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Boreal lakes are the most abundant lakes on Earth. Changes in acid rain

deposition, climate, and catchment land use have increased lateral fluxes of

terrestrial dissolved organic matter (DOM), resulting in a widespread browning

of boreal freshwaters. This browning affects the aqueous communities and

ecosystem processes, and boost emissions of the greenhouse gases (GHG)

CH4, CO2, and N2O. In this study, we predicted biotic saturation of GHGs in

boreal lakes by using a set of chemical, hydrological, climate, and land use

parameters. For this purpose, concentrations of GHGs and nutrients (organic C,

-P, and -N) were determined in surface water samples from 73 lakes in south-

eastern Norway covering wide ranges in DOM and nutrient concentrations, as

well as catchment properties and land use. The spatial variation in saturation of

each GHG is related to explanatory variables. Catchment characteristics

(hydrological and climate parameters) such as lake size and summer

precipitation, as well as NDVI, were key determinants when fitting GAM

models for CH4 and CO2 saturation (explaining 71 and 54%, respectively),

while summer precipitation and land use data were the best predictors for

the N2O saturation, explaining almost 50% of deviance. Our results suggest that

lake size, precipitation, and terrestrial primary production in the watershed

control the saturation of GHG in boreal lakes. These predictions based on the

73-lake dataset was validated against an independent dataset from 46 lakes in

the same region. Together, this provides an improved understanding of drivers

and spatial variation in GHG saturation in boreal lakes across wide gradients of

lake and catchment properties. The assessment highlights the need to

incorporate multiple explanatory parameters in prediction models of GHGs

for extrapolation across the boreal biome.
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1 Introduction

Boreal ecosystems are expected to be among the most
affected biomes by climate change (Ruckstuhl et al., 2008).

Regarding inland waters, boreal lakes are the most abundant

lakes on Earth (Schindler, 1998). These lakes receive high loading
of allochthonous dissolved organic matter (DOM) from the

catchment (Dillon and Molot, 1997; Tranvik et al., 2009). As

such, these lakes are crucial biogeochemical reactors: on the one
hand, they sequester DOM by burial into lake sediments, while

on the other hand, they are generally net heterotrophic and act as

major conduits for greenhouse gas (GHGs) emissions (Hessen
et al., 1990, 2017; Bastviken et al., 2004; Tranvik et al., 2009; Yang

et al., 2015; de Wit et al., 2018).

In boreal watercourses the lateral fluxes of colored DOM
have increased during the past 2–3 decades, mainly due to

reduced deposition of acid rain (de Wit et al., 2007; Monteith

et al., 2007), climate change (Mattsson et al., 2005), afforestation
and land use changes (Palviainen et al., 2016; Škerlep et al., 2020).

The increasing DOM is causing a widespread “browning” of

these freshwater ecosystems (Finstad et al., 2016). In the boreal
biome, changing climate will result in increased precipitation and

runoff (Tranvik et al., 2009). In some regions of the northern

hemisphere, like Fennoscandia (the common term for Finland,
Norway and Sweden) in general, the proportion of forest cover

has increased, leading to larger biomass pools (Fang et al., 2014).

This increase in terrestrial biomass (“greening”) has boosted the
amount of allochthonous DOM that may be entering into surface

waters (Larsen et al., 2011b), with increased rainfall and runoff
further enhancing DOM catchment export (Tranvik et al., 2009;

de Wit et al., 2016). Browning strongly affects light attenuation

(Karlsson et al., 2009; Thrane et al., 2014; Allesson et al., 2021),
nutrient dynamics (Dillon and Molot, 2005; Creed et al., 2018)

and thus also primary productivity (Solomon et al., 2015; Hessen

et al., 2017; Lau et al., 2021). The combined effect of increased
DOM and increased light attenuation implies a decrease in

photosynthesis, thus promoting the heterotrophy of these

systems and the net emissions of GHGs derived from
microbial mineralization of DOM (Yang et al., 2015).

A number of studies have addressed the main drivers of

carbon dioxide (CO2) and methane (CH4) concentrations in
boreal lakes, and how they are linked to DOM and lake

productivity (Huttunen et al., 2003b; Bastviken et al., 2004;

Juutinen et al., 2009; de Wit et al., 2018; Jahr, 2021) as well as
catchment properties (Huttunen et al., 2003b; Li et al., 2020).

Fewer studies have addressed nitrous oxide (N2O) in boreal lakes.

N2O is an intermediate in the nitrification and denitrification
(Trogler, 1999; Butterbach-Bahl et al., 2013) whose production

depends on the availability of organic matter (OM), oxygen

availability, and reactive nitrogen concentration (Yang et al.,

2015; Kortelainen et al., 2020; Clayer et al., 2021). Hydrological

parameters, such as lake size or runoff, have been recognized as
key underlying factors determining which are the main

biogeochemical C processes that are governing the production

of GHGs (Jones et al., 2018). In the boreal zone, small lakes have
been shown to have relatively higher sedimentation and GHG

emission rates than larger lakes (Juutinen et al., 2009; Kankaala

et al., 2013). Typically, small lakes are also characterized by
higher concentrations of allochthonous OM (Xenopoulos et al.,

2003; Einola et al., 2011) and shorter water residence times

(Vachon et al., 2017). The residence time has also a strong
influence on the quality of DOM. The longer the residence

time, the more refractory the DOM becomes, and thus the

proportion of C sequestered in the sediments increases
relative to what is released as CO2 or CH4 (den Heyer and

Kalff, 1998). Most of this production is microbial, yet for all gases

the concentrations and emissions are also affected by uptake and
conversions by methanogens, denitrifiers, and autotrophs, but

also by abiotic factors affecting microbial activity

(i.e., temperature, redox conditions). These biotic processes
are labelled biogenic and, therefore, traceable (Jones and Grey,

2011). For CO2, the concentrations will also be affected by other

processes as photooxidation and in cases also inputs from
tributaries and groundwater, yet integrated over the water

column of boreal lakes, the biogenic activities generally are by

far the most important (Hessen et al., 1990; Larsen et al., 2011a;
Allesson et al., 2021).

The goal of this study was tomodel biotic saturation of GHGs
in boreal lakes by using a set of chemical, hydrological, climate,

and land use parameters. To date, only a limited number of

studies have explored the influence of such factors in GHG
saturations from boreal lakes. For this reason, we constructed

predictive models for GHG saturation from this survey

performed in 2019 (73 lakes) and tested them against an
independent dataset of 46 lakes sampled from the epilimnion

of lakes in mid-summer 2011 by somewhat different protocols

but covering a similar area of southern Norway (Yang et al.,
2015). This validation by an independent dataset is a novel take,

and both these datasets differ from previous studies on basically

lowland sites by encompassing an unusual range in DOM, from
very clear, ultraoligotrophic alpine lakes to really brown lowland

sites, surrounded by bogs and coniferous forests. The wide span

in catchment properties is also reflected in the strong gradient in
forest cover, precipitation and temperatures, helping to sort out

the relative contribution from these potential drivers on the

various GHGs. We tested the hypothesis that differences in
GHG saturation can be predicted by water chemistry,

catchment properties (hydrological and climate parameters),
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and land use variables. This approach aids to better predict the
effect of on GHG emissions from pristine boreal lakes in climate

change scenarios by combining well standardized watershed

variables.

2 Material and methods

2.1 Field survey

Surface water samples were collected during autumn

2019 from 73 lakes in south-eastern Norway. This lake survey

was conducted by the Centre for Biogeochemistry in the
Anthropocene (CBA) at University of Oslo, hence these lakes

are labelled “CBA dataset” hereafter. The lakes were selected as a

subset of lakes monitored in a concomitant 1000-lake survey of
the whole of Norway, conducted by the Norwegian Institute of

Water research (NIVA). This synoptic survey repeated previous

campaigns conducted in 1986 and 1995 (Henriksen et al., 1998).
The CBA dataset span a wide range of water quality properties

(e.g., DOM, nutrients) (Crapart et al., 2021), catchment

properties, and land use (Lie, 2021). Sampling was performed
in late fall, during or after lake overturn. Samples were collected

approximately 4 m from the shore by means of a sampling rod

with a sampling beaker. Composite water (≈2 L) was collected in
a sampling bucket, with as minimal physical disturbance. Where

feasible, the outlet of the lake was used as a sampling point. Due

to logistical reasons, this was the only feasible way to sample all
the lakes of this study. The lake edge may be more responsive to

external inputs (i.e., precipitation, sunlight), likely acting more as

a hotspot for GHG turnover compared to deeper sections of the
lake. However, we believe that such bias is compensated in our

models by including watershed hydrological characteristics

(Section 2.4). In general, we assume that in these quite wind-
exposed lakes, the gases are equally distributed in the epilimnion,

but in sites with ebullition from the deepest part, we cannot

exclude a non-homogenous distribution. In order to validate the
models calibrated using the CBA dataset, a second dataset was

used. This dataset, referred as COMSAT hereafter, includes

46 large southern Norwegian lakes sampled in the middle of
the lakes by hydroplane in July and August 2011 (Thrane et al.,

2014; Yang et al., 2015; Andersen et al., 2020). The selection of

lakes was done with different constraints like size (>2 km2) or
water pH (>5), as detailed previously (Thrane et al., 2014). The

locations of the lakes sampled in both campaigns are shown in

Figure 1.

2.2 Chemical analysis

Water temperature (T), pH, and electrical conductivity (EC)
were measured at the CBA lakes immediately after sample

collection. From each site, 50 ml of unfiltered water was

collected and stored at 10°C in polypropylene tubes. Upon
arrival at the laboratory, these samples were frozen at −20°C

until total organic carbon (TOC), total nitrogen (TN), and total

phosphorus (TP) determination at the University of Oslo. TOC
was measured by infrared CO2 detection after catalytic high

temperature combustion (Shimadzu TOC-VWP analyzer). TN

was measured by detecting nitrogen monoxide by
chemiluminescence using a TNM-1 unit attached to the

Shimadzu TOC-VWP analyzer. TP was measured on an auto-

analyzer as phosphate after wet oxidation with peroxodisulfate.
We here use TOC as a proxy of DOM since this is by far the

dominant constituent of DOM. By mass DOM is equivalent of

DOC, and DOC make typically up some 95% of TOC in these
boreal, low-productivity lakes (Larsen et al., 2011a; 2011b).

Concentrations of dissolved Argon (Ar), O2, N2, CH4, CO2,

and N2O were determined in duplicate for each lake water
sample using the acidified headspace technique (Åberg and

Wallin, 2014). From the surface of each lake, a volume of

30 ml was carefully collected directly into a syringe instead of
collecting from the bucket to avoid potential disturbances (e.g.,

outgassing). Subsequently, a 20 ml headspace was created with

atmospheric air in each syringe, before 0.6 ml of 3% HCl (≈1 M)
was added. Syringes were closed and equilibrium was reached in

the headspace at field temperature by shaking them for 3 min.

Finally, 15 ml of the headspace gas was transferred into 12 ml
evacuated vials and kept at room temperature until further

analysis. Gas concentrations were determined at the

Norwegian University of Life Sciences by automated gas
chromatography (GC) analysis following the methodology

FIGURE 1

Lakes included in CBA (n = 73) and COMSAT (n = 46) surveys.
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outlined by Yang et al. (2015). In brief, 2 ml of headspace gas

were sampled (autosampler GC-Pal, CTC, Switzerland) and
injected into a GC with He back-flushing (Agilent 7890A,

Santa Clara, CA, United States). The GC was equipped with a

20-m wide-bore (0.53 mm) Poraplot Q column operated at 38°C
and with He as carrier gas for separation of CH4, CO2, and N2O

from bulk gases (i.e., Ar, N2, and O2). N2O and CH4 were

measured with an electron capture detector (ECD) operating
at 375°C, and a flame ionization detector (FID), respectively. All

other gases were measured with a thermal conductivity detector

(TCD). Certified standards of CO2, N2O, and CH4 in He were
used for calibration (AGA, Germany), whereas N2, O2, and Ar

were calibrated against air. The analytical precision for all gases

was better than 1%.

2.3 Biogenic GHG saturation

Saturation relative to atmospheric equilibrium was calculated

for all gases. For this purpose, Henry’s law constants for 25°C
were temperature adjusted to in situwater temperatures using the

Clausius–Clapeyron equation with gas-specific solution
enthalpies (Sander, 2015). Concentrations of GHGs in

equilibrium with the atmosphere were calculated using the

temperature adjusted Henry’s law constants. The
concentrations of GHGs in the surface water of the lakes were

normalized relative to the concentration of dissolved Argon (Ar).

Unlike Ar, which in water is only controlled by physical
processes, O2, N2, CH4, CO2 and N2O concentrations in water

governed by both physical and biogenic processes (Aeschbach-

Hertig et al., 1999). For this reason, the relative saturation of
GHGs normalized to Ar was used as a proxy for the saturation of

the biogenically derived lake GHG turnover (Yang et al., 2015).

Thus, unless otherwise specified, hereafter the variables CH4,
CO2 and N2O are mentioned to refer to the normalized relative

saturations of each GHG. A similar approach was used for the gas

data collected during the COMSAT campaign (Thrane et al.,
2014).

2.4 Catchment characteristics:
Hydrological and climate parameters

Lake Altitude (in meters above sea level, m a.s.l.), lake surface

(LakeArea in km2), and catchment surface (CatchmentArea in

km2) were obtained using the “Lake database” (https://temakart.
nve.no/tema/innsjodatabase) from the Norwegian Water

Resources and Energy Directorate (NVE, https://www.nve.no).

Drainage ratio (Drainage) was calculated as the ratio between
catchment area and lake surface area, both in km2. Lake depth

(LakeDepth in m) was measured from an Airbus

AS350 helicopter with an echosounder held within the top 0.
5 m of the lake water column above the expected deepest point

(Hindar et al., 2020). The remaining hydrological and climate

parameters were compiled from the “NEVINA” database
provided by the NVE (http://nevina.nve.no/). These were:

specific runoff (Runoff in L s−1 km−2); average inclination in

the watershed (Slope in %); average annual air temperature
(AnnualT in °C); average air temperature during the summer

period (01/05–30/09) (SummerT in °C); average air temperature

during the winter period (01/10–30/04) (WinterT in °C); average
annual precipitation (AnnualP in mm); average precipitation

during the summer period (SummerP in mm); and average

precipitation during the winter period (WinterP in mm).
Water residence time (Residence in yr) was estimated for each

catchment from lake surface, lake depth, catchment surface, and

specific runoff by assuming a cone-shaped morphometry for all
lakes (Lindström et al., 2005).

2.5 Land use coverage

Land use data for each catchment were obtained from the
Copernicus Land Monitoring Service (CLMS), using CORINE

Land Cover (CLC) databases 2018 and 2012, for CBA and
COMSAT, respectively (see (Feranec et al., 2007) for further

details). In the CLC database the land use is classified into seven

categories: agricultural areas (Cultivated), forested areas (Forest),
human-derived and artificial impervious areas (Artificial), open

areas with little or no vegetation (Fell), areas covered by glaciers

and perpetual snow (Glacier), inland wetland areas (Peatland),
and inland waterbodies in the watershed, including lake’s surface

itself (Waterbodies). The CLC databases were clipped and

intersected with the catchment areas using the open-source
software QuantumGIS (QGIS, version 3.20.1). The area

covered by the different land use types were calculated as

percentage of the total surface using QGIS field calculator. In
addition, the average Normalized Difference Vegetation Index

(NDVI) value was calculated for each catchment and year

(2019 and 2011, for CBA and COMSAT, respectively) using
the average values of the summer months (June, July, and

August) obtained from Copernicus data (https://land.

copernicus.eu/global/products/NDVI).

2.6 Statistical analysis

Data analysis was performed using the open-source software

R version 4.1.0 (R Core Team, 2021). The package raster

(Hijmans et al., 2015) was used to obtain average NDVI

values per catchment. To determine significant differences in

dissolved gas concentrations between CBA and COMSAT
datasets, the Mann-Whitney test was used at a significance

level of p < 0.05. Variables were checked for normality using

the bestNormalize package (Peterson, 2021) and transformed to
logarithmic, exponential, or square root where needed to reduce
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heteroscedasticity and obtain normally distributed residuals.

However, variables were not standardized (i.e., mean centering
and scaling) as comparisons of rescaled coefficients across

datasets are problematic (King, 1986). A detailed list with the

applied transformations is listed in the Supplementary Table S1.
Once the transformations were performed, correlations were

calculated using Spearman’s correlation coefficients. In

addition, principal component analysis (PCA) was performed
for dimension reduction. This analysis was followed by K-means

clustering. This non-hierarchical clustering method aims to

partition the studied variables into k groups such that the
sum of squares from points to the assigned cluster centres is

minimized. Variation partitioning (function varpart in vegan

package) (Oksanen et al., 2013) was used to evaluate the
percentage of variance in biogenic GHG saturations that were

in these clusters. Statistical modelling was carried out using the

mgcv package (Wood and Wood, 2015) by fitting generalized
additive models (GAM) to predict selected dependent variables

(CH4, CO2, and N2O). The selection of the predictive variable in

the GAM models was performed by applying additional
shrinkage on the null space of the penalty (select = TRUE

argument in the mgcv:gam function) (Marra and Wood,

2011). To compare the contribution of each factor in
explaining the total deviance of the model, we also formulated

reduced models where we removed one of the terms at a time, as

well as a null model. To be able to compare deviances, we fixed
the smoothing parameters to the original model containing all

terms (sp argument in the mgcv:gam function) and then

calculated the contribution of each factor in the model as
described previously (Ribic et al., 2010).

3 Results

3.1 Greenhouse gases

Across CBA lakes, the median surface concentrations of Ar, N2,
and O2 were 19.8, 735, and 397 μmol/L, respectively. For GHGs,

median concentrations were 0.10, 75.5, and 0.02 μmol/L for CH4,

CO2, andN2O, respectively (Figure 2A). GHG concentrations ranged
widely across the CBA lakes, with CH4 having a greater relative

variability (CV = 183%) than N2O (CV = 158%) and CO2 (CV =

82.5%). On the contrary, Ar, N2, and O2 showed smaller coefficients
of relative variation (7.6, 6.7, and 7.0%, respectively). The biogenic gas

saturations were low for O2 (median = 96.7%) and N2 (median =

101%), while they were high for the GHGs: N2O (median = 115%),
CO2 (median = 263%), and CH4 (median = 2248%) (Figure 2B).

There were significant differences between all gas concentrations

in the CBA data and the COMSAT datasets (p < 0.05, Mann-
Whitney), except for CH4 (p = 0.50) (Figure 2A). However, by

comparing the relative biogenic gas saturations between both

datasets, significant differences were found only for N2 and O2

(p < 0.05) (Figure 2B). The saturations of the biogenically derived

CH4 (p = 0.74), CO2 (p = 0.42), and N2O (p = 0.86) did not differ

statistically between the two datasets.

3.2 Chemical-, catchment- and land use
data

Besides varying in pH (4.4–7.9) and conductivity
(0.39–151 μS/cm), CBA lakes varied widely in TOC from

FIGURE 2

Surface water gas concentrations (A) and gas saturations (B) for CBA (blue) and COMSAT (red) datasets. Vertical axis are on a 10-base

logarithmic scale. Data labels show median values for gas concentrations and saturations.
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2.54 to 116 mg/L (median = 13.3 mg/L), TN from 0.05 to

1.07 mg/L (median = 0.27 mg/L), and TP from 3.0 to 48.5 μg/

L (median = 8.90 μg/L). A complete description of the chemical
data can be found in the Supplementary Figure S1.

Catchment and Lake sizes varied from 0.02 to 369 km2

(median = 0.93 km2) and from 0.48 to 16,530 km2 (median =
11.0 km2), respectively. Drainage ratios varied from 2.76 to 405.8

(median = 24.6). The depths of the lakes ranged from 0.60 to

333 m (median = 12.0 m) and they are located at altitudes
between 4 and 1,151 m a.s.l. (median = 190 m a.s.l.).

Watershed slopes varied between 0.9 and 18.3% (median =

7.8%), while runoff values ranged from 8.0 to 41.8 L s−1 km−2

(median = 18.1 L s−1 km−2). Estimated water residence times

varied widely from 0.01 to 7.4 years (median = 0.29 years).

Detailed information about the catchment variables is
provided in the Supplementary Figure S2.

Most of the sampling sites in the CBA survey are first order

lakes receiving drainage from pristine catchments. Forest was the
main dominating land use type the watersheds (Forest, median =

83.7%), followed by inland waterbodies (Waterbodies; median =

3.7%) and agricultural land (Cultivated; median = 1.2%).

Although generally comprising minor fractions of the
catchment, peats and bogs (Peatland) and human-derived

impervious surfaces (Artificial) reached coverages of up to

40.2 and 32.0%, respectively, in single catchments (see
Supplementary Figure S3).

3.3 Explorative statistical analyses

Multivariate statistical analysis was performed on the
transformed variables from the CBA dataset in order to

explore whether the saturation of the biogenically derived

GHGs significantly differed among explanatory variable
groups. PCA of the transformed variables showed that

13 components were needed to explain 95% of the variance,

with the first three components accounting for 59.1% of the total
variance (30.0, 16.8, and 12.3%, respectively). Subsequent

FIGURE 3

PCA analysis of the transformed variables depicting the two main principal components (PC) of parameter loading with the three defined

clusters labeled in blue, green and orange (Clusters A, B and C, respectively). The two PCA axes explain 36.8% of total variability in the dataset.
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K-means clustering analysis revealed three main groups of

explanatory variables (Figure 3). The purpose of K-Means
analysis is to group variables by minimizing data similarity

between clusters, while maximizing data similarity within each

cluster.
Cluster A (within the blue circle in Figure 3) includes water

temperature measured during sampling (T) and non-forested

land use (Waterbodies, Peatland, Fell, and Glacier), along with
catchment physical properties (CatchmentArea, LakeArea and

LakeDepth, Altitude, Residence, Slope, and Runoff). Cluster B

(within the green circle in Figure 3) contains the water
physicochemical parameters (pH and EC), nutrients (TN and

TP), the coverage of Artificial and Cultivated land use types, as

well as the Drainage ratio. Cluster C parameters (orange circle in
Figure 3) are the biotic-related variables (Forest coverage, NDVI,

and TOC) as well as climate factors in the watershed

(temperature and precipitation).
Spearman rank-correlation analyses, using log transformed

variables, provided information about internal correlation

between the variables within the clusters, but also with the
biogenic GHGs. Biogenic CH4 normalized saturation was

negatively correlated with lake size (LakeArea; R = −0.78; p <

0.001), watershed size (CatchmentArea; R = −0.70; p < 0.001),

and lake depth (LakeDepth; R = −0.50; p = 0.003), whereas it was

positively correlated with air temperature in the catchment
(AnnualT; R = 0.55; p < 0.001) and NDVI (R = 0.61; p <

0.001). NDVI was positively correlated with average air

temperature (AnnualT; R = 0.69; p < 0.001) (reflecting the
altitude gradient) and thus Forest cover (R = 0.53; p < 0.001),

whereas it was less negatively correlated with the percentage of

water in the catchment (Waterbodies; R = −0.54; p < 0.001). The
percentage of water in the watershed was also negatively

correlated with the biogenic CO2 normalized saturation

(R = −0.49; p = 0.004), and as expected, positively correlated
with lake size (LakeArea; R = 0.75; p < 0.001) and catchment size

(CatchmentArea; R = 0.64; p < 0.001). Spearman’s correlation

plots are provided in Supplementary Figure S4.
Variation partitioning analyses (VPA) with transformed

variables were carried out to assess relative contributions of the

variables, grouped into the above defined clusters, to the biotic
saturations of GHGs (Supplementary Figure S5). The combination

of these variables explained 65.8% of the observed variation in biotic

CH4 saturation (Supplementary Figure S5A). The VPA showed that
38.1% of the total variation was shared between Cluster A, related

mainly to catchment physical properties, and Cluster C, related to

biotic and climate factors. Cluster A alone explained a large
proportion of the variation (22.5%). The variance of biotic CO2

saturation that could be explained by combining the whole set of

variables was 39.7% (Supplementary Figure S5B). The largest
explanatory value was shared by the three clusters (18.6%),

explaining alone 4.4% (Cluster A) and 2.2% (Cluster B). Only

18.3% of the total variation of N2O saturation was explained by
the three clusters, with the variables within Cluster B providingmost

of the explanatory value to the spatial variation in biogenic N2O

saturation (11.4%) (Supplementary Figure S5C). This approach
seems to be useful for CH4 saturation. However, the high

residuals observed for CO2 and N2O saturation makes the VPA

not so informative about the contribution of each cluster to the total
variation.

3.4 Modeling biogenic CH4 saturation

Based on the explorative analyses (i.e., PCA, correlation,
and VPA analyses), a stepwise selection was done to fit a

GAM model (Model 1) to the transformed (i.e., log)

normalized relative CH4 saturation by minimizing the
residual deviance. Lake surface (LakeArea; log), NDVI

(exp) and average summer precipitation (SummerP; sqrt)

were selected as independent variables, explaining 71.1% of
the total variance with a R2

adj = 0.691 (Table 1). LakeArea was

the factor that explained the greatest variance by itself

(26.9%), followed by SummerP (4.12%) and NDVI (4.10%)
(Table 2). The variable selection is in line with the results

from VPA, showing that clusters A (i.e., LakeArea) and C
(i.e., SummerP and NDVI) explained a large proportion of

the variation in CH4 saturation. All independent variables

were statistically significant (p < 0.005). Effective degrees of
freedom (edf) for the factors were not close to 1. Therefore,

smoothers were applied in the model with the default number

of knots (k = 10), as shown in Figure 4. Validation of Model
1 with the COMSAT dataset, by comparing the predicted

values (Y-axis) with the measured values (X-axis), resulted in

a R
2
adj of 0.18 (p < 0.005). Diagnostics for Model 1 are

provided in the Supplementary Figure S6.

3.5 Modeling biogenic CO2 saturation

A second GAM model (Model 2) was fitted to the
normalized relative CO2 saturation (in log) following the

approach described above. A deviance of 54.2% (R2
adj = 0.498)

was explained by selecting lake size (LakeArea; log), NDVI
(exp), cultivated area (Cultivated; sqrt) and water

temperature (T) as independent variables by stepwise

method. LakeArea explained the highest variance (13.2%),
followed by NDVI (8.39%), Cultivated (6.88%) and T

(3.75%). All the variables were statistically significant (p <

0.05) (Table 2) and belonged to the three different clusters
obtained in the PCA, in agreement with the VPA results for

CO2 saturation. In all the factors, edf were not close to one

and therefore, smoothers were applied in the model with the
default number of knots (k = 10) (Figure 5). Using COMSAT

dataset to test the model gave a coefficient of determination

(R2
adj) of only 0.0075 (p = 0.59). Diagnostics for the Model

2 are shown in Supplementary Figure S7.
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3.6 Modeling biogenic N2O saturation

Differences in normalized N2O saturation (48.9%) were

predicted by fitting a GAM model (Model 3) including as

independent variables agricultural area (Cultivated; sqrt),
average summer Precipitation (SummerP; sqrt), Forest area

(Forest) and impervious land (Artificial; sqrt) (R2
adj = 0.437).

Variable selection was performed by stepwise method following
the results from explorative analyses (i.e. PCA, correlation and

VPA). In line with those, cultivated (Cluster C) was the factor

explaining by itself the highest variance (28.8%), followed by
SummerP (15.6%), Forest (12.0%) and Artificial (12.0%)

(Table 2). Cultivated land showed an edf value close to 1, so

smoother was removed from this variable (Figure 6). COMSAT

dataset was used to validate the model and provided a R2
adj of 0.49

(p < 0.001), which is similar to that obtained with the training

dataset. Diagnostics for the Model 3 are provided in

Supplementary Figure S8.

4 Discussion

4.1 Greenhouse gas saturation

The biogenic GHG saturation levels were in close accordance

to those reported for boreal lakes in COMSAT dataset (Yang

TABLE 1 Results of the generalized additive models (GAMs) calculated for biogenic saturation of CH4, CO2, and N2O using both linear terms and

smoothers (indicated with s before the variable). Edf: effective degrees of freedom. R2
adj

: R-squared adjusted for the number of predictors in the model. Dev:

deviance explained by each model in %. AIC: Akaike information criterion.

Model Response Formula edf R2
adj Dev (%) AIC n

1 log (CH4) s (log (LakeArea)) + s (exp (NDVI)) + s (sqrt (SummerP)) 5.67 0.691 71.1 73.660 71

2 log (CO2) s (log (LakeArea)) + s(T) + s (exp (NDVI)) + s (sqrt (Cultivated)) 6.89 0.498 54.2 7.058 68

3 log (N2O) sqrt (Cultivated) + s (sqrt (SummerP)) + s (Forest) + s (sqrt (Artificial)) 7.17 0.437 48.9 −199.88 68

TABLE 2 Output of each generalized additive models (GAM). Edf: effective degrees of freedom. Dev: deviance explained by each factor of the model

in %.

Model Variable Estimate Standard Error t-Statistic p-Value Dev (%)

1 (CH4) Intercept 3.419 0.045 75.95 <2e-16 -

Variable Edf df residuals F-Statistic p-Value Dev (%)

s (log (LakeArea)) 2.336 9 7.476 <2e-16 26.9

s (exp (NDVI)) 0.879 9 0.809 0.00479 4.10

s (sqrt (SummerP)) 1.459 9 0.938 0.00463 4.12

Model Variable Estimate Standard Error t-Statistic p-Value Dev (%)

2 (CO2) Intercept 2.432 0.028 85.81 <2e-16 -

Variable edf df residuals F-Statistic p-Value Dev (%)

s (log (LakeArea)) 1.948 9 2.205 0.00003 13.2

s (exp (NDVI)) 1.838 9 1.157 0.00282 8.39

s (sqrt (Cultivated)) 0.883 9 0.837 0.00402 6.88

s(T) 1.221 9 0.407 0.04804 3.75

Model Variable Estimate Standard Error t-Statistic p-Value Dev (%)

3 (N2O) Intercept 2.044 0.011 192.69 <2e-16 -

sqrt (Cultivated) 0.020 0.006 3.489 0.00091 28.8

Variable edf df residuals F-Statistic p-Value Dev (%)

s (sqrt (SummerP)) 2.363 9 1.976 0.00027 15.6

s (Forest) 2.084 9 1.287 0.00177 12.0

s (sqrt (Artificial)) 0.723 9 0.290 0.05034 12.0
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et al., 2015). The biogenic oversaturation of CH4, CO2, and N2O

demonstrated a substantial impact of biogenic processes on GHG
concentrations (Figure 2B). Methanogenesis and denitrification

are microbially-mediated processes, which are affected by

physical (e.g., temperature, rainfall) and chemical (e.g.,
nutrients) levels in the lake (Roland et al., 2017; Peña Sanchez

et al., 2022). The well oxygenated waters of the study lakes

(median = 96.7%, Figure 2B) are likely to constrain
methanogenesis and promote methanotrophy in most of the

water column. Still a pronounced CH4 oversaturation (median =

2248%) was found, reflecting a pronounced methanogenesis in
deep waters and sediments. In small lakes (<1 km2), convective

mixing in the epilimnion and deepening of the mixing layer may

be the main mechanism transporting CH4 to lake surface layers
(Kankaala et al., 2013). Prior studies in small boreal lakes have

noted the importance of convective cooling of water masses in

autumn, where CH4 effluxes exceed CH4 oxidation in the water
column (Kankaala et al., 2006). This is a possible explanation for

the observed results, as our survey was conducted in autumn and

37 of the 73 lakes (51%) are classified as small. In large lakes
(>1 km2), CH4 can be originated from shallow epilimnetic

sediments (Bastviken et al., 2008) and be transported laterally

from the littoral/riparian zone and the catchment area (López
Bellido et al., 2013). It is important to bear in mind the possible

bias in large lakes, as the sampling was performed from the

littoral zone (Section 2.1). Nevertheless, the consistency between
these datasets are noteworthy, even if the COMSAT lakes were

sampled in the middle of the lakes in contrast to the littoral

sampling of the current (CBA) dataset.
CO2 exchange is mainly governed by biotic processes,

specifically by the balance between photosynthesis and

respiration. In boreal lakes, CO2 oversaturation is to a large
degree an effect of microbial respiration boosted by

allochthonous C (Hessen et al., 1990), regulated by factors like

catchment area or residence time (Larsen et al., 2011a). Our results
showed CO2 oversaturation in the CBA survey (median = 263.1%,

Figure 2B) similar to those observed in the COMSAT survey

(median = 231.5%). The lakes from the CBA survey were located
in catchments dominated by coniferous forests, primarily spruce

and pine. The positive correlation between CO2 saturation and TOC

concentrations (R = 0.3; p < 0.001) (Supplementary Figure S4)
suggests in-lake CO2 production by TOC mineralization. These

results are in line with previous studies (Kortelainen et al., 2006;

Whitfield et al., 2011). In addition, a positive correlation was found
betweenCO2 saturation and TN concentrations (R= 0.36; p< 0.001)

(Supplementary Figure S4). Primary production in boreal lakes can

be promoted by N availability (Elser et al., 2009). Nutrients also
boost microbial activity, and our data demonstrate that boreal lakes

FIGURE 4

Simulations (blue lines) of normalized relative CH4 saturations in the CBA dataset by generalized additive model (GAM) 1. On the right side,

model training with CBA dataset (red) and test with COMSAT dataset (blue) for each model. Shaded gray areas indicate 95% confidence intervals.
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generally retain net heterotrophy in spite of nutrient loading and

potentially high primary production, in support of Huttunen et al.
(2003a). These positive correlations with TOC and TN suggest the

transport of bioavailable OM from catchment soils to lakes and in-

lake breakdown of DOM is a main driver for dissolved CO2 (Sobek
et al., 2003; Whitfield et al., 2011). Furthermore, lateral export of

DIC from soils to aquatic environments may contribute to lake CO2

(Öquist et al., 2009; Vachon et al., 2017). In boreal catchments, DIC
may derive from the dissolution of soil CO2 as well as from mineral

weathering (Nydahl et al., 2020). Water pH may regulate the CO2

concentration by keeping a large proportion of the DIC as free CO2

at low pH values, which in turn depends on the input of humic acids

(Nydahl et al., 2019). Our results followed this trend, with a weak

negative correlation between CO2 saturation and pH (R = -0.21; p >
0.001) (Supplementary Figure S4).

Consistent with the literature (Huttunen et al., 2003a;

Whitfield et al., 2011; Yang et al., 2015; Kortelainen et al.,
2020), our research found N2O oversaturation, but lower than

CH4 and CO2. While being relatively low, the oversaturation of

N2O (median = 115.3%, Figure 2B) reflects the potential of boreal
lakes as to act a net source for N2O due to nitrification and

denitrification processes. A positive correlation was found

between N2O saturation and TOC concentrations (R = 0.35;
p < 0.001) (Supplementary Figure S4). Since DOM (or TOC)

mainly derives from allochthonous sources, it suggests that N2O

concentration also depends on the transport of bioavailable OM
from catchment soils. N2O saturation in boreal lakes has been

generally associated with agricultural land in the watershed

(Kortelainen et al., 2020). Our results support this by a strong
correlation between N2O saturation and agricultural land cover

(Cultivated) (R = 0.32; p < 0.001), but also with artificial

impervious areas (Artificial) (R = 0.3; p < 0.001)
(Supplementary Figure S4). In lakes, N2O production and

emissions is boosted by atmospheric N-deposition (Yang

et al., 2015), as well as nitrate load from land to lakes
(Huttunen et al., 2003b). This latter flux may be enhanced in

the boreal landscape by rising temperatures leading to earlier

floods due to snow melt (Blöschl et al., 2017) and consequent
transport of nitrates to surface waters (Kortelainen et al., 2020).

4.2 Hydrological and climate determinants
of GHG saturation

The generalized additive models (GAMs) calculated for

biogenic saturation of GHG included either or both

hydrological (LakeArea) and climate (SummerP, T)
parameters as explanatory variables (Table 1). Variation

FIGURE 5

Simulations (blue lines) of normalized relative CO2 saturations in the CBA dataset by generalized additive model (GAM) 2. On the right side,

model training with CBA dataset (red) and test with COMSAT dataset (blue) for each model. Shaded gray areas indicate 95% confidence intervals.
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partitioning analyses indicated that hydrological parameters had

the greatest contribution to biogenic CH4 saturation (22.5%,
Supplementary Figure S5A), supporting earlier studies (Kankaala

et al., 2013; Li et al., 2020). In that sense, lake size (LakeArea) was

the main explanatory factor for the spatial differences in biogenic
CH4 saturation (26.9% of the total deviance; Table 2), further

supporting evidence from previous studies (Bastviken et al., 2004;

Juutinen et al., 2009; Kankaala et al., 2013; Holgerson, 2015;
Denfeld et al., 2020; Jahr, 2021). Biogenic CH4 saturation level

was negatively correlated with lake surface (LakeArea; Figure 4).

This result may be explained by the fact that small lakes have a
high perimeter/surface area ratio, which means that they receive

relatively higher loads of allochthonous DOM relative to water

volume (Holgerson and Raymond, 2016). The increased
contribution of allochthonous DOM promotes microbial

metabolism (Tranvik, 1998; Forsström et al., 2013). Therefore,

littoral sediments can play a major role in increasing pelagic
lacustrine CH4 due to horizontal mixing in the surface layer

(Juutinen et al., 2003; Rasilo et al., 2015; Bartosiewicz et al., 2016).

This is also supported by the negative correlation found between
log (CH4) and log (LakeDepth) in (R = −0.50; Supplementary

Figure S4). As stated, our sampling strategy may involve some

bias in the results for large lakes. Lake size was also included as
variable in the CO2 saturation model (GAMmodel 2), showing a

negative correlation between both (Figure 5). LakeArea explained

13.2% of the total deviance (Table 2) and was the sole catchment
parameter included in the model (Figure 5). Compared to the

CH4 model, this predictor explained less deviance (22.5 vs.

13.2%) but it was still the strongest predictor in the model
(Table 2). Our CO2 model 2 predicted higher CO2 saturations

in lakes with smaller surface areas (LakeArea), in line with

previous studies showing significantly higher CO2 emissions
in small lakes (Kortelainen et al., 2006), most likely as a result

of increasing lateral OM fluxes (de Wit et al., 2018).

As climate parameters, the average precipitation during the
summer period (SummerP) was selected as independent variable

in the CH4 model (Model 1; Table 1). It explained 4.12% of the

total deviance (Table 2), showing a positive correlation to the
variation in biogenic CH4 saturation (Figure 4). Summer

precipitation was orthogonal to the loading vectors, reflecting

lake size within Cluster A (i.e., LakeArea, CatchmentArea, and
LakeDepth; Figure 3).

Precipitation boosted GHG-production (cf. Model 3;

Table 1), and more so for CH4 than for N2O saturation
(Table 2 and Figure 6). These results are in line with

previous studies showing that increased precipitation is

associated with larger allochthonous DOM inputs to lakes
(Rantakari and Kortelainen, 2005; Natchimuthu et al., 2014).

FIGURE 6

Simulations (blue lines) of normalized relative N2O saturations in the CBA dataset by generalized additive model (GAM) 3. On the right side,

model training with CBA dataset (red) and test with COMSAT dataset (blue) for each model. Shaded gray areas indicate 95% confidence intervals.
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For the CO2 saturation model (Model 2; Table 1), water

temperature (T) was included as explanatory variable
showing a positive correlation (Figure 5). By itself, it

explained 3.75% of the total deviance (Table 2), being the

only model where T was selected. Water temperature reflects
on the seasonal changes in air temperature. It also strongly

affects microbial metabolism and promotes mineralization in

lake sediments (Gudasz et al., 2010). However, this trend may
be the opposite depending on the season of the year in which

sampling is performed because of phytoplankton activity

(Tadonléké et al., 2012). Since the CBA sampling was
conducted in late fall, close to lake overturn, we can rule

out CO2 uptake by phytoplankton as a main driver.

The stepwise selection of variables for the GAM models
highlighted the importance of catchment characteristics

(hydrological and climate parameters) in predicting biogenic

GHG saturation from boreal lakes. In fact, both LakeArea and
SummerP may be understood as proxies for water residence

time in the watershed. Previous studies have noted that

mineralization capacity of lakes at the catchment scale was
closely correlated to the mean residence time of surface water in

the watershed (Algesten et al., 2004). An inverse relationship
between the rate of OM decay (i.e., biogenic CH4 production)

and residence time have been reported (Catalán et al., 2016). In

that sense, higher decomposition rates are found in systems
with short residence times, as a result of the constant renewal of

the labile organic pool (Jones et al., 2018). Headwaters can be

considered as hotspots for OM processing as they receive fresh
allochthonous OM. Thus, the lability of the allochthonous OM

decreases along the aquatic continuum (Clayer et al., 2021). Our

results are consistent with those previous studies. Although our
estimated water residence times (Residence) were not included

as explanatory variables in the GAM models, significant

negative correlations were found between Residence and
normalized CH4 saturation (R = −0.34; p < 0.001), and

normalized N2O saturation (R = −0.27; p < 0.001)

(Supplementary Figure S4). Using TOC as proxy for OM
inputs, the negative correlation observed between TOC and

Residence (R = −0.25; p < 0.001) (Supplementary Figure S4)

points to residence time as a key driver. This also implies that
changes in precipitation and runoff also will affect GHG-

metabolism in lakes via this mechanism.

4.3 The influence of terrestrial primary
production on GHG saturations

Variables related to primary production in the catchment

were also included in the generalized additive models (GAMs)
calculated for biogenic saturation of GHG. In general, higher

GHG saturations were found coupled to higher values of the

primary production proxies in the catchment (i.e., NDVI,
Cultivation and Forest cover). NDVI was selected as

explanatory variable for CH4 and CO2 saturation models

(Table 1). CH4 model (Model 1) ranked NDVI as the third
most explanatory variable (4.10% of the total deviance; Table 2),

while it accounted for a higher deviance in the CO2model (8.39%

of the total deviance; Table 2). NDVI is a proxy for terrestrial
vegetation and primary production. NDVI was strongly

correlated with TOC, AnnualT, and Forest cover (R of 0.43,

0.69, and 0.53, respectively; p < 0.001) (Supplementary Figure
S4). Previous studies have shown a close link between NDVI in

the watershed and levels of DOM/TOC in the runoff, suggesting

that leachates from terrestrial primary production of litterfall are
amajor source of OM in boreal lakes (Larsen et al., 2011a; Finstad

et al., 2016; Škerlep et al., 2020). The wide gradient of catchment

NDVI and lake DOM is our studied lakes clearly reveals that the
supply of allochthonous OM stimulates heterotrophic

metabolism resulting in higher CH4 and CO2 saturations,

which is observed in both models (Figures 4, 5).
Cultivation coverage was included in both CO2 and N2O

saturation models (Table 1). It explained 6.88 and 28.8% of the

total deviance explained in CO2 and N2O models, respectively
(Table 2). The positive correlation between the agricultural land

cover (Cultivated) and CO2 concentrations in boreal lakes has
been pointed out previously (Kortelainen et al., 2006), likely

reflecting inputs of easily degradable DOM (Crapart et al., 2021)

as well as nutrient loads from croplands (Rantakari and
Kortelainen, 2005). For N2O saturation, a positive correlation

between N2O saturation and agricultural land cover has

previously been reported previously for boreal lakes
(Kortelainen et al., 2020). Our research shows that agricultural

land cover and TN are positively correlated (R = 0.54; p < 0.001)

(Supplementary Figure S4). N from fertilizers applied in the
watershed are microbially processed in lakes, producing N2O as

by-product of both nitrification and denitrification. N2O

saturation model (Model 3; Table 1) also included Forest and
Artificial, explaining respectively 12.0 and 12.0% of the total

deviance (Table 2). Higher proportions of these uses were

associated with higher N2O saturations in lake waters
(Figure 6). Likewise, Forest and/or Artificial land cover seems

to be associated with DOM inputs into lakes (Mattsson et al.,

2005; Pellerin et al., 2006; Finstad et al., 2016), promoting
processes such as denitrification (Liu et al., 2015). In forest

dominated areas from the boreal landscape, soil N seems to

leach from catchment soils directly into the lakes in form of
nitrate (Khalili et al., 2010), which can be denitrified giving N2O

as a by-product.

4.4 Evaluation of biogenic GHG saturation
models

Given the major role of boreal lakes for GHG-emissions

(Tranvik et al., 2009), accurate models are needed to better
predict biogenic GHG saturations in lakes across the boreal
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landscape. In that sense, our GAM models were tested on the

independent COMSAT dataset. Despite COMSAT lakes were
all sampled in the middle of the lakes, our results showed that

the datasets are basically consistent. In fact, the COMSAT

lakes tend to be a bit lower in GHGs, which can be attributed
to a somewhat larger area. The major levels and patterns in

saturation of the three GHGs was basically consistent

between the two datasets. In decreasing order, the trained
models had the highest testing success for N2O > CH4 > CO2.

The N2O model (Model 3; Table 1) was validated using

COMSAT dataset, obtaining similar results as those
obtained when using the training dataset (CBA) (Figure 6).

The relatively low deviance explained by Model 3 (48.9%)

probably reflects the low variability in biogenic N2O
concentrations, as well as the lack of likely key governing

factors for the in lake biogeochemical N2O production, such

as N-deposition (Pregitzer et al., 2008; McCrackin and Elser,
2010; Kortelainen et al., 2013).

Despite the consistency in patterns and levels of saturation

between the two independent datasets, the CH4 saturation
model (Model 1; Table 1) showed a poor correlation between

predicted and measured biogenic CH4 saturations with the
COMSAT dataset (R2

adj = 0.18) (Figure 4). This discrepancy

could be attributed to the seasonality, the location, and the size

of lakes sampled. The CBA lakes were sampled during fall
turnover, while the COMSAT lakes were collected from the

epilimnion during the summer stratification. The COMSAT

survey covered a geographical gradient from western Norway
(5.4°E) to the Norwegian-Swedish border (12.3°E). LakeArea

distribution in the COMSAT dataset (median = 3.53 km2) was

also significantly larger (p < 0.001) than the LakeArea from
CBA dataset (median = 0.93 km2). Nevertheless, gas

concentrations and especially biogenic saturations of GHGs

were similar for both datasets (Figure 2). When the COMSAT
dataset was restricted to lakes in central-eastern Norway (n =

33, longitude >7.7°E), the correlation between predicted and

measured CH4 saturations increased up to (R2
adj = 0.39). It

should also be noted that the western part of Norway is

characterized as one of the rainiest parts of Europe. The

original COMSAT dataset has values from SummerP to
919 mm, which may definitely affect the adjustment of CH4

saturation model.

Also the CO2 saturation model (Model 2; Table 1) showed
only weak correlation between predicted and measured

biogenic CO2 saturation in the COMSAT dataset (R2
adj =

0.008) (Figure 5). A feasible explanation for this
discrepancy may be that samples for COMSAT were

collected during the summer, when assimilation of CO2 in

the epilimnion is likely an important governing factor. The
season of the year when sampling occurred may thus be a

reason for the poor simulation of biogenic CO2 saturation

obtained when applying the model to the COMSAT dataset.
In addition, LakeArea was the strongest predictor in the

model and, as stated above, lake size distribution differed

significantly between the CBA and COMSAT surveys. When
COMSAT dataset was downscaled to lakes with a longitude

above 7.7°E (n = 33), the adjustment was slightly better (R2
adj =

0.10) but still far from that obtained with the training
dataset (R2

adj = 0.51).

These findings show the difficulties in achieving good models

for predicting GHG saturations in boreal lakes. When modeling,
increasing the number of variables used in the models may

increase the variance explained, but complicate the

interpretation and application of the models. Within the CBA
dataset, we achieved robust predictions. Despite the patterns and

levels of GHGs saturations are consistent between the two

datasets, the generation of robust models predicting GHGs
demands multiple explanatory parameters, including size and

seasonality.

5 Conclusion

The purpose of the current study was to model biotic

saturation of GHGs in boreal lakes by using a set of chemical,
hydrological, climate, and land use parameters. Our models

were trained on a dataset of boreal lakes (n = 73) sampled in

2019 and then validated with an additional dataset of boreal
lakes (n = 46) sampled in 2011. Both these datasets

encompass an extraordinary gradient in altitude,

precipitation, temperature and not the least their content
of organic matter, and allowed us to tease apart various

drivers. We find that: i) hydrological and climate

parameters are key drivers for predicting GHG saturation;
ii) the influence of external OM inputs (i.e., terrestrial) plays a

key role in biogeochemical cycling. Most of the variation in

biogenic CH4 saturation was explained by lake size: the larger
the lake, the lower the CH4 saturation. On the contrary,

summer precipitation and NDVI exhibited a positive

correlation with CH4 saturation. Biogenic CO2 saturation
was mainly explained by lake size (negative correlation)

followed by NDVI, proportion of cultivated area, and

water temperature (positive correlation in all of them). For
biogenic N2O saturation, the differences in land use

(cultivated, forest, and artificial area) were the strongest

predictors showing a positive correlation, as well as
summer precipitation. The insights given by our

extraordinary range of catchment and lakes variables

provides new insights in drivers of GHG-production in
boreal lakes, which again improve predictions of impacts

of climate change and human activities. The comparison of

two independent datasets, and using one as a training dataset
for model prediction, nevertheless demonstrate that

predicting GHGs demands multiple explanatory

parameters, including seasonality, for generation robust
models.

Frontiers in Environmental Science frontiersin.org13

Valiente et al. 10.3389/fenvs.2022.880619



Data availability statement

The datasets presented in this study can be found in online

repositories. The names of the repository/repositories and

accession number(s) can be found below: https://osf.io/r39ng/?
view_only=e9a3b3de84794bfc9883db481cb9a483.

Author contributions

NV, AE, and DH conceived the idea. All authors were
involved in either fieldwork and/or sample analysis, in the

analysis of data and final writing. All authors contributed to

the article and approved the submitted version.

Funding

The work has been funded by CBA, as well as EU-
BioDiversa/Belmont Forum and The Research Council of

Norway within ARCTIC-BIODIVER project (“Scenarios of

freshwater biodiversity and ecosystem services in a changing
Arctic”). University of Oslo provides funding for open access

publication.

Acknowledgments

This study was carried out thanks to close cooperation

between researchers from the Centre for Anthropocene

Biogeochemistry (CBA, University of Oslo) and the

Norwegian Institute for Water Research (NIVA). The authors
acknowledge all of the participants involved in the CBA-

100 lakes survey, NIVA for providing depth data, and

especially to Per-Johan Færøvig and Berit Kaasa for their
support with practicality issues in the labs.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fenvs.2022.

880619/full#supplementary-material

References

Åberg, J., and Wallin, B. (2014). Evaluating a fast headspace method for
measuring DIC and subsequent calculation of pCO2 in freshwater systems.
Inland Waters 4, 157–166. doi:10.5268/IW-4.2.694

Aeschbach-Hertig, W., Peeters, F., Beyerle, U., and Kipfer, R. (1999).
Interpretation of dissolved atmospheric noble gases in natural waters. Water
Resour. Res. 35, 2779–2792. doi:10.1029/1999WR900130

Algesten, G., Sobek, S., Bergström, A.-K., Ågren, A., Tranvik, L. J., and Jansson,
M. (2004). Role of lakes for organic carbon cycling in the boreal zone. Glob. Chang.
Biol. 10, 141–147. doi:10.1111/j.1365-2486.2003.00721.x

Allesson, L., Koehler, B., Thrane, J.-E., Andersen, T., and Hessen, D. O.
(2021). The role of photomineralization for CO 2 emissions in boreal lakes
along a gradient of dissolved organic matter. Limnol. Oceanogr. 66, 158–170.
doi:10.1002/lno.11594

Andersen, T., Hessen, D. O., Håll, J. P., Khomich, M., Kyle, M., Lindholm, M.,
et al. (2020). Congruence, but no cascade—pelagic biodiversity across three trophic
levels in nordic lakes. Ecol. Evol. 10, 8153–8165. doi:10.1002/ece3.6514

Bartosiewicz, M., Laurion, I., Clayer, F., and Maranger, R. (2016). Heat-wave
effects on oxygen, nutrients, and phytoplankton can alter global warming potential
of gases emitted from a small shallow lake. Environ. Sci. Technol. 50, 6267–6275.
doi:10.1021/acs.est.5b06312

Bastviken, D., Cole, J., Pace, M., and Tranvik, L. (2004). Methane emissions from
lakes: Dependence of lake characteristics, two regional assessments, and a global
estimate. Glob. Biogeochem. Cycles 18, 2238. doi:10.1029/2004GB002238

Bastviken, D., Cole, J. J., Pace, M. L., and Van de Bogert, M. C. (2008). Fates of
methane from different lake habitats: Connecting whole-lake budgets and
CH4 emissions. J. Geophys. Res. 113, 608. doi:10.1029/2007JG000608

Blöschl, G., Hall, J., Juraj, P., Perdigão Rui, A. P., Bruno, M., Berit, A., et al. (2017).
Changing climate shifts timing of European floods. Science 357, 588–590. doi:10.
1126/science.aan2506

Butterbach-Bahl, K., Baggs, E. M., Dannenmann, M., Kiese, R., and Zechmeister-
Boltenstern, S. (2013). Nitrous oxide emissions from soils: How well do we
understand the processes and their controls? Phil. Trans. R. Soc. B 368,
20130122. doi:10.1098/rstb.2013.0122

Catalán, N., Marcé, R., Kothawala, D. N., and Tranvik, Lars. J. (2016). Organic
carbon decomposition rates controlled by water retention time across inland waters.
Nat. Geosci. 9, 501–504. doi:10.1038/ngeo2720

Clayer, F., Thrane, J.-E., Brandt, U., Dörsch, P., and de Wit, H. A. (2021). Boreal
headwater catchment as hot spot of carbon processing from headwater to fjord.
JGR. Biogeosciences 126, e2021JG006359. doi:10.1029/2021JG006359

Crapart, C., Andersen, T., Hessen, D. O., Valiente, N., and Vogt, R. D. (2021).
Factors governing biodegradability of dissolved natural organic matter in lake
water. Water 13, 2210. doi:10.3390/w13162210

Creed, I. F., Bergström, A.-K., Trick, C. G., Grimm, N. B., Hessen, D. O., Karlsson,
J., et al. (2018). Global change-driven effects on dissolved organic matter
composition: Implications for food webs of northern lakes. Glob. Chang. Biol.
24, 3692–3714. doi:10.1111/gcb.14129

de Wit, H. A., Mulder, J., Hindar, A., and Hole, L. (2007). Long-term
increase in dissolved organic carbon in streamwaters in Norway is response to
reduced acid deposition. Environ. Sci. Technol. 41, 7706–7713. doi:10.1021/
es070557f

de Wit, H. A., Valinia, S., Weyhenmeyer, G. A., Futter, M. N., Kortelainen, P.,
Austnes, K., et al. (2016). Current browning of surface waters will Be further

Frontiers in Environmental Science frontiersin.org14

Valiente et al. 10.3389/fenvs.2022.880619



promoted by wetter climate. Environ. Sci. Technol. Lett. 3, 430–435. doi:10.1021/acs.
estlett.6b00396

de Wit, H. A., Couture, R.-M., Jackson-Blake, L., Futter, M. N., Valinia, S.,
Austnes, K., et al. (2018). Pipes or chimneys? For carbon cycling in small boreal
lakes, precipitation matters most. Limnol. Oceanogr. Lett. 3, 275–284. doi:10.1002/
lol2.10077

den Heyer, C., and Kalff, J. (1998). Organic matter mineralization rates in
sediments: A within- and among-lake study. Limnol. Oceanogr. 43, 695–705.
doi:10.4319/lo.1998.43.4.0695

Denfeld, B. A., Lupon, A., Sponseller, R. A., Laudon, H., and Karlsson, J. (2020).
Heterogeneous CO2 and CH4 patterns across space and time in a small boreal lake.
Inland Waters 10, 348–359. doi:10.1080/20442041.2020.1787765

Dillon, P. J., and Molot, L. A. (1997). Effect of landscape form on export of
dissolved organic carbon, iron, and phosphorus from forested stream catchments.
Water Resour. Res. 33, 2591–2600. doi:10.1029/97WR01921

Dillon, P. J., and Molot, L. A. (2005). Long-term trends in catchment export and
lake retention of dissolved organic carbon, dissolved organic nitrogen, total iron,
and total phosphorus: The Dorset, Ontario, study, 1978–1998. J. Geophys. Res. 110,
G01002. doi:10.1029/2004JG000003

Einola, E., Rantakari, M., Kankaala, P., Kortelainen, P., Ojala, A., Pajunen, H.,
et al. (2011). Carbon pools and fluxes in a chain of five boreal lakes: A dry and wet
year comparison. J. Geophys. Res. 116, G03009. doi:10.1029/2010JG001636

Elser, J., Andersen, T., Baron Jill, S., Ann-Kristin, B., Mats, J., Marcia, K., et al.
(2009). Shifts in lake N:P stoichiometry and nutrient limitation driven by
atmospheric nitrogen deposition. Science 326, 835–837. doi:10.1126/science.
1176199

Fang, J., Guo, Z., Hu, H., Kato, T., Muraoka, H., and Son, Y. (2014). Forest
biomass carbon sinks in East Asia, with special reference to the relative
contributions of forest expansion and forest growth. Glob. Chang. Biol. 20,
2019–2030. doi:10.1111/gcb.12512

Feranec, J., Hazeu, G., Christensen, S., and Jaffrain, G. (2007). Corine land cover
change detection in Europe (case studies of The Netherlands and Slovakia). Land
Use Policy 24, 234–247. doi:10.1016/j.landusepol.2006.02.002

Finstad, A. G., Andersen, T., Larsen, S., Tominaga, K., Blumentrath, S., deWit, H.
A., et al. (2016). From greening to browning: Catchment vegetation development
and reduced S-deposition promote organic carbon load on decadal time scales in
Nordic lakes. Sci. Rep. 6, 31944. doi:10.1038/srep31944

Forsström, L., Roiha, T., and Rautio, M. (2013). Responses of microbial food web
to increased allochthonous DOM in an oligotrophic subarctic lake. Aquat. Microb.
Ecol. 68, 171–184. doi:10.3354/ame01614

Gudasz, C., Bastviken, D., Steger, K., Premke, K., Sobek, S., and Tranvik, L. J.
(2010). Temperature-controlled organic carbon mineralization in lake sediments.
Nature 466, 478–481. doi:10.1038/nature09186

Henriksen, A., Skjelvåle, B. L., Mannio, J., Wilander, A., Harriman, R., Curtis, C.,
et al. (1998). Northern European lake survey, 1995: Finland, Norway, Sweden,
Denmark, Russian kola, Russian karelia, scotland and wales. Ambio 27, 80–91.

Hessen, D. O., Andersen, T., and Lyche, A. (1990). Carbonmetabolism in a humic
lake: Pool sires and cycling through zooplankton. Limnol. Oceanogr. 35, 84–99.
doi:10.4319/lo.1990.35.1.0084

Hessen, D. O., Håll, J. P., Thrane, J.-E., and Andersen, T. (2017). Coupling
dissolved organic carbon, CO2 and productivity in boreal lakes. Freshw. Biol. 62,
945–953. doi:10.1111/fwb.12914

Hijmans, R. J., Van Etten, J., Cheng, J., Mattiuzzi, M., Sumner, M., Greenberg,
J. A., et al. (2015). Package ‘raster.’ R package 734.

Hindar, A., Garmo, Ø. A., Austnes, K., and Sample, J. E. (2020). Nasjonal
innsjøundersøkelse 2019. Oslo, Norway: NIVA-rapport.

Holgerson, M. A. (2015). Drivers of carbon dioxide and methane supersaturation in
small, temporary ponds. Biogeochemistry 124, 305–318. doi:10.1007/s10533-015-0099-y

Holgerson, M. A., and Raymond, P. A. (2016). Large contribution to inland water
CO2 and CH4 emissions from very small ponds. Nat. Geosci. 9, 222–226. doi:10.
1038/ngeo2654

Huttunen, J. T., Alm, J., Liikanen, A., Juutinen, S., Larmola, T., Hammar, T., et al.
(2003a). Fluxes of methane, carbon dioxide and nitrous oxide in boreal lakes and
potential anthropogenic effects on the aquatic greenhouse gas emissions.
Chemosphere 52, 609–621. doi:10.1016/S0045-6535(03)00243-1

Huttunen, J. T., Juutinen, S., Alm, J., Larmola, T., Hammar, T., Silvola, J., et al.
(2003b). Nitrous oxide flux to the atmosphere from the littoral zone of a boreal lake.
J. Geophys. Res. 108, 4421. doi:10.1029/2002JD002989

Jahr, S. S. (2021). A study of methane emissions from lakes in the 100 lakes survey.

Jones, R. I., and Grey, J. (2011). Biogenic methane in freshwater food webs.
Freshw. Biol. 56, 213–229. doi:10.1111/j.1365-2427.2010.02494.x

Jones, S. E., Zwart, J. A., Kelly, P. T., and Solomon, C. T. (2018). Hydrologic
setting constrains lake heterotrophy and terrestrial carbon fate. Limnol. Oceanogr.
Lett. 3, 256–264. doi:10.1002/lol2.10054

Juutinen, S., Alm, J., Larmola, T., Huttunen, J. T., Morero, M., Martikainen, P. J.,
et al. (2003). Major implication of the littoral zone for methane release from boreal
lakes. Glob. Biogeochem. Cycles 17, 2105. doi:10.1029/2003GB002105

Juutinen, S., Rantakari, M., Kortelainen, P., Huttunen, J. T., Larmola, T., Alm, J.,
et al. (2009). Methane dynamics in different boreal lake types. Biogeosciences 6,
209–223. doi:10.5194/bg-6-209-2009

Kankaala, P., Huotari, J., Peltomaa, E., Saloranta, T., and Ojala, A. (2006).
Methanotrophic activity in relation to methane efflux and total heterotrophic
bacterial production in a stratified, humic, boreal lake. Limnol. Oceanogr. 51,
1195–1204. doi:10.4319/lo.2006.51.2.1195

Kankaala, P., Huotari, J., Tulonen, T., and Ojala, A. (2013). Lake-size dependent
physical forcing drives carbon dioxide and methane effluxes from lakes in a boreal
landscape. Limnol. Oceanogr. 58, 1915–1930. doi:10.4319/lo.2013.58.6.1915

Karlsson, J., Byström, P., Ask, J., Ask, P., Persson, L., and Jansson,M. (2009). Light
limitation of nutrient-poor lake ecosystems. Nature 460, 506–509. doi:10.1038/
nature08179

Khalili, M. I., Temnerud, J., Fröberg, M., Karltun, E., and Weyhenmeyer, G. A.
(2010). Nitrogen and carbon interactions between boreal soils and lakes. Glob.
Biogeochem. Cycles 24, 3668. doi:10.1029/2009GB003668

King, G. (1986). How not to lie with statistics: Avoiding common mistakes in
quantitative political science. Am. J. Political Sci. 30, 666–687. doi:10.2307/2111095

Kortelainen, P., Larmola, T., Rantakari, M., Juutinen, S., Alm, J., andMartikainen,
P. J. (2020). Lakes as nitrous oxide sources in the boreal landscape. Glob. Change
Biol. 26, 1432–1445. doi:10.1111/gcb.14928

Kortelainen, P., Rantakari, M., Huttunen, J. T., Mattsson, T., Alm, J., Juutinen, S.,
et al. (2006). Sediment respiration and lake trophic state are important predictors of
large CO2 evasion from small boreal lakes.Glob. Chang. Biol. 12, 1554–1567. doi:10.
1111/j.1365-2486.2006.01167.x

Kortelainen, P., Rantakari, M., Pajunen, H., Huttunen, J. T., Mattsson, T.,
Juutinen, S., et al. (2013). Carbon evasion/accumulation ratio in boreal lakes is
linked to nitrogen. Glob. Biogeochem. Cycles 27, 363–374. doi:10.1002/gbc.20036

Larsen, S., Andersen, T., and Hessen, D. O. (2011a). Predicting organic carbon in
lakes from climate drivers and catchment properties. Glob. Biogeochem. Cycles 25,
3908. doi:10.1029/2010GB003908

Larsen, S., Andersen, T., and Hessen, D. O. (2011b). The pCO2 in boreal lakes:
Organic carbon as a universal predictor? Glob. Biogeochem. Cycles 25, 3864. doi:10.
1029/2010GB003864

Lau, D. C. P., Jonsson, A., Isles, P. D. F., Creed, I. F., and Bergström, A. (2021).
Lowered nutritional quality of plankton caused by global environmental changes.
Glob. Chang. Biol. 27, 6294–6306. doi:10.1111/gcb.15887

Li, M., Peng, C., Zhu, Q., Zhou, X., Yang, G., Song, X., et al. (2020). The significant
contribution of lake depth in regulating global lake diffusive methane emissions.
Water Res. 172, 115465. doi:10.1016/j.watres.2020.115465

Lie, R. O. (2021). Effect of catchment characteristics on biodegradability of
dissolved natural organic matter.

Lindström, E. S., Agterveld, K.-V., and Zwart, G. (2005). Distribution of typical
freshwater bacterial groups is associated with pH, temperature, and lake water
retention time. Appl. Environ. Microbiol. 71, 8201–8206. doi:10.1128/AEM.71.12.
8201-8206.2005

Liu, W., Wang, Z., Zhang, Q., Cheng, X., Lu, J., and Liu, G. (2015). Sediment
denitrification and nitrous oxide production in Chinese plateau lakes with varying
watershed land uses. Biogeochemistry 123, 379–390. doi:10.1007/s10533-015-0072-9

López Bellido, J., Tulonen, T., Kankaala, P., and Ojala, A. (2013). Concentrations
of CO2 and CH4 in water columns of two stratified boreal lakes during a year of
atypical summer precipitation. Biogeochemistry 113, 613–627. doi:10.1007/s10533-
012-9792-2

Marra, G., and Wood, S. N. (2011). Practical variable selection for generalized
additive models. Comput. Statistics Data Analysis 55, 2372–2387. doi:10.1016/j.
csda.2011.02.004

Mattsson, T., Kortelainen, P., and Räike, A. (2005). Export of DOM from boreal
catchments: Impacts of land use cover and climate. Biogeochemistry 76, 373–394.
doi:10.1007/s10533-005-6897-x

McCrackin, M. L., and Elser, J. J. (2010). Atmospheric nitrogen deposition
influences denitrification and nitrous oxide production in lakes. Ecology 91,
528–539. doi:10.1890/08-2210.1

Monteith, D. T., Stoddard, J. L., Evans, C. D., de Wit, H. A., Forsius, M., Høgåsen,
T., et al. (2007). Dissolved organic carbon trends resulting from changes in
atmospheric deposition chemistry. Nature 450, 537–540. doi:10.1038/nature06316

Frontiers in Environmental Science frontiersin.org15

Valiente et al. 10.3389/fenvs.2022.880619



Natchimuthu, S., Panneer Selvam, B., and Bastviken, D. (2014). Influence of
weather variables on methane and carbon dioxide flux from a shallow pond.
Biogeochemistry 119, 403–413. doi:10.1007/s10533-014-9976-z

Nydahl, A. C., Wallin, M. B., Tranvik, L. J., Hiller, C., Attermeyer, K., Garrison,
J. A., et al. (2019). Colored organic matter increases CO2 in meso-eutrophic lake
water through altered light climate and acidity. Limnol. Oceanogr. 64, 744–756.
doi:10.1002/lno.11072

Nydahl, A. C., Wallin, M. B., Laudon, H., and Weyhenmeyer, G. A. (2020).
Groundwater carbon within a boreal catchment: Spatiotemporal variability of a
hidden aquatic carbon pool. J. Geophys. Res. Biogeosci. 125, e2019JG005244. doi:10.
1029/2019JG005244

Oksanen, J., Blanchet, F. G., Kindt, R., Legendre, P., Minchin, P. R., O’hara, R.,
et al. (2013). Package ‘vegan.’ Community ecology package. version 2, 1–295.

Öquist, M. G., Wallin, M., Seibert, J., Bishop, K., and Laudon, H. (2009).
Dissolved inorganic carbon export across the soil/stream interface and its fate in
a boreal headwater stream. Environ. Sci. Technol. 43, 7364–7369. doi:10.1021/
es900416h

Palviainen, M., Laurén, A., Launiainen, S., and Piirainen, S. (2016). Predicting the
export and concentrations of organic carbon, nitrogen and phosphorus in boreal
lakes by catchment characteristics and land use: A practical approach. Ambio 45,
933–945. doi:10.1007/s13280-016-0789-2

Pellerin, B. A., Kaushal, S. S., and McDowell, W. H. (2006). Does anthropogenic
nitrogen enrichment increase organic nitrogen concentrations in runoff from
forested and human-dominated watersheds? Ecosystems 9, 852–864. doi:10.1007/
s10021-006-0076-3

Peña Sanchez, G. A., Mayer, B., Wunderlich, A., Rein, A., and Einsiedl, F. (2022).
Analysing seasonal variations of methane oxidation processes coupled with
denitrification in a stratified lake using stable isotopes and numerical modeling.
Geochimica Cosmochimica Acta 323, 242–257. doi:10.1016/j.gca.2022.01.022

Peterson, R. A. (2021). Finding optimal normalizing transformations via
bestNormalize. R J. 13, 310–329. doi:10.32614/RJ-2021-041

Pregitzer, K. S., Burton, A. J., Zak, D. R., and Talhelm, A. F. (2008). Simulated
chronic nitrogen deposition increases carbon storage in Northern Temperate
forests. Glob. Chang. Biol. 14, 142–153. doi:10.1111/j.1365-2486.2007.01465.x

R Core Team (2021). R: A language and environment for statistical computing.
Vienna, Austria: R Foundation for Statistical Computing. Available at: https://www.
R-project.org/.

Rantakari, M., and Kortelainen, P. (2005). Interannual variation and climatic
regulation of the CO2 emission from large boreal lakes. Glob. Chang. Biol. 11,
1368–1380. doi:10.1111/j.1365-2486.2005.00982.x

Rasilo, T., Prairie, Y. T., and del Giorgio, P. A. (2015). Large-scale patterns in
summer diffusive CH4 fluxes across boreal lakes, and contribution to diffusive C
emissions. Glob. Change Biol. 21, 1124–1139. doi:10.1111/gcb.12741

Ribic, C. A., Sheavly, S. B., Rugg, D. J., and Erdmann, E. S. (2010). Trends and
drivers of marine debris on the Atlantic coast of the United States 1997–2007.Mar.
Pollut. Bull. 60, 1231–1242. doi:10.1016/j.marpolbul.2010.03.021

Roland, F. A. E., Darchambeau, F., Morana, C., and Borges, A. V. (2017). Nitrous
oxide and methane seasonal variability in the epilimnion of a large tropical
meromictic lake (Lake Kivu, East-Africa). Aquat. Sci. 79, 209–218. doi:10.1007/
s00027-016-0491-2

Ruckstuhl, K. E., Johnson, E. A., and Miyanishi, K. (2008). Introduction. The
boreal forest and global change. Phil. Trans. R. Soc. B 363, 2243–2247. doi:10.1098/
rstb.2007.2196

Sander, R. (2015). Compilation of Henry’s law constants (version 4.0) for water as
solvent. Atmos. Chem. Phys. 15, 4399–4981. doi:10.5194/acp-15-4399-2015

Schindler, D. W. (1998). A Dim Future for Boreal Waters and Landscapes:
Cumulative effects of climatic warming, stratospheric ozone depletion, acid
precipitation, and other human activities. BioScience 48, 157–164. doi:10.2307/
1313261

Škerlep, M., Steiner, E., Axelsson, A.-L., and Kritzberg, E. S. (2020). Afforestation
driving long-term surface water browning. Glob. Change Biol. 26, 1390–1399.
doi:10.1111/gcb.14891

Sobek, S., Algesten, G., Bergström, A.-K., Jansson, M., and Tranvik, L. J. (2003).
The catchment and climate regulation of pCO2 in boreal lakes. Glob. Chang. Biol. 9,
630–641. doi:10.1046/j.1365-2486.2003.00619.x

Solomon, C. T., Jones, S. E., Weidel, B. C., Buffam, I., Fork, M. L., Karlsson, J., et al.
(2015). Ecosystem consequences of changing inputs of terrestrial dissolved organic
matter to lakes: Current knowledge and future challenges. Ecosystems 18, 376–389.
doi:10.1007/s10021-015-9848-y

Tadonléké, R. D., Marty, J., and Planas, D. (2012). Assessing factors underlying
variation of CO2 emissions in boreal lakes vs. reservoirs. FEMS Microbiol. Ecol. 79,
282–297. doi:10.1111/j.1574-6941.2011.01218.x

Thrane, J.-E., Hessen, D. O., and Andersen, T. (2014). The absorption of light in
lakes: Negative impact of dissolved organic carbon on primary productivity.
Ecosystems 17, 1040–1052. doi:10.1007/s10021-014-9776-2

Tranvik, L. J. (1998). “Degradation of dissolved organic matter in humic waters by
bacteria,” in Aquatic humic substances: Ecology and biogeochemistry. Editors
D. O. Hessen and L. J. Tranvik (Berlin, Heidelberg: Springer Berlin Heidelberg),
259–283. doi:10.1007/978-3-662-03736-2_11

Tranvik, L. J., Downing, J. A., Cotner, J. B., Loiselle, S. A., Striegl, R. G., Ballatore,
T. J., et al. (2009). Lakes and reservoirs as regulators of carbon cycling and climate.
Limnol. Oceanogr. 54, 2298–2314. doi:10.4319/lo.2009.54.6_part_2.2298

Trogler, W. C. (1999). Physical properties and mechanisms of formation of nitrous
oxide. Coord. Chem. Rev. 187, 303–327. doi:10.1016/S0010-8545(98)00254-9

Vachon, D., Prairie, Y. T., Guillemette, F., and del Giorgio, P. A. (2017). Modeling
allochthonous dissolved organic carbon mineralization under variable hydrologic
regimes in boreal lakes. Ecosystems 20, 781–795. doi:10.1007/s10021-016-0057-0

Whitfield, C. J., Aherne, J., and Baulch, H. M. (2011). Controls on greenhouse gas
concentrations in polymictic headwater lakes in Ireland. Sci. Total Environ.
410–411, 217–225. doi:10.1016/j.scitotenv.2011.09.045

Wood, S., and Wood, M. S. (2015). Package ‘mgcv.’ R package version 1, 729.

Xenopoulos, M. A., Lodge, D. M., Frentress, J., Kreps, T. A., Bridgham, S. D.,
Grossman, E., et al. (2003). Regional comparisons of watershed determinants of
dissolved organic carbon in temperate lakes from the Upper Great Lakes region and
selected regions globally. Limnol. Oceanogr. 48, 2321–2334. doi:10.4319/lo.2003.48.
6.2321

Yang, H., Andersen, T., Dörsch, P., Tominaga, K., Thrane, J.-E., andHessen, D. O.
(2015). Greenhouse gas metabolism in Nordic boreal lakes. Biogeochemistry 126,
211–225. doi:10.1007/s10533-015-0154-8

Frontiers in Environmental Science frontiersin.org16

Valiente et al. 10.3389/fenvs.2022.880619


	Catchment properties as predictors of greenhouse gas concentrations across a gradient of boreal lakes
	1 Introduction
	2 Material and methods
	2.1 Field survey
	2.2 Chemical analysis
	2.3 Biogenic GHG saturation
	2.4 Catchment characteristics: Hydrological and climate parameters
	2.5 Land use coverage
	2.6 Statistical analysis

	3 Results
	3.1 Greenhouse gases
	3.2 Chemical-, catchment- and land use data
	3.3 Explorative statistical analyses
	3.4 Modeling biogenic CH4 saturation
	3.5 Modeling biogenic CO2 saturation
	3.6 Modeling biogenic N2O saturation

	4 Discussion
	4.1 Greenhouse gas saturation
	4.2 Hydrological and climate determinants of GHG saturation
	4.3 The influence of terrestrial primary production on GHG saturations
	4.4 Evaluation of biogenic GHG saturation models

	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	Supplementary material
	References


