

RADIOCARBON

CAMBRIDGE
UNIVERSITY PRESS

**COMPARABILITY OF RADIOCARBON MEASUREMENTS IN
DISSOLVED INORGANIC CARBON OF SEAWATER PRODUCED
AT ETH-ZURICH**

Journal:	<i>Radiocarbon</i>
Manuscript ID	Draft
Manuscript Type:	Conference Paper
Date Submitted by the Author:	n/a
Complete List of Authors:	Castrillejo, Maxi; Imperial College London, Physics Hansman, Roberta; Woods Hole Oceanographic Institution, NOSAMS laboratories Graven, Heather; Imperial College London, Department of Physics Lester, Joanna G; Imperial College London, Department of Physics Bollhalder, Silvia; ETH Domain Federal Institutes of Technology, Physics Department, Laboratory of Ion Beam Physics Kündig, Kayley; ETH Domain Federal Institutes of Technology, Laboratory of Ion Beam Physics, Department of Physics Wacker, Lukas; ETH Domain Federal Institutes of Technology, Laboratory of Ion Beam Physics, Department of Physics
Keywords:	Comparison, Radiocarbon, Seawater, Dissolved inorganic carbon, DIC
Abstract:	Radiocarbon observations ($\Delta^{14}\text{C}$) in dissolved inorganic carbon (DIC) of seawater provide useful information about ocean carbon cycling and ocean circulation. To deliver high-quality observations, the Laboratory of Ion Beam Physics (LIP) at ETH-Zurich developed a new simplified method allowing the rapid analysis of radiocarbon in DIC of small seawater samples, which is continually assessed by following internal quality controls. However, a comparison with externally produced radiocarbon measurements to better establish an equivalency between methods was still missing. Here, we make the first intercomparison with the National Ocean Sciences Accelerator Mass Spectrometry (NOSAMS)

facility based on 14 duplicate seawater samples collected in 2020. We also compare with prior deep-water observations from the 1970s-1990s. The results show a very good agreement in both comparisons. The mean $\Delta^{14}\text{C}$ of 12 duplicate samples measured by LIP and NOSAMS were statistically identical within one sigma uncertainty while two other duplicate samples agreed within two sigma. Based on this small number of duplicate samples, LIP values appear to be slightly lower than the NOSAMS values, but more measurements will be needed for confirmation. We also comment on storage and preservation techniques used in this study, including the freezing of samples collected in foil bags.

SCHOLARONE™
Manuscripts

M Castrillejo et al.

1 **COMPARABILITY OF RADIOCARBON MEASUREMENTS IN DISSOLVED**
2 **INORGANIC CARBON OF SEAWATER PRODUCED AT ETH-ZURICH**

3

4

5 Maxi Castrillejo^{1,2*}, Roberta L. Hansman³, Heather D. Graven¹, Joanna G. Lester¹, Silvia
6 Bollhalder², Kayley Kündig², and Lukas Wacker²

7

8

9 ¹Department of Physics, Imperial College London, London, United Kingdom

10 ²Laboratory of Ion Beam Physics, ETH - Zurich, Zurich, Switzerland

11 ³Woods Hole Oceanographic Institution, National Ocean Sciences Accelerator Mass
12 Spectrometry Facility, Woods Hole, Massachusetts, United States of America

13

14

15 Correspondence and request of materials should be addressed to:
16 M. C. (m.castrillejo-iridoy@imperial.ac.uk)

17

18

19 **Keywords:** comparison, radiocarbon, ¹⁴C, seawater, dissolved inorganic carbon, DIC

20

21

22

23

24

25

26 ABSTRACT

27 Radiocarbon observations ($\Delta^{14}\text{C}$) in dissolved inorganic carbon (DIC) of seawater provide
28 useful information about ocean carbon cycling and ocean circulation. To deliver high-quality
29 observations, the Laboratory of Ion Beam Physics (LIP) at ETH-Zurich developed a new
30 simplified method allowing the rapid analysis of radiocarbon in DIC of small seawater
31 samples, which is continually assessed by following internal quality controls. However, a
32 comparison with externally produced radiocarbon measurements to better establish an
33 equivalency between methods was still missing. Here, we make the first intercomparison
34 with the National Ocean Sciences Accelerator Mass Spectrometry (NOSAMS) facility based
35 on 14 duplicate seawater samples collected in 2020. We also compare with prior deep-water
36 observations from the 1970s-1990s. The results show a very good agreement in both
37 comparisons. The mean $\Delta^{14}\text{C}$ of 12 duplicate samples measured by LIP and NOSAMS were
38 statistically identical within one sigma uncertainty while two other duplicate samples agreed
39 within two sigma. Based on this small number of duplicate samples, LIP values appear to be
40 slightly lower than the NOSAMS values, but more measurements will be needed for
41 confirmation. We also comment on storage and preservation techniques used in this study,
42 including the freezing of samples collected in foil bags.

43

44 INTRODUCTION

45 Measurements of $\Delta^{14}\text{C}$ in dissolved inorganic carbon (DIC) have been performed in the ocean
46 since the 1950s (Graven et al., 2012; McNichol et al., 1994; Nydal et al., 1984; Stuiver and
47 Östlund, 1980). A large dataset of $\Delta^{14}\text{C}$ in DIC (hereinafter $\Delta^{14}\text{C}$) exists with over 35,000
48 observations thanks to large oceanographic programs such as the Geochemical Ocean
49 Sections Study (GEOSECS) and World Ocean Circulation Experiment (WOCE) as well as
50 smaller oceanographic campaigns (McNichol et al., 2022). Observations of $\Delta^{14}\text{C}$ are to large

M Castrillejo et al.

51 extent available via data products or databases such as the CLIVAR and Carbon
52 Hydrographic Data Office (CCHDO), and they capture the large-scale patterns of spatial and
53 temporal evolution of radiocarbon over the recent decades. The information gained from
54 investigating the changes in seawater $\Delta^{14}\text{C}$ is highly valuable in many ways, including
55 process understanding (e.g., ocean circulation, Toggweiler et al., 2019) and the assessment of
56 ocean models (e.g., Frischknecht et al., 2022; Graven et al., 2012).

57

58 The number of facilities capable of doing $\Delta^{14}\text{C}$ measurements in DIC of seawater is
59 increasing thanks to a greater availability of Accelerator Mass Spectrometry (AMS) systems,
60 and to improving carbon extraction and graphitization techniques. The Laboratory of Ion
61 Beam Physics (LIP) at ETH-Zurich is among the laboratories that has recently expanded its
62 facilities to process seawater samples and measure their isotopic carbon composition using
63 the new ETH-LIP method (Casacuberta et al., 2020). LIP presented this method together with
64 other groups during the workshop ‘Carbon Isotopes in the Ocean: Ensuring High-Quality
65 Results’ held in November 2021 (McNichol et al., 2021). One major point of the workshop
66 was that with the growing number of laboratories producing $\Delta^{14}\text{C}$ data on DIC, it is critical to
67 cross-check and establish equivalences between methods. This was a pending task for the
68 ETH-LIP method, as its performance is internally assessed on a regular basis, but the
69 produced data were never formally cross checked against other laboratories.

70

71 Here we assess the comparability of $\Delta^{14}\text{C}$ data produced at LIP by comparison to other
72 observations in the North Atlantic Ocean. We present new $\Delta^{14}\text{C}$ results of samples collected
73 in the subpolar and subtropical regions between 2018 and 2020. First, we provide an accurate
74 assessment of comparability by using duplicate samples collected for an intercomparison
75 between LIP and the Woods Hole Oceanographic Institution’s National Ocean Sciences

76 Accelerator Mass Spectrometry (NOSAMS) facility. Then, the new data from LIP are
77 compared to previous deep water observations from GEOSECS, the Transient Tracers in the
78 Ocean North Atlantic Study (TTO/NAS), and the CLIVAR and Global Ocean Ship-Based
79 Hydrographic Investigations Program (GO-SHIP). For the intercomparison we used different
80 storage and preservation techniques, with the NOSAMS samples using glass bottles and
81 mercuric chloride and the LIP samples using foil bags and freezing. We show that the
82 measurement at LIP of samples collected in foil bags and frozen produces reliable data,
83 although there are logistical challenges with keeping samples frozen and the bags are more
84 likely to be damaged than glass bottles.

85

86 **METHODS**87 **Cruises for the collection of new samples**

88 The new radiocarbon results presented in this study correspond to seawater samples that were
89 collected during two cruises in the North Atlantic (Supplemental Table S1 and S2).

90

91 The subtropical region along the GO-SHIP section A05 was sampled onboard the British *RSS*
92 *James Cook* during the JC191 cruise in January – March 2020. Seawater was collected from
93 several stations and at some of them duplicate seawater samples were collected for the
94 intercomparison between LIP and NOSAMS. The seawater samples were collected from the
95 water column using a CTD rosette that was equipped with Niskin sampling bottles.

96

97 The other new data we present is from one depth profile sampled in the northeastern Atlantic
98 during a visit to the OVIDE line (GO-SHIP section A25) onboard the French *R/V Thalassa* in
99 June 2018. There were no duplicate samples measured at NOSAMS from this cruise, but we

100 compare the data with historical data from the deep ocean where $\Delta^{14}\text{C}$ is likely to stay largely
101 constant over decades.

102

103 **Collection, storage, and preservation of new samples**

104 We used three different approaches for sample collection, storage, and preservation. Pictures
105 of the different sampling bottles and bags can be found in Figure S1.

106

107 During the OVIDE cruise in June 2018, the samples were collected using 120 mL glass
108 serum bottles that had been previously cleaned with 0.1 N HCl. The bottles were rinsed three
109 times with the seawater sample before the water was allowed to overfill. Then, the sample
110 was poisoned onsite with saturated mercuric chloride (HgCl_2) solution to cease biological
111 activity, and sealed using a rubber septum and an aluminum cap. Back at LIP, 60 mL of the
112 original 120 mL sample was transferred to an identical empty and sealed glass bottle that had
113 been previously flushed with helium (He) as detailed in Casacuberta et al., (2020). This
114 approach allows the determination of $\Delta^{14}\text{C}$ in one sub-sample of 60 mL of seawater while
115 keeping a second sub-sample in the original bottle as reserve.

116

117 During JC191 in January – March 2020, a total of 14 seawater duplicate samples were
118 collected for the intercomparison exercise between LIP and NOSAMS. An additional 384
119 samples were collected and measured only at LIP. The sampling locations for the duplicate
120 samples were strategically selected to revisit previous nearby $\Delta^{14}\text{C}$ measurements from the
121 A05 section in 1998 and to capture a range of depths (5–5500 m), locations (30 to 70 °W) and
122 $\Delta^{14}\text{C}$ values. The samples for LIP were collected following Bryant et al., (2013). Briefly, this
123 technique uses foil bags of about 0.5 L capacity to store the seawater and does not require the
124 chemical poisoning of the sample. Instead of poisoning, preservation is achieved by freezing

125 the sample immediately after collection. Further sampling details can be found in the JC191
126 cruise report (Sanchez-Franks, 2020). The foil bags were shipped frozen to Imperial College
127 London in June 2020 and stored in freezers at -20 °C until they were shipped frozen to LIP in
128 April 2021 and stored in freezers there at -20 °C until analysis through May – July 2021. Foil
129 bags were typically thawed overnight at room temperature the day prior to sample
130 preparation. Once the bag was defrosted, the seawater was manually transferred using PVC
131 tubing into one serum 120 mL bottle, as if one was sampling from a Niskin bottle. Each
132 sample of 120 mL was divided into two subsamples as explained previously. The poisoning
133 step was not necessary as the samples were processed on the same day, or at maximum, they
134 were stored in the fridge for few days.

135

136 The collection of seawater for NOSAMS was done using 0.5 L glass flasks and saturated
137 HgCl₂ solution for poisoning. The sampling followed the recommended procedure exactly as
138 stated in the guidance report of McNichol et al., (2010).

139

140 **Extraction of carbon from seawater and AMS measurement**

141 At LIP, seawater samples were processed using the ETH-LIP method described in
142 Casacuberta et al., (2020). Briefly, carbon isotopes were extracted from about 60 mL of
143 seawater that were previously acidified with 800 µL of 85% H₃PO₄ and heated overnight at
144 60 °C. An auto sampler extracts the DIC as CO₂ from seven seawater samples in a row. The
145 sample gas passes through a water trap and a Cu-Ag furnace before being trapped in the
146 molecular sieve trap of the Automated Graphitization Equipment. The Cu-Ag furnace is used
147 to remove traces of nitrogen oxides, halogens and sulfur compounds that may poison the iron
148 used as catalyst during graphitization. The CO₂ is then transferred to a reaction tube and
149 converted to graphite upon reaction with the added H₂, heat and the iron catalyst at 580 °C.

M Castrillejo et al.

150 Finally, the graphite is pressed into targets for AMS. The overall quality of the method is
151 assessed by means of blanks (Phthalic Anhydride and IAEA-C1), a coral used as reference
152 material and the NIST SRM 4990C oxalic acid (OXAII), as detailed in Casacuberta et al.,
153 (2020). The AMS measurements were conducted on the MICADAS MIni radioCArbon
154 DAting System (Synal et al., 2007) which is equipped with He stripping (Schulze-König et al.,
155 2011) and permanent magnets (Salehpour et al., 2016). Each sample was typically measured
156 for about 1.5 hour at C- currents of 60 mA until 700,000 ^{14}C counts were collected. The data
157 reduction was performed using the BATS data evaluation program (Wacker et al., 2010), the
158 OXAII for standard normalization and the Phthalic Anhydride for blank subtraction. The
159 experimental uncertainty estimated from counting statistics, blanks, reproducibility of
160 standards and replicate seawater samples was 1.6-2.6 ‰.

161
162 At NOSAMS an automated water stripping line was used to acidify and sparge with nitrogen
163 the evolving CO_2 from the seawater, which is then cryogenically trapped and purified. The
164 extracted CO_2 is reduced to graphite through the addition of H_2 , heat, and an Fe catalyst on
165 automated graphite lines (McNichol et al., 1994). All graphite was pressed into aluminum
166 cathodes and analyzed on the Continuous Flow AMS system (CFAMS; Roberts et al., 2010).
167 In-house seawater and ^{14}C -free groundwater reference materials are used to assess the quality
168 of the extraction and graphitization process. Data are blank corrected following a formula
169 that fits the observed mass dependency in measured fraction modern carbon of these
170 reference materials (Roberts et al., 2019). The resulting experimental error for the
171 intercomparison samples was 1.6-2.1 ‰.

172

173 **Previous observations of $\Delta^{14}\text{C}$**

174 The $\Delta^{14}\text{C}$ data produced at LIP will be compared to measurements on deep water samples
175 from three other laboratories. All data used for the comparison are compiled in Supplemental
176 Table S2.

177

178 Here we examine measurements on previous seawater samples in the North Atlantic, where
179 the samples measured at LIP were collected. Samples collected in 1998 along 24.5 °N in the
180 subtropical North Atlantic (GO-SHIP section A05) were processed at NOSAMS following
181 the same procedures described above. The full $\Delta^{14}\text{C}$ dataset can be accessed through CCHDO
182 (McNichol and Key, 2022). Samples collected in 1973 were analyzed by the Quaternary
183 Isotope Laboratory at University of Washington (UW) (Stuiver and Östlund 1980). Samples
184 collected in 1981 were analyzed by the Tritium Laboratory from the University of Miami
185 (UM) (Östlund and Rooth 1990). Both the UW and UM used 250 L Gerard barrels for the
186 collection of seawater and proportional counters for the measurement of radiocarbon by its
187 radioactive decay (Östlund and Rooth, 1990; Stuiver et al., 1974).

188

189 **RESULTS AND DISCUSSION**

190 **Results of the intercomparison**

191 The 14 duplicate samples measured at LIP and NOSAMS displayed a broad range of $\Delta^{14}\text{C}$ (-
192 130 to 50 ‰) as expected from the sampled depth range (surface down to 5500 m) and the
193 locations along the A05 section (Figure 1). At LIP we generally processed two sub-samples
194 from each duplicate sample. We report (Table S1) and examine both the individual measured
195 $\Delta^{14}\text{C}$ and the weighted average $\Delta^{14}\text{C}$.

196

197 <FIGURE_1>

198

199 There is a very good agreement between the two laboratories (Figure 1). Most individual
200 measurements (82%) reported by LIP were statistically identical to the NOSAMS value
201 within one sigma uncertainty of 1.6-2.6 ‰, while the remaining 18% were comparable within
202 two sigma. The comparison of NOSAMS values to the weighted average LIP value is slightly
203 better, with 86 % of $\Delta^{14}\text{C}$ values falling within one sigma. Based on the limited number of
204 duplicates, most LIP observations appear slightly lower ($-1.4 \pm 0.7 \text{ ‰}$) than the ones
205 produced by NOSAMS (Figure 2). However, more duplicate samples will be needed to
206 possibly confirm any systematic bias between the values reported by LIP and NOSAMS. Any
207 possible offset is significantly smaller than the $\pm 4.5 \text{ ‰}$, reported for the experimental error of
208 $\Delta^{14}\text{C}$ measurements in the GO-SHIP Repeat Hydrography manual for the collection and
209 measurement of carbon isotopes in seawater DIC (McNichol et al., 2010).

210

211 <FIGURE_2>

212

213

214 **Deep water comparison**

215 For the deep water comparison, we have selected six stations in the eastern North Atlantic
216 basin because the abyssal depths of this region are dominated by old waters from the
217 Southern Ocean. Thus, the influence of atmospheric nuclear weapon testing in these waters is
218 most likely negligible (Östlund and Rooth, 1990) and $\Delta^{14}\text{C}$ constant over time. The location
219 and full depth $\Delta^{14}\text{C}$ distribution of the selected depth profiles is shown in Figure S2. We
220 restrict our comparison to depths of 3500-6000 m because shallower $\Delta^{14}\text{C}$ values indicate the
221 presence of bomb ^{14}C that was either deposited on the sea surface or advected to shallow and
222 intermediate depth layers by North Atlantic Central Water and North Atlantic Deep Water.

223

224 <FIGURE_3>

225

226

227 The upper panels in Figure 3 show six depth profiles of $\Delta^{14}\text{C}$ measured by four different
228 laboratories (UM, UW, NOSAMS and LIP) during five sampling campaigns between 1973
229 and 2020. The measurements scatter around a mean value of about -120 ‰. As expected, the
230 deep water $\Delta^{14}\text{C}$ shows almost no change if one considers the uncertainty of individual
231 measurements. The lower panels in Figure 3 show the variation corresponding to each $\Delta^{14}\text{C}$
232 datasets versus the year of sampling. The measurements reported by LIP fall mostly within
233 the previous range of observations. The lower left panel shows that the median of LIP
234 measurements (-119.3 ‰) for year 2018 is slightly lower than for the datasets reported by the
235 laboratories at UM for 1981 and UW for 1973. Yet, the median values of the three
236 laboratories (-119.3 to -116.8 ‰) range within the experimental error ($\sim \pm 4 \text{ ‰}$) of GEOSECS
237 and TTO/NAS datasets. The comparison in the lower right panel shows a broader range for
238 the median $\Delta^{14}\text{C}$ (-122.5 to -114.9 ‰), where the value of LIP (-121.2 ‰) is in between the
239 minimum and maximum of the datasets reported, respectively, by NOSAMS and UW. The
240 direct comparison of data for 1998 and 2020 shows that this time, the NOSAMS mean $\Delta^{14}\text{C}$
241 was 2.1 ‰ lower in comparison to measurements of LIP.

242

243 The measurements reported by LIP for year 2018 and 2020 correspond to samples collected
244 using glass serum bottles and foil bags, respectively. Therefore, we conclude that LIP was
245 able to reproduce previous deep water measurements independently of the sample collection
246 and preservation technique used.

247

248 **SUMMARY AND RECOMMENDATIONS**

M Castrillejo et al.

249 We have conducted the first inter laboratory comparison of $\Delta^{14}\text{C}$ measured at LIP and
250 NOSAMS and compared North Atlantic deep water $\Delta^{14}\text{C}$ measurements of LIP to previous
251 observations by UW, UM and NOSAMS. The intercomparison with NOSAMS has shown
252 that LIP could reproduce their results, and that any possible bias between the two laboratories
253 was significantly smaller than the typical experimental error associated with radiocarbon
254 measurements in seawater. The comparison of deep water observations from the 1970s-1990s
255 proves that the ETH-LIP method is able to produce $\Delta^{14}\text{C}$ values within the range established
256 by earlier studies. Therefore, this study shows that LIP data are comparable for the typical
257 range of $\Delta^{14}\text{C}$ found in DIC of seawater.

258

259 The implication of these findings is important for LIP in terms of data quality assessment as
260 well as for data users. The two comparisons are based on a limited amount of data. Aware of
261 this limitation, we make the following recommendations. Firstly, the NOSAMS and LIP data
262 are comparable within $\sim 3\text{‰}$. We would recommend bearing this uncertainty in mind when
263 discussing the significance of temporal changes of $\Delta^{14}\text{C}$ in a water mass or location. We
264 consider that a more extensive comparison is needed between the two laboratories before we
265 can rule out or confirm any possible systematic offset between the two laboratories well
266 beyond 3‰ . Secondly, deep water measurements of LIP are in the range of previous data,
267 but they seem to be lower than observations reported by UW for the GEOSECS era.
268 Assuming a temporal increase in deep water $\Delta^{14}\text{C}$ caused by the penetration of bomb- ^{14}C , one
269 might underestimate the temporal change of deep water $\Delta^{14}\text{C}$ when comparing LIP and UW
270 data.

271

272 The accuracy and precision of measurements may vary over time. $\Delta^{14}\text{C}$ observations in DIC
273 would be more reliable if there was a recognized reference material that could be analyzed

274 together with the samples on a regular basis. The creation of such DIC reference materials
275 and materials that could be used for larger intercomparison activities was discussed in the
276 workshop ‘Carbon Isotopes in the Ocean: Ensuring High-Quality Results’ in November
277 2021(McNichol et al., 2021). The organizers of that workshop have collected large volume
278 seawater samples which shall be distributed in the future to laboratories wishing to participate
279 in a large intercomparison exercise to investigate comparability of $\Delta^{14}\text{C}$ measurements in
280 DIC. Their effort, and that of the marine radiocarbon community, will be valuable to obtain a
281 consensus value, and to establish equivalences between datasets and between laboratories
282 capable of making $\Delta^{14}\text{C}$ measurements in DIC.

283

284 During the 24th Radiocarbon Conference many scientists asked about our experience with the
285 relatively new sampling technique of freezing samples in foil bags (Bryant et al., 2013). The
286 marine radiocarbon community has long been searching for a reliable alternative to mercuric
287 chloride for sample preservation. This chemical has been shown to be very effective in
288 conserving the isotopic carbon composition of DIC by ceasing the biological activity within
289 the sample. However, it is highly toxic for humans and the environment, its handling and
290 disposal requires special measures, and a growing number of countries are discouraging or
291 prohibiting its use on oceanographic vessels. Bryant et al., (2013) showed that the foil bag
292 method used here is suitable for the determination of total inorganic carbon, radiocarbon, and
293 stable carbon isotopes. The results from the intercomparison presented in this study further
294 show that foil bags processed at LIP did not cause an appreciable bias from the results
295 reported by NOSAMS which were processed following well established procedures
296 (McNichol et al., 2010).

297

M Castrillejo et al.

298 One major challenge of using the foil bags is that sample preservation over periods longer
299 than a week is achieved by freezing at -20°C. This adds an extra logistical effort to ship bags
300 via frozen courier and to store the samples in freezers. There is a risk that samples will be
301 contaminated if they cannot be kept frozen, and frozen storage and shipping may not be
302 feasible in some cases. There is also a risk that the foil bags become damaged or break. For
303 the JC191 cruise 5% of the bags lost all the water after thawing them the night prior to
304 laboratory analysis, many more than the number of glass bottles typically broken during
305 shipping or sample manipulation at LIP. A few more bags also broke while transferring the
306 seawater into the glass bottles used for carbon extraction. Furthermore, the cost of the foil
307 bags (approx. \$25 each) may be prohibitive as they are not re-used for subsequent sampling,
308 although this may be possible. We recommend that the storage of samples in a different
309 container that is more robust but that can still be frozen should be explored. Notwithstanding
310 these challenges, freezing samples in foil bags is currently the only proven method for
311 avoiding chemical poisoning and is thus worthy of consideration in oceanographic studies.

312

313 **ACKNOWLEDGEMENTS**

314 Captains, crew, and scientific staff of the OVIDE 2018 and JC191 cruises are thanked for
315 their help at sea. Thanks go also to the cruise chief scientists Pascale Lherminier and
316 Alejandra Sanchez-Franks for providing the opportunity to embark on *R/V Thalassa* and *RRS*
317 *James Cook*. Ann McNichol and Robert M. Key are warmly thanked for their contribution to
318 the $\Delta^{14}\text{C}$ dataset (EXPOCODE: 33RO19980123) in CCHDO. We would also like to
319 acknowledge Philip Gautschi for his help in the laboratory. MC's research was funded by the
320 Swiss National Science Foundation Postdoc.Mobility Fellowship (P400P2_199289/1).
321 Laboratory analyses at LIP were partly supported by the ETH Career Seed Grant (SEED-06
322 19-2) awarded to MC. Additional funds for AMS measurements were provided by LIP and its

323 consortium partners EAWAG, EMPA, and PSI. Sampling during JC191 was supported by UK
324 – NERC funds awarded to HDG. NOSAMS is supported through NSF cooperative agreement
325 OCE-1755125.

326

327 **REFERENCES**

328 Bryant, C.L., Henley, S.F., Murray, C., Ganeshram, R.S., Shanks, R., 2013. Storage and
329 hydrolysis of seawater samples for Inorganic carbon isotope analysis. Proceedings of the
330 21st International Radiocarbon Conference 55, 401–409.

331 Casacuberta, N., Castrillejo, M., Wefing, A.M., Bollhalder, S., Wacker, L., 2020. High
332 Precision ¹⁴C Analysis in Small Seawater Samples. Radiocarbon 62, 13–24.
333 <https://doi.org/10.1017/RDC.2019.87>

334 Frischknecht, T., Ekici, A., Joos, F., 2022. Radiocarbon in the Land and Ocean Components
335 of the Community Earth System Model. Global Biogeochem Cycles 36.
336 <https://doi.org/10.1029/2021GB007042>

337 Graven, H., Kozyr, A., Key, R.M., 2012. Historical observations of oceanic radiocarbon
338 conducted prior to GEOSECS. http://cdiac.ornl.gov/ftp/oceans/Historical_C14_obs/.
339 Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US
340 Department of Energy, Oak Ridge, Tennessee.
341 https://doi.org/10.3334/CDIAC/OTG.HIST_C14_OBS

342 Graven, H.D., Gruber, N., Key, R., Khatiwala, S., Giraud, X., 2012. Changing controls on
343 oceanic radiocarbon: New insights on shallow-to-deep ocean exchange and
344 anthropogenic CO₂ uptake. J Geophys Res Oceans 117.
345 <https://doi.org/10.1029/2012JC008074>

346 McNichol, A., Hansman, R., Key, R., Sonnerup, R., 2021. Carbon Isotopes in the Ocean:
347 Ensuring High-Quality Results [WWW Document]. URL <https://www.us-ocb.org/carbon-isotopes-workshop/> (accessed 10.11.22).

348 McNichol, A., Key, R.M., 2022. Bottle data from cruise 33RO19980123, exchange version.
349 Accessed from CCHDO https://cchdo.ucsd.edu/data/7224/33RO19980123_hy1.csv.
350 Access date 2022-10-11.

351 McNichol, A.P., Jones, G.A., Hutton, D.L., Gagnon, A.R., 1994. The rapid preparation of
352 seawater ΣCO_2 for radiocarbon analysis at the National Ocean Sciences AMS facility.
353 Radiocarbon 36, 237–246. <https://doi.org/10.1017/s0033822200040522>

354 McNichol, A.P., Key, R.M., Guilderson, T.P., 2022. GLOBAL OCEAN RADIOCARBON
355 PROGRAMS. Radiocarbon. <https://doi.org/10.1017/RDC.2022.17>

356 McNichol, A.P., Quay, P.D., Gagnon, A.R., Burton, J.R., 2010. Collection and measurement
357 of carbon isotopes in seawater DIC, in: The GO-SHIP Repeat Hydrography Manual: A
358 Collection of Expert Reports and Guidelines. pp. 1–12.

359 Nydal, R., Gulliksen, S., Lövseth, K., Skogseth, F.H., 1984. Bomb ^{14}C in the Ocean Surface
360 1966–1981. Radiocarbon 26, 7–45. <https://doi.org/10.1017/s0033822200006421>

361 Östlund, H.G., Rooth, C.G.H., 1990. The North Atlantic tritium and radiocarbon transients
362 1972–1983. J Geophys Res 95, 20147. <https://doi.org/10.1029/jc095ic11p20147>

363 Roberts, M.L., Burton, J.R., Elder, K.L., Longworth, B.E., McIntyre, C.P., von Reden, K.F.,
364 Han, B.X., Rosenheim, B.E., Jenkins, W.J., Galutschek, E., McNichol, A.P., 2010. A
365 high-performance ^{14}C accelerator mass spectrometry system. Radiocarbon 52, 228–235.
366 <https://doi.org/10.1017/S0033822200045252>

367 Roberts, M.L., Elder, K.L., Jenkins, W.J., Gagnon, A.R., Xu, L., Hlavenka, J.D., Longworth,
368 B.E., 2019. ^{14}C Blank Corrections for 25–100 μg Samples at the National Ocean

369

370 Sciences AMS Laboratory . Radiocarbon 61, 1403–1411.

371 <https://doi.org/10.1017/rdc.2019.74>

372 Salehpour, M., Håkansson, K., Possnert, G., Wacker, L., Synal, H.A., 2016. Performance

373 report for the low energy compact radiocarbon accelerator mass spectrometer at Uppsala

374 University. Nucl Instrum Methods Phys Res B 371, 360–364.

375 <https://doi.org/10.1016/j.nimb.2015.10.034>

376 Sanchez-Franks, A. et al, 2020. Cruise report of expedition 740H20200119 (JC191, 24 N)

377 [WWW Document]. URL <https://cchdo.ucsd.edu/cruise/740H20200119> (accessed

378 10.12.22).

379 Schulze-König, T., Seiler, M., Suter, M., Wacker, L., Synal, H.A., 2011. The dissociation of

380 ^{13}CH and $^{12}\text{CH}_2$ molecules in He and N^2 at beam energies of 80–250 keV and possible

381 implications for radiocarbon mass spectrometry. Nucl Instrum Methods Phys Res B 269,

382 34–39. <https://doi.org/10.1016/j.nimb.2010.09.015>

383 Stuiver, M., Östlund, H.G., 1980. GEOSECS Atlantic radiocarbon. Radiocarbon 22, 1–24.

384 Stuiver, M., Robinson, S.W., Östlund, H.G., Dorsey, H.G., 1974. Carbon-14 calibration

385 between the University of Washington and the University of Miami GEOSECS

386 laboratories. Earth Planet Sci Lett 23, 65–68.

387 Synal, H.A., Stocker, M., Suter, M., 2007. MICADAS: A new compact radiocarbon AMS

388 system. Nucl Instrum Methods Phys Res B 259, 7–13.

389 <https://doi.org/10.1016/j.nimb.2007.01.138>

390 Toggweiler, J.R., Druffel, E.R.M., Key, R.M., Galbraith, E.D., 2019. Upwelling in the Ocean

391 Basins North of the ACC: 2. How Cool Subantarctic Water Reaches the Surface in the

392 Tropics. J Geophys Res Oceans 124, 2609–2625. <https://doi.org/10.1029/2018JC014795>

393 Wacker, L., Christl, M., Synal, H.A., 2010. Bats: A new tool for AMS data reduction. Nucl

394 Instrum Methods Phys Res B 268, 976–979. <https://doi.org/10.1016/j.nimb.2009.10.078>

395

396 **LIST OF FIGURES**

397 **Figure 1.** $\Delta^{14}\text{C}$ in duplicate seawater samples of the intercomparison exercise. The results reported by LIP and
398 NOSAMS are represented in three subplots to adequately represent the range of $\Delta^{14}\text{C}$ values in shallow,
399 intermediate, and deep and very deep waters. LIP usually processed two sub-samples, except for sample #1 (one
400 measurement) and sample #9 (three measurements). The results for each sub-sample are reported as 'LIP
401 single'. The corresponding weighted average is reported as 'LIP average'. NOSAMS reported one value for
402 each duplicate sample.

403

404 **Figure 2.** Offset of LIP results with respect to NOSAMS in duplicate samples. Black circles represent the
405 individual offset for each duplicate sample. The mean offset and the corresponding one sigma and two
406 sigma uncertainties are represented, respectively, by the dotted line, and the dark grey and clear grey
407 shaded areas.

408

409 **Figure 3.** Deep water comparison of $\Delta^{14}\text{C}$. The upper panels show $\Delta^{14}\text{C}$ measurements versus depth in deep
410 waters at six nearby locations in the eastern North Atlantic Ocean (for detailed locations please see Figure S2).
411 The plot in the left includes the three stations located in the 28.0 - 41 °N latitudinal band, while the right plot
412 includes the three southernmost stations located between 11 and 24.5 °N. The lower panels show the
413 corresponding variation for each set of data (minimum, first quartile, median, third quartile and maximum). The
414 acronyms of UM, UW, NOSAMS and LIP represent the four different laboratories that produced these $\Delta^{14}\text{C}$
415 observations.

416

417

418

419

420

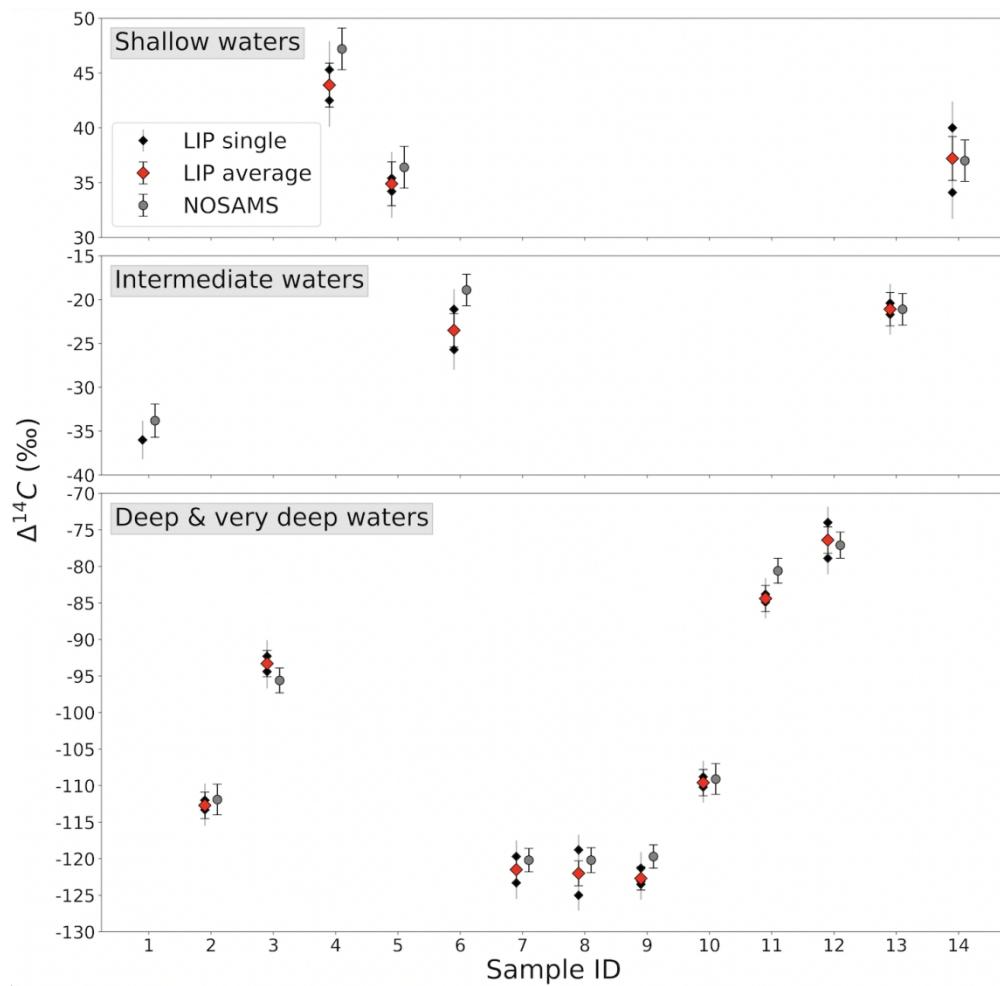
421

422

423

424 **SUPPLEMENTAL MATERIAL**425 **Table S1.** $\Delta^{14}\text{C}$ (‰) results reported by NOSAMS and LIP of the 14 duplicate samples collected during the
426 JC191 cruise in January - March 2020.

427


428 **Table S2.** Depth distribution of $\Delta^{14}\text{C}$ (‰) at selected stations sampled in the northeastern Atlantic Ocean
429 between 1973 and 2020.

430

431 **Figure S1.** The three different sample containers used in this study. The 120 mL serum bottle is the most
432 common used technique for sampling and storage at the Laboratory of Ion Beam Physics (LIP). At LIP we
433 also processed samples that were collected in foil bags during the JC191 cruise. The 500 mL glass bottle
434 with a glass stopper is the storage technique shown to be most reliable and commonly used by the National
435 Ocean Sciences Accelerator Mass Spectrometry facility. The samples stored in bottles require chemical
436 poisoning for preservation, while the foil bags allow avoiding the poisoning step by ensuring that the
437 isotopic carbon composition is preserved by freezing of the sample. Please see more detail in the main
438 body of text.

439

440 **Figure S2.** $\Delta^{14}\text{C}$ depth profile comparisons. (a) Location of stations. (b) Data produced at LIP for station 17 of
441 the OVIDE cruise in 2018 (OVI17) are compared to GEOSECS observations at station 115 in 1973 (GEO115)
442 and stations 111 of TTO/NAS in 1981 (TTN111). (c) Data produced at LIP at station 115 along the A05 section
443 in 2020 ($\text{A05}_{20}115$) are compared to GEOSECS observations at station 113 in 1973 (GEO113) and
444 measurements at station 26 along the A05 section in 1998 ($\text{A05}_{98}26$).

Figure 1. $\Delta^{14}\text{C}$ in duplicate seawater samples

257x252mm (144 x 144 DPI)

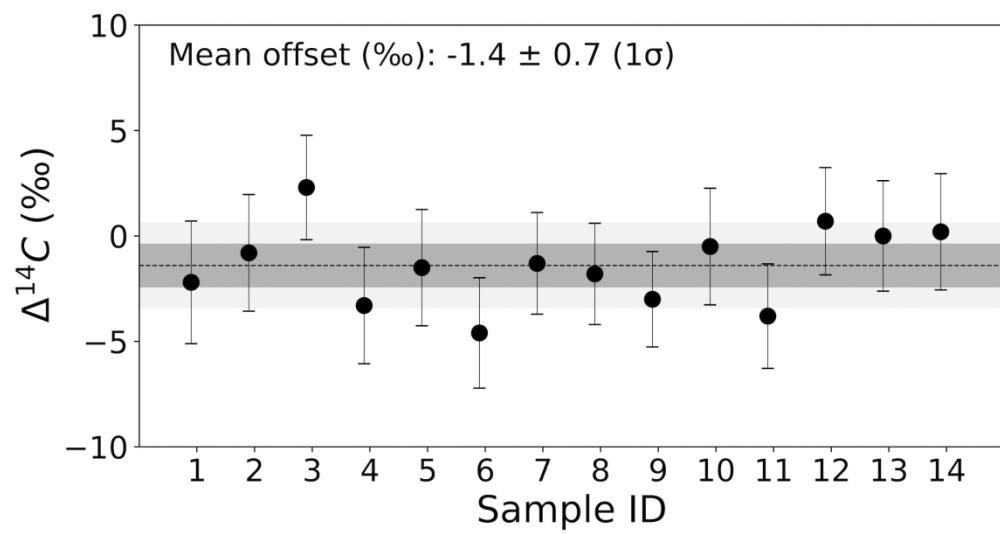
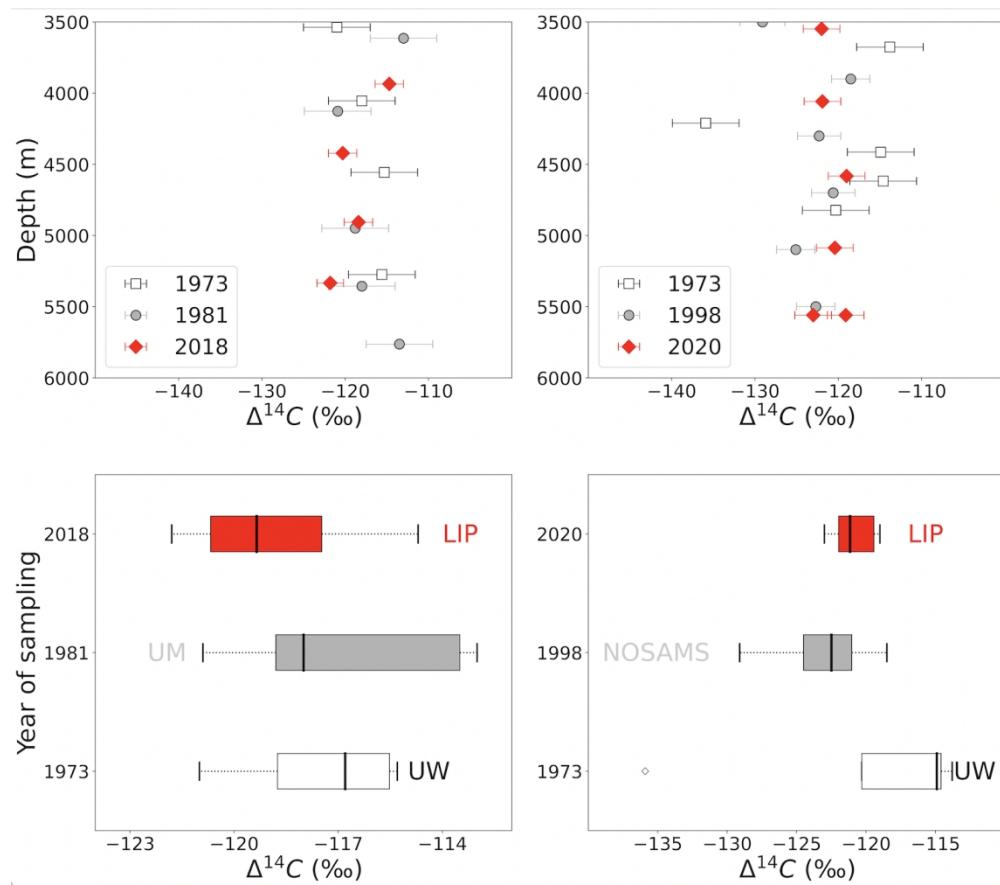



Figure 2. Offset of LIP results with respect to NOSAMS in duplicate samples.

458x242mm (144 x 144 DPI)

Figure 3. Deep water comparison of $\Delta^{14}\text{C}$.

288x252mm (144 x 144 DPI)