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Abstract—Nonverbal communication in the field of education
can allow teachers to emotionally support their students and
improve educational experience and performance. Robot non-
verbal movements have been shown to improve both subjective
experiences and task performance, and this work investigates
whether affective robot behavior can improve human learning.
This is tested using an online sorting game where players learn
easy or difficult rules, aided by robot feedback videos that
contain either neutral or affective movements. Results indicate
that affective robot behavior improves learning of the sorting
rules and reduces the perceived difficulty of the task. Extensions
include expanding the features used to determine the robot
feedback and increasing the possible robot motions to create a
rich set of robot feedback options to personalize the education
experience further for the student.

Index Terms—emotion, learning, nonverbal, task performance

I. INTRODUCTION

When developing social robots for education, there has
been a focus on two types of outcomes: cognitive and
affective [1]. The bulk of existing work (≈ 66% in this meta-
analysis) has been focused on affective outcomes, or qualities
such as attentiveness, engagement, and reflectiveness, while
less focus has been given to cognitive outcomes, which
include measures of knowledge.

One way robots could impact these cognitive and affective
outcomes is through their nonverbal behaviors. People use
nonverbal behavior to convey important information during
communication [2]. In education, teachers can change their
nonverbal immediacy, defined as the degree of perceived
physical or psychological closeness between people, using
different nonverbal behaviors. A teacher smiling and leaning
in to explain a concept to a student will have a very
different impact compared to a teacher crossing their arms
and frowning while communicating the same information.
Changing nonverbal immediacy can even affect the student’s
cognitive learning or performance, and having a teacher high
in nonverbal immediacy was associated with an increase in
test performance [3].

In particular, our work investigates learning gains (a
cognitive outcome) due to robot nonverbal behavior, and
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specifically how affective robot behavior improves learning.
This is different from behavior such as pointing or gazing
at task-specific information, as affective behavior is not im-
parting any task-related information. As an example, teachers
often encourage their students after they make mistakes and
celebrate their successes [4], and the robot can emulate that
behavior. We will refer to this type of affective behavior
that matches the desired effect (e.g., happiness on student’s
success) as matching. The effect on student learning can also
be impacted by the difficulty of the concept to learn, and we
design an experiment that measures the interaction between
task difficulty and matching affective robot behavior.

In this work, we use a simulation of the humanoid robot
Quori [5] to generate neutral and affective feedback to the
students’ correct and incorrect moves in a card sorting task.
The goal of the task is for the students to learn the underlying
sorting rules, based on demonstrations and feedback by the
robot. We conducted an online study to gauge the effect of
the rule difficulty and robot affective movements on learning
performance. Our hypotheses are the following:

H1: Participants will learn the rule better with the matching
affective robot.

H2: Participants will have a more positive subjective
experience of the game with the matching affective robot
(more engaged, lower perceived difficulty, higher perceived
learning).

H3: Participants will have a more positive experience of
the matching affective robot (higher intelligence and ani-
macy).

Our results show that participants learned the rules better
with the matching affective robot compared to a neutral robot.
Participants also perceived the difficulty of the task as lower
with the matching affective robot, independent of the true task
difficulty. Overall, the results indicate that the robot tutor’s
nonverbal behaviors do improve objective performance and
subjective experience of an educational task.

II. RELATED WORK

A. Human nonverbal behavior

Nonverbal communication is an important aspect of suc-
cessful teaching. It can serve a variety of purposes including
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supplementing verbal exchanges, revealing emotional states,
and influencing the performance of others [6]. Student non-
verbal behaviors such as attentiveness and use of space can
also help teachers be more successful in teaching [7].

Teacher behavior has been shown to have a strong impact
on student achievement [8]. Specifically, teaching character-
istics such as perceived enthusiasm affect students’ emotions
[9]. Teachers’ and students’ emotions are closely related and
are also tied to other variables such as student engagement
and interpersonal relationships [10]. A robot teacher design,
therefore, may benefit from emotional behavior. In our work,
the robot plays the role of a teacher or tutor and provides
feedback to the students’ responses, using a combination of
text and nonverbal modalities.

B. Robot affecting cognitive outcomes
We are interested in measuring how robot affective be-

havior impacts students’ learning. Much of the work on
improved task performance has focused on gestures or gaze
to direct human attention. Robot deictic gestures were shown
to improve task performance in difficult tasks [11], [12].
Gaze cues were shown to reduce human response times in
a collaborative task [13]. Eye contact and iconic gestures
improved retention of a message communicated by the robot
[14]. Our work similarly uses a combination of arm gestures
and gaze (accomplished by the robot turning its body),
but our nonverbal behavior does not include task-related
information and is purely affective.

Cognitive outcomes in studies designed to investigate the
impact of a personalized robot generally involve compar-
ing knowledge before and after an interaction. A robot
personalized to learning differences improved the post-test
performance compared to a non-personalized robot [15]. A
socially supportive robot increased language test scores in
[16], and higher nonverbal immediacy can improve learning
in interactions between children and robot tutors [17]. In our
work, we can measure learning incrementally, as the players
sort each card, and their performance indicates how well they
have learned the sorting rule.

C. Robot impacting affective outcomes
There has been extensive work into how nonverbal move-

ments affect human’s perception of the robot and subjective
experience, such as increased enjoyment of an interaction
[18] and evaluation of the robot as more likeable, active,
and engaged [19]. Robots have been shown to increase
engagement [20], especially with physically embodied robots
[21], [22]. We are interested in how affective nonverbal
behavior will impact subjective experience as players learn
the sorting rule.

III. SORTING GAME

Our educational task is a sorting game, where the learner
must infer a rule that defines which cards belong in which of
two bins. The students see one card at a time, guess which
bin it belongs in, and then are told whether they guessed
correctly. The cards (from the game Set1) have 4 properties

1https://www.setgame.com/welcome

(color, number, shading, and shape), and each property has
3 possible values, resulting in a total of 81 cards.

The set of all possible rules is very large, but only some
of those rules are reasonable for a human to understand.
For example, a rule that randomly sorts cards into the two
bins would be technically possible, but there is no pattern
for a human to infer. We defined rules of two different
forms, which we call easy and difficult. An easy rule sorts
cards based on a single property; for example, the rule “all
diamonds go in the left bin and all squiggles/ovals go in the
right bin” uses the shape property. A difficult rule sorts cards
based on two properties; for example, “all green and purple
diamonds go in the left bin and the rest (red diamonds and
green/purple cards that are not diamonds) go in the right bin”
uses both the shape and color properties. We chose these
two forms of rules because we believe that their structure
matches closely to how humans would model the possible
rules in this task. Additionally, we believe it would be difficult
for a human to infer a greater rule complexity due to the
limited number of cards they would be presented with to see
a pattern.

A. Example Rule Inference Process

For example, consider the rule “all green cards belong
in the left bin, and all others in the right bin” and let’s
imagine how a human could infer this rule over time.
We hypothesize, and our experimental evidences seems to
confirm, that humans will begin by assuming the rule is easy
(i.e., the simplest explanation for the information in front of
them) and will only consider difficult rules if necessary. If
the first card the player sees is green-one-diamond-solid (top
row, Fig. 1), they have no prior information about the rule
and will simply guess a bin randomly. From the rule, we
know that the card belongs in the left bin, and the game will
indicate that as the correct placement.

Fig. 1. Example of how a human could infer the rule that states “all green
cards belong in the left bin, and all others in the right bin”

When the next card, for example, red-one-diamond-solid
(middle row, Fig. 1), is shown to the player, they still do not
have a clear idea as to the rule, but let us say that they guess
that the rule is “all diamonds in the left bin, all others in the
right bin.” Using their guess of the rule, they will choose to
put this card into the left bin, but the game will move it to
the right bin, indicating the correct placement.

Now the player should have a clearer model of the rule.
They will see from the first two cards that the only property
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that can define the rule is color. In fact there are only two
possibilities as to the easy rule (middle row, Fig. 1).

If the next card presented to them is ‘purple-two-diamond-
striped’ (bottom row, Fig. 1), the player still has an equal
chance of getting this question correct, since the two possible
rules sort the card into two different bins. However, after the
game indicates the correct placement of the card (right bin),
the player now can infer the rule, having eliminated the first
possibility in the middle bubble of Fig. 1. They should now be
able to sort every following card correctly, and only needed
those three cards to correctly infer the rule.

There are two important takeaways from this example.
First, when the rule is easy, it can be quick to eliminate
all invalid rules. If the rule was difficult, it would take
longer as all easy rules need to be eliminated first. Second
is the importance of the order in which cards are presented
to players. Certain cards are going to be more informative
than others when it comes to eliminating possible rules, and
uninformative cards can lead to it taking much longer to learn
the rule. We developed an algorithm (details are beyond the
scope of this paper) which presents cards in an order that
will eliminate the greatest number of rules, given what has
already been inferred from previous cards.

IV. ROBOT FEEDBACK

We generated feedback videos that include a movement of
the simulated robot with an overlay of text, indicating the
robot’s speech. The robot, Quori [5], was simulated using
Gazebo [23]. The robot videos are designed to react to the
human sorting a card and provide information about the cor-
rectness as well as subtler feedback through movement. All
feedback videos contain text that communicates correctness
with ‘Hmm, not quite‘ or ‘Maybe think about the pattern in
a different way‘ indicating an incorrect answer and ‘Good
thinking!’ or ‘Nice work!’ for a correct answer. This text
feedback was developed using guidelines for teacher praise
and criticism from literature [4], [24].

We designed three types of nonverbal robots – neutral,
matching affective, and nonmatching affective – each with
their own type of movement. The neutral robot performs
slight movements of its joints that is generated randomly
without using any input from the human or game. This
is our ‘baseline’ against which we will compare the other
robots. The choice to have some movement for this baseline
allows this robot to still appear ‘alive’ and provide a better
comparison to the other moving robots.

Our previous work found correlations between specific
movement patterns of Quori and the emotions it is seen to
convey by human observers [25]. We found that happiness
is correlated with a backward torso movement and symmet-
rical arm raising, and sadness is correlated with a forward
torso movement and a slow lowering of the arms. The
matching affective robot displays the “happiness” movement
after correct guesses and the “sad” movement after incorrect
guesses. Conversely, the nonmatching affective robot displays
the opposite emotion – sadness for correct and happiness for
incorrect.

When the participant chooses a bin to place the card, the
robot turns toward the correct bin (turning only slightly in
the neutral behavior), performs a nonverbal movement based
on the type of robot, displays the text feedback, and returns
to a neutral position. We generated a few slightly different
movements for the correct and incorrect cases, for each robot,
to have more variety in the movement options.

Fig. 2 shows example screenshots from feedback videos
for the neutral and matching affective robots when the correct
bin is the left bin. The text feedback appears, and the robot
will turn towards the correct bin (left) in all cases.

Fig. 2. Example screenshots of the neutral and matching affective conditions
when the correct bin is the left bin.

V. STUDY DESIGN

We designed an online study using this sorting game to
test the effect of affective robot behavior on learning. We
first discuss the two phases of the game: demonstration and
trial, and then how we use the game to design the online
experiment.

A. Demonstration and Trial Phases

In the demonstration phase, participants see two cards,
one at a time. The participants are told that the robot
will demonstrate where the two cards belong based on the
rule. This gives them a head start in learning the rule and
establishes the robot as a ‘teacher’ who will help them learn
the rule.

In the trial phase (Fig. 3), the participants drag a card from
the gray staging area to the bin they believe it belongs (they
can move it from one bin to another if they change their
mind). After clicking the “Submit Choice” button, the robot
provides feedback (see Section IV) on their choice through
a video, and then the next trial loads.

As the participant plays the game, the cards previously
seen (in either the demonstrations or previous trials) remain
visible in the correct bins, as we are not testing memory
but ability to infer the rule from previously seen cards.
Additionally, if a participant sorts a card incorrectly, it will
be placed in the correct bin when the next card appears so
mistaken assumptions about the rule do not persist.
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Fig. 3. The player has seen two demonstration cards and has sorted two
cards themselves. They are now attempting to sort their third card.

B. Experimental Design

In this experiment, we want to test the impact of affective
robot behavior on learning. Our first independent variable is
difficulty, whether the rule is easy or difficult. Our second
independent variable is the type of feedback. Our primary
experiment is comparing the neutral and matching affective
robots, though we did run this study comparing neutral and
nonmatching affective. The reason for this is to determine
whether the differences seen are truly because of the match-
ing affect and not simply due to the increased movement
from the affective movements.

During the experiment, each participant played two rounds
of the game, once with an easy rule and once with a difficult
rule (the order of the rules was randomized). Additionally,
they were randomly assigned one of the feedback conditions
for each round, allowing for seeing the same condition twice.
The easy and difficult rules were the same for all players, and
each had a fixed card order. We treat the two rounds each
participant plays as independent trials.

When a participant begins the study, they complete a
consent form and are presented with an explanation of the
study format and sorting game. They then play their first
round of the game based on the condition they were randomly
assigned. We compute the accuracy from the trial phase as
the average correctness of the 8 cards they have to sort.

The robot feedback video is placed in between the two
bins (Fig. 3) and is chosen based on the feedback condition
of that round. We generated 8 neutral feedback videos
and 16 affective feedback videos of Quori using a Gazebo
simulation, where each video is categorized by the feedback
condition and correctness. After a participant chooses a bin
to sort a card, the game will look at all videos for their
feedback condition and that indicate the correctness of their
choice (correct or incorrect). It will choose a video that meets
those criteria that the participant has seen the least often so
that they see a variety of videos.

After both the demonstration and trial phases, they com-
plete a short survey consisting of 5-point Likert-style ques-
tions to evaluate their experience. Questions related to the
game are listed below with scales from strongly disagree to
strongly agree

• (Engagement) I enjoyed playing the game
• (Perceived Difficulty) I thought this game was difficult
• (Perceived Learning) I feel that I learned the game well.

Fig. 4. Participant performance for the easy and difficult rule. Demonstration
cards and trial cards are shown as well as an explanation of each rule.

Questions related to the robot were taken from the Godspeed
Questionnaire [26] and included 3 questions related to ani-
macy and 2 related to intelligence. We treat these qualitative
measures as numeric data with the lowest level as 0 and
highest level as 4. We average the 3 animacy questions to get
an average animacy as well as the 2 intelligence questions
to get an average intelligence score. We also included an
optional area for free-form feedback.

After completing this survey, they complete their second
round of the game, with demonstration/trial phases and
survey, with difficulty and feedback determined by the
condition they were sorted into.

VI. RESULTS

Our primary study between neutral and matching affective
was run on Prolific with 160 participants who identified
as 70% female, 28% male, 2% other. Most were not at
all, slightly, or moderately familiar with robots and had a
bachelor’s degree or less. Additionally, 66% identified as
white, 23% as black, and 11% as other. We removed 4
outliers from the 320 rounds in which the participant sorted
fewer than 2 out of 8 cards correctly (or 2.67 SD from the
average accuracy).

Fig. 4 plots the average participants’ performance for each
of the 8 trials, separated by rule difficulty, with one SD
around the mean shown. We can see that for the easy rule,
participants seem to learn the rule at around trial card 6, as the
accuracy approaches 1 at that trial. In contrast, for the difficult
rule, participants seemed to improve performance over time,
but did not reach the high accuracy achieved with the easy
rule. In fact the performance seems to decline in the later
trials, though the SD is quite large.

A. Difficulty and Feedback

We conducted a mixed-ANOVA, with difficulty treated
as within subjects and feedback as between subjects. Not
surprisingly, we found that the easy rule had higher accuracy,
higher perceived user learning, lower perceived difficulty, and
higher engagement – all significant at the 0.001-level.

More interestingly, Fig. 5 illustrates the results comparing
the two feedback conditions, with significant differences
marked. The results support hypothesis H1, as the accuracy
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Fig. 5. Significant differences were found in accuracy and perceived
difficulty at the α = 0.05 level.

for participants viewing the matching affective robot was
significantly higher than for the neutral robot (F (1, 75) =
6.48, p < 0.05, η2 = 0.080). However, when we ran this
same study with 160 participants comparing neutral and
nonmatching affective, there was no significant difference in
accuracy (full results omitted due to space constraints).

There was also a significant interaction between feedback
and difficulty (F (1, 75) = 4.36, p < 0.05, η2 = 0.055). We
performed further analysis with a Tukey test, which found a
significant difference in accuracy between the two feedback
conditions when the rule was difficult (p < 0.05), but no
significant difference when the rule was easy. This indicates
that accuracy is higher in the matching affective condition
when the rule is difficult.

H2 is partially supported as the perceived difficulty for the
matching affective robot was significantly lower compared to
the neutral robot (F (1, 75) = 4.54, p < 0.05, η2 = 0.057).
This same significant difference was not present between
neutral and nonmatching affective. The average user learning
and engagement measures were higher for the matching
affective robot, but these differences were not significant.

Finally, H3 is not supported – while the average animacy
measure was higher for the matching affective robot, there
was no significant difference (p > 0.05).

B. Excerpts from Free-response

At the end of each round, the participants could provide
optional free-form feedback about their experience playing
the game and their opinion of the robot. A few excerpts of
the responses for the three feedback conditions are shown
below:

Neutral:
• the robot was still too boring and didn’t help at all
• I wish the robot had a cute voice or did a dance so when

you get an encouraging phrase you feel even happier.

• The robot was quiet and besides the responses you got
from after making your move, the robot is kind of a non
factor.

Matching Affective:
• the robot seemed to be celebrating when the answer was

right.
• The robot is okay because it’s responsive and active
• Robot felt more engaging this time
• The robot seemed nice and friendly (comments were not

judgemental, seemed excited when you got one right,
etc.)

Nonmatching Affective:
• The robot was having reactions to my actions but it

looks like it’s just a pre-programmed video, not that it
is lively.

• I found it quite hard to understand the signals of the
robot

• the robot patterns are somewhat confusing.
• The robot was kinda distracting.

We cannot generalize that these opinions were held by all
participants, as we did specifically choose these comments
because they further supported our hypotheses about the
positive impact of the matching affective robot. However, the
existence of these opinions does show that some participants
did hold those beliefs.

VII. DISCUSSION

Our results show that providing matching affective non-
verbal behavior can be helpful for learning. Specifically, the
accuracy during the sorting game is higher with this nonver-
bal behavior and the perceived difficulty of the rule is lower.
This is perhaps a surprising result as the nonverbal behavior
is not providing new task-related information as the human
is learning the sorting rule. All feedback conditions told the
human whether they sorted each card correctly through text.
The only difference was the nonverbal behavior provided.
Additionally, we did not find the same significant increase
in accuracy or decrease in perceived difficulty between the
neutral and nonmatching affective cases. This indicates that
the improvement in learning is not due to the increase in
movement between the neutral and affective robots, and that
the matching affect is having an impact.

The significant interaction effect is also an interesting
result, as this indicates that the impact of the matching
affective movement is context-dependent: it has a significant
impact when the task is difficult. A reason for this could
be that the encouragement provided by the robot reduces
frustration felt by the difficult task. When the task is easier,
this encouragement is not needed as the human is learning
the rule quicker (as illustrated by the varying performance in
Fig. 4).

We can get some insight into the players’ thought processes
by looking at the free response feedback they provide. For
the neutral robot, they saw the robot as boring and quiet, and
one participant wanted the robot to be more encouraging with
its movements. In contrast, participants thought the matching
affective robot was celebrating correct answers and friendly.
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If the participants were simply responding to the movement
of the robot, they might see both the matching and non-
matching affective robots as similar – both more lively and
engaging than the neutral. Some participants, however, saw
the nonmatching affective robots as distracting or confusing
and found it difficult to understand the robot’s signals.
This is intuitive since the robot’s affective behavior was
not matching the contextual situation of the game. These
participant comments further validate the utility of matching
affective feedback during this sorting game.

VIII. CONCLUSION

We designed a sorting game in which players infer a
sorting rule using feedback provided by a robot. We tested
the impact of affective nonverbal robot behavior that provided
encouragement (without more task-specific information) on
learning the rule. We found having these emotional behaviors
did improve the sorting accuracy, especially with greater rule
difficulty, and lowered the perceived difficulty of the task.
These results clearly point to the efficacy of emotional robot
behaviors for not just more positive subjective experiences,
but also for objective learning gains.

This work can be extended in two different ways. First, the
robot’s feedback currently takes into account only a single
piece of information, the correctness of the previous question.
We can extend this by analyzing student facial expressions
and including historical performance to personalize the cho-
sen feedback further. Second, the diversity of robot feedback
can be increased by including more degrees-of-freedom, such
as facial expressions. Further, performing this study in an in-
person setting would allow for real-time feedback and the
use of features not available in simulation (e.g., proximity
to the student). Personalizing the education experience with
rich robot feedback can further improve the students’ learning
performance and experience.

ACKNOWLEDGMENT

This work was supported in part by NSF Grant #IIS-
1939047, and the user study was IRB approved.

REFERENCES

[1] T. Belpaeme, J. Kennedy, A. Ramachandran, B. Scassellati, and
F. Tanaka, “Social robots for education: A review,” Science robotics,
vol. 3, no. 21, 2018.

[2] S. D. Kelly, D. J. Barr, R. B. Church, and K. Lynch, “Offering a
hand to pragmatic understanding: The role of speech and gesture
in comprehension and memory,” Journal of memory and Language,
vol. 40, no. 4, pp. 577–592, 1999.

[3] M. J. Harris and R. Rosenthal, “No more teachers’ dirty looks:
Effects of teacher nonverbal behavior,” Applications of nonverbal
communication, pp. 157–192, 2005.

[4] P. C. Burnett, “Elementary students’ preferences for teacher praise,”
The Journal of Classroom Interaction, pp. 16–23, 2001.

[5] A. Specian, N. Eckenstein, M. Yim, R. Mead, B. McDorman, S. Kim,
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[21] H. Köse, P. Uluer, N. Akalın, R. Yorgancı, A. Özkul, and G. Ince,
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