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Symmetry breaking upon 

nonlinear optical (NLO) responses of 2D materials.  

Moreover, broken inversion 

symmetry in 2D Janus materials leads to the 

and enables other even-order responses such as shift current and circular (injection) current,20, 21 
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bulk photovoltaic effect (BPVE),22, 23  nonlinear anomalous Hall effect,24-27 and interlayer sliding 

induced ferroelectric nonlinear anomalous Hall effect.28, 29  
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Figure 2d shows the magnitude of the SHG, showing  has high SHG at the static limit, 9  

104 pm2/V, whereas the rest of the non-equivalent tensor elements showed SHG at the static limit 

of <104 pm2/V
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The valley dependence arises from the 

presence of time-reversal symmetry, ensuring identical magnitude but opposite sign of the Berry 

curvature at the K and K’ valleys, while the sum of shift vector in the first Brillouin zone 

vanishes. This valley dependent nonlinear photocurrent can be probed by breaking time-reversal 

symmetry, such as by applying magnetic field or under circularly polarized light, resulting in the 

circular photocurrent seen in Figure 2c that arises from the nonzero Berry curvature dipole. 

Inversion symmetry breaking guarantees finite even-order nonlinear optical responses of 

materials in their corresponding tensor elements; however, the strength of the corresponding 

responses depends on several factors. Using shift current susceptibility tensor  as 

an example, 
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where  and  is the Fermi-Dirac distribution and  and d  number of 

dimensions. So, materials with large transition matrix element  (or, strong interband 

dipole moment), large shift vector , as well as large joint density of states can potentially 

have strong nonlinear shift current responses. However, shift vector can have positive and 

negative signs at different regions of Brillouin zone, hence strong cancellation needs to be 

avoided. Furthermore, circular (injection) current  is described for light propagating in the z-

direction by 

 

where  is the local Berry curvature between bands m and 

n, and  is the group velocity difference in bands m and n. Thus, materials 

with strong Berry curvature, large group velocity difference, and high joint density of states may 

potentially have large circular photocurrent. Similar to the case of shift current, for circular 

photocurrent the Berry curvature and the group velocity difference can have different signs in 

different regions of Brillouin zone, thus strong cancellation also needs to be avoided. 
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Monkhorst-Pack 
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package40 interfaced with VASP. 

, and total 1000 frequency grids in the energy 

range of [0 eV, 6 eV]. As the present NLO calculations are based on the sum-over-states 

approach in the first Brillouin zone, the convergence tests were performed with respect to 

number of electronic bands and the k-point sampling. The results are shown in Figure S5 and S6, 

which indicate that a k-point mesh of 70 70 1 and 120 electronic bands are enough to reach the 

convergence. The fundamental frequency  in the denominator of susceptibility tensor includes 

a small imaginary smearing factor :  with =0.05 eV in this work. We have 

checked the NLO tensor elements with respect to the underlying point group symmetry. 

Furthermore, since the thickness of 2D materials is not well-defined, sheet susceptibility tensors 

are used: , where  is the NLO susceptibility tensor calculated by using 

the lattice constant c along the out of plane direction. 
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