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Abstract

Animals and their microbiomes exert reciprocal influence; the host’s environment, physiol-
ogy, and phylogeny can impact the composition of the microbiome, while the microbes pres-
ent can affect host behavior, health, and fitness. While some microbiomes are highly
malleable, specialized microbiomes that provide important functions can be more robust to
environmental perturbations. Recent evidence suggests Sceloporus virgatus has one such
specialized microbiome, which functions to protect eggs from fungal pathogens during incu-
bation. Here, we examine the cloacal microbiome of three different Sceloporus species
(spiny lizards; Family Phrynosomatidae)—Sceloporus virgatus, Sceloporus jarrovii, and Sce-
loporus occidentalis. We compare two species with different reproductive modes (oviparous
vs. viviparous) living in sympatry: S. virgatus and S. jarrovii. We compare sister species liv-
ing in similar habitats (riparian oak-pine woodlands) but different latitudes: S. virgatus and

S. occidentalis. And, we compare three populations of one species (S. occidentalis) living in
different habitat types: beach, low elevation forest, and the riparian woodland. We found dif-
ferences in beta diversity metrics between all three comparisons, although those differences
were more extreme between animals in different environments, even though those popula-
tions were more closely related. Similarly, alpha diversity varied among the S. occidentalis
populations and between S. occidentalis and S. virgatus, but not between sympatric S. vir-
gatus and S. jarrovii. Despite these differences, all three species and all three populations of
S. occcidentalis had the same dominant taxon, Enterobacteriaceae. The majority of the vari-
ation between groups was in low abundance taxa and at the ASV level; these taxa are
responsive to habitat differences, geographic distance, and host relatedness. Uncovering
what factors influence the composition of wild microbiomes is important to understanding
the ecology and evolution of the host animals, and can lead to more detailed exploration of
the function of particular microbes and the community as a whole.
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Introduction

The microbial community living within and on animal hosts has implications for host devel-
opment, fitness, and evolution [1, 2]. While the influence of the microbiome on its host is well
documented, the effect that host environment and phylogeny has on its microbial residents is
less well understood, particularly in non-model and non-mammalian organisms that are free-
ranging in their natural environment [3]. There is evidence that these communities are influ-
enced by environmental factors, such as diet [4-7], geographic or elevation gradients [7-9],
life stage [10, 11], or anthropogenic disturbance [12]. These factors can influence the “pool” of
microbes available to colonize a host, as well as the internal environment of the host which
impacts microbe establishment and propagation [8, 13, 14].

However, this malleability is not universal. Some microbiomes are closely tied to host evo-
lution, and the genetics of that host is a critical factor impacting its microbial composition [3,
7, 14, 15]. These close host-microbiome relationships are often facilitated by vertical transmis-
sion from mother to offspring [5, 16, 17], and can be due to-or lead to-highly specialized
microbiomes that perform a specific and vital function for the host. For example, Euprymna
scolopes (Hawaiian bobtail squid) have a specialized organ to house a single species of bacteria
which is integral to its fitness [18], and in several subspecies of Galapagos iguanas, which
require specialized microbes to aid in digestion, genetic distance was found to be the most
important factor for determining microbiome composition [15]. Because of the functional
importance of the specific microbes, these communities are much more robust and less
impacted by environmental changes. Emerging evidence suggests that Sceloporus virgatus
(striped plateau lizards) possesses one such microbiome, which has undergone selection to
favor microbes that protect eggs during incubation [19]. Specifically, the S. virgatus cloacal
microbiome is largely dominated by members of Enterobacteriaceae [20, 21], which has been
shown to have antifungal properties and likely protects eggs from fungal fouling during incu-
bation [19, 22-24].

Here we study the effect of habitat and host genetics on the cloacal microbiome of three Sce-
loporus species from four different locations. With these data, we examine the differences
between sympatric species, allopatric sister species, and intraspecific differences across three
populations. We specifically compared microbiomes recovered from cloacal swabs, due to the
specialized nature of S. virgatus cloacal microbes. First we looked at S. virgatus and S. jarrovii.
These two species are sympatric in the Madrean Sky Islands of southwestern United States and
northern Mexico, and have similar microhabitats, diets, and activity budgets, and so they are
subject to the same environmental influences on their microbiomes [25-28]. However, S. jar-
rovii is a fairly distant relative of S. virgatus, is larger in body size, and is viviparous rather than
oviparous. Next we compared S. virgatus to its oviparous sister species S. occidentalis, which is
found throughout the western US [25, 29]. Despite being allopatric to S. virgatus, we chose a S.
occidentalis population from a similar riparian oak-pine woodland habitat. Finally, we com-
pared three populations of S. occidentalis from different habitats, which vary in primary sub-
strates, elevation, and anthropogenic influence. Together, these comparisons can show the
effect of both habitat and host relatedness on the cloacal microbiome. If habitat influences
were acting alone on the microbiome, we would predict robust similarities in the microbiome
of the more distantly related but sympatric species, and distinct differences in the microbiome
of conspecifics in different habitats. In contrast, if host relatedness were acting alone on the
microbiome, we would predict similarities across the three conspecific populations found in
different habitats, and differences between the two sympatric species. Additionally, conserva-
tion of specific microbes across more closely related hosts could indicate vertical transmission
of these microbes [16]. Strict vertical transmission is often an indicator that the conserved
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microbes serve an important function for the host (i.e., the antifungal properties of Enterobac-
teriacede species).

Methods
Sample collection

Female Sceloporus virgatus and Sceloporus jarrovii lizards were collected using a loop of fishing
line at the end of a retractable fishing pole in the Coronado National Forest near the South-
western Research Station (SWRS), Cochise County, AZ, from 17 July to 28 August 2017 and
16 July to 19 July 2021 (Fig 1). These sympatric lizards were collected along an intermittent
creek surrounded by an oak-pine mixed forest in Cave Creek Canyon at ~1700 m a.s.l. They
share microhabitat and can be found within a few body lengths of each other, though S. virga-
tus is more commonly found on small rocks whereas S. jarrovii is more commonly found on
larger rock walls. Both male and female Sceloporus occidentalis were captured in Washington
State from 29 July to 26 August 2020 and 7 July to 27 July 2021 at three locations that represent
three distinct habitats: Beach, Forest, and Canyon (Fig 1). The Beach population (Chambers
Creek Regional Park, University Place, WA) is at sea level (0 m elevation) on the coast of the
Puget Sound; the habitat primarily consists of large pieces of driftwood with small clumps of
beach grass and shrubs. The Forest population is located ~1.2 km from the Beach population
within the same public park at ~70 m elevation; the habitat is a narrow (24 m) wooded strip of
land sandwiched between a paved public walking trail and a road. The Canyon population
(Oak Creek Wildlife Area, Yakima County, WA) is at ~640 m elevation; the study site follows
an intermittent creek surrounded by an oak-pine forest, resemblant of the Cave Creek Canyon
habitat. Only the Canyon S. occidentalis population was directly compared to S. virgatus due to
the similar riparian oak-pine habitat.

o B
Chambers Bay Forest

Cave Creek Canyon

Fig 1. Study sites of S. occidentalis (Chambers Bay and Bear Canyon, Washington, USA), and S. virgatus and S. jarrovii
(Cave Creek Canyon, Arizona, USA).

https://doi.org/10.1371/journal.pone.0279288.9001
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All lizard cloacae (Table 1) were swabbed in the field immediately upon capture by gently
inserting a sterile swab (BD ESwab™) into the cloaca and slowly rotating it. Swabs were kept in
Amies solution on ice packs and/or refrigerated for up to 30 h until microbial samples could
be moved to -80°C for later DNA extraction. Animals were released at the location of capture
after swabbing and collection of demographic information (body mass, snout-vent length, and
sex). Swabbing methods are minimally invasive, and animals behaved normally immediately
upon release. All lizards were adults and sampling occurred after the conclusion of the repro-
ductive season.

Our work was approved by the Institutional Animal Care and Use Committee of the Uni-
versity of Puget Sound (Protocol Number: PS16002 and PS18002). All animal collections were
permitted by Arizona Game and Fish (SP590934 and SP846957) and Washington Fish and
Wildlife (20-039 and 21-002).

DNA extraction and Illumina library

All samples were extracted with the Qiagen DNEasy® Blood and Tissue Kit (Qiagen, Inc),
using the manufacturer protocol for Purification of Total DNA from Animal Blood or Cells,
with the optional pre-treatment for gram-positive bacteria lysis buffer incubation. An extrac-
tion blank was included with each set of extractions. DNA in all samples and blanks was quan-
tified via Qubit, to ensure extraction was successful. Briefly, Illumina libraries were prepared
via a two-step polymerase chain reaction (PCR). PCR1 utilized 515F/806R primer pairs to
amplify the V4 region of the 16s rRNA bacterial gene. PCR2 added unique barcode primers to
each sample’s sequences. Samples were then pooled according to qualitative DNA concentra-
tion and sent to the University of Idaho Genomics and Bioinformatics Core (GRBC) for
sequencing on the Illumina MiSeq platform. Details found in Bunker et al., 2021a, b [19, 20].

Sample processing

Sequences were received demultiplexed, with adapters and primers removed. Quality analysis
for each sample was performed using FastQC [30] and those results were consolidated using
MultiQC [31]. Prior to processing, samples with fecal contamination were removed based on
the relative abundance of Lachnospiraceae, a fecal indicator species [20, 21]

Mean quality scores and length distribution for the whole dataset was manually inspected
and used to determine a cutoff length of 250 bp for forward reads and 170 bp for reverse reads.
Samples were then processed in R v 4.1.2 using the DADA?2 [32] pipeline, based on this tuto-
rial: https://benjjneb.github.io/dada2/tutorial.html. Samples were trimmed and filtered with a
max expected error of 2. Taxonomic classification of amplified sequence variants (ASV's) was
performed through the assignTaxonomy function, using the Silva database [33], release 132.
Potential contaminants were removed with the Decontam package [34], using the “prevalence”

Table 1. Sample sizes of swabs collected from Sceloporus lizards. NA indicates that we did not collect swabs from
male S. virgatus and S. jarrovii lizards. “After Processing” is the number of swabs that were retained after removing
fecal-contaminated swabs. See Methods for details.

Total After Processing
Group Female Male Female Male
S. virgatus 19 NA 13 NA
S. jarrovii 24 NA 18 NA
S. occidentalis (Canyon) 21 25 14 9
S. occidentalis (Forest) 22 24 15 19
S. occidentalis (Beach) 26 24 21 16

https://doi.org/10.1371/journal.pone.0279288.t001
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method with a threshold of 0.1. Control samples (n = 57), including experimental controls,
extraction blanks, and PCR negatives, were used for comparison. Any ASV that had fewer
than 15 reads across all samples was discarded. Finally, read numbers were log transformed to
account for differences in read depth. All parameters were determined based on an analysis of
the mock communities (S1 Fig).

Data analysis

Once samples had been processed, the phyloseq package [35] was used to organize and store
data of different types for analysis. Shannon diversity index values and richness were calculated
with the “estimate_richness” function from phyloseq, and Faith’s phylogenetic diversity index
values (PD) were calculated using the Picante package [36] based on maximum-likelihood
phylogenetic trees created and optimized with Phangorn, using the GTR substitution model
[37, 38]. The alignment was created with the DECIPHER package [39]. Significance was
defined as a p-value of < 0.05 for all the following analyses.

We tested for among-species differences in (log-transformed) alpha diversity metrics using
one-way ANOVA, after confirming the log-transformed data met assumptions of normality
and equal variance based on standard diagnostic plots of model residuals. ANOVA’s were fol-
lowed by two post hoc Dunnet’s tests comparing the sympatric species (S. virgatus vs. S. jarro-
vii) and the sister species (S. virgatus vs. S. occidentalis); only Canyon S. occidentalis were used
in these analyses to match habitat type. Beta diversity and composition were compared among
species using permutational-ANOVA (“adonis” in the vegan package; [40] using Bray-Curtis,
weighted UniFrac, and unweighted UniFrac distances. Variance of the communities was also
measured for all three metrics using “betadisper”, also from the vegan package [40].

We tested for among-population differences in alpha and beta diversity of the three S. occi-
dentalis populations (Canyon, Forest, and Beach) in a similar way, but these analyses also
included sex and a sex X location interaction, and were followed by Tukey post hoc tests to
assess all pairwise comparisons. Richness and PD were log transformed.

The corncob package [41] was used for differential abundance analyses. The differentialTest
command was first used to identify which ASVs varied between groups, and the model for
each of these ASV's was specifically tested using the bbdml function. Shared taxa between
groups were identified with the function “get_vennlist” from the Microbiota Processes package
[42]. Data points for beta diversity plots were generated using the “ordinate” function from the
Phyloseq package [35], and all plots were made using ggplot2 [43]. A dendrogram was created
with the Bray-Curtis distance of mean communities, using hclust (base R) and the complete
linkage method.

Results

Species in sympatry

We compared the cloacal microbiomes of female S. virgatus and S. jarrovii, two species that
live sympatrically in Cave Creek Canyon, with overlap in microhabitat choice. There was no
difference between alpha diversity of the two species in any of the three metrics (Fig 2 and
Table A in S1 File). However, the overall community varied in composition for all three beta
diversity metrics (Fig 3A-3C and Table B in S1 File). Dispersion was similar across groups
(Table B in S1 File).

Enterobacteriaceae and Helicobacteraceae are the most abundant families in both S. virgatus
(43.8% + 9.7 and 42.6% % 9.9) and S. jarrovii (38.8% + 8.8 and 26.9% + 8.0, Fig 4A and S2 File).
We observed that the relative abundance of Enterobacteriaceae appeared to increase with a
decrease in relative abundance of Helicobacteraceae; a Pearson’s correlation confirmed this
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Fig 2. Mean Shannon diversity, richness, and PD from female S. virgatus, S. jarrovii, S. occidentalis (Canyon
population) microbial communities recovered from cloacal swabs. Error bars represent standard error.
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relationship to be significant (Fig 5). The two families together made up 86.4% + 5.0, on aver-
age. This relationship was not significant in S. jarrovii. No other families made up >2% of the
S. virgatus community on average, whereas the S. jarrovii microbial community was, on aver-
age, made up of 11.0% + 4.1 Enterococcaceae and 6.4% * 2.8 Corynebacteriaceae. Overall, 87%
+ 4.8 of the community of S. virgatus are members of the Proteobacteria phylum, with the
remainder of the community closely split between Actinobacteria (5.7% =+ 3.5), Bacteroidetes
(5.5% + 3.4), and Firmicutes (1.0% + 3.9) S2 File). The S. jarrovii community is also majority
Proteobacteria at an average of 68.9 + 7.2%, but has a greater relative abundance of Firmicutes
(15.6% =+ 4.8), and a similar amount of Actinobacteria (7.2% + 2.9) and Bacteroidetes (5.6% +
3.3). No individual ASV was found to be significantly differentially abundant between species.
S. virgatus and S. jarrovii shared 21.5% of ASVs, with 48.3% unique to S. virgatus, and 23.5%
unique to S. jarrovii (Fig 4B).

Species in allopatry

We compared cloacal microbiomes of S. virgatus and Canyon S. occidentalis, sister species
from different latitudes but both in oak-pine woodlands with similar microhabitat selection.
We found that S. virgatus had significantly higher diversity than S. occidentalis in all three
alpha metrics (Fig 2 and Table A in S1 File). The composition of the bacterial communities
also varied in both dispersion and composition (Fig 3A-3C and Table B in S1 File).

Like the S. virgatus communities (described above), the S. occidentalis bacterial populations
were largely dominated by Enterobacteriaceae, which made up 79.6% * 6.8 of the community
on average (Fig 4A and S2 File). Unlike S. virgatus and S. jarrovii, there was only one S. occi-
dentalis individual with any amount of Helicobacteraceae, and that amount was negligible
(< 0.1% of the community). Instead, the next most abundant family was Enterococcaceae at
19.8% = 6.9 relative abundance on average, but this family was present only in small abun-
dances in the S. virgatus samples. No other family made up > 1% of the S. occidentalis
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https://doi.org/10.1371/journal.pone.0279288.g003
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community on average. This pattern was mirrored at the Phylum level, with 79.7% + 6.8 Pro-
teobacteria and 20.3% + 6.8 Firmicutes, with no other major taxa (S2 File). A differential abun-
dance analysis confirms that Helicobacteraceae is significantly higher in S. virgatus (t = -8.63,

p < 0.001). One Enterobacteriaceae ASV, genus Salmonella, was significantly less abundant in
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S. virgatus (t = -3.94, p = 0.002). Of the total ASVs, 4.6% were unique to S. occidentalis, and
only 3.3% were shared between S. occidentalis and S. virgatus (Fig 4B).

Intraspecies population comparison

We next compared different populations of S. occidentalis from three different habitats, in
both males and females. We found no difference between the sexes, nor an interaction between
sex and location in any of the alpha diversity metrics (Table C in S1 File). Location had an
effect on all three metrics, with Canyon animals having significantly lower diversity than did
the other two populations, which did not differ from each other (Fig 6 and Table C in S1 File).
The microbial populations also varied in composition for all three metrics (Fig 7A-7C and
Table D in S1 File), and in dispersion when using Bray-Curtis and unweighted UniFrac dis-
tances. Sexes did not differ in dispersion or composition of microbiome communities,
although there was an interaction effect of sex and location only when using Bray-Curtis dis-
tance (Table D in S1 File).

The most abundant family in all three populations (for both males and females) was Entero-
bacteriaceae (Canyon: 71.2% + 6.6, Forest: 94.9% + 1.7, Beach: 97.8% + 0.5, Fig 4A and S2
File). The Canyon and the Forest animals also hosted 24.0% + 6.0 and 2.8% + 1.2
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Enterococcaceae, respectively, but no other taxa made up greater than 1% relative abundance
on average in any population. Enterococcaceae showed a similar correlation with Enterobacter-
iaceae as did Helicobacteriaceae in the S. virgatus samples (Fig 8). The correlative relationship
was present in all three populations, but relative abundances were most closely associated in
the Canyon population. At the phyla level, Canyon populations were 71.2% + 6.6 Proteobac-
teria and 28.7% =+ 6.6 Firmicutes; Forest populations were 95.0% + 1.6 Proteobacteria and
3.6% = 1.5 Firmicutes; and Beach populations were 98.0% =+ 0.5 Proteobacteria and 1.2% + 0.4
Firmicutes (S2 File). This indicates that the major differences in diversity between these popu-
lations are in low abundance taxa, or at the ASV level. A differential abundance analysis con-
firms that Enterococcaceae is lower in both the Beach (t = -6.43, p < 0.001) and Forest (t =
-3.44, p = 0.001) populations compared to the Canyon population. At the ASV level, 9.3% of
sequences were shared between all three locations. The Beach and Forest populations (both at
Chambers Creek Regional Park and separated by only ~1.2 km) shared 41.0% of their ASVs,
while the Canyon population only shared 10.3 and 12.0% with the Beach and Forest popula-
tions, respectively (Fig 4C).

Of the 28 ASVs shared between all three locations (Fig 4C), five belonged to the Lachnospir-
aceae family (including one from the genus Tyzzerella and four that are unidentified at the
genus level), four to family Bacteroidaceae (all from the Bacteroides genus), and three to both
Enterobacteriaceae (Salmonella, Citrobacter and Hafnia-Obesumbacterium genera) and Mari-
nifilaceae (all belonging to the Odoribacter genus) (S3 File).
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Fig 7. Principal coordinate analysis plots (PCoA) plot of cloacal microbial communities recovered from three S.
occidentalis populations: Canyon, Forest, and Beach. Plots were created by using (A) Bray Curtis, (B) weighted
Unifrac and (C) unweighted UniFrac distance to calculate pairwise distances based on community composition.
Endpoints represent individual samples, connected to the centroid for each species. Colors represent populations.

https://doi.org/10.1371/journal.pone.0279288.g007

Dendrograms

We generated dendrograms to determine if clustering patterns of recovered microbial com-
munities followed either of the patterns of interest in our study-species relatedness or habitat
similarity. When mean communities of all five populations (S. virgatus, S. jarrovii, and three S.
occidentalis populations) were clustered in dendrograms based on Bray-Curtis distance, sam-
ples grouped primarily by geographic distance (Fig 9). S. virgatus clustered with S. jarrovii
despite being more closely related to S. occidentalis, and the most geographically distant S. occi-
dentalis population clustered separately from the two geographically close populations. Seven
ASVs were shared among all three Sceloporus species (Fig 4B), all belonging to different
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was mostly closely correlated in the Canyon population.

https://doi.org/10.1371/journal.pone.0279288.9008

genera: Bacteroides, Bilophila, Enterococcus, Hafnia-Obesumbacterium, Helicobacter, Salmo-
nella, and an unknown Veillonellaceae.

Discussion

We found that both environmental influences and host relatedness have an effect on the cloa-
cal microbiome of three Sceloporus lizard species. The cloacal microbes of S. occidentalis ani-
mals from three different populations and three different habitat types were found to vary in
alpha diversity, community composition, and community variance. This difference was driven
by the Canyon population, which is geographically distinct from the Forest and Beach popula-
tions, which are only ~1.2 km apart from each other. The Canyon population of S. occidentalis
is also distinct from its allopatric, oviparous sister species, S. virgatus, although they are found
in similar habitats and thus may have similar environmental pressures. Finally, S. virgatus and
S. jarrovii, more distantly related species that share a habitat, had similar alpha diversity met-
rics, and both species’ microbiomes are dominated by members of the Enterobacteriaceae and
Helicobacteraceae families. However, S. jarrovii lacks the paired relationship of these two fami-
lies that we see in S. virgatus, and also hosts a substantial amount of Enterococcaceae, which is
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essentially absent in S. virgatus. These two sympatric lizards have microbiomes that vary in
beta diversity.

There are several environmental factors that may account for the differences in the S. occi-
dentalis populations. Elevation changes have been known to induce changes in the micro-
biome, possibly due to an increase in stress as elevation increases [8, 44, 45]. There is also a
much greater anthropogenic influence at the Beach and Forest populations, which are located
in an urban recreational area, compared to the much more remote Canyon population.
Human disturbance has been shown to influence the microbiome in a variety of species [8, 12,
46, 47]. Both of these factors have shown to influence the available reservoirs of microbes
which can colonize a host, perhaps accounting for differences in microbiome composition as
well as overall diversity metrics, including the lower diversity observed in the Canyon popula-
tions. We did not find consistent differences between the microbiomes of S. occidentalis males
and females, which differs from other research on S. virgatus that found consistent differences
between the sexes [21]. A larger sample size, or samples from time points during the reproduc-
tive season should be examined for S. occidentalis before a lack of sex difference is generalized
for the species [48, 49]. Surely reproductive behaviors and physiology could also be drivers of
microbial diversity [50, 51], but we would not capture that relationship here given our study
was conducted at the conclusion of the annual reproductive season.

Environmental factors cannot account for all the differences seen here, as the community
structure of S. virgatus and S. jarrovii microbiomes also differed, despite sharing a habitat.
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Variation between reptile species’ microbiomes has been hypothesized to be due to behavioral
[50] or diet differences [5, 52]. However, microbes can also be influenced by host physiological
and genetic factors. For instance, host genetic distance has been shown to predict variation in
microbiome composition [14, 53-55]. This could be due to a selection process that winnows
microbes that are picked up from the environments to a specific cohort of microbes [13, 14,
18]. Alternatively, portions of the microbiome could be vertically transmitted, and the differ-
ences due to inheritance. Vertical transmission is well established in viviparous animals, par-
ticularly mammals [17], and recent evidence suggests that oviparous animals can also pass
down microbes to their offspring through behavioral transmission mechanisms or during egg
development and oviposition [5, 56, 57]. The higher abundance of Enterobacteriaceae in S.
occidentalis and S. virgatus compared to S. jarrovii could also be tied to mode of reproduction;
there is evidence that the S. virgatus microbiome has been selected to protect eggs from fungal
infection [19], a known property of some members of the Enterobacteriaceae family (most
often Serratia) [22-24]. This selective pressure would be lacking from S. jarrovii, a viviparous
species. Comparison of mother-daughter microbiomes, as well as quantifying the genetic dis-
tance between Sceloporus species could help determine what is causing these variations.

At a finer level, species in sympatry shared 21.5% of their ASV’s and conspecific popula-
tions ~1.2 km apart shared 41.0% of ASV’s, whereas more geographically distant populations
of sister species and of conspecifics shared only 10-12% of ASV’s. This suggests that location
determines the potential “pool” of microbes and, if that is similar, relatedness affects the likeli-
hood of which microbes from the pool establish residency within the host. That environmental
factors have the larger influence than relatedness is also supported by the fact that the micro-
biome of sympatric but distantly related species were more similar to each other than were
those of allopatric sister species. However, the consistently high abundance of three major fam-
ilies (Enterobacteriaceae, Helicobacteraceae, and Enterococcaceae) across all species and habi-
tats indicates strong conservation of the Family-level taxonomic profile and suggests some
selection for the ecological function of these particular microbes.

Sampling of other reptile species, particularly with cloacal swabs, have also found that members
of the Proteobacteria phyla dominate the cloacal microbiome, although it is less common to find
such a high relative abundance of a single family as we do here. Colston [58] found that nearly
50% of microbes in the cloacae of the cottonmouth snake were Proteobacteria, with over 16%
belonging to the Enterobacteriaceae family (although the single most abundant OTU was a Bac-
teroidaceae species). Helicobacteraceae has been shown to dominate the cloacal microbiomes of
crocodile lizards [59], although it was impacted by the diet and health of the populations. Baldo
et al. [53] found that Proteobacteria was the most diverse phyla in the gut tissue of several popula-
tions of wall lizards, and Helicobacteraceae, Desulfovibrionaceae and Enterobacteriaceae were
found across all populations. Kohl et al. [5] found that female lizards of several viviparous species
shared certain taxa with their offspring, and the majority of these shared taxa were members of
the Enterobacteriaceae family, although the study used fecal samples rather than cloacal swabs.

Along with these previous findings, our results offer a starting point for further investiga-
tion into the proximate and ultimate mechanisms by which wild microbiomes are established
within their hosts. More work should consider the relative role of vertical transmission vs.
social/environmental/diet-based acquisition, how these processes are limited by host genetics,
and the selective value of the host microbiome.

Supporting information

S1 Fig. Results of mock community analyses, showing the observed and expected mock
community data. Three technical replicates of a tiered mock community were included in the
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three different Illumina runs that included samples analyzed in this manuscript.
(PDF)

S1 File. Statistical output. Analyses of alpha and beta diversity metrics for the cloacal micro-
biome of Sceloporus lizards.
(PDF)

S2 File. Relative abundances of the top 10 most abundant families and phyla in the cloacal
microbiome of Sceloporus lizards.
(PDF)

S$3 File. Identities of the 28 ASV’s shared among all 3 Sceloporus occidentalis populations.
(PDF)
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