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Decentralized and Centralized
Planning for Multi-Robot Additive
Manufacturing

In this paper, we present a decentralized approach based on a simple set of rules to schedule
multi-robot cooperative additive manufacturing (AM). The results obtained using the decen-
tralized approach are compared with those obtained from an optimization-based method,
representing the class of centralized approaches for manufacturing scheduling. Two simu-
lated case studies are conducted to evaluate the performance of both approaches in total
makespan. In the first case, four rectangular bars of different dimensions from small to
large are printed. Each bar is first divided into small subtasks (called chunks), and four
robots are then assigned to cooperatively print the resulting chunks. The second case
study focuses on testing geometric complexity, where four robots are used to print a
mask stencil (an inverse stencil, not face covering). The result shows that the centralized
approach provides a better solution (shorter makespan) compared to the decentralized
approach for small-scale problems (i.e., a few robots and chunks). However, the gap
between the solutions shrinks while the scale increases, and the decentralized approach out-
performs the centralized approach for large-scale problems. Additionally, the runtime for
the centralized approach increased by 39-fold for the extra-large problem (600 chunks
and four robots) compared to the small-scale problem (20 chunks and four robots). In con-
trast, the runtime for the decentralized approach was not affected by the scale of the
problem. Finally, a Monte-Carlo analysis was performed to evaluate the robustness of
the centralized approach against uncertainties in AM. The result shows that the variations
in the printing time of different robots can lead to a significant discrepancy between the gen-
erated plan and the actual implementation, thereby causing collisions between robots that
should have not happened if there were no uncertainties. On the other hand, the decentral-
ized approach is more robust because a collision-free schedule is generated in real-time.
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1 Introduction

Cooperative 3D printing (C3DP), as illustrated in Fig. 1(a), is an
emerging additive manufacturing (AM) technology that uses multi-
ple mobile 3D printing robots to accomplish large-scale printing
tasks. Chunked-based printing [1], which is illustrated in Fig. 1(b)
using fused filament deposition (FDM) [2] technology, is one of
the manifestations of multi-robot cooperative 3D printing, where
a part is first divided into multiple chunks (a large part when geo-
metrically partitioned results in smaller printing tasks, called
chunks), and the chunks are then assigned to multiple robots to
print simultaneously, thus reducing printing time and increasing
the printing scale. The efficiency of cooperative 3D printing
requires careful coordination among the robots, which requires
them to work in parallel when possible and avoid collision with
other robots and previously printed materials. So the constraints
in an environment are changing both in space and time.

There are generally three approaches to solve the multi-robot
coordination problem: centralized, decentralized, and hybrid
approaches. Centralized approaches require a central planner
responsible for planning the actions of all robots and communicat-
ing with individual robots. Centralized approaches often involve
mathematical optimization, such as linear programming [3],
integer programming [4], and combinatorial optimization [5].
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These optimization approaches use the branch and bound, branch
and cut method to converge to optimal results [6]. Metaheuristics
are also often used in centralized planning, such as simulated
annealing [7] and genetic algorithm (GA) [8], which require less
computational cost compared to the exact methods such as linear
programming. However, they cannot guarantee an optimal result
and attempt to achieve near-optimal results [9]. On the other
hand, decentralized approaches involve no central planner, and
the planning responsibility is distributed among all the indepen-
dently operating robots that rely solely on information accessible
to individual robots. The main differences between the two
approaches are highlighted in Table 1. While both centralized and
decentralized approaches have been widely studied in the multi-
robot systems literature over the past decades, the differentiation
between the two approaches in multi-robot cooperative manufactur-
ing is not quite pronounced. Actually, the use of decentralized
approaches for cooperative AM has not been reported in the exist-
ing literature to the best of our knowledge.

In our previous study [10], we implemented two centralized
approaches (modified genetic algorithm (MGA) and mixed-integer
linear programming (MILP)) to solve the multi-robot coordination
for C3DP. The centralized approaches can provide satisfactory
control of the system because the status of all the robots is always
known at any given time. Using the approaches, we obtained near-
optimal solutions for both small-scale and large-scale problems (the
scale refers to the number of robots and chunks). But as C3DP is
gradually adopted by the wider manufacturing community and
print jobs become larger and more complicated, we might see a
manufacturing floor extending over a large area, where many
mobile robots have to travel for a long distance on the factory
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Fig.1 (a) Demonstration of multi-robot cooperative 3D printing, where multiple jobs are simultaneously printed using multiple
robots and (b) demonstration of chunk-based printing, where a part is discretized into smaller chunks so that it can be printed
using two robots [36]

Table 1 Differences between the centralized approaches versus decentralized approaches

Category Centralized approach

Decentralized approach

Efficiency

Communication cost

Robustness Single point of failure, i.e., if central planner fails, the system fails
Response to dynamic Requires replanning in dynamic environment

conditions

Scalability If the scale of the problem increases, the computational requirement

increases
Quality of solution
to achieve global optimum

Central planner needs to be in constant contact with the entire team,
which results in high communication cost, higher bandwidth

Typically, more efficient and can enable globally optimized solutions  Typically, less efficient, and difficult to achieve global

optimum due to distributed decision-making

Low communication cost for local communication as
local transmit information locally

No single point of failure

Individual agents respond to local environment so, very
well suited for dynamic environment

Computation cost increases at a lower rate compared to
centralized approaches

Guarantee optimality if mathematical programming used. Itis possible No theoretical guarantee of optimality. It is difficult to

achieve global optimum

floor to accomplish multiple print jobs. The planning (the term plan-
ning is used to indicate both scheduling and path planning in this
paper) of robots in those situations becomes complicated due to
the increase of dependencies among robots for multiple print tasks.

Therefore, several research questions motivated us to study
decentralized approaches to realizing multi-robot cooperative man-
ufacturing. For example, while the centralized approach has been
proven effective for small-scale problems, could it be a bottleneck
in large-format C3DP? The centralized approach requires a robust
communication scheme between the central planner and the entire
team. Can that still be established at a larger scale with high reliabil-
ity and reasonably low cost? In addition, as the number of robots
increases, uncertainties in executions increase because it is difficult
to predetermine the timing of the execution of commands. There is
also a high likelihood that robots might often fail as the overall envi-
ronment become more dynamic. All these problems can make it dif-
ficult to plan for multi-robot coordination using a centralized
approach. In such cases, a decentralized approach could provide a
better solution. Though a decentralized approach might not
provide a theoretical guarantee for optimal global solutions and
may often be far from optimal in both path planning and scheduling,
could it be a feasible solution if it demands no expensive commu-
nication? Motivated by answering these research questions, we
aim to investigate the application of the two paradigms in both
large and small-scale fabrication to understand the strength and
weaknesses of each paradigm in C3DP. These questions also moti-
vate us to explore and develop a decentralized multi-robot planning
method in cooperative manufacturing and compare its performance
with a centralized approach.

In this paper, we introduce a decentralized approach for C3DP
that takes inspiration from nature. The decentralized approach,
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swarm printing, is a framework where simple rules are formulated,
similar to the traffic rules that humans follow to maintain order
while driving. Each agent (robot) adheres to these rules and coordi-
nates based on the local exchange of information. These agents are
unaware of the global information, and the framework does not
need a central planner to assign tasks and coordinate the path plan-
ning. The agents can only share information with nearby agents
when they are in proximity to one another. They then use the
newly received information to avoid conflict, such as collisions
while traveling, and determine where the next print can be done.
The results of this decentralized planner are compared with that
of a centralized multi-robot planner, which was presented in our
previous study [10]. The centralized planner uses a modified
genetic algorithm to assign and schedule print jobs to individual
agents. For the path planning between work stations, an A*
search algorithm is used to obtain collision-free paths for the gener-
ated schedule. The comparison is based on multiple criteria, such as
scalability, computational time, and uncertainty (e.g., robot failure).
The rest of the paper is organized as follows. The relevant works in
the existing literature are reviewed in Sec. 2, followed by a detailed
introduction to the decentralized approach in Sec. 3. The compari-
son between the decentralized and centralized approaches is pre-
sented in Sec. 4, followed by a discussion and interpretation of
the results in Sec. 5. Finally, the conclusion and the future work
are presented in Sec. 6.

2 Relevant Research

Multi-robot task planning has seen applications of both central-
ized and decentralized approaches. Traditionally, the centralized
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approaches have dominated the multi-robot task planning problems,
while more recently, an increasing number of decentralized and dis-
tributed approaches have been researched. However, the application
of decentralized approaches in cooperative AM with multiple robots
is still rare.

2.1 Centralized Approaches to Multi-Robot Planning. The
use of a centralized approach for multi-robot planning is abundant
in the literature. Though multi-robot planning includes multi-robot
task allocation (MRTA) and multi-agent pathfinding (MAPF) to
undertake the allocated task, the two tasks are rarely studied
together. This is because each of these tasks is an NP-hard
problem [11,12]. The centralized approaches to MRTA include
optimization-based approaches [13,14]. Atay and Bayazit used
the MILP approach to allocate heterogeneous robots to maximize
the coverage of the area for the robot’s operation [15]. Similarly,
Darrah et al. also used MILP to solve the MRTA problem in the
context of unmanned ariel vehicles [16]. Large usage of the central-
ized approach is covered by metaheuristic approaches for MRTA.
For example, Wei et al. used particle swarm optimization for coop-
erative multi-robot task allocation using a multi-objective (total
team cost, balance of workloads) approach [17]. In another study,
Sarkar et al. presented another heuristics approach -called
nearest-neighbor-based clustering and routing that scales better
compared to other existing state-of-art heuristics Om) [18).
More recently, Zitouni et al. presented an approach using a two-
stage methodology where at the global level, task allocation is
done using a firefly algorithm, and local allocation is done by com-
bining quantum genetic algorithm and artificial bee colony optimi-
zation [19]. In addition, some other heuristic approaches for MRTA
include simulated annealing [7,20], tabu search [21,22], etc.

On the other hand, MAPF has also been studied widely using dif-
ferent centralized approaches. Thabit and Mohades presented a
multi-robot path planning approach based on multi-objective (short-
ness, safety, and smoothness) particle swarm optimization in an
unknown environment [23]. Additionally, several heuristic
approaches are inspired by the biological system, such as genetic
algorithm [24], ant colony optimization [25], particle swarm optimi-
zation [17], and have been used to solve path planning problem.
Other heuristics include the simulated annealing algorithm [26]
and tabu search [27]. While such a heuristic approach provides
good results, they have two limitations. First, it assumes prior
knowledge of the environment, which might not be valid in a
setting where the environment cannot be known beforehand (e.g.,
search and rescue disaster recovery). Second, the computational
cost of the approach exponentially increases with the increasing
scale of a problem. While approaches such as rapidly exploring
random tree (RRT) have been proposed to solve path planning in
a dynamic and unknown environment [28], it still suffers from
the curse of dimensionality of search space and does not work
well with the geometric nature of the obstacles. Additionally,
conflict-based search (CBS) algorithms solve the MAPF problem
by breaking the search space into numerous constrained
single-agent pathfinding problems. This allows each of the prob-
lems to be solved in linear time, and the number of agents contrib-
utes exponentially to the length of the final solution [29].

2.2 Decentralized Approaches to Multi-Robot Planning.
While the centralized approaches can produce an optimal or near-
optimal solution for small-scale problems, they usually struggle in
a non-deterministic environment. This is because everything in a
centralized approach has to be pre-planned before implementation.
While it is possible to enforce the frequent synchronization of exe-
cution between multiple robots at a high cost, the execution
sequence is largely non-deterministic when the robots are operating
independently and unsynchronized. As the number of robots
increases, it becomes increasingly difficult to predict the planning
outcome over an extended period of time with a centralized
approach, and frequent replanning will be needed. In addition, the
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communication cost will also scale non-linearly, which may result
in difficulties with centralized approaches. In such scenarios, a
more decentralized approach might make more sense due to their
ability to work in uncertain environments and without a centralized
planner. One widely publicized research using a decentralized
approach is conducted by Werfel and Nagpal [30] and Werfel
et al. [31]. The authors developed a swarm of termite-inspired
multi-robot construction systems solely based on a set of simple
rules and local communication between the robots. The system con-
sists of individual robots with minimal capability that can pick and
place blocks for the construction of general structures, and the coor-
dination between the individual robots was achieved by mimicking
stigmergy. As a part of project TERMES, they developed both the
hardware and software system and demonstrated the construction of
large 3D structures. A reinforcement learning method was used to
learn decentralized policies that seek to minimize the total construc-
tion time in the same system [32]. While such an approach demon-
strates speed up, it can limit the scalability of the system. Similarly,
Ortiz et al. presented the centibots system—a multi-robot distribu-
ted system consisting of more than 100 robots in unknown indoor
environments for search and rescue problems over extended
periods of time [33]. Peres et al. presented a multi-agent swarm
robotics architecture to simulate heterogeneous robots that interact
with each other and humans to accomplish several types of missions
such as surveillance, intruder detection, and leader—follower [34].

While both the centralized and decentralized approaches in the
current literature provide good solutions to the problems they
address, none of the literature discussed above provides a good
comparison between the centralized and decentralized approaches
in manufacturing using multiple robots. While some comparative
studies exist between the centralized and decentralized approaches
[35] in multi-robot systems, the application is limited to discrete
tasks such as pick and place, team formation, and warehouse func-
tionalities. However, due to manufacturing constraints, the multi-
robot C3DP poses more challenges than common discrete tasks.
Thus, this study aims to address the knowledge gap on how central-
ized and decentralized methods would perform in cooperative man-
ufacturing applications. It does so by presenting a decentralized
approach based on a set of rules and comparing the results with
those of centralized approaches, such as the modified genetic algo-
rithm method with CBS, through simulation studies.

3 Approaches to C3DP Planning

3.1 The Decentralized Approach for C3DP. In this decen-
tralized approach, each mobile 3D printing robot is an autonomous
agent and can make decisions based on local information. There is
no central planner that assigns the printing tasks to individual robots
and schedules them to move to specified locations for printing those
assigned tasks. Instead, the agents adhere to a set of rules and make
decisions based on the said rules. We outline these rules in more
detail in Sec. 3.1.1. In the subsequent discussion, a job refers to
the entire object to be printed. A job is split into chunks, so
robots can print portions of the job. An example of chunking is pre-
sented in Fig. 6, where a rectan%ular bar and a Razorback-shaped
mask stencil or Razorback mask” (an inverse stencil, not face cov-
ering, as shown in Fig. 6(b)) are chunked into 30 and 24 chunks,
respectively. In this approach, robots are equipped with the follow-
ing capabilities:

(1) Robots can move freely from one grid point to the next in any
cardinal direction on a grid floor.

(2) Robots can only print in two directions, up (positive Y-axis)
and down (negative Y-axis) (see Fig. 5 for reference).

Razorback is a special term used to describe the school mascot of the University of
Arkansas.

JANUARY 2023, Vol. 145 / 012003-3

€202 YOJBIA 9} UO NOUZ OBLOUBAA ‘SOLIEIQIT SESUBNIY JO AlsIoAun Aq Jpd 00210 LS L PW/L0.9Z69/€00210/1L/S L/APd-ajoie/uBisap|eolueyoaw/Bio awse uojos]|0oeBipawse//:dny woly papeojumoq



Reloading

Reloading R_un out of
complete Filament
Next chunk
/‘ location
Go towards
the center Complete
Printing the
chunk
Charging Run out Charging
complete of charge  complete Charging

Run out of charge

k»

complete

Run out of charge

Fig. 2 Finite state machine for decentralized C3DP workflow

(3) Robots are set to have a limited communication range to
reduce communication costs, i.e., they can communicate
with surrounding robots within a two-grid-point radius.

(4) Robots can read coordinate information from grid points
when they move to a grid point.

(5) Robots are enabled with close-range sensors to view their
local surroundings for obstacles.

(6) Prior to printing, robots are loaded with job information,
including
(a) G-code of all chunks in the job can be accessed when

they are ready to print individual chunks and
(b) the location of each chunk to be printed.

These capabilities allow robots to act independently and access suf-
ficient information to decide whether they can print at a certain loca-
tion or not. In this approach, a job is assumed to be chunked and the
placement of the job on the floor is decided beforehand and is not
part of the proposed decentralized planning. This information is
passed to the robot prior to printing. Robots have five states: search-
ing, printing, orbiting, charging, and reloading. The flow state of
the printing robots is shown in Fig. 2. They first start with the
searching state, where robots move towards the center area of the
grid using the coordinates information of chunks. That is where
the job is located. Once a robot moves from one grid point to
another, it searches for the new grid point in a lookup table. If the
grid point returns a match, it means a chunk is to be printed at
the grid point. If such a location is found, it determines whether it
is allowed to print using the geometric rule. If it can print, it will
transition to a printing state and start printing the chunk. On the
other hand, during searching, once a robot finds a printed chunk
or a chunk is being printed by another robot, it transitions from
the searching state (looking for where the job is located in the
floor space) to the orbiting state. In its orbiting state, the robot
will orbit around the printed chunks and the printing robots follow-
ing the parallel movement rule. Robots switch between the orbiting
state and the printing state until the entire job is finished.

As the robots print the chunks and travel from one location to
another, they dissipate energy and might need recharging at some
point during the execution of a job. Thus, if the battery level of
the robots gets below a predetermined threshold (e.g., 80%), they
will need to be recharged and, therefore, will move toward the
charging station located at one of the corners of the floor. Once
the robots reach the charging station, they transition to the charging
state. The battery of the robot must be fully recharged before it can
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leave the charging station. Once fully recharged, the robot will tran-
sition back to the searching state and search for a print location.
Similar to the charging state, robots might run out of printing fila-
ment during a large print job. It will transition to the reloading
state and notify the user to reload the filament if that happens.
Once the new filament is loaded, it transitions back to the state
before running out of filament.

3.1.1 The Set of Rules

(A) The rule of geometry: In our previous study, we presented a
sloped surface chunking strategy where a part is divided into
smaller chunks such that each chunk has sloped surfaces on
all four sides (except for the end chunks) [1,36]. This chunk-
ing method allows the material of the adjacent chunks to be
deposited on the sloped surface of the already printed chunk,
creating an instant bond between the two chunks. Since the
adjacent chunks have a sloped surface interface with each
other, this will create geometric constraints. The rule of
geometry is established to ensure geometric dependencies
between adjacent chunks are followed. For example, as
shown in Fig. 3, chunk 0 and chunk 1 must be printed
before chunk 2 because chunk 2 has overhangs that
prevent parts of chunks 0 and chunk 1 from being printed.
Otherwise, the printing nozzle will collide with the said
overhangs of chunk 2 while printing chunk O and chunk
1. To avoid such collisions, robots must print chunks that
have convex slopes (e.g., chunks O and chunk 1) before
printing adjacent chunks with concave slopes (e.g., chunk
2). Such geometric dependencies are stored as directed

/A\r%\
/\\//><\

Fig. 3 (a) Rule of geometry indicates that chunk 0 and chunk 1
should be printed before chunk 2 and (b) Possible issues result
from the lack of geometric rule where chunk 1 cannot be
printed if chunk 2 is printed first
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graph data structures, where each node represents a chunk,
and an edge between two nodes represents the dependent
relationship of a pair of chunks. Such data structure is pro-
vided at the beginning of the print job as part of initial
global information. Thus, the rule of geometry is necessary
for the sloped surface chunking strategy to be implemented
properly. Once a printing robot reaches a print location, it
will search for information on whether the chunk at that
location is concave or convex. Afterward, the robot can
inspect the surroundings and determine whether a chunk
can be printed at that location or not. For example, in
Fig. 3, if the robot reaches the print location where chunk
2 is to be printed, it will inspect whether chunks 0 and 1
have been already printed or not. If either of them has not
been printed, the robot will search for a different chunk to
print instead of printing chunk 2.

This rule is important as this allows the print job to be
carried out properly and prevents robots from printing
chunks that would make printing subsequent chunks impos-
sible. While the provided example uses a sloped surface
chunking strategy for demonstration, such dependencies
will likely exist in any other future geometric partitioning
strategies. Thus, the rule of geometry has a general implica-
tion to handle similar geometric dependencies.

(B) The rule of intersection: The rule of intersection is used to
help avoid a robot-to-robot collision. Since robots use
local communication, there must be a way for robots to
avoid colliding with each other if two or more robots are
about to operate at an intersection simultaneously. When
robots are within each other’s communication range, they
will transmit their next move, and if both the robots want
to move to the same location, a tie must be broken. To
break a tie, both the robots generate a random number.
The robot with the larger number will have the right of
way, and the other robot will either wait until the first
robot has made a move or move to a different location.
The process is repeated if both the robots generate the
exact same number.

(C) The rule of orbiting: The rule of orbiting is designed to limit
exploration and bring a more systematic approach to robots’
search for a print location. For example, when a robot is in
searching mode, it can start randomly moving around the
floor until it finds a print location, but such an approach
could result in excessive movements. To avoid unnecessary
exploration, the robot will, in the beginning, move towards
the center of the floor (where seed chunks are located. The
location of the print object is predetermined by the user
before implementing the planning). Once any one of the

Fig. 4 Rule of orbiting, where the robot will orbit the printed
chunk counterclockwise to find the next print location

Journal of Mechanical Design

print locations is found, the robot can initiate printing.
After the print is complete, the robot will start to orbit the
printed chunks counterclockwise to search for the next
print location. This approach is presented in Fig. 4. No
robot is not allowed to turn back or circle the printed
chunks in clockwise movements. This rule is inspired by
the work done by Werfel et al. [37].

3.2 The Centralized Approach for C3DP. Our previous
study developed a metaheuristic approach to multi-robot scheduling
based on a MGA [10]. The GA is an evolutionary stochastic algo-
rithm widely used in multi robot system problems, as it provides
satisfactory solutions to combinatorial problems. In the presented
approach, the MGA randomly generates a population of initial
chunk assignments and uses the dependency list to generate print
schedules in conjunction with the chunk assignment. Genetic oper-
ators are then applied to modify the chunk assignment until a spec-
ified number of population generations is achieved. The fitness
function of this MGA method is to minimize the total print time.
While the previous approach was able to yield a near-optimal solu-
tion for a small-scale problem with 20 chunks and a large-scale
problem with 200 chunks, it did not account for the travel time
while the robots move from one print location to another. To incor-
porate collision-free path planning in our previously developed
MGA, a CBS method is adopted [38]. CBS uses a two-level
approach, where the high-level search for collision-free path plan-
ning is done on a constraint tree. In such a constraint tree, each
node specifies a time and location constraint for an agent. A low-
level search is done for each node to find paths for all agents that
satisfy the node constraints. While CBS guarantees optimality by
exploring all possible ways of resolving conflicts, it also can
suffer from longer runtime if poor choices are made for conflicts
to split on. The detailed implementation of CBS for multi-robot
cooperative 3D printing is presented in our previous work [38].
Once the initial print schedule population is generated in MGA,
path planning using CBS is carried out for each chromosome repre-
sentation of a GA solution. The travel time obtained using CBS is
then added to the fitness value of each chromosome using Eq.
(1). The equation takes the start time of a chunk, the time it takes
a robot to print the chunk, and the time it takes a robot to travel
from one location to another to calculate the total time. More
details of the equation are provided in Ref. [10]. Thus, a chromo-
some’s overall fitness score includes the total print time and the
travel time required for a particular print schedule. This new
MGA method enables the generation of solutions to improve task
scheduling and robot path planning simultaneously. Doing so,
however, increases the overall runtime of the algorithm, as an
instance of CBS has to be carried out for each chromosome in
each iteration.

Tiota = Max (Tstan,ij + Tprim,ij + Z Ttravelj) (€Y

where Ty 18 the start time of chunk i on robot j, Tpyin ; is the print
time of chunk i on robot j, Y Tyavel; is the total travel time of robot j
throughout the job, j=1, 2, 3, ..., m, robots used for printing, and
i=1,2,3, ..., n, chunks assigned to robot j.

4 Result

This section presents the simulation setup, the underlying
assumptions, and the evaluation metrics used to compare the two
approaches.

4.1 Simulation Setup. All the simulations for the comparison
are conducted in a custom-designed simulation software programed
with PYTHON programming language. The following assumptions
were made during the implementation: (1) a job is placed at the
center of the grid world, with five extra grid points around it on
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Fig. 5 Representation of grid world where four robots are ready
to print a Razorback mask placed in the center of the grid

all sides. These five grid points are left to provide enough space for
multiple robots to move across simultaneously if needed. A repre-
sentative visualization is presented in Fig. 5. (2) All the robots, in
the beginning, are placed around the origin, as shown in Fig. 5.
(3) For decentralized planning, only three states, searching, orbit-
ing, and printing state, are considered in the simulation study. To
make it consistent with the centralized planning approach, charging
and reloading states are not taken into consideration because they
have trivial influence on the overall planning.

4.2 Evaluation Metrics. To quantitatively compare the two
approaches, we use the makespan of a job as the evaluation
metric. This includes both the print time as well as the travel
time. The computational complexity of multi-robot planning
increases with the scale of the problem, such as the number of
robots and the number of chunks to be printed. Thus, we want to
test each approach’s performance when the scale of the problem
increases.

To this end, we apply both the rules-based approach as a repre-
sentative of decentralized planning and the MGA-CBS approach
as a representative of centralized planning as a benchmark for com-
parison in two different case studies. In the first case study, a simple
geometry (a rectangular bar) is divided into multiple chunks and
assigned to the robots. In this case study, the number of resulting
chunks is varied, ranging from 20 chunks (small part) to 600
chunks (large part). This allows us to see how the performance
(e.g., makespan and computational time) of the two approaches
change with the increase in the number of chunks. The second
case study uses a more complicated geometry (a Razorback
shape). With a more complicated geometry, the size and shape of
the chunks vary widely after chunking, as shown in Fig. 6(b).
The printing of chunks in the case of a rectangular bar can be
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highly synchronized. For example, chunk 1 and chunk 3 could
be printed by robot 1 and robot 2 in Fig. 6(a). Since they have
similar shapes and sizes, they will be completed together. Once
the printing is complete, robot 1 and robot 2 could move to
the right and start printing chunk 2 and chunk 4. The same strategy
can be applied to print every row. Thus, the chunks can be printed
by the robots together, and they can move together, which would
result in a shorter makespan. However, for the Razorback shape,
none of the chunks have similar geometries, and thus, synchronicity
cannot be achieved. Therefore, the main purpose of the second case
study is to test whether such a large variation in shape and size (and
thus, the print time) of chunk geometry has any impact on the per-
formance of the two approaches. Additionally, uncertainties are part
of manufacturing processes, more so for additive manufacturing. A
Monte-Carlo analysis is conducted to understand how the inherent
uncertainties in additive manufacturing (e.g., the discrepancy
between the predicted print time and the actual print time) could
derail the print planning generated using the centralized approach.
In addition to the discrepancy in the print times, other uncertainties
include unanticipated nozzle clog, robot failure, etc. Thus, a single
value generated for makespan during planning might not represent
the actual result during implementation, and statistical measure-
ments such as range and confidence interval should be included.
The results, outlining the details of each case, are presented in
Sec. 4. The assumptions adopted in the case studies are summarized
as follows:

(1) All robots are homogeneous. That means every robot uses
the same parameter settings and print settings and, thus,
spends the same amount of time traveling from one grid
point to another as well as printing the same chunk.

(2) In order to make the calculation more realistic and match the
actual printing scenario, an object is chunked first using
Chunker, a chunking algorithm developed in our previous
study [1,39]. The stereolithography (STL) model of the indi-
vidual chunk is sliced in Ultimaker Cura™ to estimate the
print time. The print time obtained from the slicer is used
to calculate the simulation time (to simulate printing in a
rules-based approach) using Eq. (2). The equation takes the
actual print time obtained by slicing the chunk and scales it
down to minimize the simulation time. For the sake of con-
sistency, the centralized approach also uses the same unit

of time for calculation.
{Print time
10

Simulation time = 6

time-steps 2)

(3) The location of the job is determined beforehand by the user
and is not part of planning for multi-robot C3DP.

4.3 Case Studies

4.3.1 Case I. The first case study is a rectangular block of
dimension 1 mx0.8 mx0.015m and has a total volume of
0.012 m®. The rectangular block and the resulting chunks using

Fig. 6 (a) An exploded view of a chunked rectangular bar and (b) a Razorback chunked into multiple heterogeneous chunks

[10]
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Table 2 Data associated with case study |

Smalljob Mediumjob Largejob Extra-large job

Number of 20 100 300 600
chunks
Number of robots 4 4 4 4

the sloped surface chunking strategy are presented in Fig. 6(a). Four
robots are used to print this job. In order to better understand how
both approaches behave with the change of the scale of the
problem, we change the scale of this object by increasing its size
(resulting in a larger number of chunks) and calculate the result
using both approaches. The number of robots is kept constant
(four) for different scales of the problem. First, the object is increased
by five times, which results in 100 total chunks. Next, we further
increased its scale by 15 times (resulting in 300 chunks) and finally
by 30 times (resulting in 600 chunks). The summary of the data asso-
ciated with the first case study is presented in Table 2.

The results obtained using both the centralized and decentralized
approaches are presented in Table 3. The information presented
includes the total makespan, which is the sum of printing time
and traveling time. It also reports the maximum traveling time for
any robot, i.e., the longest path a robot travels throughout the
entire print cycle of the job. In addition, the table includes the
least amount of time that a robot spends traveling. The maximum
and the minimum number of chunks printed by any robot are also
reported. The number of iterations (max. 100 iterations) and
runtime (max. 12h) (whichever comes first) is used as a stopping
criterion for the centralized planner.

4.3.2 Case IlI. The second case study is a Razorback shape
with more complicated geometry than a rectangular bar presented
in the first case study. A coarse representation of the Razorback
shape is presented in Fig. 5 and has the dimension of 610 mm x
267 mm x 52 mm. The Razorback shape was chunked into 50 non-
homogeneous chunks, and the printing was simulated using four
printing robots.

5 Discussion

The charts presented in Fig. 7 illustrate the makespan and average
travel time, side by side, of both approaches in case 1. Results show
that the overall makespan from the centralized approach is better
than that from the decentralized approach for small and medium
jobs (i.e., 20 and 100 chunks). However, the gap between the make-
span obtained using the two approaches decreases as the size of the
job increases. As a result, the makespan from the decentralized
approach is lower for job sizes with 300 chunks and 600 chunks
compared to the makespan from the centralized approach, which
can be observed in Fig. 8.

This is likely because, for a combinatorial problem like this, as
the number of printing tasks or chunks increases, the search space

increases significantly. This has a two-fold impact on the overall
solution obtained using the centralized approach. First, as the
search space increases, exhaustively searching the solution space
becomes impossible, and as a result, a large part of the solution
space remains unexplored. Even with a stochastic approach involv-
ing GA, it is difficult to search the entire solution space, and thus,
the quality of the solution degrades with the increase in the scale
of the problem. However, in the decentralized approach, decisions
are made based on local information, and the scale of the problem
has no apparent effects on the overall quality of the solution. As a
result, we see the gap between the makespan between the central-
ized and decentralized approaches decreasing and eventually
reversing as the scale of the problem increases. Second, each itera-
tion for the centralized planner requires longer runtime. This is
evident from Table 3, where we can see that the computation
time increased by 28 times (for the large job with 300 chunks) to
run the same number of iterations (100 iterations), while the scale
of the job increased by only 15 times. Additionally, for the extra-
large job (600 chunks), the runtime limit (12h) was reached
before the maximum iteration limit (100 iterations). Thus, the
result reflects the makespan obtained after only 50 iterations for
the extra-large job problem.

In order to reduce the computation runtime, a print schedule could
be generated first using the MGA method without coupling with path
planning and then followed by the implementation of CBS on the
generated schedule to obtain a collision-free path. This, however,
could lead to a longer travel time as such a schedule generation
does not consider path planning. But in the light that robots spend
90% of the time printing while 10% on traveling (e.g., in cases
where chunks are large and printing a single chunk could take
hours, whereas traveling from one grid point to another only takes
a few seconds or minutes), this approach might yield acceptable solu-
tions. Thus, while the concurrent scheduling and path planning used
in the adopted centralized approach yields a better result, it also
demands more computational resources. This is especially true for
extremely large-scale problems, as demonstrated by the extra-large
job. Meanwhile, the computation time of the decentralized approach
did not change much for different scales of the problem, as shown by
the data in Table 3. This is because no significant computation is
required for planning. As robots start from their initial positions,
they make movements based on the rules and instantaneously
make decisions without planning for future events. Not having a
need to plan for the future gives the robot flexibility and freedom
from the computational burden.

Although looking at the graph and the data associated with case
study I, one may conclude that the centralized planner is worse than
the decentralized planner for a large-scale problem in terms of the
overall makespan; however, it is worth noting that this is not
always the case. Given enough computational resources and time
to converge to an optimal solution, the centralized planning
approach may outperform decentralized planning, even for a
large-scale problem. The downside is that frequent replanning
may be needed if the execution deviates from the plan due to uncer-
tainty and synchronized execution between robots. The data associ-
ated with both approaches for the second case study are presented in

Table 3 Metrics associated with case study |

Sm. job Med. job Lg. job Ex-1g. job (600
(20 chunks) (100 chunks) (300 chunks) chunks)

Dec. Cen. Dec. Cen. Dec. Cen. Dec. Cen.
Makespan 123 88 448 379 597 1277 1964 4788
Avg. travel time by an agent 78.25 28 222.25 198 365.25 507 609.75 3118
Min. travel time by an agent 68 23 203 178 350 436 583 3633
Max. travel time by an agent 98 36 232 212 393 670 638 2596
Max.# of chunks printed by an agent 6 5 27 28 79 77 153 167
Min.# of chunks printed by an agent 3 5 24 19 68 71 147 139
Increase in runtime - - - 7X - 28X - 39X
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Fig.7 The makespan and average travel time by robots in both decentralized and centralized approaches for different scales of
the problem in case study | (rectangular bar discretized into multiple chunks, represented by small, medium, large, and extra-

large job)

Table 4. The makespan of both approaches, while not exactly equal,
is similar. The results obtained using the centralized approach are
marginally better than those obtained using the decentralized
approach.

5.1 Uncertainties Due to Variable Print Times. An accurate
estimate of a print time for a digital model is essential as it impacts
the overall scheduling, the availability of robots for printing, and the
overall cost estimation. While the slicing engines, such as Cura,
Slic3r, Simplify3D, Repetier, and OctoPrint, provide a reasonably
good print time estimate, the actual print time during execution is
often different from the estimated time. And depending on the
size and complexity of the part to be printed, the discrepancy
could range from minutes to hours. For example, the time estima-
tion of a part with relatively simpler geometry (e.g., the entire rect-
angular bar in Fig. 6(a)) will be relatively close to the actual print
time. On the other hand, the time estimation of more complex
geometry (e.g., the Razorback in Fig. 6(b)) will have a higher dis-
crepancy with the actual print time. Such discrepancies can be
attributed to a combination of uncertainties due to geometric attri-
butes (e.g., dimension, number of contours, number of turning
points in the printing paths, etc.) and hardware differences (e.g.,
set value of print speed versus actual speed, the difference of
clock frequency between microcontrollers, etc.). Moreover, the dis-
crepancy can vary from one print to another, even for the same part.
Although such discrepancies generated from one robot might not be
significant, the problem becomes prominent as hundreds or thou-
sands of robots work together due to uncertainty propagation or cas-
cading effects. As a result of such uncertainties in AM, a makespan

value obtained from the planning rarely matches the actual result.
We are interested in investigating how such uncertainties impact
the actual makespan and comparing the performance of the two
approaches when handling uncertainties. Therefore, we conducted
a Monte-Carlo simulation to analyze how the uncertainties in the
print time affect the print plan for centralized planning.

By literature review, we find that the extant literature lacks
studies on the discrepancies between the estimated and the actual
print time in the FDM process. Thus, we choose Gaussian distribu-
tion to simulate the variation in the actual print time. Once a part is
divided into multiple chunks, each chunk is sliced using a Cura
slicer engine from which an estimated print time is obtained. This
print time is used as the mean value to generate the Gaussian distri-
bution. Since the geometry of chunks and the scale or the size of the
part plays a vital role in the resulting discrepancy, it makes sense to
choose the standard deviation as some factor of the mean value.
However, due to the lack of proper guides in the existing literature
on choosing the value for a standard deviation, one-tenth of the
mean value is used. Increasing or decreasing the value of standard
deviation changes the spread of the actual makespan. A printing
scenario with 60 chunks using four printing robots is used to
demonstrate the simulation.

The histogram presented in Fig. 9 shows the wide range of the
actual makespan compared to the computed makespan by the central-
ized planning approach. As a result of uncertainty in the printing time
for the individual chunks, the actual makespan can range anywhere
from 115 time-steps to 137 time-steps. Such a wide range poses a sig-
nificant problem in print planning, especially in cases where the print-
ing robots are to be deployed for printing pre-planned chunks at
predetermined times. This could result in collisions between the
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Fig. 8 The changes in makespan and average travel time obtained using different
approaches for different scales of a problem presented for case I, plotted at log-scale
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Table 4 Metrics associated with case study Il

Rules-based MGA with

approach CBS
Makespan 184 167
Avg. travel time by an agent 124.25 107
Min. travel time by an agent 113 95
Max. travel time by an agent 144 110
Max.# of chunks printed by an 13 15
agent
Min.# of chunks printed by an 12 11
agent

60
Estimated Time = 124

95th Percentile

| w
=]

Frequency

~N
o

10

115 120 125 130 135
Total Makespan (Print Time + Travel Time)

Fig. 9 Total makespan obtained after running 1000 Monte-Carlo
simulation that shows variation in actual print time in the central-
ized approach. Estimated print time marked solid vertical line for
reference.

robots and the collision between robots and printed parts. Addition-
ally, the calculated value of 124 time-steps is within 25 percentile
makespan in the simulated data, i.e., we can say that the actual make-
span will be 124 time-steps with only 25% certainty.

While collision avoidance is already integrated into the schedule
generated by the central planner, collision-free printing is only
guaranteed if the generated schedule is implemented using the
estimated time. However, with the actual printing widely
varying from the estimated printing times, such collision-free
printing cannot be guaranteed. For example, a chunk c;;; has
dependency on chunk c¢; (i.e., ¢; has to be completed before
chunk c¢;;; can begin) and that robot R; is scheduled to finish
printing ¢; at time #; and robot R; is assigned to start printing
chunk c¢;y; at #. However, as a result of uncertainty in the
actual print time, robot R; does not complete printing chunk c;
until time #;+ At but the robot R; will start printing chunk c;,
at t, This violates the dependency or precedence constraints
and would result in a collision between the printing robots as
well as the robots and the printed part. Thus, additional precau-
tions are required to prevent such accidents, and the optimal or
near-optimal schedule that was generated during planning is no
longer valid during the actual implementation. As a result, replan-
ning will be needed. This makes the use of the optimization
approach inconsequential, as optimal planning no longer guaran-
tees optimal performance. Thus, the centralized approach suffers
as a consequence of uncertainties in the printing time.

On the other hand, decentralized planning does not suffer from
such problems because no pre-planning is required, and the robots
make printing decisions based on the local information available
to them. Printing robots are provided the dependency or precedence
relationship information about the chunks, and the robots print the

Journal of Mechanical Design

chunk as they become available (for example, chunk c;,; does not
become available until its dependency chunk c; is finished). Thus,
uncertainties do not negatively affect the print process (may cause
delay but will not result in a collision) when implemented using
the decentralized approach.

6 Conclusion and Future Work

In this paper, a rules-based decentralized approach is developed
for planning multi-robot cooperative additive manufacturing, the
performance of which is compared to an MGA-based centralized
approach. For both approaches, the job is chunked, and floor
space is allocated prior to printing. The rule-based decentralized
approach allows robots to make independent decisions based on
their local surroundings and job information. On the other hand,
the centralized approach plans the print scheduling, assignment,
and path from one print location to another and outputs a full sched-
ule based on the MGA using CBS.

Two case studies are presented to compare the performance of the
centralized and decentralized approaches and analyze their advan-
tages and disadvantages in the C3DP context. The first case study
was a simple geometry (a rectangular bar) consisting of a varying
number of chunks, ranging from 20 chunks to 600 chunks. The
primary aim of the first case study was to check the scalability of
the two approaches to understand how the result (makespan) and
the runtime of the algorithm changed with the increase in the size
of the problem. While the centralized approach outperformed the
decentralized approach for the small-sized and medium-sized
jobs, the trend reversed for the large and extra-large-sized problems.
The second case study is a large-scale Razorback shape consisting
of 50 chunks and is to be printed with four robots. In case II, the
makespan of both jobs was similar, with the rules-based approach
yielding a slightly higher makespan. This may indicate that geomet-
ric complexity might not have a significant impact on the overall
performance of the two approaches; however, a more comprehen-
sive and systematic investigation is needed to make this conclusion
conclusive. A notable issue that the centralized approach runs into is
the increase in computation time for planning the larger jobs. This
affects the scalability and robustness of the centralized approach.
This is an advantage offered by the decentralized approach. In addi-
tion to this, the decentralized approach also handles the uncertainty
in the printing time very well compared to the centralized approach.
An uncertainty in print time, a common occurrence in 3D printing,
could result in catastrophic failure in a centralized approach,
whereas it does not have an apparent impact on the functionality
of the decentralized approach. Similarly, if a robot fails while trav-
eling, other robots will continue working and take a larger chunk of
work to complete the job. A centralized approach, on the other
hand, requires replanning of the job. The summary of these differ-
ences based on the result and discussion is presented in Table 5.

An exciting future work could involve further generalizing the
rule-based decentralized approach to work with alternative chunk-
ing strategies. In addition to this, a more robust approach could
be used that would minimize the total travel of the robots in a

Table 5 Summary of the centralized and decentralized
approaches in C3DP context

Centralized approach Decentralized approach

Shorter makespan, shorter average
travel time for smaller job travel time even for smaller sized jobs
Large computation time for larger ~ Computationally not as

job time-consuming

Requires longer time to converge  Quality of solution not affected by
to near optimal solution for size of the job

large-scale problems

Affected adversely by uncertainties
in printing time

Longer makespan, longer average

Unaffected by the uncertainties in
printing time
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decentralized approach. However, doing so might require a more
computationally taxing algorithm. As the centralized approach is
more likely to run into problems with the size of the job, a hybrid
approach could provide a good solution that has the characteristics
of both the decentralized (to handle uncertainty) and the centralized
approaches (to achieve optimal results) in hopes that similar perfor-
mance is achieved but with better scalability and increased robust-
ness. In addition to this, a reformulation of the centralized approach
that could handle uncertainties in manufacturing could serve the
manufacturing community and help the centralized approach
achieve better results in the presence of such uncertainties.

Finally, there are no studies that combine exact methods and
learning methods for multi-robot cooperative manufacturing prob-
lems, because both are computationally demanding approaches.
But as computing resources become cheaper and the learning
methods become more efficient, one promising approach is imita-
tion learning with exact methods. In that approach, expert demon-
stration can be done in small-scale problems using exact methods
which can be used to learn and implement for large-scale problems.
We envision that much research effort towards this direction will be
devoted in the near future.
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