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Boreal lakes are the most abundant lakes on Earth. Changes in acid rain
deposition, climate, and catchment land use have increased lateral fluxes of
terrestrial dissolved organic matter (DOM), resulting in a widespread browning
of boreal freshwaters. This browning affects the aqueous communities and
ecosystem processes, and boost emissions of the greenhouse gases (GHG)
CHg4, CO,, and N,O. In this study, we predicted biotic saturation of GHGs in
boreal lakes by using a set of chemical, hydrological, climate, and land use
parameters. For this purpose, concentrations of GHGs and nutrients (organic C,
-P, and -N) were determined in surface water samples from 73 lakes in south-
eastern Norway covering wide ranges in DOM and nutrient concentrations, as
well as catchment properties and land use. The spatial variation in saturation of
each GHG is related to explanatory variables. Catchment characteristics
(hydrological and climate parameters) such as lake size and summer
precipitation, as well as NDVI, were key determinants when fitting GAM
models for CH, and CO, saturation (explaining 71 and 54%, respectively),
while summer precipitation and land use data were the best predictors for
the N,O saturation, explaining almost 50% of deviance. Our results suggest that
lake size, precipitation, and terrestrial primary production in the watershed
control the saturation of GHG in boreal lakes. These predictions based on the
73-lake dataset was validated against an independent dataset from 46 lakes in
the same region. Together, this provides an improved understanding of drivers
and spatial variation in GHG saturation in boreal lakes across wide gradients of
lake and catchment properties. The assessment highlights the need to
incorporate multiple explanatory parameters in prediction models of GHGs
for extrapolation across the boreal biome.
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1 Introduction

Boreal ecosystems are expected to be among the most
affected biomes by climate change (Ruckstuhl et al, 2008).
Regarding inland waters, boreal lakes are the most abundant
lakes on Earth (Schindler, 1998). These lakes receive high loading
of allochthonous dissolved organic matter (DOM) from the
catchment (Dillon and Molot, 1997; Tranvik et al., 2009). As
such, these lakes are crucial biogeochemical reactors: on the one
hand, they sequester DOM by burial into lake sediments, while
on the other hand, they are generally net heterotrophic and act as
major conduits for greenhouse gas (GHGs) emissions (Hessen
etal., 1990, 2017; Bastviken et al., 2004; Tranvik et al., 2009; Yang
et al.,, 2015; de Wit et al., 2018).

In boreal watercourses the lateral fluxes of colored DOM
have increased during the past 2-3 decades, mainly due to
reduced deposition of acid rain (de Wit et al., 2007; Monteith
et al., 2007), climate change (Mattsson et al., 2005), afforestation
and land use changes (Palviainen et al., 2016; Skerlep et al., 2020).
The increasing DOM is causing a widespread “browning” of
these freshwater ecosystems (Finstad et al., 2016). In the boreal
biome, changing climate will result in increased precipitation and
runoff (Tranvik et al, 2009). In some regions of the northern
hemisphere, like Fennoscandia (the common term for Finland,
Norway and Sweden) in general, the proportion of forest cover
has increased, leading to larger biomass pools (Fang et al., 2014).
This increase in terrestrial biomass (“greening”) has boosted the
amount of allochthonous DOM that may be entering into surface
waters (Larsen et al., 2011b), with increased rainfall and runoff
further enhancing DOM catchment export (Tranvik et al., 2009;
de Wit et al., 2016). Browning strongly affects light attenuation
(Karlsson et al., 2009; Thrane et al., 2014; Allesson et al., 2021),
nutrient dynamics (Dillon and Molot, 2005; Creed et al., 2018)
and thus also primary productivity (Solomon et al., 2015; Hessen
et al, 2017; Lau et al, 2021). The combined effect of increased
DOM and increased light attenuation implies a decrease in
photosynthesis, thus promoting the heterotrophy of these
systems and the net emissions of GHGs derived from
microbial mineralization of DOM (Yang et al., 2015).

A number of studies have addressed the main drivers of
carbon dioxide (CO,) and methane (CH,) concentrations in
boreal lakes, and how they are linked to DOM and lake
productivity (Huttunen et al, 2003b; Bastviken et al.,, 2004;
Juutinen et al., 2009; de Wit et al., 2018; Jahr, 2021) as well as
catchment properties (Huttunen et al., 2003b; Li et al., 2020).
Fewer studies have addressed nitrous oxide (N,O) in boreal lakes.
N,O is an intermediate in the nitrification and denitrification
(Trogler, 1999; Butterbach-Bahl et al., 2013) whose production
depends on the availability of organic matter (OM), oxygen
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availability, and reactive nitrogen concentration (Yang et al,
2015; Kortelainen et al., 2020; Clayer et al., 2021). Hydrological
parameters, such as lake size or runoff, have been recognized as
key underlying factors determining which are the main
biogeochemical C processes that are governing the production
of GHGs (Jones et al., 2018). In the boreal zone, small lakes have
been shown to have relatively higher sedimentation and GHG
emission rates than larger lakes (Juutinen et al.,, 2009; Kankaala
et al, 2013). Typically, small lakes are also characterized by
higher concentrations of allochthonous OM (Xenopoulos et al.,
2003; Einola et al,, 2011) and shorter water residence times
(Vachon et al, 2017). The residence time has also a strong
influence on the quality of DOM. The longer the residence
time, the more refractory the DOM becomes, and thus the
proportion of C sequestered in the sediments increases
relative to what is released as CO, or CH, (den Heyer and
Kalff, 1998). Most of this production is microbial, yet for all gases
the concentrations and emissions are also affected by uptake and
conversions by methanogens, denitrifiers, and autotrophs, but
by activity
(i.e., temperature, redox conditions). These biotic processes

also abiotic  factors affecting microbial
are labelled biogenic and, therefore, traceable (Jones and Grey,
2011). For CO,, the concentrations will also be affected by other
processes as photooxidation and in cases also inputs from
tributaries and groundwater, yet integrated over the water
column of boreal lakes, the biogenic activities generally are by
far the most important (Hessen et al., 1990; Larsen et al., 201 1a;
Allesson et al., 2021).

The goal of this study was to model biotic saturation of GHGs
in boreal lakes by using a set of chemical, hydrological, climate,
and land use parameters. To date, only a limited number of
studies have explored the influence of such factors in GHG
saturations from boreal lakes. For this reason, we constructed
predictive models for GHG saturation from this survey
performed in 2019 (73 lakes) and tested them against an
independent dataset of 46 lakes sampled from the epilimnion
of lakes in mid-summer 2011 by somewhat different protocols
but covering a similar area of southern Norway (Yang et al,
2015). This validation by an independent dataset is a novel take,
and both these datasets differ from previous studies on basically
lowland sites by encompassing an unusual range in DOM, from
very clear, ultraoligotrophic alpine lakes to really brown lowland
sites, surrounded by bogs and coniferous forests. The wide span
in catchment properties is also reflected in the strong gradient in
forest cover, precipitation and temperatures, helping to sort out
the relative contribution from these potential drivers on the
various GHGs. We tested the hypothesis that differences in
GHG saturation can be predicted by water chemistry,
catchment properties (hydrological and climate parameters),
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FIGURE 1
Lakes included in CBA (n = 73) and COMSAT (n = 46) surveys.

and land use variables. This approach aids to better predict the
effect of on GHG emissions from pristine boreal lakes in climate
change scenarios by combining well standardized watershed
variables.

2 Material and methods
2.1 Field survey

Surface water samples were collected during autumn
2019 from 73 lakes in south-eastern Norway. This lake survey
was conducted by the Centre for Biogeochemistry in the
Anthropocene (CBA) at University of Oslo, hence these lakes
are labelled “CBA dataset” hereafter. The lakes were selected as a
subset of lakes monitored in a concomitant 1000-lake survey of
the whole of Norway, conducted by the Norwegian Institute of
Water research (NIVA). This synoptic survey repeated previous
campaigns conducted in 1986 and 1995 (Henriksen et al., 1998).
The CBA dataset span a wide range of water quality properties
(e.g, DOM, nutrients) (Crapart et al, 2021), catchment
properties, and land use (Lie, 2021). Sampling was performed
in late fall, during or after lake overturn. Samples were collected
approximately 4 m from the shore by means of a sampling rod
with a sampling beaker. Composite water (=2 L) was collected in
a sampling bucket, with as minimal physical disturbance. Where
feasible, the outlet of the lake was used as a sampling point. Due
to logistical reasons, this was the only feasible way to sample all
the lakes of this study. The lake edge may be more responsive to
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external inputs (i.e., precipitation, sunlight), likely acting more as
a hotspot for GHG turnover compared to deeper sections of the
lake. However, we believe that such bias is compensated in our
models by including watershed hydrological characteristics
(Section 2.4). In general, we assume that in these quite wind-
exposed lakes, the gases are equally distributed in the epilimnion,
but in sites with ebullition from the deepest part, we cannot
exclude a non-homogenous distribution. In order to validate the
models calibrated using the CBA dataset, a second dataset was
used. This dataset, referred as COMSAT hereafter, includes
46 large southern Norwegian lakes sampled in the middle of
the lakes by hydroplane in July and August 2011 (Thrane et al.,
2014; Yang et al,, 2015; Andersen et al., 2020). The selection of
lakes was done with different constraints like size (>2 km?) or
water pH (>5), as detailed previously (Thrane et al., 2014). The
locations of the lakes sampled in both campaigns are shown in
Figure 1.

2.2 Chemical analysis

Water temperature (T), pH, and electrical conductivity (EC)
were measured at the CBA lakes immediately after sample
collection. From each site, 50ml of unfiltered water was
collected and stored at 10°C in polypropylene tubes. Upon
arrival at the laboratory, these samples were frozen at —20°C
until total organic carbon (TOC), total nitrogen (TN), and total
phosphorus (TP) determination at the University of Oslo. TOC
was measured by infrared CO, detection after catalytic high
temperature combustion (Shimadzu TOC-VWP analyzer). TN
measured by detecting nitrogen by
chemiluminescence using a TNM-1 unit attached to the

was monoxide
Shimadzu TOC-VWP analyzer. TP was measured on an auto-
analyzer as phosphate after wet oxidation with peroxodisulfate.
We here use TOC as a proxy of DOM since this is by far the
dominant constituent of DOM. By mass DOM is equivalent of
DOC, and DOC make typically up some 95% of TOC in these
boreal, low-productivity lakes (Larsen et al., 2011a; 2011b).
Concentrations of dissolved Argon (Ar), O,, N,, CHy, CO,,
and N,O were determined in duplicate for each lake water
sample using the acidified headspace technique (Aberg and
Wallin, 2014). From the surface of each lake, a volume of
30 ml was carefully collected directly into a syringe instead of
collecting from the bucket to avoid potential disturbances (e.g.,
outgassing). Subsequently, a 20 ml headspace was created with
atmospheric air in each syringe, before 0.6 ml of 3% HCI (=1 M)
was added. Syringes were closed and equilibrium was reached in
the headspace at field temperature by shaking them for 3 min.
Finally, 15 ml of the headspace gas was transferred into 12 ml
evacuated vials and kept at room temperature until further
Gas the
Norwegian University of Life Sciences by automated gas

analysis. concentrations were determined at

chromatography (GC) analysis following the methodology
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outlined by Yang et al. (2015). In brief, 2 ml of headspace gas
were sampled (autosampler GC-Pal, CTC, Switzerland) and
injected into a GC with He back-flushing (Agilent 7890A,
Santa Clara, CA, United States). The GC was equipped with a
20-m wide-bore (0.53 mm) Poraplot Q column operated at 38°C
and with He as carrier gas for separation of CH,, CO,, and N,O
from bulk gases (ie., Ar, N,, and O,). N,O and CH, were
measured with an electron capture detector (ECD) operating
at 375°C, and a flame ionization detector (FID), respectively. All
other gases were measured with a thermal conductivity detector
(TCD). Certified standards of CO,, N,O, and CH, in He were
used for calibration (AGA, Germany), whereas N,, O,, and Ar
were calibrated against air. The analytical precision for all gases
was better than 1%.

2.3 Biogenic GHG saturation

Saturation relative to atmospheric equilibrium was calculated
for all gases. For this purpose, Henry’s law constants for 25°C
were temperature adjusted to in situ water temperatures using the
Clausius—Clapeyron equation with gas-specific solution
2015). of GHGs in
equilibrium with the atmosphere were calculated using the
The

concentrations of GHGs in the surface water of the lakes were

enthalpies (Sander, Concentrations

temperature  adjusted  Henry’s law  constants.
normalized relative to the concentration of dissolved Argon (Ar).
Unlike Ar, which in water is only controlled by physical
processes, O,, N,, CH,, CO, and N,O concentrations in water
governed by both physical and biogenic processes (Aeschbach-
Hertig et al., 1999). For this reason, the relative saturation of
GHGs normalized to Ar was used as a proxy for the saturation of
the biogenically derived lake GHG turnover (Yang et al., 2015).
Thus, unless otherwise specified, hereafter the variables CH,,
CO, and N,O are mentioned to refer to the normalized relative
saturations of each GHG. A similar approach was used for the gas
data collected during the COMSAT campaign (Thrane et al,

2014).

2.4 Catchment characteristics:
Hydrological and climate parameters

Lake Altitude (in meters above sea level, m a.s.l.), lake surface
(LakeArea in km?), and catchment surface (CatchmentArea in
km?) were obtained using the “Lake database” (https://temakart.
the
Resources and Energy Directorate (NVE, https://www.nve.no).

nve.no/tema/innsjodatabase) from Norwegian Water
Drainage ratio (Drainage) was calculated as the ratio between
catchment area and lake surface area, both in km* Lake depth
(LakeDepth in m) measured from an Airbus
AS350 helicopter with an echosounder held within the top 0.
5 m of the lake water column above the expected deepest point

was
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(Hindar et al., 2020). The remaining hydrological and climate
parameters were compiled from the “NEVINA” database
provided by the NVE (http://nevinanve.no/). These were:
specific runoff (Runoff in Ls™' km™); average inclination in
the watershed (Slope in %); average annual air temperature
(AnnualT in °C); average air temperature during the summer
period (01/05-30/09) (SummerT in °C); average air temperature
during the winter period (01/10-30/04) (WinterT in °C); average
annual precipitation (AnnualP in mm); average precipitation
during the summer period (SummerP in mm); and average
precipitation during the winter period (WinterP in mm).
Water residence time (Residence in yr) was estimated for each
catchment from lake surface, lake depth, catchment surface, and
specific runoff by assuming a cone-shaped morphometry for all
lakes (Lindstrom et al., 2005).

2.5 Land use coverage

Land use data for each catchment were obtained from the
Copernicus Land Monitoring Service (CLMS), using CORINE
Land Cover (CLC) databases 2018 and 2012, for CBA and
COMSAT, respectively (see (Feranec et al., 2007) for further
details). In the CLC database the land use is classified into seven
categories: agricultural areas (Cultivated), forested areas (Forest),
human-derived and artificial impervious areas (Artificial), open
areas with little or no vegetation (Fell), areas covered by glaciers
and perpetual snow (Glacier), inland wetland areas (Peatland),
and inland waterbodies in the watershed, including lake’s surface
itself (Waterbodies). The CLC databases were clipped and
intersected with the catchment areas using the open-source
software QuantumGIS (QGIS, version 3.20.1).
covered by the different land use types were calculated as

The area

percentage of the total surface using QGIS field calculator. In
addition, the average Normalized Difference Vegetation Index
(NDVI) value was calculated for each catchment and year
(2019 and 2011, for CBA and COMSAT, respectively) using
the average values of the summer months (June, July, and
data (https://land.

August) obtained from Copernicus

copernicus.eu/global/products/NDVI).

2.6 Statistical analysis

Data analysis was performed using the open-source software
R version 4.1.0 (R Core Team, 2021). The package raster
(Hijmans et al, 2015) was used to obtain average NDVI
values per catchment. To determine significant differences in
dissolved gas concentrations between CBA and COMSAT
datasets, the Mann-Whitney test was used at a significance
level of p < 0.05. Variables were checked for normality using
the bestNormalize package (Peterson, 2021) and transformed to
logarithmic, exponential, or square root where needed to reduce
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heteroscedasticity and obtain normally distributed residuals.
However, variables were not standardized (i.e., mean centering
and scaling) as comparisons of rescaled coefficients across
datasets are problematic (King, 1986). A detailed list with the
applied transformations is listed in the Supplementary Table S1.
Once the transformations were performed, correlations were
calculated using Spearman’s correlation coefficients. In
addition, principal component analysis (PCA) was performed
for dimension reduction. This analysis was followed by K-means
clustering. This non-hierarchical clustering method aims to
partition the studied variables into k groups such that the
sum of squares from points to the assigned cluster centres is
minimized. Variation partitioning (function varpart in vegan
package) (Oksanen et al, 2013) was used to evaluate the
percentage of variance in biogenic GHG saturations that were
in these clusters. Statistical modelling was carried out using the
mgcv package (Wood and Wood, 2015) by fitting generalized
additive models (GAM) to predict selected dependent variables
(CH4, CO,, and N,O). The selection of the predictive variable in
the GAM models was performed by applying additional
shrinkage on the null space of the penalty (select = TRUE
argument in the mgcv:igam function) (Marra and Wood,
2011). To compare the contribution of each factor in
explaining the total deviance of the model, we also formulated
reduced models where we removed one of the terms at a time, as
well as a null model. To be able to compare deviances, we fixed
the smoothing parameters to the original model containing all
terms (sp argument in the mgcv:gam function) and then
calculated the contribution of each factor in the model as
described previously (Ribic et al., 2010).
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3 Results
3.1 Greenhouse gases

Across CBA lakes, the median surface concentrations of Ar, N,
and O, were 19.8, 735, and 397 umol/L, respectively. For GHGs,
median concentrations were 0.10, 75.5, and 0.02 umol/L for CH,,
CO,, and N, O, respectively (Figure 2A). GHG concentrations ranged
widely across the CBA lakes, with CH, having a greater relative
variability (CV = 183%) than N,O (CV = 158%) and CO, (CV =
82.5%). On the contrary, Ar, Ny, and O, showed smaller coefficients
of relative variation (7.6, 6.7, and 7.0%, respectively). The biogenic gas
saturations were low for O, (median = 96.7%) and N, (median =
101%), while they were high for the GHGs: N,O (median = 115%),
CO, (median = 263%), and CH, (median = 2248%) (Figure 2B).

There were significant differences between all gas concentrations
in the CBA data and the COMSAT datasets (p < 0.05, Mann-
Whitney), except for CH, (p = 0.50) (Figure 2A). However, by
comparing the relative biogenic gas saturations between both
datasets, significant differences were found only for N, and O,
(p < 0.05) (Figure 2B). The saturations of the biogenically derived
CH, (p = 0.74), CO, (p = 0.42), and N,O (p = 0.86) did not differ
statistically between the two datasets.

3.2 Chemical-, catchment- and land use
data

Besides varying in pH (4.4-7.9) and conductivity
(0.39-151 uS/cm), CBA lakes varied widely in TOC from
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2.54 to 116 mg/L (median = 13.3mg/L), TN from 0.05 to
1.07 mg/L (median = 0.27 mg/L), and TP from 3.0 to 48.5 pg/
L (median = 8.90 ug/L). A complete description of the chemical
data can be found in the Supplementary Figure SI.

Catchment and Lake sizes varied from 0.02 to 369 km?
(median = 0.93 km?) and from 0.48 to 16,530 km? (median =
11.0 km?), respectively. Drainage ratios varied from 2.76 to 405.8
(median = 24.6). The depths of the lakes ranged from 0.60 to
333m (median = 12.0m) and they are located at altitudes
190 m asl.).
Watershed slopes varied between 0.9 and 18.3% (median =
7.8%), while runoff values ranged from 8.0 to 41.8 Ls™' km™
18.1 Ls™' km™). Estimated water residence times
varied widely from 0.01 to 7.4 years (median =
Detailed
provided in the Supplementary Figure S2.

between 4 and 1,151 m asl. (median =

(median =
0.29 years).
information about the catchment variables is

Most of the sampling sites in the CBA survey are first order

lakes receiving drainage from pristine catchments. Forest was the
main dominating land use type the watersheds (Forest, median =
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83.7%), followed by inland waterbodies (Waterbodies; median =
1.2%).
of the
catchment, peats and bogs (Peatland) and human-derived

3.7%) and agricultural land (Cultivated; median =
Although generally comprising minor fractions
impervious surfaces (Artificial) reached coverages of up to
40.2 and 32.0%, respectively, in single catchments (see
Supplementary Figure S3).

3.3 Explorative statistical analyses

Multivariate statistical analysis was performed on the
transformed variables from the CBA dataset in order to
explore whether the saturation of the biogenically derived
GHGs significantly differed among explanatory variable
groups. PCA of the transformed variables showed that
13 components were needed to explain 95% of the variance,
with the first three components accounting for 59.1% of the total
variance (30.0, 16.8, and 12.3%, respectively). Subsequent
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K-means clustering analysis revealed three main groups of
explanatory variables (Figure 3). The purpose of K-Means
analysis is to group variables by minimizing data similarity
between clusters, while maximizing data similarity within each
cluster.

Cluster A (within the blue circle in Figure 3) includes water
temperature measured during sampling (T) and non-forested
land use (Waterbodies, Peatland, Fell, and Glacier), along with
catchment physical properties (CatchmentArea, LakeArea and
LakeDepth, Altitude, Residence, Slope, and Runoff). Cluster B
(within the green circle in Figure 3) contains the water
physicochemical parameters (pH and EC), nutrients (TN and
TP), the coverage of Artificial and Cultivated land use types, as
well as the Drainage ratio. Cluster C parameters (orange circle in
Figure 3) are the biotic-related variables (Forest coverage, NDVT,
and TOC) as well as climate factors in the watershed
(temperature and precipitation).

Spearman rank-correlation analyses, using log transformed
variables, provided information about internal correlation
between the variables within the clusters, but also with the
biogenic GHGs. Biogenic CH, normalized saturation was
negatively correlated with lake size (LakeArea; R = -0.78; p <
0.001), watershed size (CatchmentArea; R = —0.70; p < 0.001),
and lake depth (LakeDepth; R = —0.50; p = 0.003), whereas it was
positively correlated with air temperature in the catchment
(AnnualT; R = 0.55; p < 0.001) and NDVI (R = 0.61; p <
0.001). NDVI was positively correlated with average air
temperature (AnnualT; R = 0.69; p < 0.001) (reflecting the
altitude gradient) and thus Forest cover (R = 0.53; p < 0.001),
whereas it was less negatively correlated with the percentage of
water in the catchment (Waterbodies; R = —0.54; p < 0.001). The
percentage of water in the watershed was also negatively
correlated with the biogenic CO, normalized saturation
(R = —0.49; p = 0.004), and as expected, positively correlated
with lake size (LakeArea; R = 0.75; p < 0.001) and catchment size
(CatchmentArea; R = 0.64; p < 0.001). Spearman’s correlation
plots are provided in Supplementary Figure S4.

Variation partitioning analyses (VPA) with transformed
variables were carried out to assess relative contributions of the
variables, grouped into the above defined clusters, to the biotic
saturations of GHGs (Supplementary Figure S5). The combination
of these variables explained 65.8% of the observed variation in biotic
CH, saturation (Supplementary Figure S5A). The VPA showed that
38.1% of the total variation was shared between Cluster A, related
mainly to catchment physical properties, and Cluster C, related to
biotic and climate factors. Cluster A alone explained a large
proportion of the variation (22.5%). The variance of biotic CO,
saturation that could be explained by combining the whole set of
variables was 39.7% (Supplementary Figure S5B). The largest
explanatory value was shared by the three clusters (18.6%),
explaining alone 4.4% (Cluster A) and 2.2% (Cluster B). Only
18.3% of the total variation of N,O saturation was explained by
the three clusters, with the variables within Cluster B providing most
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of the explanatory value to the spatial variation in biogenic N,O
saturation (11.4%) (Supplementary Figure S5C). This approach
seems to be useful for CH, saturation. However, the high
residuals observed for CO, and N,O saturation makes the VPA
not so informative about the contribution of each cluster to the total
variation.

3.4 Modeling biogenic CH4 saturation

Based on the explorative analyses (i.e., PCA, correlation,
and VPA analyses), a stepwise selection was done to fit a
GAM model (Model 1) to the transformed (i.e., log)
normalized relative CH, saturation by minimizing the
residual deviance. Lake surface (LakeArea; log), NDVI
(exp) and average summer precipitation (SummerP; sqrt)
were selected as independent variables, explaining 71.1% of
the total variance with a Ridj =0.691 (Table 1). LakeArea was
the factor that explained the greatest variance by itself
(26.9%), followed by SummerP (4.12%) and NDVI (4.10%)
(Table 2). The variable selection is in line with the results
from VPA, showing that clusters A (i.e., LakeArea) and C
(i.e., SummerP and NDVI) explained a large proportion of
the variation in CH, saturation. All independent variables
were statistically significant (p < 0.005). Effective degrees of
freedom (edf) for the factors were not close to 1. Therefore,
smoothers were applied in the model with the default number
of knots (k = 10), as shown in Figure 4. Validation of Model
1 with the COMSAT dataset, by comparing the predicted
values (Y-axis) with the measured values (X-axis), resulted in
a Ridj of 0.18 (p < 0.005). Diagnostics for Model 1 are
provided in the Supplementary Figure S6.

3.5 Modeling biogenic CO, saturation

A second GAM model (Model 2) was fitted to the
normalized relative CO, saturation (in log) following the
approach described above. A deviance of 54.2% (RﬁQlj =0.498)
was explained by selecting lake size (LakeArea; log), NDVI
(exp), (Cultivated; sqrt)
temperature (T) as independent variables by stepwise

cultivated area and water
method. LakeArea explained the highest variance (13.2%),
followed by NDVI (8.39%), Cultivated (6.88%) and T
(3.75%). All the variables were statistically significant (p <
0.05) (Table 2) and belonged to the three different clusters
obtained in the PCA, in agreement with the VPA results for
CO, saturation. In all the factors, edf were not close to one
and therefore, smoothers were applied in the model with the
default number of knots (k = 10) (Figure 5). Using COMSAT
dataset to test the model gave a coefficient of determination
(Rﬁdj) of only 0.0075 (p = 0.59). Diagnostics for the Model
2 are shown in Supplementary Figure S7.
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TABLE 1 Results of the generalized additive models (GAMs) calculated for biogenic saturation of CH,, CO,, and N,O using both linear terms and

smoothers (indicated with s before the variable). Edf: effective degrees of freedom. R3g;

deviance explained by each model in %. AIC: Akaike information criterion.

: R-squared adjusted for the number of predictors in the model. Dev:

Model Response Formula edf Rﬁdj Dev (%) AIC n
1 log (CH,) s (log (LakeArea)) + s (exp (NDVI)) + s (sqrt (SummerP)) 5.67 0.691 71.1 73.660 71
2 log (CO,) s (log (LakeArea)) + s(T) + s (exp (NDVI)) + s (sqrt (Cultivated)) 6.89 0.498 54.2 7.058 68
3 log (N,0) sqrt (Cultivated) + s (sqrt (SummerP)) + s (Forest) + s (sqrt (Artificial)) 7.17 0.437 48.9 -199.88 68

TABLE 2 Output of each generalized additive models (GAM). Edf: effective degrees of freedom. Dev: deviance explained by each factor of the model

in %.
Model Variable Estimate Standard Error t-Statistic p-Value Dev (%)
1 (CHy) Intercept 3.419 0.045 75.95 <2e-16 -

Variable Edf df residuals F-Statistic p-Value Dev (%)

s (log (LakeArea)) 2.336 9 7.476 <2e-16 26.9

s (exp (NDVI)) 0.879 9 0.809 0.00479 4.10

s (sqrt (SummerP)) 1.459 9 0.938 0.00463 4.12
Model Variable Estimate Standard Error t-Statistic p-Value Dev (%)
2 (CO,) Intercept 2432 0.028 85.81 <2e-16 -

Variable edf df residuals F-Statistic p-Value Dev (%)

s (log (LakeArea)) 1.948 9 2.205 0.00003 13.2

s (exp (NDVI)) 1.838 9 1.157 0.00282 8.39

s (sqrt (Cultivated)) 0.883 9 0.837 0.00402 6.88

s(T) 1.221 9 0.407 0.04804 3.75
Model Variable Estimate Standard Error t-Statistic p-Value Dev (%)
3 (N,O) Intercept 2.044 0.011 192.69 <2e-16 -

sqrt (Cultivated) 0.020 0.006 3.489 0.00091 28.8

Variable edf df residuals F-Statistic p-Value Dev (%)

s (sqrt (SummerP)) 2.363 9 1.976 0.00027 15.6

s (Forest) 2.084 9 1.287 0.00177 12.0

s (sqrt (Artificial)) 0.723 9 0.290 0.05034 12.0

3.6 Modeling biogenic N,O saturation

Differences in normalized N,O saturation (48.9%) were
predicted by fitting a GAM model (Model 3) including as
independent variables agricultural area (Cultivated; sqrt),
average summer Precipitation (SummerP; sqrt), Forest area
(Forest) and impervious land (Artificial; sqrt) (Ridj = 0.437).
Variable selection was performed by stepwise method following
the results from explorative analyses (i.e. PCA, correlation and
VPA). In line with those, cultivated (Cluster C) was the factor
explaining by itself the highest variance (28.8%), followed by
SummerP (15.6%), Forest (12.0%) and Artificial (12.0%)
(Table 2). Cultivated land showed an edf value close to 1, so
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smoother was removed from this variable (Figure 6). COMSAT
dataset was used to validate the model and provided a Ridj 0f 0.49
(p < 0.001), which is similar to that obtained with the training
dataset. Diagnostics for the Model 3 are provided in
Supplementary Figure S8.

4 Discussion
4.1 Greenhouse gas saturation

The biogenic GHG saturation levels were in close accordance
to those reported for boreal lakes in COMSAT dataset (Yang
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et al.,, 2015). The biogenic oversaturation of CHy4, CO,, and N,O
demonstrated a substantial impact of biogenic processes on GHG
concentrations (Figure 2B). Methanogenesis and denitrification
are microbially-mediated processes, which are affected by
physical (e.g., temperature, rainfall) and chemical (e.g.,
nutrients) levels in the lake (Roland et al., 2017; Pena Sanchez
et al, 2022). The well oxygenated waters of the study lakes
96.7%,
methanogenesis and promote methanotrophy in most of the

(median Figure 2B) are likely to constrain
water column. Still a pronounced CH, oversaturation (median =
2248%) was found, reflecting a pronounced methanogenesis in
deep waters and sediments. In small lakes (<1 km?), convective
mixing in the epilimnion and deepening of the mixing layer may
be the main mechanism transporting CH, to lake surface layers
(Kankaala et al., 2013). Prior studies in small boreal lakes have
noted the importance of convective cooling of water masses in
autumn, where CH, effluxes exceed CH, oxidation in the water
column (Kankaala et al., 2006). This is a possible explanation for
the observed results, as our survey was conducted in autumn and
37 of the 73 lakes (51%) are classified as small. In large lakes
(>1km?), CH, can be originated from shallow epilimnetic
sediments (Bastviken et al.,, 2008) and be transported laterally
from the littoral/riparian zone and the catchment area (Lopez
Bellido et al., 2013). It is important to bear in mind the possible
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bias in large lakes, as the sampling was performed from the
littoral zone (Section 2.1). Nevertheless, the consistency between
these datasets are noteworthy, even if the COMSAT lakes were
sampled in the middle of the lakes in contrast to the littoral
sampling of the current (CBA) dataset.

CO, exchange is mainly governed by biotic processes,

specifically by the balance between photosynthesis and
respiration. In boreal lakes, CO, oversaturation is to a large
degree an effect of microbial respiration boosted by

allochthonous C (Hessen et al, 1990), regulated by factors like
catchment area or residence time (Larsen et al., 2011a). Our results
showed CO, oversaturation in the CBA survey (median = 263.1%,
Figure 2B) similar to those observed in the COMSAT survey
(median = 231.5%). The lakes from the CBA survey were located
in catchments dominated by coniferous forests, primarily spruce
and pine. The positive correlation between CO, saturation and TOC
concentrations (R = 0.3; p < 0.001) (Supplementary Figure S4)
suggests in-lake CO, production by TOC mineralization. These
results are in line with previous studies (Kortelainen et al., 2006;
Whitfield et al., 2011). In addition, a positive correlation was found
between CO, saturation and TN concentrations (R = 0.36; p < 0.001)
(Supplementary Figure S4). Primary production in boreal lakes can
be promoted by N availability (Elser et al., 2009). Nutrients also
boost microbial activity, and our data demonstrate that boreal lakes
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generally retain net heterotrophy in spite of nutrient loading and
potentially high primary production, in support of Huttunen et al.
(2003a). These positive correlations with TOC and TN suggest the
transport of bioavailable OM from catchment soils to lakes and in-
lake breakdown of DOM is a main driver for dissolved CO, (Sobek
et al,, 2003; Whitfield et al., 2011). Furthermore, lateral export of
DIC from soils to aquatic environments may contribute to lake CO,
(Oquist et al., 2009; Vachon et al., 2017). In boreal catchments, DIC
may derive from the dissolution of soil CO, as well as from mineral
weathering (Nydahl et al., 2020). Water pH may regulate the CO,
concentration by keeping a large proportion of the DIC as free CO,
atlow pH values, which in turn depends on the input of humic acids
(Nydahl et al., 2019). Our results followed this trend, with a weak
negative correlation between CO, saturation and pH (R =-0.21; p >
0.001) (Supplementary Figure S4).

Consistent with the literature (Huttunen et al, 2003a;
Whitfield et al, 2011; Yang et al, 2015; Kortelainen et al.,
2020), our research found N,O oversaturation, but lower than
CH, and CO,. While being relatively low, the oversaturation of
N,O (median = 115.3%, Figure 2B) reflects the potential of boreal
lakes as to act a net source for N,O due to nitrification and
denitrification processes. A positive correlation was found
between N,O saturation and TOC concentrations (R = 0.35;
p < 0.001) (Supplementary Figure S4). Since DOM (or TOC)
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mainly derives from allochthonous sources, it suggests that N,O
concentration also depends on the transport of bioavailable OM
from catchment soils. N,O saturation in boreal lakes has been
generally associated with agricultural land in the watershed
(Kortelainen et al., 2020). Our results support this by a strong
correlation between N,O saturation and agricultural land cover
(Cultivated) (R = 0.32; p < 0.001), but also with artificial
(Artificial) (R = 03; p < 0.001)
(Supplementary Figure S4). In lakes, N,O production and

impervious areas
emissions is boosted by atmospheric N-deposition (Yang
et al, 2015), as well as nitrate load from land to lakes
(Huttunen et al., 2003b). This latter flux may be enhanced in
the boreal landscape by rising temperatures leading to earlier
floods due to snow melt (Bloschl et al., 2017) and consequent
transport of nitrates to surface waters (Kortelainen et al., 2020).

4.2 Hydrological and climate determinants
of GHG saturation

The generalized additive models (GAMs) calculated for
saturation of GHG included either both
(LakeArea) T)
parameters as explanatory variables (Table 1). Variation

biogenic or

hydrological and climate (SummerP,

frontiersin.org



Valiente et al.

10.3389/fenvs.2022.880619

. 2.251 T
2.24 o
2 ¢ e o e )
: 2.204 1 == Test (COMSAT) | ®
T . == Train (CBA) °
i ~2.15+
8 214 8 2154
z Z
k=) 5 2.104
=) =)
204 2.054
: 2.004° : 8
. . b4 ®o ° )
18 20 22 o 1 2 3 4 5 22109
sqrt(SummerP) sqrt(Cultivated) 9
B o
J . 5 o e
2.20 r 8 e
o oo o
(]
2.15 * °
(]
@
5 5 2,054
I & 2.104 Qe
z z e ® 5
= > » e R“=05,p=1.2e-11
o & ©° ) o 2
2.05 e o : R“=0.49,p=1.7e-11
® o
(5} e ©
2004¢ ° ®o e
199§ b ® )
o 2.00
40 60 80 100 0 2 4 18 19 20 24 22 23
Forest sqrt(Artificial) Measured log(N20)
FIGURE 6

Simulations (blue lines) of normalized relative N,O saturations in the CBA dataset by generalized additive model (GAM) 3. On the right side,
model training with CBA dataset (red) and test with COMSAT dataset (blue) for each model. Shaded gray areas indicate 95% confidence intervals.

partitioning analyses indicated that hydrological parameters had
the greatest contribution to biogenic CH, saturation (22.5%,
Supplementary Figure S5A), supporting earlier studies (Kankaala
etal,2013; Lietal, 2020). In that sense, lake size (LakeArea) was
the main explanatory factor for the spatial differences in biogenic
CH, saturation (26.9% of the total deviance; Table 2), further
supporting evidence from previous studies (Bastviken et al., 2004;
Juutinen et al,, 2009; Kankaala et al., 2013; Holgerson, 2015;
Denfeld et al., 2020; Jahr, 2021). Biogenic CH, saturation level
was negatively correlated with lake surface (LakeArea; Figure 4).
This result may be explained by the fact that small lakes have a
high perimeter/surface area ratio, which means that they receive
relatively higher loads of allochthonous DOM relative to water
volume (Holgerson and Raymond, 2016). The increased
contribution of allochthonous DOM promotes microbial
metabolism (Tranvik, 1998; Forsstrom et al., 2013). Therefore,
littoral sediments can play a major role in increasing pelagic
lacustrine CH,4 due to horizontal mixing in the surface layer
(Juutinen et al., 2003; Rasilo et al., 2015; Bartosiewicz et al., 2016).
This is also supported by the negative correlation found between
log (CH,) and log (LakeDepth) in (R = —0.50; Supplementary
Figure S4). As stated, our sampling strategy may involve some
bias in the results for large lakes. Lake size was also included as
variable in the CO, saturation model (GAM model 2), showing a
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negative correlation between both (Figure 5). LakeArea explained
13.2% of the total deviance (Table 2) and was the sole catchment
parameter included in the model (Figure 5). Compared to the
CH,; model, this predictor explained less deviance (22.5 vs.
13.2%) but it was still the strongest predictor in the model
(Table 2). Our CO, model 2 predicted higher CO, saturations
in lakes with smaller surface areas (LakeArea), in line with
previous studies showing significantly higher CO, emissions
in small lakes (Kortelainen et al., 2006), most likely as a result
of increasing lateral OM fluxes (de Wit et al., 2018).

As climate parameters, the average precipitation during the
summer period (SummerP) was selected as independent variable
in the CH, model (Model 1; Table 1). It explained 4.12% of the
total deviance (Table 2), showing a positive correlation to the
variation in biogenic CH, saturation (Figure 4). Summer
precipitation was orthogonal to the loading vectors, reflecting
lake size within Cluster A (i.e., LakeArea, CatchmentArea, and
LakeDepth; Figure 3).

Precipitation boosted GHG-production (cf. Model 3;
Table 1), and more so for CH4 than for N,O saturation
(Table 2 and Figure 6). These results are in line with
previous studies showing that increased precipitation is
associated with larger allochthonous DOM inputs to lakes
(Rantakari and Kortelainen, 2005; Natchimuthu et al., 2014).
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For the CO, saturation model (Model 2; Table 1), water
temperature (T) was included as explanatory variable
showing a positive correlation (Figure 5). By itself, it
explained 3.75% of the total deviance (Table 2), being the
only model where T was selected. Water temperature reflects
on the seasonal changes in air temperature. It also strongly
affects microbial metabolism and promotes mineralization in
lake sediments (Gudasz et al., 2010). However, this trend may
be the opposite depending on the season of the year in which
sampling is performed because of phytoplankton activity
(Tadonléké et al, 2012). Since the CBA sampling was
conducted in late fall, close to lake overturn, we can rule
out CO, uptake by phytoplankton as a main driver.

The stepwise selection of variables for the GAM models
highlighted the importance of catchment characteristics
(hydrological and climate parameters) in predicting biogenic
GHG saturation from boreal lakes. In fact, both LakeArea and
SummerP may be understood as proxies for water residence
time in the watershed. Previous studies have noted that
mineralization capacity of lakes at the catchment scale was
closely correlated to the mean residence time of surface water in
the watershed (Algesten et al., 2004). An inverse relationship
between the rate of OM decay (i.e., biogenic CH, production)
and residence time have been reported (Catalan et al., 2016). In
that sense, higher decomposition rates are found in systems
with short residence times, as a result of the constant renewal of
the labile organic pool (Jones et al., 2018). Headwaters can be
considered as hotspots for OM processing as they receive fresh
allochthonous OM. Thus, the lability of the allochthonous OM
decreases along the aquatic continuum (Clayer et al., 2021). Our
results are consistent with those previous studies. Although our
estimated water residence times (Residence) were not included
as explanatory variables in the GAM models, significant
negative correlations were found between Residence and
-0.34; p < 0.001), and
-0.27; p < 0.001)
(Supplementary Figure S4). Using TOC as proxy for OM

normalized CH, saturation (R =
normalized N,O saturation (R =
inputs, the negative correlation observed between TOC and
Residence (R = —0.25; p < 0.001) (Supplementary Figure S4)
points to residence time as a key driver. This also implies that
changes in precipitation and runoff also will affect GHG-
metabolism in lakes via this mechanism.

4.3 The influence of terrestrial primary
production on GHG saturations

Variables related to primary production in the catchment
were also included in the generalized additive models (GAMs)
calculated for biogenic saturation of GHG. In general, higher
GHG saturations were found coupled to higher values of the
primary production proxies in the catchment (i.e., NDVI,
NDVI  was

Cultivation and Forest cover). selected as
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explanatory variable for CH; and CO, saturation models
(Table 1). CH; model (Model 1) ranked NDVI as the third
most explanatory variable (4.10% of the total deviance; Table 2),
while it accounted for a higher deviance in the CO, model (8.39%
of the total deviance; Table 2). NDVI is a proxy for terrestrial
vegetation and primary production. NDVI was strongly
correlated with TOC, AnnualT, and Forest cover (R of 0.43,
0.69, and 0.53, respectively; p < 0.001) (Supplementary Figure
S4). Previous studies have shown a close link between NDVTI in
the watershed and levels of DOM/TOC in the runoff, suggesting
that leachates from terrestrial primary production of litterfall are
a major source of OM in boreal lakes (Larsen et al., 201 1a; Finstad
et al., 2016; Skerlep et al., 2020). The wide gradient of catchment
NDVT and lake DOM is our studied lakes clearly reveals that the
oM
metabolism resulting in higher CHy and CO, saturations,

supply of allochthonous stimulates  heterotrophic
which is observed in both models (Figures 4, 5).

Cultivation coverage was included in both CO, and N,O
saturation models (Table 1). It explained 6.88 and 28.8% of the
total deviance explained in CO, and N,O models, respectively
(Table 2). The positive correlation between the agricultural land
cover (Cultivated) and CO, concentrations in boreal lakes has
been pointed out previously (Kortelainen et al., 2006), likely
reflecting inputs of easily degradable DOM (Crapart et al., 2021)
as well as nutrient loads from croplands (Rantakari and
Kortelainen, 2005). For N,O saturation, a positive correlation
between N,O saturation and agricultural land cover has
lakes
(Kortelainen et al., 2020). Our research shows that agricultural
land cover and TN are positively correlated (R = 0.54; p < 0.001)

previously been reported previously for boreal

(Supplementary Figure S4). N from fertilizers applied in the
watershed are microbially processed in lakes, producing N,O as
by-product of both nitrification and denitrification. N,O
saturation model (Model 3; Table 1) also included Forest and
Artificial, explaining respectively 12.0 and 12.0% of the total
deviance (Table 2). Higher proportions of these uses were
associated with higher N,O saturations in lake waters
(Figure 6). Likewise, Forest and/or Artificial land cover seems
to be associated with DOM inputs into lakes (Mattsson et al.,
2005; Pellerin et al., 2006; Finstad et al., 2016), promoting
processes such as denitrification (Liu et al, 2015). In forest
dominated areas from the boreal landscape, soil N seems to
leach from catchment soils directly into the lakes in form of
nitrate (Khalili et al., 2010), which can be denitrified giving N,O
as a by-product.

4.4 Evaluation of biogenic GHG saturation
models

Given the major role of boreal lakes for GHG-emissions

(Tranvik et al., 2009), accurate models are needed to better
predict biogenic GHG saturations in lakes across the boreal
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landscape. In that sense, our GAM models were tested on the
independent COMSAT dataset. Despite COMSAT lakes were
all sampled in the middle of the lakes, our results showed that
the datasets are basically consistent. In fact, the COMSAT
lakes tend to be a bit lower in GHGs, which can be attributed
to a somewhat larger area. The major levels and patterns in
saturation of the three GHGs was basically consistent
between the two datasets. In decreasing order, the trained
models had the highest testing success for N,O > CH, > CO,.
The N,O model (Model 3; Table 1) was validated using
COMSAT dataset,
obtained when using the training dataset (CBA) (Figure 6).

obtaining similar results as those

The relatively low deviance explained by Model 3 (48.9%)
probably reflects the low variability in biogenic N,O
concentrations, as well as the lack of likely key governing
factors for the in lake biogeochemical N,O production, such
as N-deposition (Pregitzer et al., 2008; McCrackin and Elser,
2010; Kortelainen et al., 2013).

Despite the consistency in patterns and levels of saturation
between the two independent datasets, the CH, saturation
model (Model 1; Table 1) showed a poor correlation between
predicted and measured biogenic CH, saturations with the
COMSAT dataset (Rgdj = 0.18) (Figure 4). This discrepancy
could be attributed to the seasonality, the location, and the size
of lakes sampled. The CBA lakes were sampled during fall
turnover, while the COMSAT lakes were collected from the
epilimnion during the summer stratification. The COMSAT
survey covered a geographical gradient from western Norway
(5.4°E) to the Norwegian-Swedish border (12.3°E). LakeArea
distribution in the COMSAT dataset (median = 3.53 km?) was
also significantly larger (p < 0.001) than the LakeArea from
CBA dataset (median = 0.93 km?). gas
concentrations and especially biogenic saturations of GHGs
were similar for both datasets (Figure 2). When the COMSAT
dataset was restricted to lakes in central-eastern Norway (n =

Nevertheless,

33, longitude >7.7°E), the correlation between predicted and
measured CH, saturations increased up to (Rﬁdj = 0.39). It
should also be noted that the western part of Norway is
characterized as one of the rainiest parts of Europe. The
original COMSAT dataset has values from SummerP to
919 mm, which may definitely affect the adjustment of CH,
saturation model.

Also the CO, saturation model (Model 2; Table 1) showed
only weak correlation between predicted and measured
biogenic CO, saturation in the COMSAT dataset (Rﬁclj =
0.008) 5). A feasible this
discrepancy may be that samples for COMSAT were

(Figure explanation for
collected during the summer, when assimilation of CO, in
the epilimnion is likely an important governing factor. The
season of the year when sampling occurred may thus be a
reason for the poor simulation of biogenic CO, saturation
obtained when applying the model to the COMSAT dataset.
In addition, LakeArea was the strongest predictor in the
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model and, as stated above, lake size distribution differed
significantly between the CBA and COMSAT surveys. When
COMSAT dataset was downscaled to lakes with a longitude
above 7.7°E (n = 33), the adjustment was slightly better (Ridj =
0.10) but still far from that obtained with the training
dataset (Riclj = 0.51).

These findings show the difficulties in achieving good models
for predicting GHG saturations in boreal lakes. When modeling,
increasing the number of variables used in the models may
the the
interpretation and application of the models. Within the CBA

increase variance explained, but complicate
dataset, we achieved robust predictions. Despite the patterns and
levels of GHGs saturations are consistent between the two
datasets, the generation of robust models predicting GHGs
demands multiple explanatory parameters, including size and

seasonality.

5 Conclusion

The purpose of the current study was to model biotic
saturation of GHGs in boreal lakes by using a set of chemical,
hydrological, climate, and land use parameters. Our models
were trained on a dataset of boreal lakes (n = 73) sampled in
2019 and then validated with an additional dataset of boreal
lakes (n = 46) sampled in 2011. Both these datasets
encompass altitude,
precipitation, temperature and not the least their content

an extraordinary gradient in

of organic matter, and allowed us to tease apart various
We find that:
parameters are key drivers for predicting GHG saturation;

drivers. i) hydrological and climate
ii) the influence of external OM inputs (i.e., terrestrial) plays a
key role in biogeochemical cycling. Most of the variation in
biogenic CH, saturation was explained by lake size: the larger
the lake, the lower the CH, saturation. On the contrary,
summer precipitation and NDVI exhibited a positive
correlation with CH, saturation. Biogenic CO, saturation
was mainly explained by lake size (negative correlation)
followed by NDVI, proportion of cultivated area, and
water temperature (positive correlation in all of them). For
biogenic N,O saturation, the differences in land use
(cultivated, forest, and artificial area) were the strongest
predictors showing a positive correlation, as well as
The by

extraordinary range of catchment and lakes variables

summer precipitation. insights  given our
provides new insights in drivers of GHG-production in
boreal lakes, which again improve predictions of impacts
of climate change and human activities. The comparison of
two independent datasets, and using one as a training dataset
that

explanatory

for model prediction, nevertheless demonstrate

predicting  GHGs
parameters, including seasonality, for generation robust

demands  multiple

models.
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