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Abstract

Nonlinear light-matter interaction, as the core of ultrafast optics, bulk photovoltaics, nonlinear optical
sensing and imaging, and efficient generation of entangled photons, has been traditionally studied by first-
principles theoretical methods with the sum-over-states approach. However, this indirect method often
suffers from the divergence at band degeneracy and optical zero points as well as convergence issue and
high computation cost when summing over the states. Here, using shift vector and shift current conductivity
tensor as an example, we present a gauge-invariant generalized approach for efficient and direct calculations
of nonlinear optical responses by representing interband Berry curvature, quantum metric, and shift vector
in a generalized Wilson loop. This generalized Wilson loop method avoids the above cumbersome
challenges and allows for easy implementation and efficient calculations. More importantly, the Wilson
loop representation provides a succinct geometric interpretation of nonlinear optical processes and
responses based on quantum geometric tensors and quantum geometric potentials, and can be readily
applied to studying other excited-state responses.



Introduction

Nonlinear light-matter interaction plays a pivotal role in ultrafast optics ', bulk photovoltaics *, nonlinear
optical sensing and imaging *, optical transistor *, efficient generation of entangled photon pairs for quantum
computing °, etc. In particular, noncentrosymmetric materials are known to hold even-order nonlinear
photocurrent responses under external electromagnetic field. For example, the wave packet of charge
carriers can be displaced in real space upon photon excitation via a 2" order process, resulting in shift
current > that accounts for the shift mechanism for bulk photovoltaic effect.

Field-dependent nonlinear photocurrent can be obtained by solving the quantum kinetic equation of density
matrix using perturbation theory. Subsequently, it can be calculated by first-principles methods such as
density functional theory "' and Wannier interpolation '"*'* with sum rules. However, the sum-over-states
approach involves ad hoc cutoff that induces divergence at band degeneracy and optical zero points.
Moreover, it suffers from the convergence issue with respect to the number of states. A direct approach is
largely underexplored.

The Wilson loop method was originally proposed by Wilson " in 1974 for computing gauge field on a
closed path. It is ubiquitous to gauge theories and has been widely used to calculate Berry curvature, Chern
number, and other topological invariants in condensed matter physics, which are the hallmarks of a rich set
of low-energy transport phenomena governed by the linear response of intraband process, including
quantum Hall effect '*, quantum anomalous Hall effect °, spin Hall effect '°, and quantum spin Hall effect
718 Unlike the above linear responses, shift current involves interband transitions and its conductivity
tensor is proportional to the quadratic electric field E2. Young and Rappe " reformulated the shift vector
using a gauge-invariant discrete expression similar to the King-Smith and Vanderbilt formalism of electric
polarization *°. Recently, Shi et al. represented the photon-drag shift vector with the Wilson loop formalism,
important geometric quantity in shift current tensor and photon-drag shift current tensor *'. These motivates
us to develop a general approach for nonlinear optical (NLO) responses by representing interband Berry
curvature, quantum metric, and shift vector in a generalized Wilson loop.

Here we present a physically intuitive gauge-invariant Wilson loop approach for direct and efficient
calculations of NLO responses with Wilson loop representation, using the shift vector and shift current
conductivity tensor as examples. In the Wilson loop picture, the geometrical nature of the shift current can
be viewed as the difference of the spontaneous polarization determined by interband Berry connection
between the valence and conduction bands upon direct optical transition. Unlike the standard sum-of-rule
method, our Wilson loop approach is free of the convergence issue with respect to the number of states,
and avoids the cumbersome divergence at band degeneracy and optical zero points. This new approach can
be easily implemented and allow for efficient calculations.

We demonstrate this powerful approach in two representative cases, including (1) a Rice-Mele model with
an extra staggered onsite potential and (2) monolayer ferroelectric GeS with first-principles Wannier tight-
binding Hamiltonian. The results calculated by the Wilson loop approach are in excellent agreement with
the exact analytic solutions of the Rice-Mele model and the numerical results of monolayer GeS with the
sum-over-states approach. Furthermore, we provide a Wilson representation of geometrical shift vector
where the integral of the Wilson loop results in polarization difference between two bands upon optical
transition, illustrating the geometrical nature of shift current. In general, gauge-invariant geometric
quantities, e.g., quantum metric, Berry curvature, and shift vector, can be all represented by Wilson loop
naturally. The generalized Wilson loop approach developed here can be readily applied to other nonlinear
optical responses and allow for direct geometric interpretation of these quantities.



Results

Geometrical shift current response

Shift current originates from the difference of the real-space charge center of the valence and conduction
bands upon optical transition. It is a bulk effect as the separation of photoexcited electrons and holes does
not rely on p-n junction with built-in electric field. Unlike conventional photovoltaics, the generated open-
circuit voltage can go beyond the bandgap, hence the power conversion efficiency is not limited by
Shockley—Queisser limit for a single p-» junction. Under homogeneous linearly polarized light illumination,
shift current can be written as 7"
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where 1, = i(n|dg|m) for n # m and A,, = i(n|0dy|n) are interband and intraband Berry connection for
states [m) and |n), respectively. f is the Fermi-Dirac distribution with f,, = fu — fin- cl)flm(k) is the
phase of Berry connection 1,2, (k) with r,2, (k) = |r,{’m(k)|ei¢gm("). R%’l(k) is the well-known shift
vector described by the derivative of the phase and the difference of intraband Berry connection, also known

as the quantum geometric potential®?. Although the difference of Berry connections is gauge dependent, the
shift vector is gauge invariant. We will discuss the gauge transformation property later.

The geometric aspect of the shift current is related with quantum metric and Berry curvature through the
Christoffel symbols of the second kind ***. The local quantum geometric tensor Q%2, = (d,m|Q|d,n)
was originally proposed by Provost and Vallee *°, where 0 = 1 — P and P is the ground-state projection

operator *°. It indicates that the geodesic quantum distance between two quantum states in the Hilbert space

can be viewed as absorption strength in the interband optical process, e.g., Q22 = 1,%,1,2,. Q% consists

Of a symmetric quantum metric gy and an antisymmetric Berry curvature an, ie. Qab = gmn -
Qa mn- Quantum metric gmn and Berry curvature 022, play quite different roles. For example, the off-

dlagonal g%, and diagonal Q%5 contribute to the linear response coefficients of 1nterband and intraband
processes, respectlvely In contrast, both quantum metric g%, and Berry curvature Q22 play a crucial role
in second order responses. As we will show below, gauge- 1nvar1ant geometric quantities such as quantum

metric g&2,, Berry curvature Q22 and shift vector Rﬁm can be all represented by Wilson loop naturally.

Wilson loop approach of Berry curvature, shift vector, and shift current.

Gauge-invariant single band Berry curvature in a discretized Brillouin zone can be calculated by Fukui-
Hatsugai-Suzuki method %', Q5 (k) = Im In W, (k), with

W, (k) = egpc{n kIn k + qo)n,k + qqIn, k + q, + q,)n, k + q, + qp|n, k + q,)n, k + q,|n, k), (4)

where q, is an infinitesimal displacement vector along the corresponding a direction near k point and €,
is the Levi-Civita symbol. Now we derive a Wilson loop formula for the shift current response by



reformulating shift vector with a similar strategy of King-Smith and Vanderbilt *°. The intraband Berry
connection reads A,, (k) = i{m, k|dy|m, k) = lir% dglmIn(m,k + q|m, k). In contrast, the interband
q—)

Berry connection between states |m) and |n) is given by 7y, (k) = i(n|dg|m) = |1, (k)|e!®Pmn, where
¢mn is the phase of interband Berry connection: ¢2,,(k) =Imln (r,’,’m (k)) . For small q ,

(m, klm, k + q) = e~ @ An®+0(4*) and (m, k + q|m, k) = e 4Am®+0(4*) Thys, shift vector can be
reformulated as
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The first term on the right-hand side can be evaluated using finite difference around k along direction a,
dx, Im In (r,fm(k)) = lim 9y, Im In(m, k + qa|r®[n k + qq). (6)
qda=

Thus,

R%b (k) = — qlirlqo g, Im In(m, klm, k + q )(m, k + q,|r°|n, k + q,)(n, k + q,In, k). (7

Since (n, k|rb |m, k) does not depend on q, we can rewrite R%P(K) as
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We then arrive at the Wilson loop representation of shift vector R%’l (k) as
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where Wmn(k, qa 7’ rb) denotes general absorption on a Wilson loop,
Win(k, qa, 72,7%) = (m, klm, k + qo)(m, k + qq|r?|n k + qo)(n, k + qq|n, k) (n, k|r?|m, k), (10)

Wmn(k, q.=0,70,7P ) =12, (k)rb, (k) yields linear absorption strength at k through direct interband
transition. The Wilson loop can be generalized to

Win(k, q,7%,7°) = (m, klm, k + q@)(m, k + q|r%|n, k + q)(n, k + qIn, k){(n, k|r?|m, k). (11)

Herein, the interband Berry curvature contributing to nonlinear injection current '’ can also be represented
by the Wilson loop

0%, (k) = 2ImWp (k, q = 0,7%, 7). (12)

In fact, Wmn(k, q=0,7% rb) defined on the Wilson loop is identical to quantum geometric tensor, and its
real and imaginary part gives the symmetric quantum metric g2, and antisymmetric Berry curvature Q%5
at finite crystal momentum k, respectively.

We can further rewrite the shift current conductivity tensor using the Wilson loop representation as
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The above equation is a new formula for the shift current, which is only dependent on the imaginary part
of the Wilson loop. This formula avoids the ambiguity in the definition of the argument around optical
zeros and band degeneracies. The Wilson loop representation of Berry curvature and geometrical shift
vector are illustrated in Figs. 1a and 1b. In fact, the Wilson loop approach provides an equivalent expression
as the Young-Rappe formula '°, which involves a more complicated Wilson loop, including indirect optical
transition matrix elements as shown in Supplementary Figure 1.

Gauge invariance is guaranteed on each local Wilson loop in the discretized Brillouin zone. Under an
arbitrary local gauge transformation u, (k) = ey, (k) or |n, k) —» e!n(|n, k), Berry connections
transform as

Ap (k) = Ay (k) = Oy (1), (15)
T (K) = /(@n®0=dn®)r_ (k). (16)

Shift vector is clearly gauge-invariant

R'SE (k) = REL () — Oy, (¢ (k) — o (K)) — O Py (K) + By P (k) = REE (k). 17)

Consistently, the gauge transformation of quantum geometric tensor W,,,,(k, q,r, 1) on the Wilson loop is
given by

Wrr,m(k' q,r, r) = —(m, k|m, k + q)ei(¢m(k+¢I)—¢m(k))(m, k + (I|T|Tl, k + q)ei(¢n(k+Q)—¢m(k+Q))

(n, k + q|n, ke (n®-nk+@) (1 k|r|m, k)ei($m)-¢n(i)
= —(m,k|lm, k + q)m, k + q|r|n, k + q){n, k + q|n, k){n, k|r|m, k) = W,,,(k,q,T,71). (18)

Hence, quantum geometric tensor Wy,,,, (k, q, 1, 1) is also gauge invariant. Figure 1¢ shows the geometrical
Berry curvature and shift vector using a two-band model. The geometrical meaning of the shift vector in
Wilson loop representation is illustrated in Fig. 1d, which clearly shows it is related to the difference of the
real-space charge center or spontaneous polarization for the valence and conduction bands upon direct
optical transition. It is also known that the geometrical shift vector contributes to nonreciprocal Landau-
Zener tunneling **



Rice-Mele model of one-dimensional ferroelectric system

To demonstrate the generalized Wilson loop approach, we first use the one-dimensional Rice-Mele (RM)
model of ferroelectric systems with broken inversion symmetry. The tight-binding Hamiltonian is
illustrated in Fig. 2a, which is given by

Hgm = Z [(% + (-1)¢ %) (cfeiyr +hoc) + (—1)iAtc;rci+1], (19)

where t is the hoping parameter and §; denotes the dimerization of the chain related to the distortion with
. . i 6 . . :
respect to the centrosymmetric structure with t; = % + (-1 f A, is the staggered on-site potential

between two sites. ClT and c; are the fermion creation and annihilation operator, respectively. The inversion
symmetry is broken when &; # 0 and A; # 0. It leads to the following Bloch Hamiltonian

ka - (ka
Hpm = Z djo; = toy cos (7> — 8¢0y sin (?> + A;o,. (20)
j=xy.z

where a is the lattice parameter. We use the following parameters for GeS, which yields a bandgap of 1.9
eV’ t=-1.0eV, 5, = —0.83 eV, and A, = — 0.45eV. The shift vector of the two-band RM model * has
an analytical solution,

_ Acaté, ((82 — t*)[4E? coska + (t? — 67) sin? kal] 1 21)
v 2E A%(52 — t2) sin2 ka + 4t252E? EZ — A2}’
The conduction and valence band energies E), ., as shown in Fig. 2b, are given by
ka ka
E,.=*E = i\/t2 c0527+8,:2 sin27+A§. (22)

It is clear that the shift vector is reversed when &, or A, changes sign, enabling ferroelectric-driven shift
photocurrent switching '. This is also verified by Wilson loop approach as shown in Fig. 2d. Numerically,
the shift vector and shift current conductivity are usually calculated by the sum rule with mass or
diamagnetic term for tight-binding model. The generalized derivative of interband Berry connection for
shift vector and shift current can be expressed by using the sum rule as "*°

i
a — i.a AD b AG a ..b b ,.a ab
Tnmp = h lrnmAnm + lrnmAnm —h E (rnprpmwnp - rnprpmwpm) —Wnm|» (23)

Wnm p#En,m
where AL, = v —vP is the group velocity difference and Awp,y, = Aw, — Awy,is the band energy
difference. The mass term w2l = (n|6ka Ok, H |m) cannot be neglected for the tight-binding model because
the interband Berry connection is not gauge-covariant and its generalized derivative in the Hamiltonian
gauge involves the second-order derivative of Hamiltonian *'. In two-band RM model withm = 1,n = 2,
the shift vector using the sum rule at optical nonzero k-points (i.e. |;2,12,| # 0) reads

b
Ra,b — Im rr?m;arrgn — Re erl)rglrmn (24)
" |r7?m rr?ln | |Tr{?m rr?m | hwmn

It shows that the shift vector and shift current are vanishing in two-band RM model without considering
the mass term. The calculated shift vector and shift current conductivity with an effective area of 9.37 A?
by different methods are shown in Figs. 2c¢ and 2d. The results demonstrate that the shift vector and the



shift current calculated by the Wilson loop approach are in excellent agreement with the analytical solution
and the sum-over-states approach.

Wannier tight-binding model of monolayer GeS

Next, we demonstrate the Wilson loop method for real materials with a symmetrized Wannier tight-binding

Hamiltonian. The details of the first-principles calculations and the constructions of symmetrized Wannier
tight-binding Hamiltonian are described in Methods. Taking the ferroelectric monolayer GeS as an example,
it has a Cy, point group with a mirror plane M, perpendicular to the x-axis. The crystal structure and band
structure of monolayer GeS are shown in Figs. 3a and 3b, respectively. From group theory analysis, the
components 0***(w) and 0*¥¥ (w) vanish under linearly polarized light with in-plane polarization, which
was verified in our calculation. Here, we focus on ¢¥”Y (w) and the corresponding shift vector RY,”. Figure
3¢ shows k-resolved shift vector R)"” between the top valence band and the bottom conduction band across
the bandgap. The shift vector away from optical zeros can be ~10 A, much larger than its lattice constant.
This is very different from spontaneous electric polarization vector constrained within the lattice constant.
Berry curvature of the top valence band is also calculated by the Wilson loop approach as shown in Fig. 3d.
Given the mirror symmetry M, we have verified the symmetry properties RY,” (kx, ky) =RYY (—kx, ky)
and Qi(kx, ky) = —Qi(—kx, ky). A Berry curvature dipole along x direction is generated which can
induce a similar ferroelectric nonlinear Hall effect **** in monolayer GeS. The intraband Berry curvature
of the bottom conduction band and the interband Berry curvature across the gap are presented in
Supplementary Figure 2.

Figure 4a shows the calculated frequency-dependent shift current conductivity a””Y (w). To convert the
sheet conductivity o2P to bulk conductivity o3P, we set the effective thickness I to be 2.56 A by o3P =
a2P /1. We have verified the identity Wmn(k, q=0,701rP ) =12, n2,. The k-resolved absorption strength
between the top valence band and the bottom conduction band is shown in Fig. 4b. The white region
indicates optical zeros and has no contribution to shift current conductivity. To investigate the origin of

large responses, we calculate the k-resolved shift current strength If,ll’fl(k, w)atw =2.0and w = 2.8 eV
using the Wilson loop approach, defined as

1
Irc:ifl(k: w) = qlir—I}O q_ Im Wmn(k: 9a, rb: Tb)(s(wnm - w). (25)
a a

The results are shown in Figs. 4c and 4d. The convergence was checked with respect to the number of bands
and k-point sampling in the first Brillouin zone, as shown in Supplementary Figure 3, for shift conductivity.
In addition, frequency-dependent d¥**(w) for monolayer GeS is shown in Supplementary Figure 4.
Furthermore, we performed similar calculations with the Wilson loop approach for a different 2D materials
monolayer WS,, and the results are shown in Supplementary Figure 5. Our results clearly demonstrate that
the generalized Wilson loop approach is not only efficient and generally applicable to both effective models
and realistic materials, but also avoids the summation over a large number of intermediate valence and
conduction bands, making it valuable for computing nonlinear optical responses.

It should be noted that the geometrical shift vector at optical zeros cannot be calculated using the sum-over-
states approach. Furthermore, while the large shift vector at optical zeros has no contribution to shift current
response with vertical transitions, it can contribute to the shift current response when taking into account
the photon-drag effect ?' involving indirect transitions or strong electron-phonon coupling effect. Our
demonstration of geometrical shift vector in real materials will allow for theoretical investigations of a wide
range of geometric effects induced by quantum geometric potential.



Disscussion

A common challenge with a perturbation theory for nonlinear optical responses in the length gauge is the
treatment of the position operator r for the extended Bloch states. The intraband part of the position operator
is represented by (m, k|r;|n, k') = 6mn(8 (k—Kk"YA(k) +i0,6(k—k ’)). The real-space coordinate r of
the wave packet made from the Bloch wave functions is represented by r; = id;, — A (k). Nonlinear optical
responses involve the matrix element of the commutator (m, k|[r;, O]|n, k') = i§(k — k')Op.i., Where the
covariance derivative Oppn.x = 0xOmn — i1Omn (A (k) — Ay, (k)) plays a central role in many other
nonlinear responses. The derivation of the commutator relation can be found in Supplemental Information.
For example, the generalized derivative of dipole matrix element is written as

(Tr?m);kb = ab (rr?m) - i(frlin - Erelm)rnam = _i[_ab((pgm) + (frlzn - frl?lm)]r#m = iRS’I‘.?er?mP (26)

which is a key physical quantity for second harmonic generation ’. Hence, the Wilson loop approach
developed here can be readily applied to other nonlinear optical effects such as second and third harmonic
generation and linear and quadratic electro-optic effect.

The spin-orbit interaction is weak in monolayer GeS, thus it is not considered in the present calculations.
Nevertheless, the expression can be easily extended to include spin-orbit coupling, and generalized to the
degenerate and near degenerate case by considering band sets and the appropriate operator for selecting
sub-blocks. Furthermore, although all the calculations in this work are performed within the independent
particle approximation, the Wilson loop approach can also be developed to include many-body effect.

In summary, we presented a gauge-invariant generalized approach for efficient and direct calculations of
nonlinear optical responses with pure Wilson loop representation. This generalized Wilson loop method
avoids the cumbersome issues of the commonly used sum-over-states approach, and allows for easy
implementation and efficient calculation. The Wilson loop representation provides an elegant geometric
interpretation of nonlinear optical processes and responses based on quantum geometric tensors and
quantum geometric potentials responsible for shift current and Landau-Zener tunneling. The generalized
Wilson loop method developed here can be readily applied to study other nonlinear optical responses such
as second and third harmonic generation, linear and quadratic electro-optic effect, as well as magnetic
injection current and magnetic shift current *.

Methods

First-principles calculations of atomistic and electronic structure. First-principles calculations for
structural relaxation and quasiatomic Wannier functions were performed using density-functional theory
3637 as implemented in the Vienna Ab initio Simulation Package (VASP) * with the projector-augmented
wave method for treating core electrons *. We employed the generalized-gradient approximation of
exchange-correlation functional in the Perdew-Burke-Ernzerhof form *, a plane-wave basis with an energy
cutoff of 400 eV, and a Monkhorst-Pack k-point sampling of 10x10x1 for the Brillouin zone integration.

Generalized Wilson loop approach of shift current using first-principles tight-binding Hamiltonian.
To compute the Wilson loop related quantities, we first construct quasiatomic Wannier functions and
symmetrized first-principles tight-binding Hamiltonian from Kohn-Sham wavefunctions and eigenvalues
under the maximal similarity measure with respect to pseudoatomic orbitals*'*?. Total 16 quasiatomic
Wannier functions were obtained for monolayer GeS. Using the developed tight-binding Hamiltonian we
then compute Berry curvature, shift vector and shift current using a dense k-point sampling of 200x200x1.
Sokhotski-Plemelj theorem is employed for the Dirac delta function integration with a small imaginary
smearing factor 1 of 0.02 eV. We checked the convergence of shift current conductivity tensor with respect
to the number of bands and the k-point sampling (see Supplementary Figure 4).



Symmetrization of the tight-binding Hamiltonian. The construction of Wannier functions for the
crystalline does not preserve space group symmetries. To avoid the artificial symmetry breaking, we
performed symmetrization of the tight-binding Hamiltonian. The Hamiltonian is invariant under symmetry
operation g in the group G

Vg € G:H(k) = D (g)H(9 k)Dr(g™h), (27)
Di(g) = e'ts’kD(g), (28)

where Dy(g) is k-dependent representation of the symmetry and t; is the translation vector of the
symmetry. We define the symmetrized Hamiltonian using the group average

1

> D@HG T OD(g ™). (29)
gEeG

To apply the group average to above tight-binding Hamiltonian with all crystalline symmetry constraints
in real space, we rewrite the hopping matrices *

~ 1
Ay(R) = 157 > Dul@)Him (577 (R = T5)) Doy 97, (30)
geeG

where Sj is the real space rotation matrix and TZ-” =Sg(rm — 1) — 1 — 71, ) is the position of the
localized orbitals in the unit cell. Band structure of monolayer GeS with and without symmetrization of the
Hamiltonian is shown in Supplementary Figure 6.

Data availability
The data that support the findings of this study are available from the corresponding author upon
reasonable request.
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Fig. 1 Wilson loop approach of the Berry curvature and geometrical shift vector. a Berry curvature Q% (k)
represented by the overlap matrix elements between Bloch wavefunctions U at neighboring k-points. The Wilson loop
is W, (k) = (U U (U, [ U (U3 UL (UL U, ). b Shift vector R,,,, (k) along q between band m and n represented by
Bloch wavefunctions ‘U at neighboring k-points and transition matrix elements r,,,. The Wilson loop for shift vector
Wi (k) = (Uy [ U XU | U3 U3 UL YU, |7 U, ) is associated with the interband transition. ¢,d Physical meaning of
shift vector. The integral of the Wilson loops results in the polarization difference between two bands upon optical
transition and the relative shift of the charge center of wave packet involving a pair of states.
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Fig. 2 Band structure, shift current, and shift vector for noncentrosymmetric Rice-Mele model. a
Two-band Rice-Mele tight-binding model of one-dimensional polarized chain with two sites in each unit
cell. b Energy dispersion of the conduction and valence bands. The arrows denote the optical transition in
the edge and center of the first Brillouin zone. ¢ Shift vector calculated by three different methods,
including the analytical solution, the sum rule with the mass term, and the Wilson loop approach. d Shift
current calculated by the analytical method, the sum rule with mass term, and the Wilson loop approach. -
P” denotes the 1D Rice-Mele model with reversed polarization. The two peaks are related to the optical
transitions indicated as two arrows in b.
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Fig. 3 Crystal structure, band structure, shift vector, and Berry curvature of monolayer GeS. a
Crystal structure of ferroelectric monolayer GeS with noncentrosymmetric Cy point group. b Valence and
conduction band energy surfaces across the bandgap. ¢ k-resolved shift vector across the bandgap in the
first Brillouin zone. d k-resolved Berry curvature of the top valence band in the first Brillouin zone.
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Fig. 4 Shift current conductivity and the k-space distribution of the related quantities in monolayer
GeS. a Calculated shift current conductivity 7Y (w) by the Wilson loop approach with two bands across
the gap. R.v denotes the original shift vector formula and ¢, 2¢, -q represent the formula using the imaginary
part of Wilson loop W, (k, q,7,7) with different g values. b k-resolved absorption strength 7,7,
corresponding to quantum metric ggg in the first Brillouin zone. ¢,d k-resolved shift current strength
L2 (k,w) at w = 2.0 and 0 = 2.8 eV using the Wilson loop approach, respectively.
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