is close to the experimental estimate of 31 A, suggesting the necessity

of including SAXS data as experimental restraints in the ensemble fitting. Given the difference

among these three initial ensembles, we evaluate their goodness of fit against experimental
measurements.

The ensemble fitting is achieved by minimizing the difference between experimental
measurements and theoretical counterparts for the structural ensemble. For theoretical SAXS
calculations, we used the in-house Fast-SAXS-pro algorithm* by taking advantage of its
capability of computing SAXS profiles from atomistic and coarse-grained structures. Fig. 3B
compares the calculated SAXS profiles and experimental SAXS curves. For the HRPF
comparison, the SA values of amino acid sidechains were calculated and averaged for the
comparison with the HRPF measurements that provide a measure of solvent protection, also
known as a “protection factor.”?® The correlation or the goodness of fit between these HRPF
measurements and the averaged SA values of individual amino acids is shown in Fig. 3C. In

terms of DFCS comparison, the solvent accessibility of the CF; tag, as opposed to the entire

sidechain, was used after each site was computationally mutated to cysteine attached with a CF3

tag (see Methods). The correlation between the DFCS measurements and calculated solvent

accessibility for the set of amino acid positions probed is shown in Fig. 3D.
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On its own, each initial ensemble is best at capturing a specific experimental technique. The
AA-1 set matches the HRPF well by capturing the high solvent protection of specific residues in
part due to the more collapsed structures sampled while maintaining reliable goodness of fit with
SAXS data. The AA-2 reproduces the SAXS experimental data (regarding R,) as expected since
the force field was parameterized to address overly compact conformations for IDP simulations.
When comparing with the DFCS data, such an initial ensemble is not in perfect agreement with
experimental measurements, i.e., the lack of an apparent correlation between the solvent
accessibility of the probed amino acids and the DFCS datasets. For this exact reason, ensemble
fitting for such initial ensembles against the experimental datasets becomes a logical step by
reweighting the conformations in the initial ensemble to generate an optimal new ensemble that

better reproduces the experimental DFCS data.

Complementary information on site-specific solvent accessibility from HRPF and DFCS

To quantify the complementarity between the HRPF and DFCS measurements, each was
combined separately with SAXS data in the ensemble fitting (i.e., HRPF+SAXS and
DFCS+SAXS). First, SAXS effectively describes the global-conformation information about the
ensemble-averaging size and its pairwise distance distribution. In contrast, the HRPF and DFCS
information is at a site-specific level about the solvent accessibility of probed amino acid
positions, reflecting the intramolecular interactions of these amino acids involved. It is an area of
active research to develop ensemble fitting methods where calculated and experimental
measurements agree.” % !> Notably, a recent study found that the outcome of the ensemble fitting
depends on the choice of initial ensembles.?* As such, it is necessary to test multiple initial

ensembles during ensemble fitting.
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Comparison of SAXS data with y2 shown in the legend. B) Comparison between the calculated

SA values of individual sidechains with experimental HRPF data. C) Comparison between the
solvent accessible surface area of the CF3 group with the experimental DFCS data. R, Pearson

correlation. (See Fig. S1 and S2 for similar results on refining the AA-1 and FM ensembles)

Fig. 4A demonstrates the ensemble fitting results using the AA-1 set as an example, where
SAXS can be reproduced equally well in both cases of the SAXS/HRPF combination and the
SAXS/DFCS combination. Of note, the outcome from the SAXS/HRPF combination alone is

unable to achieve a good agreement with the DFCS measurements (Fig. 4 left) and vice versa
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when using SAXS+DFCS (Fig. 4B, right). This room of improvement indicates that the HRPF
and DFCS indeed provide complementary information in part due to their non-overlapping
nature in terms of the amino acid positions probed (Fig. 1A). The other two initial ensembles
(AA-2 and FM) were also used to evaluate the extent to which the ensemble fitting of the two
sets of data (SAXS+HRPF or SAXS+DFCS); we found they cannot blindly predict the third
dataset (DFCS or HRPF), demonstrating that the new DFCS data yield new knowledge to
improve the ensemble fitting (see SI Figs. S1 and S2).

Dependence on the initial ensemble of structures

To investigate how the use of different initial ensemble structures affects the fitting outcomes,
we evaluate the goodness of fit for each of the three initial ensembles (AA-1, AA-2, and FM)
using the combination of all experimental SAXS, HRPF, and DFCS measurements. First, these
initial ensembles describe the SAXS data reasonably well, given the small y? values (Fig. 5A),
even though the FM has a larger deviation at the low-g region. Of note, the ensemble-averaged
R, values of the AA-1 and the FM are quite different from the R, derived from experimental
SAXS data, and these conformations are still sufficient to reproduce a reasonable R, value from
the refined ensemble. At last, about 1000 conformations dominate the ensemble properties (see

Fig. S3).
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Figure 5. Ensemble fitting using three initial ensembles (AA-1, AA-2, and FM). A) Comparison
to SAXS data. 2, the deviation between the theoretical and experimental SAXS data. B)
Comparison between calculated SA values of residue sidechains with experimental HRPF data.
C) Comparison between calculated SA values of CF3 groups with experimental DFCS data. R,

Pearson correlation coefficient.

On its own, it is difficult for each initial ensemble to reach convergence with reasonable
goodness of fit with HRPF and DFCS data simultaneously due to the relatively broad coverage
of the combined non-overlapping amino acid positions probed. While both AA-1 and FM fit

well with HRPF and DFCS data, the FM-based SA values seem outside the range obtained from
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AA-1 and AA-2, partly due to overly expanded conformations with virtually no amino acid
solvent-protected. Notably, the AA-2 ensemble alone cannot simultaneously match SAXS,
HRPF, and DFCS data. This issue could arise from the imperfect force field, insufficient
sampling, or both. Of note, the observation that AA-2 with an updated force field alone does not
perform well in capturing NTD experimental data may not be generalized to other IDPs. It is
worth pointing out that both HRPF and DFCS probe more residue-specific local
microenvironment, while the force field samples more expanded conformations resulting in less
residue-residue contact formation. As such, the force field accuracy is vital to characterize these
residue-specific interactions. The other issue could be related to the IDP conformational

sampling of these conformations, which is a challenging task.*

Nonetheless, it is becoming apparent that the outcomes of ensemble fitting are likely
dependent on the initial ensemble (e.g., compact or expanded), as in Fig. 2A. Furthermore, the
current highly residue-specific structural information seems to require high-resolution
knowledge of amino acid interactions and sufficient sampling in the conformational space, as we
shall see next. If there is no or few conformation with specific amino acid interactions in the
initial ensemble, it is unlikely to achieve a good fit with experimental data. There can be an
alternative way to allow the conformations in the ensemble to adapt to the experimental data
instead of fixing the conformations in the initial ensemble, e.g., experiment-biased simulations?!
or evolving ensemble structures during ensemble fitting,>® which is beyond the scope of this

work.
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Figure 6. Ensemble fitting against a merged/enlarged ensemble of structures with a combination
of SAXS, HRPF, and DFCS data. A) Cumulative weight as a function of the number of
conformations included. B) Comparison to SAXS data. C) Comparison between calculated SA
values of residue sidechains with experimental HRPF data. D) Comparison between calculated

SA values of CF; groups with experimental DFCS data. R, Pearson correlation coefficient.

To test the extent to which an enlarged pool of candidate structures improves the experimental
data interpretation, we evaluate the goodness of fit via the combination of the three pools of
candidate structures from these initial ensembles (AA-1, AA-2, and FM). The final ensemble is
merged from all three initial ensembles. To evaluate the minimal number of conformations that
contribute most to the final ensemble, we calculated the cumulative weights as a function of the
conformation number after ensemble fitting. As shown in the black line of Fig. 6A,
approximately 1,000 conformations contribute to more than 50% of the total weight of the entire

ensemble, suggesting that while there are more than 75,000 conformations in the initial merged
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ensemble, only a small portion of these conformations contributes to reproducing the
experimental restraints. It is true that the more experimental restraints used in ensemble fitting
would lead to a less number of important conformations in the final ensemble, although the
reasonably good agreement between the merged ensemble and the experimental SAXS, HRPF,
and DFCS data (Figs. 6B-D) suggests that one of the best-fit ensembles is reached. Also, the
cumulative weights analyses showed that the AA-2 and the FM still contribute more than 30% of
the conformations in the final merged ensemble, suggesting their contributions of improvement
over the AA-1 alone. However, the contribution of each initial ensemble is quite different in
terms of reproducing the experimental data. For instance, AA-1 contributes the most and AA-2
the least to the final merged ensemble, presumably because the AA-1 alone can capture most of
the experimental datasets while the AA-2 cannot, as shown in Fig. 5. This difference suggests
the ensemble fitting method is effective in selecting meaningful conformations from a large pool

of conformations.
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Figure 7. Ensemble-averaged contact maps using different initial ensembles of AA-1, AA-2, FM,

and the merged pool with all three initial structures. All three experimental measurements of

SAXS, HRPF, and DFCS data were used for the ensemble-structure fitting. The top three

conformations in the final ensemble using the merged pool as the initial ensemble are shown in

the bottom with blue highlighting residues 20 to 60 and red highlighting residues 100 to 130.

Only looking at the agreement with SAXS, HRPF and DFCS cannot tell the role of additional

structures selected from the AA-2 and FM to characterize the experimental data since the AA-2

ensemble almost matches the experimental data same as the merged ensemble. Additional

physical variables besides the experimental measurements must be calculated from the ensemble

for further comparison. We now examine the NTD structural features via the ensemble-averaged

contact maps obtained using three different initial ensembles (Fig. 7). Because of the vast
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difference in the conformational space covered by each initial ensemble (Fig. 2A), it is not
surprising that their resulting contact maps are quite different despite their optimization against
the exactly same experimental restraints. This differentiation suggests that there is room for
improvement when using the AA-1 ensemble alone or currently available experimental
restraints.

However, by comparing these contact maps, there are commonly shared structural features
among these refined ensembles, except for the one from FM with less long-range contact
formation. Transient long-range interactions are formed between the N-terminal region
centering around residue 33 and the central region around residue 118, as we previously
validated using site-specific mutagenesis.’’” We note that such mutagenesis cannot rule out the
role of other amino acids in proximity or other specific amino acids far away; as we move
forward along this NTD study, it is expected that additional long-range contacts will be
uncovered and communicated elsewhere. Here by comparing the contact maps from the AA-1
and the AA-2, it is consistent that interactions are abundant between two regions of amino acids,
one from residues 20-60 and one from residues 100-130. This prediction confirms and extends
the notion of the contact formation from a specific pair of amino acids, pointing to a broader
picture that such transient interactions within an IDP are not only due to very few specific pairs
of amino acids but also the collective cooperativity of multiple amino acids from for instance
short linear motifs.>”3® Nonetheless, while comprehensive validation is needed for such a notion
(e.g., via a secondary biophysical technique), the current ensemble-averaged contact maps
provide an exemplary structural feature for the NTD disorder associated with regulating its

hormone-independent ER activation.

Conclusions
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Integrative biophysics involving multiple experimental methods has been a mainstay in the
structural investigation of IDPs. In this work, we demonstrate the predictive power of combining
experimental SAXS, HRPF, and DFCS measurements and computational methods (e.g.,
ensemble fitting and all-atom simulations) to interpret transient interactions of the NTD disorder.
In doing so, we examine such ensemble-fitting and make notable observations from three
different perspectives. First, extra information from site-specific solvent accessibility from DFCS
(i.e., a set of 12 residues in terms of their solvent exposure) provides non-overlapping and
complementary knowledge beyond previously existing HRPF data (a set of 16 residues in terms
of their solvent exposure), thereby improving the ensemble-structure characterization
considerably. Second, the role of three different initial ensembles (each generated from a
different force field or a sampling/modeling method) was investigated to report that the choice of
an initial ensemble of structures can lead to a distinct outcome even when each of them is fit
against the same experimental measurements. As such, it is non-trivial to correlate the fitted
ensemble with experimental restraints before one can confidently conclude the convergence and
robustness of the ensemble. An attempt has been made to merge multiple initial ensembles.
While it is not entirely conclusive to say such an effort substantially improves data interpretation,
the comparison of their corresponding contact maps with shared structural features appears to
increase the level of confidence. Finally, nonlocal or long-range transient interactions for the
NTD disorder were found between two sequence segments/motifs, each containing tens of amino
acids at the N-terminal and central regions. These transient interactions do not form with high
probability compared with stable native contacts as in a folded protein. However, they could be
sufficient to alter the conformational ensemble and thus regulate how the NTD interacts with its

coactivator proteins critical for transactivation function.

26



ASSOCIATED CONTENT

Supporting Information. Supporting methods, figures, and tables for molecular dynamics

simulation and ensemble fitting.

AUTHOR INFORMATION

Corresponding Author

*Email: wenweizheng@asu.edu

*Email: sichun.yang@case.edu

Acknowledgment

We acknowledge the support from the National Science Foundation (MCB-2015030 to W.Z.)
and the National Institutes of Health (ROIGM 114056 to. S.Y. and R35GM 146814 to W.Z.) as

well as the research computing facility at Arizona State University.

ABBREVIATIONS
Intrinsically disordered protein, IDP; small-angle X-ray scattering, SAXS; hydroxyl radical
protein footprinting, HRPF; D>O-induced fluorine chemical shifting, DFCS; 3-Bromo-1,1,1-

trifluoroacetone, BTFA

REFERENCES

(1) Wright, P. E.; Dyson, H. J. Intrinsically disordered proteins in cellular signalling and
regulation. Nat Rev Mol Cell Bio 2015, 16 (1), 18-29. DOI: 10.1038/nrm3920.

27



(2) Tompa, P. Intrinsically disordered proteins: a 10-year recap. Trends Biochem Sci 2012, 37
(12), 509-516. DOI: 10.1016/j.tibs.2012.08.004.

(3) Dunker, A. K.; Silman, I.; Uversky, V. N.; Sussman, J. L. Function and structure of
inherently disordered proteins. Curr. Opin. Struct. Biol. 2008, 18, 756-764.

(4) Forman-Kay, J. D.; Mittag, T. From sequence and forces to structure, function, and evolution
of intrinsically disordered proteins. Structure 2013, 21 (9), 1492-1499. DOI:
10.1016/j.5tr.2013.08.001.

(5) Best, R. B. Computational and theoretical advances in studies of intrinsically disordered
proteins. Curr Opin Struct Biol 2017, 42, 147-154. DOI: 10.1016/j.sbi.2017.01.006.

(6) Das, R. K.; Ruff, K. M.; Pappu, R. V. Relating sequence encoded information to form and
function of intrinsically disordered proteins. Curr Opin Struct Biol 2015, 32, 102-112. DOI:
10.1016/.sb1.2015.03.008.

(7) Brookes, D. H.; Head-Gordon, T. Experimental Inferential Structure Determination of
Ensembles for Intrinsically Disordered Proteins. J Am Chem Soc 2016, 138 (13), 4530-4538.
DOI: 10.1021/jacs.6b00351.

(8) Gomes, G. W.; Krzeminski, M.; Namini, A.; Martin, E. W.; Mittag, T.; Head-Gordon, T.;
Forman-Kay, J. D.; Gradinaru, C. C. Conformational Ensembles of an Intrinsically Disordered
Protein Consistent with NMR, SAXS, and Single-Molecule FRET. J Am Chem Soc 2020, 142
(37), 15697-15710. DOI: 10.1021/jacs.0c02088 From NLM Medline.

(9) Kofinger, J.; Stelzl, L. S.; Reuter, K.; Allande, C.; Reichel, K.; Hummer, G. Efficient
Ensemble Refinement by Reweighting. J Chem Theory Comput 2019, 15 (5), 3390-3401. DOI:
10.1021/acs.jctc.8b01231.

(10) Lazar, T.; Martinez-Perez, E.; Quaglia, F.; Hatos, A.; Chemes, L. B.; Iserte, J. A.; Mendez,
N. A.; Garrone, N. A.; Saldano, T. E.; Marchetti, J.; et al. PED in 2021: a major update of the
protein ensemble database for intrinsically disordered proteins. Nucleic Acids Res 2021, 49 (D1),
D404-D411. DOI: 10.1093/nar/gkaal021.

(11) Jensen, M. R.; Salmon, L.; Nodet, G.; Blackledge, M. Defining conformational ensembles
of intrinsically disordered and partially folded proteins directly from chemical shifts. J Am Chem
Soc 2010, 132 (4), 1270-1272. DOI: 10.1021/ja909973n.

(12) Borgia, A.; Zheng, W.; Buholzer, K.; Borgia, M. B.; Schuler, A.; Hofmann, H.; Soranno,
A.; Nettels, D.; Gast, K.; Grishaev, A.; et al. Consistent View of Polypeptide Chain Expansion in
Chemical Denaturants from Multiple Experimental Methods. J Am Chem Soc 2016, 138 (36),
11714-11726. DOI: 10.1021/jacs.6b05917.

(13) Rauscher, S.; Gapsys, V.; Gajda, M. J.; Zweckstetter, M.; de Groot, B. L.; Grubmuller, H.
Structural Ensembles of Intrinsically Disordered Proteins Depend Strongly on Force Field: A
Comparison to Experiment. J Chem Theory Comput 2015, 11 (11), 5513-5524. DOI:
10.1021/acs.jctc.5b00736.

(14) Fisher, C. K.; Stultz, C. M. Constructing ensembles for intrinsically disordered proteins.
Curr Opin Struct Biol 2011, 21 (3), 426-431. DOI: 10.1016/j.sbi.2011.04.001.

(15) Bernado, P.; Svergun, D. I. Structural analysis of intrinsically disordered proteins by small-
angle X-ray scattering. Mol Biosyst 2012, 8 (1), 151-167. DOI: 10.1039/c1mb05275f.

(16) Yang, S. Methods for SAXS-based structure determination of biomolecular complexes. Adv
Mater 2014, 26 (46), 7902-7910. DOI: 10.1002/adma.201304475.

(17) Nettels, D.; Miiller-Spith, S.; Kiister, F.; Hofmann, H.; Haenni, D.; Riiegger, S.; Reymond,
L.; Hoffmann, A.; Kubelka, J.; Heinz, B.; et al. Single molecule spectroscopy of the temperature-
induced collapse of unfolded proteins. Proc Natl Acad Sci USA 2009, 106, 20740-20745.

28



(18) Clore, G. M.; Iwahara, J. Theory, practice, and applications of paramagnetic relaxation
enhancement for the characterization of transient low-population states of biological
macromolecules and their complexes. Chem Rev 2009, 109 (9), 4108-4139. DOI:
10.1021/cr900033p.

(19) Wishart, D. S.; Sykes, B. D.; Richards, F. M. Relationship between nuclear magnetic
resonance chemical shift and protein secondary structure. J Mol Biol 1991, 222 (2), 311-333.
DOI: 10.1016/0022-2836(91)90214-q.

(20) Mantsyzov, A. B.; Maltsev, A. S.; Ying, J.; Shen, Y.; Hummer, G.; Bax, A. A maximum
entropy approach to the study of residue-specific backbone angle distributions in alpha-
synuclein, an intrinsically disordered protein. Protein Sci 2014, 23 (9), 1275-1290. DOI:
10.1002/pro.2511.

(21) Klein-Seetharaman, J.; Oikawa, M.; Grimshaw, S. B.; Wirmer, J.; Duchardt, E.; Ueda, T.;
Imoto, T.; Smith, L. J.; Dobson, C. M.; Schwalbe, H. Long-range interactions within a nonnative
protein. Science 2002, 295, 1719-1722.

(22) Abyzov, A.; Salvi, N.; Schneider, R.; Maurin, D.; Ruigrok, R. W.; Jensen, M. R.;
Blackledge, M. Identification of Dynamic Modes in an Intrinsically Disordered Protein Using
Temperature-Dependent NMR Relaxation. J Am Chem Soc 2016, 138 (19), 6240-6251. DOI:
10.1021/jacs.6b02424.

(23) Kelly, S. M.; Jess, T. J.; Price, N. C. How to study proteins by circular dichroism. Biochim
Biophys Acta 2005, 1751 (2), 119-139. DOI: 10.1016/j.bbapap.2005.06.005.

(24) Wells, M.; Tidow, H.; Rutherford, T. J.; Markwick, P.; Jensen, M. R.; Mylonas, E.;
Svergun, D. I.; Blackledge, M.; Fersht, A. R. Structure of tumor suppressor p53 and its
intrinsically disordered N-terminal transactivation domain. Proc Natl Acad Sci U S 4 2008, 105
(15), 5762-5767. DOI: 10.1073/pnas.0801353105 From NLM Medline.

(25) Aznauryan, M.; Delgado, L.; Soranno, A.; Nettels, D.; Huang, J. R.; Labhardt, A. M.;
Grzesiek, S.; Schuler, B. Comprehensive structural and dynamical view of an unfolded protein
from the combination of single-molecule FRET, NMR, and SAXS. Proc Natl Acad Sci U S A
2016, 713 (37), E5389-5398. DOI: 10.1073/pnas.1607193113.

(26) Huang, W.; Ravikumar, K. M.; Chance, M. R.; Yang, S. Quantitative mapping of protein
structure by hydroxyl radical footprinting-mediated structural mass spectrometry: a protection
factor analysis. Biophys J 2015, 108 (1), 107-115. DOI: 10.1016/j.bpj.2014.11.013.

(27) Kitevski-LeBlanc, J. L.; Prosser, R. S. Current applications of 19F NMR to studies of
protein structure and dynamics. Prog Nucl Magn Reson Spectrosc 2012, 62, 1-33. DOI:
10.1016/j.pnmrs.2011.06.003.

(28) Hocking, H. G.; Zangger, K.; Madl, T. Studying the structure and dynamics of biomolecules
by using soluble paramagnetic probes. Chemphyschem : a European journal of chemical physics
and physical chemistry 2013, 14 (13), 3082-3094. DOI: 10.1002/cphc.201300219 From NLM
Medline.

(29) Gong, Z.; Gu, X. H.; Guo, D. C.; Wang, J.; Tang, C. Protein Structural Ensembles
Visualized by Solvent Paramagnetic Relaxation Enhancement. Angew Chem Int Ed Engl 2017,
56 (4), 1002-1006. DOI: 10.1002/anie.201609830 From NLM Medline.

(30) Yang, S.; Bernado, P. Integrative Biophysics: Protein Interaction and Disorder. J Mol Biol
2020, 432 (9), 2843-2845. DOI: 10.1016/j.jmb.2020.04.001 From NLM Medline.

(31) Lindorff-Larsen, K.; Best, R. B.; Depristo, M. A.; Dobson, C. M.; Vendruscolo, M.
Simultaneous determination of protein structure and dynamics. Nature 2005, 433, 128-132.

29



(32) Huang, W.; Ravikumar, K. M.; Parisien, M.; Yang, S. Theoretical modeling of multiprotein
complexes by iSPOT: Integration of small-angle X-ray scattering, hydroxyl radical footprinting,
and computational docking. J Struct Biol 2016, 196 (3), 340-349. DOI:
10.1016/5.jsb.2016.08.001.

(33) Gomes, G.-N. W.; Namini, A.; Gradinaru, C. C. Integrative conformational ensembles of
Sicl using different initial pools and optimization methods. Front. Mol. Biosci. 2022, 9, 910956.
(34) Kato, S.; Endoh, H.; Masuhiro, Y.; Kitamoto, T.; Uchiyama, S.; Sasaki, H.; Masushige, S.;
Gotoh, Y.; Nishida, E.; Kawashima, H.; et al. Activation of the estrogen receptor through
phosphorylation by mitogen-activated protein kinase. Science 1995, 270 (5241), 1491-1494.
DOI: 10.1126/science.270.5241.1491.

(35) Warnmark, A.; Wikstrom, A.; Wright, A. P.; Gustafsson, J. A.; Hard, T. The N-terminal
regions of estrogen receptor alpha and beta are unstructured in vitro and show different TBP
binding properties. J Biol Chem 2001, 276 (49), 45939-45944. DOI: 10.1074/jbc.M107875200.
(36) Rajbhandari, P.; Finn, G.; Solodin, N. M.; Singarapu, K. K.; Sahu, S. C.; Markley, J. L.;
Kadunc, K. J.; Ellison-Zelski, S. J.; Kariagina, A.; Haslam, S. Z.; et al. Regulation of estrogen
receptor alpha N-terminus conformation and function by peptidyl prolyl isomerase Pinl. Mol
Cell Biol 2012, 32 (2), 445-457. DOIL: MCB.06073-11 [pii]

10.1128/MCB.06073-11.

(37) Peng, Y.; Cao, S.; Kiselar, J.; Xiao, X.; Du, Z.; Hsieh, A.; Ko, S.; Chen, Y.; Agrawal, P.;
Zheng, W.; et al. A Metastable Contact and Structural Disorder in the Estrogen Receptor
Transactivation Domain. Structure 2019, 27 (2), 229-240. DOI: 10.1016/}.str.2018.10.026.

(38) Hornak, V.; Abel, R.; Okur, A.; Strockbine, B.; Roitberg, A.; Simmerling, C. Comparison of
multiple AMBER force-fields and development of improved protein backbone parameters.
Proteins 2006, 65, 712-725.

(39) Jorgensen, W. L.; Chandrasekhar, J.; Madura, J. D. Comparison of simple potential
functions for simulating liquid water. J. Chem. Phys. 1983, 79 (2), 926-935.

(40) Best, R. B.; Zheng, W.; Mittal, J. Balanced Protein-Water Interactions Improve Properties
of Disordered Proteins and Non-Specific Protein Association. J Chem Theory Comput 2014, 10
(11), 5113-5124. DOI: 10.1021/ct500569b.

(41) Abascal, J. L. F.; Vega, C. A general purpose model for the condensed phases of water:
TIP4P/2005. J. Chem. Phys 2005, 123, 234505.

(42) Ozenne, V.; Bauer, F.; Salmon, L.; Huang, J. R.; Jensen, M. R.; Segard, S.; Bernado, P.;
Charavay, C.; Blackledge, M. Flexible-meccano: a tool for the generation of explicit ensemble
descriptions of intrinsically disordered proteins and their associated experimental observables.
Bioinformatics 2012, 28 (11), 1463-1470. DOI: 10.1093/bioinformatics/bts172.

(43) Huang, X.; Pearce, R.; Zhang, Y. FASPR: an open-source tool for fast and accurate protein
side-chain packing. Bioinformatics 2020, 36 (12), 3758-3765. DOI:
10.1093/bioinformatics/btaa234.

(44) Ravikumar, K. M.; Huang, W.; Yang, S. Fast-SAXS-pro: a unified approach to computing
SAXS profiles of DNA, RNA, protein, and their complexes. J Chem Phys 2013, 138 (2), 024112.
DOI: 10.1063/1.4774148.

(45) Sawle, L.; Ghosh, K. A theoretical method to compute sequence dependent configurational
properties in charged polymers and proteins. J Chem Phys 2015, 143 (8), 085101. DOI:
10.1063/1.4929391.

30



(46) Zheng, W.; Dignon, G.; Brown, M.; Kim, Y. C.; Mittal, J. Hydropathy Patterning
Complements Charge Patterning to Describe Conformational Preferences of Disordered Proteins.
J Phys Chem Lett 2020, 11 (9), 3408-3415. DOI: 10.1021/acs.jpclett.0c00288.

(47) Campos-Olivas, R.; Aziz, R.; Helms, G. L.; Evans, J. N.; Gronenborn, A. M. Placement of
19F into the center of GB1: effects on structure and stability. FEBS letters 2002, 517 (1-3), 55-
60.

(48) Chrisman, I. M.; Nemetchek, M. D.; de Vera, I. M. S.; Shang, J.; Heidari, Z.; Long, Y.;
Reyes-Caballero, H.; Galindo-Murillo, R.; Cheatham, T. E., 3rd; Blayo, A. L.; et al. Defining a
conformational ensemble that directs activation of PPARgamma. Nat Commun 2018, 9 (1), 1794.
DOI: 10.1038/s41467-018-04176-x.

(49) Piana, S.; Donchev, A. G.; Robustelli, P.; Shaw, D. E. Water Dispersion Interactions
Strongly Influence Simulated Structural Properties of Disordered Protein States. J Phys Chem B
2015, 7119 (16), 5113-5123. DOI: 10.1021/jp50897 Im.

(50) Huang, J.; Rauscher, S.; Nawrocki, G.; Ran, T.; Feig, M.; de Groot, B. L.; Grubmuller, H.;
MacKerell, A. D. CHARMM36m: an improved force field for folded and intrinsically disordered
proteins. Nat Methods 2017, 14 (1), 71-73. DOI: 10.1038/Nmeth.4067.

(51) Robustelli, P.; Piana, S.; Shaw, D. E. Developing a molecular dynamics force field for both
folded and disordered protein states. Proc Natl Acad Sci U S A 2018, 115 (21), E4758-E4766.
DOI: 10.1073/pnas.1800690115.

(52) Wu, H. N.; Jiang, F.; Wu, Y. D. Significantly Improved Protein Folding Thermodynamics
Using a Dispersion-Corrected Water Model and a New Residue-Specific Force Field. J Phys
Chem Lett 2017, 8 (14), 3199-3205. DOI: 10.1021/acs.jpclett.7b01213.

(53) Song, D.; Liu, H.; Luo, R.; Chen, H. F. Environment-Specific Force Field for Intrinsically
Disordered and Ordered Proteins. J Chem Inf Model 2020, 60 (4), 2257-2267. DOI:
10.1021/acs.jcim.0c00059.

(54) Shabane, P. S.; Izadi, S.; Onufriev, A. V. General Purpose Water Model Can Improve
Atomistic Simulations of Intrinsically Disordered Proteins. J Chem Theory Comput 2019, 15 (4),
2620-2634. DOI: 10.1021/acs.jctc.8b01123.

(55) Lincoft, J.; Sasmal, S.; Head-Gordon, T. The combined force field-sampling problem in
simulations of disordered amyloid-beta peptides. J Chem Phys 2019, 150 (10), 104108. DOI:
10.1063/1.5078615.

(56) Zhang, O.; Haghighatlari, M.; Li, J.; Teixeira, J. M. C.; Namini, A.; Liu, Z.-H.; Forman-
Kay, J. D.; Head-Gordon, T. Learning to Evolve Structural Ensembles of Unfolded and
Disordered Proteins Using Experimental Solution Data. arXiv 2022,
https://arxiv.org/abs/2206.12667.

(57) Bhowmick, P.; Guharoy, M.; Tompa, P. Bioinformatics Approaches for Predicting
Disordered Protein Motifs. Adv Exp Med Biol 2015, 870, 291-318. DOI: 10.1007/978-3-319-
20164-1 9.

(58) Cohan, M. C.; Shinn, M. K.; Lalmansingh, J. M.; Pappu, R. V. Uncovering non-random
binary patterns within sequences of intrinsically disordered proteins. J Mol Biol 2022, 434 (2),
167373.

31



Supplementary information for “Incorporation of
D>0O-induced Fluorine Chemical Shift Perturbations
into Ensemble-Structure Characterization of the

ERalpha Disordered Region”

Wenwei Zheng!, Zhanwen Du?, Soo Bin Ko’, Nalinda Wickramasinghe’, Sichun Yang?

ICollege of Integrative Sciences and Arts, Arizona State University, Mesa, Arizona 85212,

United States

2Center for Proteomics and Department of Nutrition, School of Medicine, Case Western Reserve

University, Cleveland, Ohio, 44106, United States

3Chemistry-NMR Facility, Case Western Reserve University, Cleveland, Ohio 44106, United

States

S1



Supporting Methods

Molecular simulations for the generation of initial ensemble-structures. The first all-atom

ensemble (AA-1) is from the previous literature!. A pool of 35,240 NTD candidate structures
was generated from molecular dynamics simulations with a total accumulative time of 35 ps in a
1-ns recording frequency. Two advanced algorithms were used: Gaussian accelerated molecular
dynamics (GaMD)? and replica exchange solute tempering (REST2).3 First, a set of 25 GaMD
trajectories (using the software AMBER16,* each starting with a random configuration and
lasting 1 ns) resulted in a total of 25 ps. Second, a set of 64 replicas in REST2 simulations,
ranging from 300 K to 600 K were performed at the Argonne Leadership Computing Facility
using the software NAMD as previously described.>¢ Each replica lasted 160 ns, which resulted
in 10 ps. In both GaMD and REST2 simulations, a molecular Amber ff99sb’ force field and a
TIP3P water model® were used.

The second ensemble (AA-2) was generated using an all-atom force field Amber99sbws® with
a TIP4P/2005 water model.!® The simulations were performed using Gromacs 4.6.7!! at a
constant temperature of 300 K maintained by a Langevin thermostat with a friction coefficient of
1 ps! and pressure of 1 bar using a Parrinello-Rahman barostat.!?> The time step was 2 fs.
Electrostatic energies and forces were computed with particle-mesh Ewald'3 using a 0.12-nm
grid spacing and real-space cutoff of 0.9nm. Lennard-Jones interactions were calculated using a
twin-range scheme with inner and outer cutoffs of 0.9 and 1.4 nm, respectively. The box was set
to be rhombic dodecahedron and the shortest distance between periodic image was 12 nm. The
simulation was run for a total of 4 us, and 20,000 candidate structures were evenly selected as

the initial ensemble.
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The third ensemble (FM) was generated using the Flexible-Meccano model'# to obtain a

coarse-grained representation including C, and Cg atoms (https://www.ibs.fr/research/scientific-

output/software/flexible-meccano. The method was developed by Blackledge and colleagues to

generate a large set of conformations in a time-efficient fashion by accounting for residue-
specific backbone dihedral angle propensities derived from high-resolution X-ray
crystallographic structures. For each residue, missing atoms including the rest of its sidechain
were added via the FASPR algorithm.!> A total of 20,000 candidate structures were generated in
this initial ensemble.

Theoretical calculations for DFCS data interpretation. To calculate the solvent accessible

surface area of the CF; group attached onto the cysteine sidechain, the force field parameters for
cysteine with a -CH,COCFj3; group attached were parameterized using the Amber99sbws force
field. The partial charges were determined via RESP using the ANTECHAMBER program.!¢
To be consistent with the Amber force field,!” electrostatic potentials were determined with a
restricted Hartree-Fock method and the 6-31G+* basis set, using the GAUSSIAN software
package.!® The obtained partial charges and atom types are shown in Table S2. For each
individual labeling position, the serine was mutated to cysteine with -CH,COCFj; using tleap in
Ambertools*, and each resulting configuration was energy minimized before the solvent
accessible surface area of each corresponding CF; group was calculated.

Ensemble fitting. The fitting against different sources of experimental measurements was

achieved by varying a probability distribution of {w;} for each structure i from the ensemble by

minimizing a scoring function of

F({w}) = xbaxs(wi}) +axtirer({iwid) +Bxbrcs(wid) — TrieS{wi}).
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xé4xs({w;}) is the goodness of fit to characterize the deviation between the calculated ensemble-

weighted SAXS profile and experimental SAXS data via

1 {10glew(@) — M= 1log Wi Leate (@}
Xsaxs(wid) = 52 - B

>

where N is the total number of structures in the ensemble. 7.,.(g) is the calculated SAXS profile
via Fast-SAXS-pro!?, while Z,,,(g) is its experimental SAXS profile with a total of N, data
points. y#grpr({w;}) is the deviation between the ensemble-weighted solvent accessible surface

area of each residue sidechain SA4;ecnain and experimental HRPF measurements via

1 [log PF(s) — 2% 1Wi - SAsidechain i(s)]z
2 _ )
xirpr(fwi) = 525

UIZJF(S) ’

where s represents each specific amino acid probed by HRPF with a total of Nygpr =16 amino
acids. The ensemble-weighted SAjjzechain (M= 1w; - SA sidechain,i) Was scaled and offset via the
linear regression with experimental PF (protection factor) values prior to y%gpr calculations.
X5rcs describes the deviation between the ensemble-weighted solvent accessible surface area of
each CF; group (S4¢r;3) and its experimental DFCS data (i.e., the linear slope of peak shift as a

function of D,0O concentrations as shown in Fig. 2C) via

1 : [ DFCS(c) — 2 1w; - SAcr,i(c)]?
= c

X %ch({Wi})

)

= Nprcs ohres(c)

where ¢ represents one CF3-tagged amino acid position probed by DFCS with a total number of
Nprcs =12 amino acid positions. The ensemble-weighted SA ;3 (Z{V: 1w; - SAcr,;) was scaled
and offset using the linear regression with the experimental DFCS values prior to the y3zcs
({w;}) calculations. In addition to the three deviation terms, a Shannon entropy term T'f;:S({w})
was added to prevent overfitting. An effective temperature T'f;; is used as a variable to control

the biasing weights to satisfy a minimal deviation from the initial ensemble while
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counterintuitively attempting to achieve a minimal number of structures needed for best-fitting.

The parameter T'g;;was chosen to have the lowest F ({wy}) score, practically at the point where

the summation of the three deviation terms begins to sharply increase along S (see Fig. S4). The

parameters o and [ are the relative weight of contribution of different experimental

measurements and were selected so that all the three y? terms can be minimized reasonably well.

The final parameters were shown in Table S3. Simulated annealing in the {w;} space was
conducted to minimize the F({w;}) score. The annealing was repeated 50 times for each

condition and their averaging weights were reported.

Supporting Figures
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Figure S1. Refining the AA-2 ensemble using experimental SAXS+HRPF (left) and

SAXS+DFCS data (right). A) Comparison with SAXS data with y? shown in the legend. B)

Comparison between the calculated solvent accessible surface areas of residue sidechains with

experimental HRPF data. R, Pearson correlation coefficient. C) Comparison between the

calculated solvent accessible surface area of each CF; group with experimental DFCS data.
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Figure S2. Refining the FM ensemble using SAXS+HRPF (left) and SAXS+DFCS (right). A)

Comparison with SAXS data with y? shown in the legend. B) Comparison between the solvent

accessible surface area of sidechain from simulations with the experimental HRPF data. Pearson

correlation coefficient is shown in the legend. C) Comparison between the calculated solvent
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accessible surface area of each CF;5 group with experimental DFCS data.

coefficient.

R, Pearson correlation

cumulative weight

Nconformation Nconformation

Nconformation

Figure S3. Cumulative weight as a function of the number of conformations in the refined

ensembles using the AA-1 (left), AA-2 (middle), and FM (right). Dashed line, a reference

ensemble with uniform weights.
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Figure S4. Deviation of the weighted ensemble from the experimental measurements

2 . .
22w = xsaxsUwid) +axdirer(iwi}) +Bxbrcs({w:}) as a function of the entropy S in each

ensemble. Solid blue symbol, the 7}, of the ensemble reported for each case.
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Supporting Tables

Table S1. Sequence descriptors for the NTD. f+: fraction of positively charged amino acids. f-:

fraction of negatively charged amino acids; FCR: fraction of charged amino acids; NCPR: net

charge per residue?’; k: charge patterning parameter?!; SCD: sequence charge decoration??;

faromatic: fraction of aromatic amino acids; <A>: mean hydropathy using a scale from a previous

literature?*; SHD: sequence hydropathy decoration?*; vpregictea: Scaling exponent predicted using

SCD and SHD?.
NTD Residue 1-50 Residue 51-140 | Residue 141-184
=+ 0.087 0.120 0.011 0.205
f- 0.087 0.100 0.056 0.136
FCR 0.174 0.220 0.067 0.341
NCPR 0.000 0.020 -0.044 0.068
K 0.135 0.225 0.301 0.068
SCD -0.383 -0.242 0.384 0.075
faromatic 0.087 0.020 0.133 0.068
Q> 0.693 0.702 0.753 0.561
SHD 6.677 4.899 6.159 3.759
Vpredicted 0.415 0.492 0.443 0.543

Table S2. The force field parameters for cysteine with -CH,COCF; attached.

Atom name Atom type Partial charge
N N -0.29579
H H 0.23899
CA CT -0.23163
HA HI 0.14578
CB CT -0.20188
HBI HI 0.15933
HB2 H1 0.15933
SG S -0.18586
CD CT -0.26195
HD1 Hl 0.14093
HD2 HI 0.14093
CE C 0.54917
OE 0O -0.44204
CF CT 0.57915
FF1 F -0.20900
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FF2 F -0.20900
FF3 F -0.20900

C C 0.71584

O O -0.58330

Table S3. Ensemble fitting parameters.

Initial ensemble a S Ty
AA-1 0.03 0.3 2
AA-2 0.2 5.0 100
FM 0.2 0.2 5
merged 0.1 1.0 2
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