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Abstract—This paper presents a physics-oriented, mathemati-
cally tractable statistical wave model for analyzing the naturally
occurring chaotic dynamics of high-frequency reverberation
within complex cavity environments. The key ingredient is a
vector dyadic stochastic Green’s function method derived from
Wigner’s random matrix theory and Berry’s random wave
hypothesis. The stochastic Green’s function statistically replicates
the multipath, ray-chaotic interactions between ports of entry
and ports of interference without involving the complex details
within the target’s enclosure. The work achieves a physics-based
modeling and simulation capability that predicts the probabilistic
behavior of backdoor coupling to complex electronic enclosures.

Index Terms—Chaos, electromagnetic coupling, Green func-
tion, intentional electromagnetic interference, statistical analysis

I. INTRODUCTION

The study of electronics in strongly confined electromag-

netic (EM) environments has been a longstanding topic in EM

compatibility (EMC) and interference (EMI) community [1]–

[5]. One well-known example is the mode-stirred reverberation

chamber, which has been used as a standard laboratory facility

for EMC testing [6]. Another important application is the

intentional EMI (IEMI) to electronics hosted inside protective

metallic enclosures (e.g. computer chassis, aircraft cabin). The

external radio-frequency (RF) sources may penetrate into the

target system through back-door channels such as seams, aper-

tures, and cooling vents (so-called “ports of entry (POEs)”).

The induced currents and voltages at the pins of internal elec-

tronics (so-called “ports of interference (POIs)”) may disrupt

the normal functionality of circuits components, resulting in

either a short/long-term electronic upset or permanent damage,

subject to increased levels of pulsed energy. As electronics are

increasingly densely packed, working at higher frequencies,

and operating at lower voltages, they are more sensitive and

vulnerable to IEMI effects.

It is recognized that wave propagation inside electrically

large enclosures may undergo multiple reflection/scattering

from boundaries and internal structures, thus leading to ran-

domized phase, polarization, and direction of wave fields. In

the short wavelength limit, the wave scattering process may ex-

hibit chaotic ray dynamics, albeit the underline wave equation
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is linear [7], [8]. From the eigenmode perspective, the complex

boundary of the enclosure can lead to high modal density and

high modal overlap. Under the high-frequency reverberation,

the wave fields inside enclosures are very sensitive to the

exact geometry of interior structures. Minor differences in the

system configuration can result in significantly different EM

field distributions inside the enclosure.

Given the complexity of such environments, it is crucial

to develop stochastic models to account for the probabilistic

nature of wave fields. Recently, a stochastic Green’s function

(SGF) approach [9] was introduced to model EM wave physics

inside target enclosure with some approximately known in-

formation of cavity interior. At its heart, the SGF is based

on a statistical description of the eigenmodes of an enclosed

EM environment based on random matrix theory (RMT) [10].

Compared to related works, it rigorously separates the coherent

and incoherent influences currents in one element have on

fields of another element. Moreover, the statistics of the SGF

are determined by generic, macroscopic properties of the

cavity environment, including the operating frequency, cavity

volume, loading, and wall losses.

In this paper, we present a stochastic dyadic Green’s func-

tion approach as a means to relate the vector EM field to

its source. The rationale behind this is that the variation and

correlation of vectorial components are different at various

locations, e.g. the center of the cavity, close to the wall,

and close to the aperture. We have derived a mathematical

framework accounting for all scenarios rigorously. The results

provide solutions to three well-known problems of interest:

(1) EM radiation in complex enclosures; (2) stochastic field-

to-wire coupling; and (3) aperture coupling from an external

plane wave.

II. METHODOLOGY

A. Derivation of Stochastic Dyadic Green’s Function

Consider the 2nd order vector wave equation in a cavity

with reflecting boundary conditions, the vector dyadic Green’s

function for a source point at location r′ satisfies,

∇×∇×G− ω2µε+ jωµσG (r, r′) = −Iδ (r− r′) (1)

Note that σ is introduced to account for the energy losses

occurring inside the cavity, i.e. lossy medium and imperfectly
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conducting walls. If we introduce the following notations:

wavenumber k = ω
√
µε, and cavity quality factor Q = ω ε

σ ,

the Green’s function in the dyadic form can be constructed

from the eigenfunction expansion [11], [12]:

GS (r, r′) =
∑

i

Ψi (r, ki)⊗Ψi (r
′, ki)

k2 − k2i − j k
2

Q

(2)

where ⊗ indicates a tensor product. Ψi and ki are the ith

vector eigenfunction and eigenvalue of the cavity. Namely,

the radiation between source point r and receiving point r′

is determined by a linear combination of orthogonal cavity

eigenchannels. Whereas Equation 1 is in principle exact, it is

impractical to compute these eigenfunctions and eigenvalues,

due to the uncertainty and complexity of the environment.

Therefore, we prescribe substituting approximate, statisti-

cally defined eigenfunctions and eigenvalues. In particular, the

eigenfunction statistics are derived from Berry’s random wave

model [13] and eigenvalues statistics generated by Wigner’s

random matrix theory [10]. Assuming both field and source

points, r, r′ are away from the cavity boundary, the eigen-

function Ψi is approximated by a superposition of many plane

waves with uniformly distributed orientation and polarization:

Ψi (r, ki) = Ψx
i (r) x̂+Ψy

i (r) ŷ +Ψz
i (r) ẑ (3)

where the vector components are:

Ψx
i (r) ' lim

N→∞

N
∑

n=1

[an(− cosψpn sinφn−

sinψpn cosφn cos θn) cos (kiên ·r+ βn)] (4)

Ψy
i (r) ' lim

N→∞

N
∑

n=1

[an(cosψpn cosφn−

sinψpn sinφn cos θn) cos (kiên ·r+ βn)] (5)

Ψz
i (r)' lim

N→∞

N
∑

n=1

[an sinψpn sin θn cos (kiên ·r+ βn)] (6)

The polarization angle ψpn, direction ên and phase βn are

independent, uniform random variables. The amplitude an

satisfies 〈aman〉 =
√

2
NV δmn.

The central limit theorem implies all Ψx
i , Ψy

i , and Ψz
i are

mean-zero Gaussian random variables. To derive their vari-

ances, we replace the sum over the plane wave contributions

by a continuous average over all directions for the propagation

vector and polarizations. One can obtain the variances as:

Vxx = 〈Ψx
i (r) ,Ψ

x
i (r)〉 = 1

3V , Vyy = 〈Ψy
i (r) ,Ψ

y
i (r)〉 =

1
3V , Vzz = 〈Ψz

i (r) ,Ψ
z
i (r)〉 = 1

3V , Vxy = Vxz = Vyz = 0.

The next step is to derive the covariance between Ψi (r, ki)
and Ψi (r

′, ki). Without loss of generality, let r and r′ located

on the ẑ axis separating over a distance R = |r− r′|. The

covariance function can be derived as:

Cxx (R) = 〈Ψx
i (r) ,Ψ

x
i (r

′)〉 = 1

3V
f⊥ (kiR) (7)

Cyy (R) = 〈Ψy
i (r) ,Ψ

y
i (r

′)〉 = 1

3V
f⊥ (kiR) (8)

Czz (R) = 〈Ψz
i (r) ,Ψ

z
i (r

′)〉 = 1

3V
f// (kiR) (9)

where f⊥ (kiR) and f// (kiR) represent transversal and lon-

gitudinal correlation described by,

f⊥ (kiR) =
3

2

[

sin kiR

kiR
− sin kiR− kiR cos kiR

(kiR)
3

]

(10)

f// (kiR) = 3
sin (kiR)− kiR cos (kiR)

(kiR)
3 (11)

The results agree with the existing literature [14].

We can then reveal the statistical property of eigenfunctions

with correlated Gaussian random variables using the discrete

Karhunen-Loeve expansion [15]. The eigenfunctions are con-

strued by correlated Gaussian random variables ωx
i , ωy

i , ωz
i

and (ωx
i )

′, (ωy
i )

′, (ωz
i )

′, defined as:

Ψi (r, ki) ' ωx
i x̂+ ωy

i ŷ + ωz
i ẑ (12)

Ψi (r
′, ki) ' (ωx

i )
′x̂+ (ωy

i )
′ŷ + (ωz

i )
′ẑ (13)

where the covariance matrix of random variables is given by:
















Vxx 0 0 Cxx(R) 0 0
0 Vyy 0 0 Cyy(R) 0
0 0 Vzz 0 0 Czz(R)

Cxx(R) 0 0 Vxx 0 0
0 Cyy(R) 0 0 Vyy 0
0 0 Czz(R) 0 0 Vzz

















Accordingly, the tensor product Ψi (r, ki)⊗Ψi (r
′, ki) can be

written in a dyadic expression:

D (r, r′; ki) = ωx
i (ω

x
i )

′x̂x̂+ ωx
i (ω

y
i )

′x̂ŷ + ωx
i (ω

z
i )

′x̂ẑ

+ ωy
i (ω

x
i )

′ŷx̂+ ωy
i (ω

y
i )

′ŷŷ + ωy
i (ω

z
i )

′ŷẑ

+ ωz
i (ω

x
i )

′ẑx̂+ ωz
i (ω

y
i )

′ẑŷ + ωz
i (ω

z
i )

′ẑẑ (14)

It is easy to show that the mean value of above dyadic is:
〈

D(r, r′; ki)
〉

= [Cxx(R)x̂x̂+ Cyy(R)ŷŷ + Czz(R)ẑẑ] (15)

Similar to the scalar SGF study, the stochastic dyadic

Green’s function can also be compared to the free-space dyadic

Green’s function. By substituting Eqs. (7)-(9) into (15), one

can show that:
〈

D(r, r′; ki)
〉

= − 2π

kV
Im

[

G0 (r, r
′; ki)

]

(16)

Therefore, the mean value of the stochastic dyadic SGF can

be obtained as follows:

〈

GS (r, r′)
〉

=
∑

i

〈

D(r, r′; ki)
〉

k2 − k2i − j k
2

Q

= − 1

π

∑

i

∆(k2i )

k2 − k2i − j k
2

Q

Im
[

G0 (r, r
′; ki)

]

(17)

where ∆
(

k2i
)

= 2π2/(kV ) is the average spacing between

adjacent eigenvalues for 3D EM system. The sum over eigen-

modes can then be written as a frequency-domain integral

on average, and a statistically fluctuating contribution coming
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from the denominator when eigenvalues km ≈ k. By utilizing

the Sokhotski-Plemelj theorem, we can rewrite Eq. 2 as:

GS (r, r
′)=Re

[

G0(r, r
′;k)

]

+
∑

m

D(r, r′; km)

k2 − k2m − j k
2

Q

(18)

Finally, the statistics of normalized eigenvalues to

wavenumber
(

k2 − k2m
)

/∆
(

k2m
)

generated by the random

matrix theory (RMT) [9]. The expression of stochastic dyadic

Green’s function (S-DGF) is given by:

GS (r, r
′)=Re

[

G0(r, r
′;k)

]

+
∑

m

D(r, r′; km)

λ̃m − jα

kV

2π2
(19)

where a macroscopic dimensionless loss-parameter, α =
k3V/

(

2π2Q
)

is introduced. The result of S-DGF will be

utilized to analyze EM radiation problem in Sec. III. A.

B. Analysis of Wave Field close to Cavity Boundary

We note that in the derivation of S-DGF method, both source

and receiving points are assumed to be away from cavity walls.

Cavity eigenfunctions can thereby be locally approximated by

an isotropic, random superposition of plane waves. It is clearly

not the case in the evaluation of wave field close to cavity

boundaries. Due to short-orbit couplings to close-by walls, the

statistical properties of S-DGF are different from the uniform,

isotropic case. In particular, when the field point is located at

the highly conducting wall, the EM boundary condition needs

to be satisfied exactly.

Fig. 1: Illustration of field point close to boundary

For illustration, we consider the case of source electric

current located at r′ radiating electric field inside a metallic

cavity. The receiving point at r is close to a planar cavity

wall on the xy plane, as shown in Fig. 1. To incorporate the

reflected field from cavity wall, the random plane wave (RPW)

approximation of eigenfunction in Eq. 3 is modified as:

Ψe
i (r) ' Ψ̃x

i (r) x̂+ Ψ̃y
i (r) ŷ + Ψ̃z

i (r) ẑ

− Ψ̃x
i (ri) x̂− Ψ̃y

i (ri) ŷ + Ψ̃z
i (ri) ẑ (20)

where ri (= xx̂+ yŷ − zẑ) denotes the image position of

r (= xx̂+ yŷ + zẑ). Since Ψ̃ only consists of the plane waves

propagating toward the boundary,
〈

Ψ̃∗

i , Ψ̃
∗

i

〉

= 〈Ψ∗

i ,Ψ
∗

i 〉/2.

The variances of vector components in Ψe
i are derived as:

Vxx = 〈x̂ ·Ψe
i (r) , x̂ ·Ψe

i (r)〉 =
1

3V
[1− f⊥ (kih)] (21)

Vyy = 〈ŷ ·Ψe
i (r) , ŷ ·Ψe

i (r)〉 =
1

3V
[1− f⊥ (kih)] (22)

Vzz = 〈ẑ ·Ψe
i (r) , ẑ ·Ψe

i (r)〉 =
1

3V

[

1 + f// (kih)
]

(23)

Clearly, the variances in the transverse components and

longitudinal behave differently. As the observation point r

is far away from the boundary, all three cases reduce to

the uniform case. At the wall boundary z = 0, we have:

Vxx = Vyy = 0, Vzz = 2
3V . The tangential components

are zero and the normal component is doubled, thereby the

boundary condition of the eigenfunction is enforced.

To simplify the derivation of resulting vector SGF, we may

rewrite the Eq. 20 as: Ψe
i (r) = Ψ̃e

i (r)−Ψ̃e
i (ri)+ ẑẑ·Ψ̃e

i (ri).
By following a similar procedure in Sec. II. A to derive the

eigenfunction tensor product, Ψe
i (r)⊗Ψi (r

′), we can obtain

the vector dyadic SGF for the boundary electric field,

G
e,j

S (r, r′)=GS (r, r′)−GS (ri, r
′)+2ẑẑ ·GS (ri, r

′) (24)

The expression has an analogy with the well-know half-space

electric dyadic Green’s function of the first kind [16]. The

result of Eq. 24 is utilized to analyze the stochastic field-to-

wire coupling in Sec. III. B.

C. Analysis of Coupling to Cavities via Apertures

In many practical electronic systems, the enclosure maybe

open to outside with multiple apertures at the cavity wall.

Given an external RF radiation, the size and shape of the

aperture determines the amount of EM power coupled into

the cavity. Therefore, it is important to quantitatively study

the site-specific aperture radiation and coupling [17]–[22].

Consider a cavity wall with an irregular aperture sitting in

the xy plane, as illustrated in Fig. 2. The aperture is illuminated

by an EM plane wave due to external RF sources. We start by

introducing an artificial surface Sa over the aperture opening.

The computational domain can then be decomposed into the

interior confined cavity region and exterior host body region.

Fig. 2: Illustration for the aperture coupling problem

Based on the equivalence principle, the exterior subproblem

can be formulated by a surface integral equation (SIE), whose

unknowns involve the magnetic current M at the aperture [17]:

H+(r)=2Hinc(r)+2
jk0
η

∫∫

Sa

G0 (r, r
′) ·M (r′) dS′ (25)

To formulate the S-DGF of interior subproblem, we revise

the RPW approximation of field eigenfunction Ψh
i (r) as:

Ψh
i (r) ' Ψ̃x

i (r) x̂+ Ψ̃y
i (r) ŷ + Ψ̃z

i (r) ẑ

+ Ψ̃x
i (ri) x̂+ Ψ̃y

i (ri) ŷ − Ψ̃z
i (ri) ẑ (26)
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A similar expression of RPW model is used for source

eigenfunction Ψm
i (r′). One can then derive the electric S-DGF

of the second kind starting from the eigenfunction expansion:

G
h,m

S (r, r′) =
∑

i

Ψh
i (r, ki)⊗Ψm

i (r′, ki)

k2 − k2i − j k
2

Q

(27)

The details of the subsequent derivation are skipped for

brevity. The resulting SIE for interior subproblem is given by:

H−(r)=
jk0
η

∫∫

Sa

G
h,m

S (r, r′) ·M (r′) dS′ (28)

Through interface condition and Galerkin testing method

[23], the surface IEs in Eqs. (25) and (28) can be casted into

a matrix equation of the following form:

[Yh,m
0 +Y

h,m
S ]M = H

inc
(29)

where H
inc

represents the excitation vector. Y
h,m
0 is the

aperture admittance matrix for the exterior region in terms

of free-space dyadic Green’s function, whereas Y
h,m
S is the

aperture admittance matrix for the interior cavity region. The

solution of aperture currents can then be used to analyze the

statistics of transmitted power into the enclosure as well as the

statistical shielding effectiveness. The variability is due to only

approximately known information of interior cavity is used to

construct the S-DGF model.

III. VALIDATION AND VERIFICATION

A. Electromagnetic Radiation in Wave-chaotic Enclosures

The first numerical study concerns an EM radiation problem

with a pair of small electric dipoles as transmitter (Tx) and

receiver (Rx). The goal is to evaluate the statistics of induced

electric current at the Rx by changing its relative location and

orientation. The results will be useful to assess fundamental

EM radiation properties inside wave-chaotic enclosures.

The numerical experiment setup is illustrated in Fig. 3. Two

small electric dipoles of length l = 0.005m are placed inside

a 3D PEC enclosure and assumed to be far away from cavity

wall. The Tx dipole is located at the origin with its wire

directed along the x-axis. The current follows a triangular

variation with the peak current at the center I0 = 400A.

The operating frequency f = 1.5GHz. The cavity environ-

ment is characterized by the macroscopic, dimensionless loss-

parameter α = k3V/
(

2π2Q
)

. Both dipoles are discretized by

wire segments with the triangular basis function. The S-DGF

is used to generate the IE matrices of the two antennas.

Fig. 3: Illustration of two small dipoles inside the cavity

1) The case of large separation: We consider first two

electric dipole antennas are separated at a large distance,

d = 30λ. As two dipoles are well-separated, the statistical

behavior of S-DGF is dominated by the incoherent, diffusive

coupling, which corresponds to wave propagation through

many reflection/scattering paths inside the confined environ-

ment. The induced current at Rx antenna is expected to have

uniform phase distribution and Rayleigh distributed amplitude

[24], independent of the antenna orientation.

To confirm this assessment, we simulate two scenarios: one

is the Rx dipole directed along the x-axis, and the other one is

Rx dipole directed along the y-axis. The computed probability

density function (PDF) of the induced current are plot in Fig.

4(a) and 4(b), respectively. The results confirm the theoretical

assessment of Rayleigh distribution due to diffuse multipath

scattering, irrespective of antenna orientation.

(a) x-directional Rx

(b) y-directional Rx

Fig. 4: PDF of the amplitude of the current on the Rx dipole

in the case of large separation.

2) The case of propagation correlation: To evaluate the

proposed work in the case of propagation correlation, we ad-

just the distance between the two dipole antennas to 1λ. In this

case, the orientation of the two dipoles should be considered.

When the Rx dipole is placed along the x-axis, the coupling

between the Tx and Rx dipoles includes both the coherent

propagation of specular coupling and the incoherent, diffusive

propagation. The result gives rise to a Rician distribution

of induced current at the Rx dipole, as shown in Fig. 5(a).

Whereas the Rx dipole is placed along y-axis, there is still no

coherent propagation due to the prefect polarization mismatch.
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Thus, the Raleigh distribution is observed in Fig. 5(b), similar

to the case of large separation in Fig. 4.

(a) x-directional Rx

(b) y-directional Rx

Fig. 5: PDF of the amplitude of the current on the Rx dipole

in the case of small separation.

B. Stochastic Field Coupling to a Conducting Wire

In the literature, the stochastic field-to-wire coupling has

been studied theoretically and experimentally using reverber-

ation chambers. For this validation, the mode-stirred chamber

described in [25] is used. The dimensions of the chamber are

7.9m × 6.5m × 3.5m. The U-shaped conducting wire has a

length 1.1m and a 4mm2 cross section. The distance between

the parallel segment to the chamber wall is 32mm.

To replicate such a testing environment using the proposed

work, a simulation setup shown in Fig. 6 is designed. The

length L, height H , radius r are the same as the experimental

setting. The wire is terminated with R1=R2=50Ω at both sides.

A small dipole antenna is utilized to generate the stochastic

field inside the cavity. By placing the dipole far away from

the conducting wire, (kD ≥ λ), we can utilize the S-DGF

to calculate the power density of radiated diffusive field as:
〈

|E|2
〉

= ω2µ2Q(I0l)
2

24πkV . Next, based on the chamber constant

(Fig. 3 in [25]) and quality factor (Fig. 4 in [26]), we can

retrieve the dipole current I0l that is needed to generate the

same statistical cavity environment.

Both dipole and conducting wire are formulated by the

electric field integral equation (EFIE) [27] with the S-DGF

as kernel. A set of 5k Gaussian Orthogonal Ensemble (GOE)

random matrices with dimension of 2000× 2000 are used to

generate S-DGF EFIE matrices. Thereby, 5k induced voltage

samples at the wire terminals are computed with the proposed

work. The mean of the squared magnitude
〈

|V |2
〉

is compared

to measurement [25] in Fig. 7. A good agreement is observed.

Fig. 6: Illustration of the radiated dipole and conducting wire

Fig. 7: Mean of the squared magnitude of coupled voltage

C. Aperture Coupling from External Plane Wave

To verify the aperture coupling from external plane wave,

a complex, metallic computer chassis with various slots and

opening on the cavity wall, as shown in the Fig. 8, was chosen

as the test case. The aperture information is given in Table I.

The computer chassis was illuminated by an external plane

wave at 3GHz. The incident wave vector is k=(-1,0,0) and the

electric field is along the +z direction.

Fig. 8: The configuration of complex compute chassis

As there are internal losses in the computer chassis, the

quality factor is determined by the leakage loss only. We first

calculate the average leakage cross section using the EFIE
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method formulated on the aperture surfaces. Together with the

volume of the chassis, i.e. V = 0.035m3, the quality factor is

obtained as Q = 204.23 and the loss-parameter α = 2.12. The

predicted cumulative distribution function (CDF) of internal

E-fields are compared to the full-wave simulation results (by

Monte Carlo sampling spatial data inside the computer chassis)

in Fig. 9. Their corresponding mean values are also provided.

TABLE I: Aperture information for the computer chassis

front-side back-side
Length (m) Width (m) Length (m) Width (m)

1 0.148 0.045 0.103 0.055
2 0.159 0.045 0.147 0.122
3 - - 0.145 0.083

Fig. 9: The CDF of E-field amplitude for the computer chassis

IV. CONCLUSION

Due to increasingly complex electronic systems and contin-

ually evolving IEMI sources, it is expensive and impractical

to perform experimental tests for all possible IEMI effects.

Therefore, it identifies a timely and critical need for physics-

oriented computational models, which characterize the funda-

mental wave physics of confined EM environments.

The key question answered in this work is, given the

geometry/location of apertures and some approximately known

information of interior cavity (volume, shape, quality factor,

etc.), how can the statistics of the coupled internal EM

fields and induced voltages at the interior electronics be

predicted. We proposed a stochastic dyadic Green’s function

method, which integrated the deterministic (POEs and POIs)

and statistical (cavity interior) attributes in a rigorous and

comprehensive way.
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