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ABSTRACT 

Structural characterization of intrinsically disordered proteins (IDPs) requires a concerted effort 

between experiments and computations by accounting for their conformational heterogeneity. 

Given the diversity of experimental tools providing local and global structural information, 

constructing an experimental restraint-satisfying structural ensemble remains challenging. Here, 

we use the disordered N-terminal domain (NTD) of the estrogen receptor alpha (ERalpha) as a 

model system to combine existing small-angle X-ray scattering (SAXS) and hydroxyl radical 

protein footprinting (HRPF) data and newly acquired solvent accessibility data via D2O-induced 

fluorine chemical shifting (DFCS) measurements. A new set of DFCS data for the solvent 

exposure of a set of 12 amino acid positions were added to complement previously acquired 

HRPF measurements for the solvent exposure of the other 16 non-overlapping amino acids, 

thereby improving the NTD ensemble characterization considerably.  We also found that while 

choosing an initial ensemble of structures generated from a different atomic-level force field or 

sampling/modeling method can lead to distinct contact maps even when the same sets of 

experimental measurements were used for ensemble-fitting, comparative analyses from these 

initial ensembles reveal commonly recurring structural features in their ensemble-averaged 

contact map.  Specifically, nonlocal or long-range transient interactions were found consistently 

between the N-terminal segments and the central region, sufficient to mediate the conformational 

ensemble and regulate how the NTD interacts with its coactivator proteins. 
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Introduction 

Intrinsically disordered proteins (IDPs) are associated with various intracellular functions and 

pathological diseases.1-3  Understanding the conformational properties of IDPs is of interest 

requiring a concerted effort between experiments and computations.4-6  Due to the lack of a well-

defined folded structure and the intrinsic conformational flexibility, it is well acknowledged that 

a notion of the conformational ensemble is required to characterize the heterogeneity of IDP 

conformations.7-14  Obtaining such a conformational ensemble has imposed a key challenge for 

experimental measurements and theoretical or computational methods.   

Various experimental techniques have been used to provide structural properties of IDPs. The 

first type of methods provides information about the global protein conformation and nonlocal 

pairwise distances between protein amino acids, with significant differences in the sensitivity of 

the distance regime between these methods.  For instance, small-angle X-ray scattering 

(SAXS)15, 16 and dynamic light scattering12 can provide the protein size and/or pairwise distance 

distributions. In contrast, labeling techniques, such as Förster resonance energy transfer17 and 

paramagnetic relaxation enhancement,18 provide the amino acid distances or dynamics for a few 

or a large set of specific pairs each at their distance range of detection.  The second type of 

methods provides residue-specific or local structural properties such as backbone chemical 

shifts,19 residual dipolar coupling,20 and relaxation measurements21, 22 from nuclear magnetic 
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resonance as well as circular dichroism23 spectroscopy for overall secondary structure 

assessment.  These methods are often combined with the first type of methods to provide a 

complete picture of local and global structural properties of IDPs.8, 24, 25 The third type of 

methods probes solvent exposure of individual amino acids, including hydroxyl radical protein 

footprinting (HRPF),26 D2O-induced fluorine chemical shifting (DFCS),27 and more 

comprehensively, label-free solvent-PRE.28, 29  They are sensitive to both local secondary 

structure and nonlocal or long-range interactions can in principle provide complementary 

information to existing methods, although it remains elusive how these diverse sparse data can 

be combined for structural interpretation, the subjection of this work. 

Computationally, a large set of degrees of freedom for an IDP makes it impossible to sample 

its vast conformational space without the help of experimental restraints. Combining the 

collective knowledge from computations and experimental measurements offers an alternative 

strategy for investigating the conformational ensemble of IDPs.30  Typically, this integration is 

achieved in the two following approaches: 1) ensemble fitting by first generating an ensemble of 

structural candidates using molecular simulations and then selecting a subset of conformations 

from the initial ensembles to fit against experimental restraints;7, 9, 12 and 2) generating the 

restraint-satisfying ensemble via biased molecular simulations.31  Ensemble fitting methods are 

often used for their ease and simplicity without invoking the complication of simultaneous 

biasing for a relatively large set of structures on the fly. One clear advantage of this ensemble-

fitting approach is that the initial ensemble only needs to be generated once and can be used for 

fitting different experimental restraints32.  However, a disadvantage is that if the initial ensemble 

fails to describe the experimental restraints accurately, the ensemble fitting methods would 

require an enlarged pool of structural candidates for their fitting procedure, often in an iterative 
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fashion. Given sparse experimental restraints available, it remains unclear how the choice of the 

initial ensemble of structures and related ensemble fitting method, affects an accurate description 

of the IDPs33. 

Specifically, we here investigate the strategy of integrating experimental measurements 

providing residue-specific solvent accessibility and size of the protein. To this end, the N-

terminal domain (NTD) of the estrogen receptor, critical for its hormone-independent ER 

activation,34 was used as a model system of intrinsic disorder.35, 36 Our previous work has pointed 

out the compaction of this NTD disorder and its important nonlocal/long-range interactions by 

integrating SAXS and HRPF data using an ensemble fitting method.37  While HRPF provided the 

solvent accessibilities of 16 amino acids along its sequence (Fig. 1A), it is always a question of 

whether additional restraints can be incorporated to improve the accuracy of such an IDP 

conformational ensemble.  In this work, a relatively new probing method DFCS was first 

explored to provide extra information about site-specific solvent accessibility, complementing a 

different set of amino acids probed by HRPF previously.37 As such, a key question becomes the 

extent to which the DFCS data improve the structural description of the NTD compared to the 

HRPF alone. Together with the existing SAXS data,37 we further evaluate the robustness of the 

ensemble fitting method by using both atomic-level simulations and coarse-grained modeling for 

initial structure generation and examine the extent to which the combination of these different 

initial ensembles better interprets those experimental findings.  Finally, we predict specific 

nonlocal or long-range interactions from the conformational ensembles integrating multiple 

sources of experimental measurements of the NTD. 

Methods 
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Experimental measurements. Site-directed mutagenesis was conducted to introduce a cysteine 

residue at comparable serine sites of the NTD. Protein expression and purification were 

described previously37. BTFA (3-Bromo-1,1,1-trifluoroacetone; Alfa Aesar Cat# A14948) was 

used for the attachment of a trifluoromethyl (–CF3) group to the end of cysteine sidechains by 

adding BTFA (1:100) into a resolubilization buffer (10 mM sodium phosphate, pH 7.2, 0.5 mM 

EDTA, and 0.1 mM PMSF) with overnight incubation at 4 °C. Proteins were prepared in a range 

of 1.2-2.2 mg/ml, each with a titration at 10%, 20%, 30%, 40%, and 50% D2O. One-dimensional 

19F chemical shift spectra were recorded on a Bruker Ascend III HD 500 MHz spectrometer 

equipped with a nitrogen-cooled 19F tuned BBO probe. All spectra were acquired with 512 scans, 

131K data points in the direct dimension, a pulse length of 15.0 µsec, a spectral width of 468,750 

Hz (19F), a digital resolution of 3.5 Hz/point, and a relaxation delay of 1.0 s at 8 °C. Topspin 3.5 

pl 7 was used for data processing, and free induction decay signals were apodized with an 

exponential window function as to line broadening of 0.30 Hz.  

Theoretical methods. Three different simulation methods were used for generating the initial 

ensembles (see Supporting Methods for details). The first ensemble (hereafter AA-1 with 35,240 

structures from a total accumulative time of 35 μs) was generated from the combination of 

replica exchange and Gaussian-accelerated molecular dynamics simulations (using the Amber 

ff99sb force field38 and the TIP3P water model39) as described in the previous literature.37  The 

second ensemble (hereafter AA-2 with 20,000 conformations from a total time of 4 μs) was 

generated using a brute force simulation (using the Amber99sbws force field40 and the 

TIP4P/2005 water model41).  The third ensemble (hereafter FM with 20,000 structures) was 

generated using the Flexible-Meccano model42 to obtain a coarse-grained representation 

including Cα and Cβ atoms. For each residue, its missing atoms including the rest of its sidechain, 
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were added via the FASPR algorithm.43  Theoretical calculations for the SAXS intensity of each 

simulated structure in the ensemble were achieved using Fast-SAXS-pro.44  HRPF data were 

interpreted via the solvent accessible surface area (SA) of individual residue sidechains.26 DFCS 

data were evaluated via the SA of the CF3 group attached to each corresponding cysteine 

sidechain.  Details of computational methods were provided in the Supporting Methods. 

 

Results and Discussion 

The NTD structural properties probed by multiple experimental techniques 
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Figure 1. Biophysical probing of the NTD disorder.  A) The NTD consists of heterogeneous 

amino acids with positive and negative charges highlighted in blue and red, respectively, 
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aromatic residues in cyan and hydrophobic residues in grey.  Top, labeling positions by HRPF; 

Bottom, labeling sites by DFCS.  B) SAXS data acquisition. Left: Schematic of the SAXS setup 

with an X-ray source, a biomolecular sample flow, and a photon detector.  Right: A typical one-

dimensional SAXS profile as a function of q, the amplitude of momentum transfer.  C) Solvent 

exposure measurements via HRPF. Left: Schematic of HRPF measurements.  Green dots, 

reactive hydroxyl radicals generated from X-ray hydrolysis and their attachment with amino acid 

sidechains. Right: Representative HRPF measurements via a dose-response curve before 

conversion into a structure-based protection factor (PF).  D) Site-specific solvent exposure 

probed via DFCS. Left, schematic for a cysteine with a CF3 tag (in green) attached to its 

sidechain; Right, peak changes in D2O-induced fluorine chemical shifts as a function of 

increasing D2O concentrations from 10% to 50%.  DFCS, the linear slope of the peak shift as a 

function of D2O concentration. More details can be found in Methods. 

We first inspected the sequence characteristics of the NTD (Fig. 1A), specifically the 

distribution of charged and aromatic amino acids.  They are clustered in three regions, the N-

terminal region before residue 50, the central region between residue 50-140, and the C-terminal 

region after residue 140. We calculated a series of sequence descriptors of these three regions to 

investigate the conformational properties of these regions shown in Table S1. Within both N-

terminal and C-terminal regions, positively and negatively charged amino acids are abundant 

with a fraction of charged amino acids (FCR) of 22.0% and 34.1%, respectively, while the 

central region only has five negatively charged amino acids with an FCR of 6.7%, suggesting a 

more extensive electrostatic influence in the two terminal regions.  Also, the charge patterning 

using sequence charge decoration (SCD)45 indicates net attractive interactions in the N-terminal 

region, net repulsive interactions in the central region but relatively weak repulsive interactions 
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in the C-terminal region.  Under the assumption that electrostatic interactions between these 

charged amino acids are the sole driving force, the NTD would adopt a dumbbell-like 

conformation where its two heads are each dominated by intra-region attractions but connected 

via a long central region hanging with mostly repulsive electrostatic interactions.   On the other 

hand, a high percentage of the hydrophobic amino acids, especially abundant aromatic residues, 

are localized within the central region (i.e., 13.3%), suggesting its regional tendency to collapse.  

Sequence hydropathy decoration (SHD)46, which is based on the hydropathy patterning, further 

suggests a much stronger hydrophobic effect in the central region, compared with the two 

terminal regions.  Using SCD and SHD analysese46, the scaling exponent for the central region is 

predicted at 0.443, which is considerably smaller than the two terminal regions (i.e., 0.492 and 

0.543, respectively).  Of note, the overall scaling exponent predicted for the entire sequence is 

0.415, which is even smaller than the central region of 0.443 alone, consistent with the overall 

compaction we previously reported37. This collapse of the entire chain appears to be driven by 

the hydrophobic interactions within the central region (residues 51-140), further mediating 

nonlocal electrostatic attractions between charged amino acids of the two terminal regions (see 

Table S1). These simple sequence-based analyses provide an inspiring set of testable predictions 

on nonlocal interactions within the NTD for further experimental validation. 

In a recent work, we applied the SAXS and HRPF techniques to investigate the NTD structural 

properties.37  SAXS suggested roughly the size of an IDP (Fig. 1B).  As for the NTD, the 

obtained radius of gyration Rg of 31.0 Å is smaller than that of a typical IDP with 184 residues (~ 

38.6 Å), estimated via a power law derived from the experimental observations of a large 

number of IDPs,15 consistent with our previous observation regarding the attractive interactions 

based on the sequence properties.  The HRPF further probed the solvent accessibility of 16 
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amino acids along the sequence (Fig. 1A top and Fig. 1C), and a few of them were observed to 

be less solvent accessible (e.g., residues 33 and 124), departing from the behavior of a random 

coil expected with high solvent exposure.  These SAXS and HRPF data suggested transient 

intramolecular interactions, whereas the challenge is to define a structural ensemble illustrating 

these essential interactions, especially for specific amino acids.  In the same literature, we 

applied an ensemble fitting method to derive a reweighted conformational ensemble and found a 

few nonlocal interactions, e.g., between residues 33 and 118, which were confirmed by site-

directed mutagenesis and 19F-NMR. However, whether additional experimental restraints can 

lead to an improved structural ensemble with other significant transient interactions remains to 

be seen. 

 
 

Figure 2.  DFCS measurements for solvent exposure of individual NTD amino acids.  A and B) 

The 19F spectrum of S10C* (A) and S84C* (B) at different D2O concentrations ranging from 

10% D2O (blue) to 50% (red).  C) The DFCS values as the slope of 19F spectral peaks illustrated 

for two representative S10C* and S84C* examples. Δδ, peak values relative to that in the 

absence of D2O.       

 

TABLE 1. The DFCS values of 12 amino acid positions probed.  * denotes 19F labeling.  

Numbers in parentheses denote the errors in the last few digits. 
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S10C* S46C* S47C* S84C* S102C* S104C* 
-0.211 (5) -0.218 (24) -0.186 (7) -0.167 (7) -0.124 (8) -0.185 (14) 
S106C* S118C* S137C* S167C* S173C* S178C* 
-0.184 (6) -0.192 (17) -0.208 (9) -0.169 (9) -0.183 (10) -0.163 (7) 
 

We further sought additional information on position-specific solvent accessibility via a 19F 

labeling technique, which we termed D2O-induced fluorine chemical shifting (DFCS). The 

DFCS probes the solvent accessibility at amino acid positions not overlapped with HRPF (Fig. 

1A).  It uses a small molecule known as BTFA (3-Bromo-1,1,1-trifluoroacetone), so a 

trifluoromethyl (–CF3) group is attached to the end of a cysteine sidechain with minimal 

structural perturbation (Fig. 1D).26, 47 Advantageously, the NTD has no native cysteine residue. A 

fluorine tag can be attached at any serine amino acid position (comparable to cysteine) after 

mutating to cysteine.  More importantly, because of an isotopic effect of D2O water, increasing 

concentrations of the isotopic D2O water lead to a peak shift of fluorine spectra, denoted as Δδ 

(see Fig. 2), dependent on the local solvent exposure.27, 48 Thus, the DFCS reports the exposure 

to the solvent D2O via Δδ (relative to that in the absence of D2O, i.e., 100% H2O). For instance, a 

larger Δδ value of S10CBTFA indicates higher solvent exposure (Fig. 2A), while a smaller Δδ 

value of S84CBTFA indicates otherwise (Fig. 2B). We denote the DFCS value to represent the 

linear slope between Δδ and D2O concentrations (Fig. 2C), an indicator of the solvent exposure 

of individual sites.  

By taking advantage of the well-distributed serine amino acids along the NTD sequence, we 

repeated this 19F labeling and related DFCS determination procedure for the set of 12 amino acid 

positions one by one (Fig. 1A bottom), one by one.  Their DFCS values are listed in Table 1. We 

found that most 19F-tagged positions are fully solvent-exposed, except for positions S84C* 

S102C*, S167C*, and S178C*, which are relatively solvent-protected. This high solvent 
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exposure is in line with the HRPF measurements that only a few amino acids show little solvent 

protection, and they are thus likely to be involved in transient intramolecular interactions while 

most other amino acids remain as flexible as in a typical IDP. Nonetheless, DFCS and HRPF 

provide a non-overlapping coverage of amino acid positions along the sequence, which offers an 

unparalleled opportunity to evaluate whether these DFCS measurements provide additional and 

complementary information to improve the NTD structural ensemble. 

Generation of initial structural ensembles  

Given the availability of additional site-specific information, a key question is whether the 

initial ensemble of candidate structures is sufficiently diverse to satisfy the collective 

experimental restraints from SAXS, HRPF, and DFCS data. We previously used two major 

advanced sampling methods with a standard all-atom force field Amber ff99sb38 and the TIP3P 

water model39 to generate the initial all-atom ensemble (see Methods) as our first option of 

testing (referred to as AA-1).  This combination of such an all-atom force field and a water 

model is known to generate an overly compacted conformation40, 49.  In our previous work, 

however, a sufficient number of conformations were found close to the experimental radii of 

gyration from SAXS.37  Such enhanced sampling was deemed to be helpful, without which the 

simulation was often stuck in a few conformations due to an overestimation of  amino acid 

interactions.  While no direct control was done, the fact we are able to find a restraint-satisfying 

ensemble by the current sampled space indicates the sampling is well poised to provide a 

sufficiently large pool of conformations with diverse amino acid interactions. 

Due to the recent advance in the all-atom force field optimized specifically for IDP structures, 

we also utilized an optimized Amber99sbws40 and the TIP4P/2005 water model41 to generate an 

alternative all-atom ensemble (referred to as AA-2).  We are aware that there exist multiple sets 
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of new all-atom force fields that are optimized for intrinsically disordered proteins.50-54  

However, the main focus of this work is to examine to which extent an all-atom ensemble can 

best fit the experimental data for ensemble-structure characterization, as opposed to evaluating 

the performance of different all-atom force fields. These previously developed force fields still 

work reasonably well, as shown in the Result section;  testing the performance of an initial 

ensemble generated with newer force fields will be a topic of future studies.  Since a coarse-

grained model is less computationally demanding, there is also a growing interest in using such a 

model to investigate IDPs; we generated a third initial ensemble (hereafter FM) using the 

Flexible-Meccano method.42  
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Figure 3. Comparison of the initial ensembles using three computational methods of AA-1 (all-

atom simulations with advanced sampling), AA-2 (brute-force all-atom simulations with an IDP-

optimized force field, and FM (the Flexible-Meccano method42) (see Methods). A) Pair distance 

distribution function (PDDR). B) Comparison of SAXS data with !! shown in the legend. 

Dashed line, theoretical SAXS curve; q, the scattering vector amplitude; I(q), scattering intensity.  

C) Comparison between the calculated SA value of each residue sidechain (SAsidechain) with 

experimental HRPF data. R, Pearson correlation coefficient. D) Comparison between the solvent 
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accessible surface area of each CF3 group (SACF3) with experimental DFCS data. Dots with error 

bars, experimental data with uncertainty. 

Fig. 3A shows that the pair distance distribution function (PDDF) for these three initial 

ensembles looks quite different.  Notably, the AA-1 ensemble is relatively collapsed with an 

averaging radius of gyration (Rg) of ~22 Å, the FM is more expanded (~42 Å), and the AA-2 in-

between (~25 Å).  None is close to the experimental estimate of 31 Å, suggesting the necessity 

of including SAXS data as experimental restraints in the ensemble fitting.  Given the difference 

among these three initial ensembles, we evaluate their goodness of fit against experimental 

measurements. 

The ensemble fitting is achieved by minimizing the difference between experimental 

measurements and theoretical counterparts for the structural ensemble. For theoretical SAXS 

calculations, we used the in-house Fast-SAXS-pro algorithm44 by taking advantage of its 

capability of computing SAXS profiles from atomistic and coarse-grained structures.  Fig. 3B 

compares the calculated SAXS profiles and experimental SAXS curves. For the HRPF 

comparison, the SA values of amino acid sidechains were calculated and averaged for the 

comparison with the HRPF measurements that provide a measure of solvent protection, also 

known as a “protection factor.”26  The correlation or the goodness of fit between these HRPF 

measurements and the averaged SA values of individual amino acids is shown in Fig. 3C.  In 

terms of DFCS comparison, the solvent accessibility of the CF3 tag, as opposed to the entire 

sidechain, was used after each site was computationally mutated to cysteine attached with a CF3 

tag (see Methods). The correlation between the DFCS measurements and calculated solvent 

accessibility for the set of amino acid positions probed is shown in Fig. 3D.   
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On its own, each initial ensemble is best at capturing a specific experimental technique. The 

AA-1 set matches the HRPF well by capturing the high solvent protection of specific residues in 

part due to the more collapsed structures sampled while maintaining reliable goodness of fit with 

SAXS data.  The AA-2 reproduces the SAXS experimental data (regarding Rg) as expected since 

the force field was parameterized to address overly compact conformations for IDP simulations. 

When comparing with the DFCS data, such an initial ensemble is not in perfect agreement with 

experimental measurements, i.e., the lack of an apparent correlation between the solvent 

accessibility of the probed amino acids and the DFCS datasets.  For this exact reason, ensemble 

fitting for such initial ensembles against the experimental datasets becomes a logical step by 

reweighting the conformations in the initial ensemble to generate an optimal new ensemble that 

better reproduces the experimental DFCS data. 

 

Complementary information on site-specific solvent accessibility from HRPF and DFCS  

To quantify the complementarity between the HRPF and DFCS measurements, each was 

combined separately with SAXS data in the ensemble fitting (i.e., HRPF+SAXS and 

DFCS+SAXS). First, SAXS effectively describes the global-conformation information about the 

ensemble-averaging size and its pairwise distance distribution. In contrast, the HRPF and DFCS 

information is at a site-specific level about the solvent accessibility of probed amino acid 

positions, reflecting the intramolecular interactions of these amino acids involved. It is an area of 

active research to develop ensemble fitting methods where calculated and experimental 

measurements agree.7, 9, 12  Notably, a recent study found that the outcome of the ensemble fitting 

depends on the choice of initial ensembles.33  As such, it is necessary to test multiple initial 

ensembles during ensemble fitting. 
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Figure 4.  Refining the AA-1 ensemble using SAXS, and HRPF (left) or DFCS (right).  A) 

Comparison of SAXS data with !! shown in the legend.  B) Comparison between the calculated 

SA values of individual sidechains with experimental HRPF data.  C) Comparison between the 

solvent accessible surface area of the CF3 group with the experimental DFCS data.  R, Pearson 

correlation.  (See Fig. S1 and S2 for similar results on refining the AA-1 and FM ensembles) 

 

Fig. 4A demonstrates the ensemble fitting results using the AA-1 set as an example, where 

SAXS can be reproduced equally well in both cases of the SAXS/HRPF combination and the 

SAXS/DFCS combination. Of note, the outcome from the SAXS/HRPF combination alone is 

unable to achieve a good agreement with the DFCS measurements (Fig. 4 left) and vice versa 
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when using SAXS+DFCS (Fig. 4B, right). This room of improvement indicates that the HRPF 

and DFCS indeed provide complementary information in part due to their non-overlapping 

nature in terms of the amino acid positions probed (Fig. 1A). The other two initial ensembles 

(AA-2 and FM) were also used to evaluate the extent to which the ensemble fitting of the two 

sets of data (SAXS+HRPF or SAXS+DFCS); we found they cannot blindly predict the third 

dataset (DFCS or HRPF), demonstrating that the new DFCS data yield new knowledge to 

improve the ensemble fitting (see SI Figs. S1 and S2). 

Dependence on the initial ensemble of structures 

To investigate how the use of different initial ensemble structures affects the fitting outcomes, 

we evaluate the goodness of fit for each of the three initial ensembles (AA-1, AA-2, and FM) 

using the combination of all experimental SAXS, HRPF, and DFCS measurements. First, these 

initial ensembles describe the SAXS data reasonably well, given the small !! values (Fig. 5A), 

even though the FM has a larger deviation at the low-q region.  Of note, the ensemble-averaged 

Rg values of the AA-1 and the FM are quite different from the Rg derived from experimental 

SAXS data, and these conformations are still sufficient to reproduce a reasonable Rg value from 

the refined ensemble. At last, about 1000 conformations dominate the ensemble properties (see 

Fig. S3).     
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Figure 5. Ensemble fitting using three initial ensembles (AA-1, AA-2, and FM). A) Comparison 

to SAXS data. !!, the deviation between the theoretical and experimental SAXS data. B) 

Comparison between calculated SA values of residue sidechains with experimental HRPF data. 

C) Comparison between calculated SA values of CF3 groups with experimental DFCS data.  R, 

Pearson correlation coefficient. 

 

On its own, it is difficult for each initial ensemble to reach convergence with reasonable 

goodness of fit with HRPF and DFCS data simultaneously due to the relatively broad coverage 

of the combined non-overlapping amino acid positions probed.  While both AA-1 and FM fit 

well with HRPF and DFCS data, the FM-based SA values seem outside the range obtained from 
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AA-1 and AA-2, partly due to overly expanded conformations with virtually no amino acid 

solvent-protected.  Notably, the AA-2 ensemble alone cannot simultaneously match SAXS, 

HRPF, and DFCS data.  This issue could arise from the imperfect force field, insufficient 

sampling, or both.  Of note, the observation that AA-2 with an updated force field alone does not 

perform well in capturing NTD experimental data may not be generalized to other IDPs.  It is 

worth pointing out that both HRPF and DFCS probe more residue-specific local 

microenvironment, while the force field samples more expanded conformations resulting in less 

residue-residue contact formation. As such, the force field accuracy is vital to characterize these 

residue-specific interactions.  The other issue could be related to the IDP conformational 

sampling of these conformations, which is a challenging task.55   

 

Nonetheless, it is becoming apparent that the outcomes of ensemble fitting are likely 

dependent on the initial ensemble (e.g., compact or expanded), as in Fig. 2A. Furthermore, the 

current highly residue-specific structural information seems to require high-resolution 

knowledge of amino acid interactions and sufficient sampling in the conformational space, as we 

shall see next.  If there is no or few conformation with specific amino acid interactions in the 

initial ensemble, it is unlikely to achieve a good fit with experimental data. There can be an 

alternative way to allow the conformations in the ensemble to adapt to the experimental data 

instead of fixing the conformations in the initial ensemble, e.g., experiment-biased simulations31 

or evolving ensemble structures during ensemble fitting,56 which is beyond the scope of this 

work. 
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Figure 6.   Ensemble fitting against a merged/enlarged ensemble of structures with a combination 

of SAXS, HRPF, and DFCS data.   A) Cumulative weight as a function of the number of 

conformations included.  B) Comparison to SAXS data. C) Comparison between calculated SA 

values of residue sidechains with experimental HRPF data.  D) Comparison between calculated 

SA values of CF3 groups with experimental DFCS data.  R, Pearson correlation coefficient. 

 

To test the extent to which an enlarged pool of candidate structures improves the experimental 

data interpretation, we evaluate the goodness of fit via the combination of the three pools of 

candidate structures from these initial ensembles (AA-1, AA-2, and FM). The final ensemble is 

merged from all three initial ensembles.  To evaluate the minimal number of conformations that 

contribute most to the final ensemble, we calculated the cumulative weights as a function of the 

conformation number after ensemble fitting.  As shown in the black line of Fig. 6A, 

approximately 1,000 conformations contribute to more than 50% of the total weight of the entire 

ensemble, suggesting that while there are more than 75,000 conformations in the initial merged 
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ensemble, only a small portion of these conformations contributes to reproducing the 

experimental restraints.  It is true that the more experimental restraints used in ensemble fitting 

would lead to a less number of important conformations in the final ensemble, although the 

reasonably good agreement between the merged ensemble and the experimental SAXS, HRPF, 

and DFCS data (Figs. 6B-D) suggests that one of the best-fit ensembles is reached.  Also, the 

cumulative weights analyses showed that the AA-2 and the FM still contribute more than 30% of 

the conformations in the final merged ensemble, suggesting their contributions of improvement 

over the AA-1 alone.  However, the contribution of each initial ensemble is quite different in 

terms of reproducing the experimental data.  For instance, AA-1 contributes the most and AA-2 

the least to the final merged ensemble, presumably because the AA-1 alone can capture most of 

the experimental datasets while the AA-2 cannot, as shown in Fig. 5.  This difference suggests 

the ensemble fitting method is effective in selecting meaningful conformations from a large pool 

of conformations. 
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Figure 7. Ensemble-averaged contact maps using different initial ensembles of AA-1, AA-2, FM, 

and the merged pool with all three initial structures.  All three experimental measurements of 

SAXS, HRPF, and DFCS data were used for the ensemble-structure fitting.  The top three 

conformations in the final ensemble using the merged pool as the initial ensemble are shown in 

the bottom with blue highlighting residues 20 to 60 and red highlighting residues 100 to 130. 

 

Only looking at the agreement with SAXS, HRPF and DFCS cannot tell the role of additional 

structures selected from the AA-2 and FM to characterize the experimental data since the AA-2 

ensemble almost matches the experimental data same as the merged ensemble.  Additional 

physical variables besides the experimental measurements must be calculated from the ensemble 

for further comparison.  We now examine the NTD structural features via the ensemble-averaged 

contact maps obtained using three different initial ensembles (Fig. 7).  Because of the vast 
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difference in the conformational space covered by each initial ensemble (Fig. 2A), it is not 

surprising that their resulting contact maps are quite different despite their optimization against 

the exactly same experimental restraints. This differentiation suggests that there is room for 

improvement when using the AA-1 ensemble alone or currently available experimental 

restraints. 

However, by comparing these contact maps, there are commonly shared structural features 

among these refined ensembles, except for the one from FM with less long-range contact 

formation.  Transient long-range interactions are formed between the N-terminal region 

centering around residue 33 and the central region around residue 118, as we previously 

validated using site-specific mutagenesis.37  We note that such mutagenesis cannot rule out the 

role of other amino acids in proximity or other specific amino acids far away; as we move 

forward along this NTD study, it is expected that additional long-range contacts will be 

uncovered and communicated elsewhere.  Here by comparing the contact maps from the AA-1 

and the AA-2, it is consistent that interactions are abundant between two regions of amino acids, 

one from residues 20-60 and one from residues 100-130. This prediction confirms and extends 

the notion of the contact formation from a specific pair of amino acids, pointing to a broader 

picture that such transient interactions within an IDP are not only due to very few specific pairs 

of amino acids but also the collective cooperativity of multiple amino acids from for instance 

short linear motifs.57, 58  Nonetheless, while comprehensive validation is needed for such a notion 

(e.g., via a secondary biophysical technique), the current ensemble-averaged contact maps 

provide an exemplary structural feature for the NTD disorder associated with regulating its 

hormone-independent ER activation. 

Conclusions 
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Integrative biophysics involving multiple experimental methods has been a mainstay in the 

structural investigation of IDPs.  In this work, we demonstrate the predictive power of combining 

experimental SAXS, HRPF, and DFCS measurements and computational methods (e.g., 

ensemble fitting and all-atom simulations) to interpret transient interactions of the NTD disorder.  

In doing so, we examine such ensemble-fitting and make notable observations from three 

different perspectives. First, extra information from site-specific solvent accessibility from DFCS 

(i.e., a set of 12 residues in terms of their solvent exposure) provides non-overlapping and 

complementary knowledge beyond previously existing HRPF data (a set of 16 residues in terms 

of their solvent exposure), thereby improving the ensemble-structure characterization 

considerably. Second, the role of three different initial ensembles (each generated from a 

different force field or a sampling/modeling method) was investigated to report that the choice of 

an initial ensemble of structures can lead to a distinct outcome even when each of them is fit 

against the same experimental measurements. As such, it is non-trivial to correlate the fitted 

ensemble with experimental restraints before one can confidently conclude the convergence and 

robustness of the ensemble. An attempt has been made to merge multiple initial ensembles. 

While it is not entirely conclusive to say such an effort substantially improves data interpretation, 

the comparison of their corresponding contact maps with shared structural features appears to 

increase the level of confidence.  Finally, nonlocal or long-range transient interactions for the 

NTD disorder were found between two sequence segments/motifs, each containing tens of amino 

acids at the N-terminal and central regions. These transient interactions do not form with high 

probability compared with stable native contacts as in a folded protein. However, they could be 

sufficient to alter the conformational ensemble and thus regulate how the NTD interacts with its 

coactivator proteins critical for transactivation function. 
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Supporting Methods

Molecular simulations for the generation of initial ensemble-structures.  The first all-atom 

ensemble (AA-1) is from the previous literature1.  A pool of 35,240 NTD candidate structures 

was generated from molecular dynamics simulations with a total accumulative time of 35 µs in a 

1-ns recording frequency.  Two advanced algorithms were used: Gaussian accelerated molecular 

dynamics (GaMD)2 and replica exchange solute tempering (REST2).3  First, a set of 25 GaMD 

trajectories (using the software AMBER16,4 each starting with a random configuration and 

lasting 1 ns) resulted in a total of 25 µs.  Second, a set of 64 replicas in REST2 simulations, 

ranging from 300 K to 600 K were performed at the Argonne Leadership Computing Facility 

using the software NAMD as previously described.5, 6  Each replica lasted 160 ns, which resulted 

in 10 µs.  In both GaMD and REST2 simulations, a molecular Amber ff99sb7 force field and a 

TIP3P water model8 were used.  

The second ensemble (AA-2) was generated using an all-atom force field Amber99sbws9 with 

a TIP4P/2005 water model.10  The simulations were performed using Gromacs 4.6.711 at a 

constant temperature of 300 K maintained by a Langevin thermostat with a friction coefficient of 

1 ps-1 and pressure of 1 bar using a Parrinello-Rahman barostat.12  The time step was 2 fs.  

Electrostatic energies and forces were computed with particle-mesh Ewald13 using a 0.12-nm 

grid spacing and real-space cutoff of 0.9nm.  Lennard-Jones interactions were calculated using a 

twin-range scheme with inner and outer cutoffs of 0.9 and 1.4 nm, respectively.  The box was set 

to be rhombic dodecahedron and the shortest distance between periodic image was 12 nm.  The 

simulation was run for a total of 4 µs, and 20,000 candidate structures were evenly selected as 

the initial ensemble.



S3

The third ensemble (FM) was generated using the Flexible-Meccano model14 to obtain a 

coarse-grained representation including Cα and Cβ atoms (https://www.ibs.fr/research/scientific-

output/software/flexible-meccano.  The method was developed by Blackledge and colleagues to 

generate a large set of conformations in a time-efficient fashion by accounting for residue-

specific backbone dihedral angle propensities derived from high-resolution X-ray 

crystallographic structures.  For each residue, missing atoms including the rest of its sidechain 

were added via the FASPR algorithm.15  A total of 20,000 candidate structures were generated in 

this initial ensemble.

Theoretical calculations for DFCS data interpretation.  To calculate the solvent accessible 

surface area of the CF3 group attached onto the cysteine sidechain, the force field parameters for 

cysteine with a -CH2COCF3 group attached were parameterized using the Amber99sbws force 

field.  The partial charges were determined via RESP using the ANTECHAMBER program.16  

To be consistent with the Amber force field,17 electrostatic potentials were determined with a 

restricted Hartree-Fock method and the 6-31G∗ basis set, using the GAUSSIAN software 

package.18  The obtained partial charges and atom types are shown in Table S2.  For each 

individual labeling position, the serine was mutated to cysteine with -CH2COCF3 using tleap in 

Ambertools4, and each resulting configuration was energy minimized before the solvent 

accessible surface area of each corresponding CF3 group was calculated.

Ensemble fitting.  The fitting against different sources of experimental measurements was 

achieved by varying a probability distribution of  for each structure i from the ensemble by {𝑤𝑖}

minimizing a scoring function of

.𝐹({𝑤𝑖}) = 𝜒2
𝑆𝐴𝑋𝑆({𝑤𝑖}) +𝛼𝜒2

𝐻𝑅𝑃𝐹({𝑤𝑖}) +𝛽𝜒2
𝐷𝐹𝐶𝑆({𝑤𝑖}) ― 𝑇𝑓𝑖𝑡𝑆({𝑤𝑖})

https://www.ibs.fr/research/scientific-output/software/flexible-meccano
https://www.ibs.fr/research/scientific-output/software/flexible-meccano
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 is the goodness of fit to characterize the deviation between the calculated ensemble-𝜒2
𝑆𝐴𝑋𝑆({𝑤𝑖})

weighted SAXS profile and experimental SAXS data via

,𝜒2
𝑆𝐴𝑋𝑆({𝑤𝑖}) =

1
𝑁𝑞
Σ𝑞

{𝑙𝑜𝑔𝐼𝑒𝑥𝑝(𝑞) ― Σ𝑁𝑖 = 1log [𝑤𝑖 ⋅ 𝐼𝑐𝑎𝑙𝑐,𝑖(𝑞)]}2

𝜎2
𝑒𝑥𝑝(𝑞)

 

where N is the total number of structures in the ensemble.  Icalc(q) is the calculated SAXS profile 

via Fast-SAXS-pro19, while Iexp(q) is its experimental SAXS profile with a total of Nq data 

points.   is the deviation between the ensemble-weighted solvent accessible surface 𝜒2
𝐻𝑅𝑃𝐹({𝑤𝑖})

area of each residue sidechain SAsidechain and experimental HRPF measurements via

 ,𝜒2
𝐻𝑅𝑃𝐹({𝑤𝑖}) =

1
𝑁𝑃𝐹

Σ𝑠
[log 𝑃𝐹(𝑠) ― Σ𝑁𝑖 = 1𝑤𝑖 ⋅ 𝑆𝐴𝑠𝑖𝑑𝑒𝑐ℎ𝑎𝑖𝑛,𝑖(𝑠)]2  

𝜎2
𝑃𝐹(𝑠)

where s represents each specific amino acid probed by HRPF with a total of NHRPF =16 amino 

acids.  The ensemble-weighted SAsidechain (  was scaled and offset via the Σ𝑁𝑖 = 1𝑤𝑖 ⋅ 𝑆𝐴𝑠𝑖𝑑𝑒𝑐ℎ𝑎𝑖𝑛,𝑖)

linear regression with experimental PF (protection factor) values prior to  calculations.  𝜒2
𝐻𝑅𝑃𝐹

 describes the deviation between the ensemble-weighted solvent accessible surface area of 𝜒2
𝐷𝐹𝐶𝑆

each CF3 group (SACF3) and its experimental DFCS data (i.e., the linear slope of peak shift as a 

function of D2O concentrations as shown in Fig. 2C) via

 ,𝜒2
𝐷𝐹𝐶𝑆({𝑤𝑖}) =

1
𝑁𝐷𝐹𝐶𝑆

Σ𝑐
[ 𝐷𝐹𝐶𝑆(𝑐) ― Σ𝑁𝑖 = 1𝑤𝑖 ⋅ 𝑆𝐴𝐶𝐹3,𝑖(𝑐)]2  

𝜎2
𝐷𝐹𝐶𝑆(𝑐)

where c represents one CF3-tagged amino acid position probed by DFCS with a total number of 

NDFCS =12 amino acid positions.  The ensemble-weighted SACF3 (  was scaled Σ𝑁𝑖 = 1𝑤𝑖 ⋅ 𝑆𝐴𝐶𝐹3,𝑖)

and offset using the linear regression with the experimental DFCS values prior to the 𝜒2
𝐷𝐹𝐶𝑆

 calculations.  In addition to the three deviation terms, a Shannon entropy term  ({𝑤𝑖}) 𝑇𝑓𝑖𝑡𝑆({𝑤𝑖})

was added to prevent overfitting.  An effective temperature  is used as a variable to control 𝑇𝑓𝑖𝑡

the biasing weights to satisfy a minimal deviation from the initial ensemble while 
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counterintuitively attempting to achieve a minimal number of structures needed for best-fitting.  

The parameter was chosen to have the lowest score, practically at the point where 𝑇𝑓𝑖𝑡 𝐹({𝑤𝑖}) 

the summation of the three deviation terms begins to sharply increase along S (see Fig. S4).  The 

parameters α and β are the relative weight of contribution of different experimental 

measurements and were selected so that all the three  terms can be minimized reasonably well.  𝜒2

The final parameters were shown in Table S3.  Simulated annealing in the  space was {𝑤𝑖}

conducted to minimize the score.  The annealing was repeated 50 times for each 𝐹({𝑤𝑖}) 

condition and their averaging weights were reported.

Supporting Figures
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Figure S1.  Refining the AA-2 ensemble using experimental SAXS+HRPF (left) and 

SAXS+DFCS data (right).  A) Comparison with SAXS data with  shown in the legend.  B) 𝜒2

Comparison between the calculated solvent accessible surface areas of residue sidechains with 

experimental HRPF data.  R, Pearson correlation coefficient.  C) Comparison between the 

calculated solvent accessible surface area of each CF3 group with experimental DFCS data.

Figure S2.  Refining the FM ensemble using SAXS+HRPF (left) and SAXS+DFCS (right).  A) 

Comparison with SAXS data with  shown in the legend.  B) Comparison between the solvent 𝜒2

accessible surface area of sidechain from simulations with the experimental HRPF data.  Pearson 

correlation coefficient is shown in the legend.  C) Comparison between the calculated solvent 
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accessible surface area of each CF3 group with experimental DFCS data.  R, Pearson correlation 

coefficient.

Figure S3.  Cumulative weight as a function of the number of conformations in the refined 

ensembles using the AA-1 (left), AA-2 (middle), and FM (right).  Dashed line, a reference 

ensemble with uniform weights.

Figure S4.  Deviation of the weighted ensemble from the experimental measurements 

 as a function of the entropy S in each 𝜒2({𝑤𝑖}) = 𝜒2
𝑆𝐴𝑋𝑆({𝑤𝑖}) +𝛼𝜒2

𝐻𝑅𝑃𝐹({𝑤𝑖}) +𝛽𝜒2
𝐷𝐹𝐶𝑆({𝑤𝑖})

ensemble.  Solid blue symbol, the Tfit of the ensemble reported for each case.
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Supporting Tables

Table S1.  Sequence descriptors for the NTD.  f+: fraction of positively charged amino acids. f-: 

fraction of negatively charged amino acids; FCR: fraction of charged amino acids; NCPR: net 

charge per residue20; κ: charge patterning parameter21; SCD: sequence charge decoration22; 

faromatic: fraction of aromatic amino acids; <λ>: mean hydropathy using a scale from a previous 

literature23; SHD: sequence hydropathy decoration24; νpredicted: scaling exponent predicted using 

SCD and SHD24.

NTD Residue 1-50 Residue 51-140 Residue 141-184
f+ 0.087 0.120 0.011 0.205
f- 0.087 0.100 0.056 0.136
FCR 0.174 0.220 0.067 0.341
NCPR 0.000 0.020 -0.044 0.068
κ 0.135 0.225 0.301 0.068
SCD -0.383 -0.242 0.384 0.075
faromatic 0.087 0.020 0.133 0.068
<λ> 0.693 0.702 0.753 0.561
SHD 6.677 4.899 6.159 3.759
νpredicted 0.415 0.492 0.443 0.543

Table S2.  The force field parameters for cysteine with -CH2COCF3 attached.

Atom name Atom type Partial charge
N N -0.29579
H H 0.23899
CA CT -0.23163
HA H1 0.14578
CB CT -0.20188
HB1 H1 0.15933
HB2 H1 0.15933
SG S -0.18586
CD CT -0.26195
HD1 H1 0.14093
HD2 H1 0.14093
CE C 0.54917
OE O -0.44204
CF CT 0.57915
FF1 F -0.20900
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FF2 F -0.20900
FF3 F -0.20900
C C 0.71584
O O -0.58330

Table S3.  Ensemble fitting parameters.

Initial ensemble α β Tfit
AA-1 0.03 0.3 2
AA-2 0.2 5.0 100
FM 0.2 0.2 5
merged 0.1 1.0 2
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