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Abstract—This article presents a physics-oriented, mathemat-
ically tractable, statistical wave model for analyzing the wave
physics of high-frequency reverberation in complex cavity envi-
ronments. The key ingredient is a vector dyadic stochastic Green’s
function (SGF) method that is derived from the Wigner’s random
matrix theory and Berry’s random wave hypothesis. The SGF sta-
tistically replicates multipath, ray-chaotic communication between
vector sources and vectorial electromagnetic fields at displaced
observation points using generic, macroscopic parameters of the
cavity environment. The work establishes a physics-based modeling
and simulation capability that predicts the probabilistic behavior of
backdoor coupling to complex electronic enclosures. Experimental
results are supplied to validate the proposed work.

Index Terms—Chaos, electromagnetic coupling, Green function,
intentional electromagnetic interference, statistical analysis.

I. INTRODUCTION

T
HE study of electronics in strongly confined electromag-

netic (EM) environments has long been a topic of interest

in EM compatibility (EMC) and interference (EMI) commu-

nities [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12],

[13]. One well-known example is the mode-stirred reverberation

chamber, which has been utilized as a standard laboratory facility
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for EMC testing (emissions, immunity, shielding effectiveness,

etc.) [14], [15], [16], [17], [18], and recently applied as an

efficient emulator for wireless multipath fading scenarios [19],

[20], [21], [22]. Another important application is the intentional

EMI (IEMI) to electronics housed inside metallic enclosures

(e.g., computer chassis, aircraft cabin) [23], [24], [25], [26],

[27], [28], [29]. Radio-frequency (RF) power from external

sources may penetrate into the target system through back-door

channels, such as seams, apertures, and cooling vents [so-called

“ports of entry (POEs)”]. The induced currents and voltages at

the pins of internal electronics [so-called “ports of interference

(POIs)”] may disrupt the normal functionality of circuits com-

ponents, resulting in either a short/long-term electronic upset

or permanent damage, subject to increased levels of pulsed

energy. As electronics are increasingly densely packed, working

at higher frequencies, and operating at lower voltages, they are

more sensitive and vulnerable to IEMI effects.

It is recognized that wave propagation inside electrically

large enclosures may undergo multiple reflection/scattering

from boundaries and internal structures, thus leading to ran-

domized phase, polarization, and direction of wave fields. In

the short wavelength limit, the wave scattering process may

exhibit chaotic ray trajectories, albeit underline wave equation

is linear [30], [31], [32]. From the eigenmode perspective, the

complex boundary of the enclosure can lead to high modal

density and high modal overlap. Under high-frequency rever-

beration, the wave fields inside enclosures are very sensitive

to the exact geometry of interior structures. Minor differences

in the system configuration can result in significantly different

EM field distributions inside the enclosure. Research regarding

IEMI effects on electronic systems has shown large variations

not only between designs but also between different serial num-

bers due to assembly methods, cable routing, and component

variations [33].

Given the sensitive nature of electromagnetic wave physics to

environmental details, it is crucial to develop stochastic models

to account for the large variations in local field responses. In

this regard, a stochastic Green’s function (SGF) approach has

been introduced in [34] as a model solution to the scalar wave

equation in wave-chaotic environments. The SGF is based on the
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physics of wave-chaotic systems [35], [36] and the mathematics

of random matrix theory (RMT) [37], [38]. At its heart, the

SGF makes use of a statistical representation of the eigenmodes

and eigenfrequencies of an enclosed EM environment. The

SGF has both a mean and fluctuating component, and thus, it

separates the coherent and incoherent influences the currents in

one element have on fields of another element. Moreover, the

statistics of the SGF are determined by generic, macroscopic

parameters of the cavity environment, including the operating

frequency, cavity volume, loading, and wall losses. Thus, in

applying the SGF details of the geometry that affect the precise

spatial field distributions are dropped from the description,

while the abovementioned generic parameters are retained in

the formulation and allow for the calculation of the statistics of

the field fluctuations.

In this article, we present a stochastic dyadic Green’s function

(DGF) approach as a means to relate the vector EM field to

its vector source. The rationale behind this is that the variation

and correlation of vectorial components are different at various

locations, e.g., the center of the cavity, close to the wall, and

close to the aperture. We have derived a mathematical framework

accounting for all scenarios rigorously. Subsequently, we discuss

the application of stochastic DGF (S-DGF) approach to three

well-known problems of interest: 1) EM radiation and emission

in complicated enclosures, 2) stochastic EM field coupling to

conducting wires with loads, and 3) aperture coupling/excitation

of large cavities from an external plane wave source. Finally, the

proposed statistical models are validated in several experimental

settings. These include the coupling of radiation to wires in

a mode-stirred reverberation chamber and the excitation of an

enclosure through apertures.

II. METHODOLOGY

A. Introduction to Scalar Stochastic Green’s Function

Recently, a SGF approach [34] was introduced to model EM

wave physics inside large enclosures using generic, macroscopic

parameters of the cavity interior. The SGF can be considered as a

theoretical extension of the random coupling model (RCM) [26],

[39], [40] in which elements of the simulation domain are treated

as “ports” in the wave-chaotic cavity environment. The basics of

so-called wave chaos and RMT are discussed in [6], [7], [8], and

[41]. Compared to previous works, the SGF combines coherent

and incoherent propagation into a unified form, which includes

universal statistical aspects predicted by the RMT as well as

deterministic coupling characteristics.

Consider the second-order scalar wave equation inside a

metallic cavity with distributed losses. The cavity wall will be

treated as a perfect electric conductor (PEC) boundary condition.

Inside the cavity, it is filled with a statistically homogeneous

medium with permittivity ε and permeability µ. To account

for the energy losses occurring inside the cavity, a uniform,

finite conductivity σ of the medium is introduced. The Green’s

function for a source point at location r′ satisfies

(

∇2 + ω2µε− jωµσ
)

G (r; r′) = −δ (r− r′) . (1)

If we introduce the following notations as in [42]: Wave number

k = ω
√
µε, and cavity quality factor Q = ωε/σ, the Green’s

function can be constructed from the eigenfunction expansion

using the cavity-mode theory [43], [44]

G (r, r′; k) =
∑

i

ψi (r, ki)ψi (r,
′ ki)

k2 − k2i − j k2

Q

(2)

where ψi and ki are eigenfunctions (cavity eigenmodes) and

eigenvalues (eigenfrequencies). It is noted that in principle we

could introduce a statistical quality factor to account for the

mode-dependent fluctuations inQ values. Our assumption is that

we are considering losses that are not too localized in space. For

example, the quality factor Q due to surface losses in a cavity

with regular ray trajectories varies from mode to mode. However,

if the ray trajectories are ergodic, as assumed here, each mode

samples the losses equally and the modal fluctuations in quality

factor are small [45], [46]. Even if losses are localized but there

is a large number of localized loss regions, the fluctuations in

quality factors are reduced [47].

As indicated by (2), the communication between source point

r′ and receiving point r is determined by a linear combination

of cavity eigenmode contributions. Whereas (2) is in principle

exact, it is impractical to compute these eigenfunctions and

eigenvalues, due to the uncertainty and complexity of the en-

vironment.

In prior work [34], we prescribe substituting approximate,

statistically defined eigenfunctions and eigenvalues. In partic-

ular, the eigenfunction statistics are derived from the Berry’s

random wave model [35] and eigenvalues statistics generated by

the Wigner’s random matrix theory [37]. The resulting Green’s

function, which is statistical in nature, is named the stochastic

Green’s function. The SGF may be considered an effective,

probabilistic solution to wave propagation in wave-chaotic cav-

ities, which statistically describes the coherent and incoherent

components between a pair of source and receiving points. It can

then be used to solve self-consistently for the wave propagation

in the wave-chaotic media.

We remark that the statistics of the SGF do not depend on the

exact geometry of the enclosure or the precise configuration

of internal structures within the enclosure. Rather, they are

determined by a few generic, macroscopic properties of the

cavity environment, including the operating frequency, cavity

volume, loading, and wall losses.

B. Development of Stochastic Dyadic Green’s Function

In this work, we extend the scalar SGF to the S-DGF, which

is particularly convenient for analyzing vectorial EM fields.

Starting from the second-order vector wave equation inside a

3-D metallic cavity, the vector DGF for a source point at location

r′ satisfies

∇×∇×G−
(

ω2µε− jωµσ
)

G (r, r′) = −Iδ (r− r′) .
(3)
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The Green’s function in the dyadic form can be constructed from

the eigenfunction expansion

G (r, r′) =
∑

i

Ψi (r, ki)⊗Ψi (r
′, ki)

k2 − k2i − j k2

Q

(4)

where ⊗ indicates an outer product between two vectors. Ψi is

the ith vector eigenfunction of the cavity with PEC boundary

condition. The derivation of (4) is given in Appendix A.

In the following discussion, (4) will be reexpressed approxi-

mately by replacing the exact vector eigenmodes with approx-

imate modes based on superpositions of random plane waves

(RPW), and by replacing the exact eigenfrequency spectrum

with one modeled by RMT. The goal is to arrive at a model

DGF that replicates the statistical features of the exact DGF.

The approximate modes and spectrum will thus be constrained

by the properties of the actual cavity. The resulting statistical

model does not predict precise values for a specific, well-defined

geometry. Rather, it predicts the probability distribution function

of cavity EM fields for an ensemble of statistically similar cavity

environments.

Assuming both field and source points, r, r′ are far away from

the cavity boundary, the eigenfunction Ψi is locally approxi-

mated by a superposition of many plane waves with uniformly

distributed orientation and polarization

Ψi (r, ki) = Ψθ
i (r, ki) θ̂ +Ψφ

i (r, ki) φ̂ (5)

with the vector components Ψθ
i and Ψφ

i expressed as

Ψθ
i (r, ki) � lim

N→∞

N
∑

n=1

[an cosψncos (kiên ·r+ βn)] (6)

Ψφ
i (r, ki) � lim

N→∞

N
∑

n=1

[an sinψncos (kiên ·r+ βn)] . (7)

The polarization angle ψn, direction ên, and phase βn are inde-

pendent, uniform random variables. The amplitude an satisfies

〈aman〉 = 2
(NV )δmn, in which V is the volume of the cavity.

The RPW hypothesis in (5) is argued on the basis that the

waves, when thought of as rays, propagate through the enclosure

chaotically and ergodically. This means that nearby rays diverge

from each other exponentially, and eventually each ray visits

everywhere at all angles. This requires that the internal surfaces

of the enclosure not be shaped so as to create periodic ray

trajectories which are stable in the sense that nearby trajectories

do not diverge exponentially, e.g., a Fabrey–Perot resonator [48].

By converting the spherical coordinates to the Cartesian co-

ordinates, we can rewrite (5) as

Ψi (r, ki) = Ψx
i (r) x̂+Ψy

i (r) ŷ +Ψz
i (r) ẑ (8)

where the vector components are

Ψx
i (r) � lim

N→∞

N
∑

n=1

[an(− cosψn sinφn−

sinψn cosφn cos θn) cos (kiên ·r+ βn)] (9)

Fig. 1. Notation for the covariance derivation.

Ψy
i (r) � lim

N→∞

N
∑

n=1

[an(cosψn cosφn−

sinψn sinφn cos θn) cos (kiên ·r+ βn)] (10)

Ψz
i (r)� lim

N→∞

N
∑

n=1

[an sinψn sin θn cos (kiên ·r+ βn)] .

(11)

The central limit theorem implies, being the sum of contri-

butions from a large number of RPWs, all Ψx
i , Ψy

i , and Ψz
i are

zero mean Gaussian random variables. To derive their variances,

we replace the sum over the plane wave contributions by a

continuous average over all directions for the propagation vector

and polarizations, i.e.,

1

N

∑

n

[f ]≈ 1

2π

∫ 2π

0

dψ
1

4π

∫ 2π

0

dφ

∫ π

0

dθ [f sin θ]

where f represents a general function in terms of θ, φ, and ψ.

As is shown in Appendix B, one can obtain the variances as

Vxx = 〈Ψx
i (r) ,Ψ

x
i (r)〉 =

1

3V
(12)

Vyy = 〈Ψy
i (r) ,Ψ

y
i (r)〉 =

1

3V
(13)

Vzz = 〈Ψz
i (r) ,Ψ

z
i (r)〉 =

1

3V
(14)

Vxy = Vxz = Vyz = 0. (15)

The next step is to derive the covariance between Ψi(r, ki)
and Ψi(r,

′ ki). Without loss of generality, let r and r′ located on

the ẑ-axis separating over a distance R = |r− r′|, as illustrated

in Fig. 1. The covariance function between vectorial components

can be derived as (the proofs are shown in Appendix C)

Cxx(R) = 〈Ψx
i (r) ,Ψ

x
i (r

′)〉 = 1

3V
f⊥ (kiR) (16)

Cyy(R) = 〈Ψy
i (r) ,Ψ

y
i (r

′)〉 = 1

3V
f⊥ (kiR) (17)

Czz(R) = 〈Ψz
i (r) ,Ψ

z
i (r

′)〉 = 1

3V
f// (kiR) (18)
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where f⊥(kiR) and f//(kiR) represent transversal and longitu-

dinal correlation described by

f⊥ (kiR) =
3

2

[

sin kiR

kiR
− sin kiR− kiR cos kiR

(kiR)3

]

(19)

f// (kiR) = 3
sin (kiR)− kiR cos (kiR)

(kiR)3
. (20)

The results agree with the existing literature [49], [50].

We can then reveal the statistical property of eigenfunctions

with correlated Gaussian random variables using the discrete

Karhunen–Loeve expansion [51], [52]. The eigenfunctions are

constructed by correlated Gaussian random variables wx
i , wy

i ,

wz
i and (wx

i )
′, (wy

i )
′, (wz

i )
′, defined as

Ψi (r, ki) � wx
i x̂+ wy

i ŷ + wz
i ẑ (21)

Ψi (r,
′ ki) � (wx

i )
′x̂+ (wy

i )
′ŷ + (wz

i )
′ẑ (22)

where the covariance matrix of the six Gaussian random vari-

ables [wx
i , w

y
i , w

z
i , (w

x
i ),

′ (wy
i ),

′ (wz
i )

′] is given by

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Vxx 0 0 Cxx(R) 0 0

0 Vyy 0 0 Cyy(R) 0

0 0 Vzz 0 0 Czz(R)

Cxx(R) 0 0 Vxx 0 0

0 Cyy(R) 0 0 Vyy 0

0 0 Czz(R) 0 0 Vzz

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

(23)

Accordingly, the outer product Ψi(r, ki)⊗Ψi(r
′, ki) can be

written in a dyadic expression

D (r, r′; ki) = wx
i (w

x
i )

′x̂x̂+ wx
i (w

y
i )

′x̂ŷ + wx
i (w

z
i )

′x̂ẑ

+ wy
i (w

x
i )

′ŷx̂+ wy
i (w

y
i )

′ŷŷ + wy
i (w

z
i )

′ŷẑ

+ wz
i (w

x
i )

′ẑx̂+ wz
i (w

y
i )

′ẑŷ + wz
i (w

z
i )

′ẑẑ.
(24)

It is easy to show that the mean value of above dyadic is
〈

D(r, r′; ki)
〉

= Cxx(R)x̂x̂+ Cyy(R)ŷŷ + Czz(R)ẑẑ. (25)

After incorporating the Berry’s RPW hypothesis and statisti-

cal approximation of the eigenfunction outer product, (4) can be

approximated by

GS (r, r′; k) ≈
∑

i

D(r, r′; ki)

k2 − k2i − j k2

Q

. (26)

Similar to the scalar SGF study, (26) can also be compared

with the vector DGF in a homogeneous medium. We recall the

well-known DGF formulation

G0 (r, r
′; k) =

(

I+
∇∇
k2

)

e−jk|r′−r|

4π |r′ − r| (27)

where I is the identity tensor. The explicit dyadic form of (27)

can be written as

G0(r, r
′; k) =

{[(

3

k2R2
+

3j

kR
− 1

)

R̂R̂

+

(

1− j

kR
− 1

k2R2

)

Î

]

e−jkR

4πR

}

. (28)

Regarding the two points shown in Fig. 1, we have the real

and imaginary parts

Re
[

G0 (r, r
′; k)

]

=
k

4π

[(

2 cos kR+ 2kR sin kR

k3R3

)

ẑẑ

+

(

cos kR

kR
− cos kR+ kR sin kR

k3R3

)

(x̂x̂+ ŷŷ)

]

(29)

Im
[

G0 (r, r
′; k)

]

=
k

4π

[(

2kR cos kR− 2 sin kR

k3R3

)

ẑẑ

−
(

sin kR

kR
− sin kR− kR cos kR

k3R3

)

(x̂x̂+ ŷŷ)

]

. (30)

In addition, by applying the Sokhotski–Plemelj theorem, the

real part, Re [G0(r, r
′; k)], can also be expressed as

Re
[

G0 (r, r
′; k)

]

=− 1

π
P
∫

dk2n
k2 − k2n

Im
[

G0 (r, r
′; kn)

]

(31)

whereP denotes the Cauchy principal value. Equation (31) gives

rise to the Kramers–Kronig relation.

Next, by substituting (16)–(18) into (25), we can show that

〈

D(r, r′; ki)
〉

= − 2π

kiV
Im

[

G0 (r, r
′; ki)

]

. (32)

Starting from (26), we now take an average over the outer

product of eigenfunctions. Since the eigenfunctions are orthog-

onal and the statistics of the eigenfunctions are taken to be

independent of those of the eigenvalues in this process, we have

〈

GS (r, r′; k)
〉

=
∑

i

〈

D(r, r′; ki)
〉

k2 − k2i − j k2

Q

(33)

= − 1

π

∑

i

2π2

kiV

Im[G0 (r, r
′; ki)]

k2 − k2i − j k2

Q

(34)

� − 1

π

∑

i

∆(k2i )

k2 − k2i − j k2

Q

Im
[

G0 (r, r
′; ki)

]

(35)

≈ − 1

π

∑

i

∆(k2i )

k̃2 − k2i
Im

[

G0 (r, r
′; ki)

]

.

(36)

In (35), we have introduced a function ∆(k2i ) � 2π2/(kiV ),
which can be understood as the approximate spacing between

adjacent squared eigenvalues, (k2i+1 − k2i ). The physical justifi-

cation goes as follows. For a 3-D EM cavity, the model density

is given by the Weyl formula, ρ(k) ∼ (k2 V )/π2 [8]. Thereby,

the spacing between adjacent eigenvalues can be expressed as

∆(k) = 1/ρ(k) � π2/(k2 V ) and the spacing between squared

eigenvalues is ∆(k2) = 2k∆(k) � 2π2/(kV ) [13].

In (36), a complex wavenumber k̃ is introduced as k̃ = k(1−
j/2Q). For electrically large, high-Q cavities, the k̃2 can be
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approximated as

k̃2 = k2
(

1− j

Q
+

1

4Q2

)

≈ k2
(

1− j

Q

)

. (37)

Comparing (36) and (31), the sum over eigenmodes can

then be written as a frequency-domain integral on average. By

using the Sokhotski–Plemelj theorem for the real line, the mean

value of (36) approaches the deterministic, homogeneous dyadic

Green function when k/Q � 1
〈

GS (r, r′; k)
〉

≈ Re
[

G0(r, r
′;k)

]

−jIm
[

G0(r, r
′;k)

]

. (38)

The construction of the S-DGF is analogous to the RCM [8]

and the scalar SGF [34]. We first separate the sum in (26) into

two components. The first component consists of many terms in

which the denominator has the property of k2i �≈ k2, whereas

the second component includes the terms with denominator

k2i ≈ k2. The mean value of the first component asymptotically

reproduces the principal integral and, thereby can be expressed

as Re [G0(r, r
′;k)]. Moreover, the fluctuating contribution of S-

DGF is dominated by the second component for which k2i ≈ k2.

Consequently, it suffices to construct the expression of S-DGF

as

GS (r, r
′; k)≈Re

[

G0(r, r
′;k)

]

+
∑

m

D(r, r′; km)

k̃2 − k2m
. (39)

When we apply the S-DGF to a point source electric current,

the first part in (39) has the physical meaning of the reactive

field that relates to the nonradiative, stored energy; whereas the

second part represents the fluctuating radiative field.

Finally, we utilize the RMT to analyze the statistical property

of cavity eigenvalues [34]. For problems satisfying the time-

reversal symmetry, the Gaussian orthogonal ensemble (GOE)

of random matrices is considered. After we calculate the eigen-

values λ̃ from the GOE random matrices, the statistical property

of normalized eigenvalues is approximated by

k̃2 − k2m ≈
(

k2 − k2m
∆̄

− j
k2

∆̄Q

)

∆̄ ≈ (λ̃m − jα)∆̄ (40)

where the α is a macroscopic dimensionless loss-parameter

defined by α = k3 V/(2π2Q), and the ∆̄ is the mean spacing

between adjacent square eigenvalues when k2m ≈ k2. According

to the definition of ∆(k2m) function introduced following (36),

we have ∆̄ = 2π2/(kV ). After incorporating the RMT approx-

imation, the final expression of S-DGF is given by

GS (r, r
′; k)=Re

[

G0(r, r
′;k)

]

+
∑

m

D(r, r′; km)

λ̃m − jα

kV

2π2
. (41)

Equation (41) is a central result of our approach. It is an

expression for the mean and fluctuating parts of the Green’s

function describing how a current source at point r creates a

vector field at point r′. Here it is assumed that the two points r

and r′ are both far from cavity boundaries and only the direct

propagation of radiation from r to r′ contributes to the mean

part. The modifications to (41) when one or both of the points

are near a boundary will be introduced in the next section. The

fluctuating part of (41) is evaluated in two steps. First, one

generates six zero mean Gaussian random variables from an

ensemble with a covariance matrix given by (23). Then one

inserts these random variables in (21) and (22). Finally, for each

term in the sum evaluate the denominator using a numerically

generated spectrum. It is through the covariance matrix and

eigenvalue spacing distribution that information about the cavity

under consideration is conveyed.

C. Analysis of Dipole Radiation Inside Enclosures

Equation (41) can be directly utilized to analyze electromag-

netic radiation problems inside wave-chaotic environments. For

example, we consider a small electric dipole of length l placed

inside a 3-D metallic enclosure. The dipole is located at the origin

with its wire directed along the ẑ-axis. The current follows a

triangular variation and the peak current at the center is denoted

by I.
The radiated electric field can be expressed as

E=jωµ

∫

GS (r, r
′) · J (r′) dr′ = jωµGS (r, r

′) · ẑ Il
2

(42)

where the definition of S-DGF is given in (41).

When the field point is far away from the origin, the electric

field is dominated by the incoherent (diffusive) propagation.

Equation (42) simplifies to: E ≈ jωµGS
Il
2 , where the expres-

sion of GS can be written as

GS=
∑

m

wx
m(wz

m)′x̂+ wy
m(wz

m)′ŷ + wz
m(wz

m)′ẑ

λ̃m − jα

kV

2π2
(43)

where wx
m, wy

m, wz
m, and (wz

m)′ are independent, zero mean

Gaussian random variables.

Namely, the radiated electric field E consists of three diffuse

scalar components

Ex = jωµ
Il

2

kV

2π2

∑

m

wx
m(wz

m)′

λ̃m − jα
= jωµ

Il

2

kV

2π2
gxz (44)

Ey = jωµ
Il

2

kV

2π2

∑

m

wy
m(wz

m)′

λ̃m − jα
= jωµ

Il

2

kV

2π2
gyz (45)

Ez = jωµ
Il

2

kV

2π2

∑

m

wz
m(wz

m)′

λ̃m − jα
= jωµ

Il

2

kV

2π2
gzz (46)

where we have introduced three parameters gxz , gyz , and gzz
to simplify the expression. Those parameters depend on Gaus-

sian random variables wx
m, wy

m, wz
m, RMT-based calculation

of eigenvalues λ̃m, and the cavity loss-parameter α. Since the

Gaussian random variables are uncorrelated, the mean value of

Ex, Ey , or Ez is zero. Often at times, one may also be interested

in the mean of the squared electric field amplitude, as it is related

to the energy density inside the cavity. To derive it, we first need

to calculate the variance of gxz , gyz , and gzz in (44)–(46).

Appendix D provides the detailed derivation. The results

show that the variance is: Var(gxz) = Var(gyz) = Var(gzz) =
π/(9V 2α). As a result, the mean of the squared amplitude of

scalar components is derived as

〈

|Ex|2
〉

=
〈

|Ey|2
〉

=
〈

|Ez|2
〉

=
ω2µ2

72π

Q

kV
(Il)2 . (47)
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Fig. 2. Illustration of wave field close to cavity boundary.

Therefore, the mean value of the squared amplitude of vector

electric field E reads

〈

|E|2
〉

=
〈

|Ex|2
〉

+
〈

|Ey|2
〉

+
〈

|Ez|2
〉

=
ω2µ2

24π

Q (Il)2

kV
.

(48)

In a reverberation chamber setting, the result of (48) is related to

the square of the chamber constant. Equation (48) will be used in

Section III-B to generate a reverberation chamber environment.

D. Analysis of Wave Field Close to Planar Boundary

We note that in the derivation of S-DGF method, both source

and receiving points are assumed to be away from cavity walls.

Cavity eigenfunctions can, thereby be locally approximated

by an isotropic, random superposition of plane waves. It is

clearly not the case in the evaluation of wave fields close to

cavity boundaries. Due to the presence of close-by walls, the

statistical properties of S-DGF are different from the uniform,

isotropic case. In particular, when the field point is located at the

highly conducting wall, the EM boundary condition needs to be

satisfied exactly.

For the purpose of illustration, we consider the case of source

electric current located at r′ radiating electric field inside a

metallic cavity. The receiving field point at r is close to a planar

cavity wall on the xy plane, as shown in Fig. 2. To incorporate

the reflected field from the cavity wall, the RPW approximation

of eigenfunctions in (8) is modified as

Ψe
i (r) � Ψ̃x

i (r) x̂+ Ψ̃y
i (r) ŷ + Ψ̃z

i (r) ẑ

− Ψ̃x
i (ri) x̂− Ψ̃y

i (ri) ŷ + Ψ̃z
i (ri) ẑ (49)

where ri(= xx̂+ yŷ − zẑ) denotes the image position of r(=
xx̂+ yŷ + zẑ). Since Ψ̃ only consists of the plane waves prop-

agating toward the boundary,
〈

Ψ̃∗
i , Ψ̃

∗
i

〉

= 〈Ψ∗
i ,Ψ

∗
i 〉/2.

The variances of vector components in Ψe
i are derived in

Appendix E. The results are as follows:

Vxx = 〈x̂ ·Ψe
i (r) , x̂ ·Ψe

i (r)〉 =
1

3V
[1− f⊥ (kih)] (50)

Vyy = 〈ŷ ·Ψe
i (r) , ŷ ·Ψe

i (r)〉 =
1

3V
[1− f⊥ (kih)] (51)

Vzz = 〈ẑ ·Ψe
i (r) , ẑ ·Ψe

i (r)〉 =
1

3V

[

1 + f// (kih)
]

. (52)

The variations in the transverse and longitudinal components

act differently, as indicated in the expression. When the observa-

tion point r is far away from the boundary, i.e., kih � 1, we have

Fig. 3. Illustration for the aperture coupling problem.

f⊥(kih) ≈ 0 and f//(kih) ≈ 0. The variations in (50)–(52) will

reduce to the uniform case in (12)–(14). At the wall boundary

z = 0, i.e., kih = 0, we have f⊥(kih) ≈ 1 and f//(kih) ≈ 1,

thereby

Vxx = Vyy = 0 (53)

Vzz =
2

3V
(54)

where the tangential components are zero and the normal com-

ponent is doubled, thereby the boundary condition of the eigen-

function is enforced.

To simplify the expression of the resulting vector SGF, we

may rewrite (49) as

Ψe
i (r) = Ψ̃e

i (r)− Ψ̃e
i (ri) + 2ẑẑ · Ψ̃e

i (ri) . (55)

By following a similar procedure in Section II-B to derive the

eigenfunction tensor product, Ψe
i (r)⊗Ψi(r

′), we can obtain

the vector dyadic SGF for the boundary electric field

G
e,j

S (r, r′)=GS (r, r′)−GS (ri, r
′)+2ẑẑ ·GS (ri, r

′) .
(56)

The expression has an analogy with the well-known half-space

electric DGF of the first kind [53].

E. Analysis of Cavity Aperture Excitation

In many practical electronic systems, the enclosure may be

open to the outside with multiple apertures in the cavity wall.

Given the incident external RF radiation, the size and shape of

the aperture determine the amount of EM power coupled into

the cavity. Therefore, it is important to quantitatively study the

site-specific aperture excitation and coupling [23], [54], [55],

[56], [57], [58].

Consider a cavity wall with an irregular aperture sitting in

the xy plane, as illustrated in Fig. 3. The aperture is illuminated

by an EM plane wave due to external RF sources. We start by

introducing an artificial surface Sa over the aperture opening.

The computational domain can then be decomposed into the

interior confined cavity subregion and exterior host body subre-

gion. Naturally, the exterior traveling wave physics and interior

cavity resonance physics can then be separated.

Based on the equivalence principle, one can obtain an equiva-

lent exterior problem by filling the interior subregion with a PEC.

The exterior subregion is then formulated by a surface integral
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equation (SIE), whose unknowns involve the magnetic current

M+ = E× ẑ at the aperture [54]. At the aperture surface, we

have the magnetic field relation

H+
t (r) = 2Hinc

t (r) +H
R,+
t (r) onSa. (57)

The H+
t represents the tangential components of the total mag-

netic field. The Hinc
t denotes the tangential components of the

incident magnetic field. The H
R,+
t represents the tangential

components of radiated magnetic field by the surface magnetic

current M+. Assuming a locally quasi-planar cavity wall at the

aperture location, we have

H
R,+
t (r) = 2

jk0
η

πτ

(
∫∫

Sa

G0(r, r
′) ·M+(r′) dS ′

)

(58)

where the η =
√

µ
ε is the wave impedance, the πτ (•) is a

tangential trace operator defined by: πτ (u) := n̂× (u× n̂)|Sa
.

Here the surface normal n̂ = ẑ for the exterior subregion.

An equivalent problem can be obtained for the interior cavity

subregion with the aperture covered by an electric conductor.

To formulate the aperture SIE of the interior subregion, we first

introduce the electric S-DGF of the second kind starting from

the eigenfunction expansion

G
h,m

S (r, r′) =
∑

i

Ψh
i (r, ki)⊗Ψm

i (r′, ki)

k2 − k2i − j k2

Q

. (59)

As comparable to (49), the RPW approximation of the magnetic

field eigenfunction Ψh
i (r) can be expressed as

Ψh
i (r) � Ψ̃x

i (r) x̂+ Ψ̃y
i (r) ŷ + Ψ̃z

i (r) ẑ

+ Ψ̃x
i (ri) x̂+ Ψ̃y

i (ri) ŷ − Ψ̃z
i (ri) ẑ. (60)

A similar expression of the RPW model is used for the source

eigenfunction Ψm
i (r

′)

Ψm
i (r′) � Ψ̃x

i (r
′) x̂+ Ψ̃y

i (r
′) ŷ + Ψ̃z

i (r
′) ẑ

+ Ψ̃x
i (r

′
i) x̂+ Ψ̃y

i (r
′
i) ŷ − Ψ̃z

i (r
′
i) ẑ. (61)

The aperture SIE for the interior subregion in terms of mag-

netic field is given by

H
R,−
t (r) =

jk0
η

πτ

(
∫∫

Sa

G
h,m

S (r, r′) ·M−(r′) dS ′
)

(62)

where the equivalent magnetic current M−=E×(−ẑ) =
−M+ enforces the continuity of tangential electric field at the

aperture. It is noted that the radiated magnetic field, H
R,−
t (r), is

the same as the total magnetic field H−
t (r) as there is no incident

field inside the cavity.

Finally, by applying the boundary condition at the aperture,

i.e., the continuity of magnetic fields for exterior and interior

subregions, H+
t (r) = H−

t (r), we have

−HR,+(r) +HR,−(r) = 2Hinc
t (r) onSa. (63)

Through interface condition and the Galerkin testing

method [59], the surface IEs in (58), (62), and (63) can be cast

in a matrix equation of the following form:

[Yh,m
0 +Y

h,m
S ]M = H

inc
(64)

Fig. 4. Schematic diagram of conducting wire problem.

where the H
inc

represents the excitation vector. The Y
h,m
0 is the

aperture admittance matrix for the exterior region in terms of

free-space DGF, whereas the Y
h,m
S is the aperture admittance

matrix for the interior cavity region. The detailed expression of

(64) is given in Appendix F. The solution of aperture currents can

then be used to analyze the statistics of transmitted power into

the enclosure as well as the statistical shielding effectiveness.

The variability is due to only approximately known information

of the interior cavity being used to construct the S-DGF model.

F. Stochastic Field Coupling to Conducting Wires

Wires and cables are routinely used in electronic systems

to interconnect antennas, printed circuit boards, and electronic

components. They often introduce additional coupling paths

from external IEMI sources to sensitive circuitry inside com-

puter enclosures. Thereby, it is important to study the mechanism

of wire coupling and interference from the external RF sources.

In general, the induced current and voltage on the wire/cable de-

pend on the self-capacitance, self-inductance, length and radius

of the wire, load impedances at the terminal, and statistical EM

fields inside the electronic enclosure [60], [61], [62], [63], [64],

[65].

A generic problem statement is given in Fig. 4. A U-shaped

thin conducting wire is placed parallel to the cavity wall with

both ends terminated with linear loads. Assuming the wire

radius is much smaller than the wavelength, we can neglect the

transverse component of the current inside the wire. Namely,

the electric current only has a longitudinal component that is

uniformly distributed over the periphery of the wire. The induced

current Jl along the wire and voltages at the port, due to an

incident EM wave, can then be calculated by an electric field

integral equation (EFIE) [66].

With the Galerkin method and appropriate basis along with the

testing functions, the problem of stochastic EM fields coupling

from the aperture to the conducting wire can be recast in a matrix

equation of the following compact form:

[

Y
h,m
0 +Y

h,m
S C

h,j
S

C
e,m
S Z

e,j
S

] [

Ma

Jl

]

=

[

H
inc

0

]

(65)

where Ma and Jl are solution vectors for magnetic current at

the aperture and electric current on the conducting wire. Com-

paring with (64), we have included the stochastic IE matrix Z
e,j
S

accounting for the EFIE of conducting wire, in which triangular

functions are used as basis and testing functions. Note that the
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Fig. 5. Illustration of the numerical experiment for the dipole radiation prob-
lem.

coupling matrices,C
h,j
S andC

e,m
S between aperture and wire are

also generated by the stochastic IE operator with the S-DGF as

the kernel.

By solving (65) with different S-DGF IE matrices in the

statistical ensemble, one can predict the statistics of induced

voltages/currents at the wire ports due to coupled EM fields

inside the enclosure, as a function of frequency and incident

angle of external IEMI sources.

We remark that as the Green’s function and integral equation

methods are used to model the metal wire, both transmission line

physics and high-frequency field coupling are modeled correctly.

Furthermore, the proposed S-DGF rigorously integrates both

the coherent propagation from apertures to conducting wires,

and incoherent diffuse coupling due to multiple rays bounced

from the cavity wall. Therefore, the statistical prediction of

conducting wire pickup incorporates the relative location and

orientation between apertures and wires, which is another unique

aspect of the proposed work.

III. VALIDATION AND VERIFICATION

A. Electromagnetic Radiation in Wave-Chaotic Enclosures

The first numerical study concerns an EM radiation problem

with a small electric dipole of length l inside a 3-D metallic

enclosure. The goal is to validate the statistics of radiated electric

field predicted by the S-DGF in (41) with full-wave numerical

simulations. The results will be useful to assess fundamental EM

radiation properties inside wave-chaotic enclosures.

The design of the numerical experiment is illus-

trated in Fig. 5. The dimension of the cavity is

[−0.5 m, 0.5 m]:[−0.5 m, 0.5 m]:[−0.5 m, 0.5 m] in length,

width, and height. The cavity wall is treated as the PEC boundary

condition. The cavity volume is filled with a lossy dielectric

material with a dielectric constant of 1 and a loss tangent

of 0.00194 at 2.475 GHz. Together with the cavity volume

1 m3, we can obtain the cavity quality factor Q = 515.625

Fig. 6. PDFs of Re[Ey ] comparing full-wave simulations and statistical pre-
dictions.

and the cavity loss parameter α = 13.7. A small electric

dipole of length l = 4mm directed along with ŷ-axis is placed

at [0.15 m, 0.15 m, 0 m]. The current follows a triangular

variation and the peak current at the center is denoted by

I = 1A. Finally, to generate a configuration ensemble in the

full-wave simulation, we have included an irregular Z-folded

stirrer consisting of five 0.3 by 0.3-m metallic plates that are

arranged in different folding angles. The center of the stirrer is

located at x = −0.25m and y = −0.25m.

On the statistical prediction using the S-DGF method, we can

express the radiated electric field as

E=jωµ

∫

GS (r, r
′) · J (r′) dr′ = jωµGS (r, r

′) · ŷ Il
2
.

(66)

To assess the statistics of radiated E-field as a function of

distance to the dipole, we consider a number of probe locations

inside the same xz-plane as the dipole. The y component of the

electric field at a probe location can be expressed as

Ey=
kωµIlV

4π

[

j

2V

(

cos kR

kR
− cos kR+ kR sin kR

k3R3

)

+
j

π

∑

m

ωy
m(ωy

m)′

λ̃m − jα

]

. (67)

It is noted that due to the coherent coupling between the source

and receiving points, ωy
m and (ωy

m)′ are correlated Gaussian

random variables, constructed by the covariance matrix in (23).

Regarding the full-wave simulation, we have used a commer-

cial software (CST) to simulate the same EM radiation problem.

In the simulation setup, the mode stirrer is rotated through 12

positions over 360 degrees. At each stirrer position, we collect

electric field samples at the xz plane of dipole location from

2.45 to 2.5-GHz with 0.25-MHz increment. Around 36, 54, 72 k

samples of electric fields are collected at circles of radius R1 =
0.035 m, R2 = 0.085 m, R3 = 0.16 m, respectively.

The probability density functions (PDFs) obtained from full-

wave simulation and the S-DGF prediction are plotted for

Re[Ey], Im[Ey], and amplitude |Ey| in Figs. 6–8. The mean
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Fig. 7. PDFs of Im[Ey ] comparing full-wave simulations and statistical pre-
dictions.

Fig. 8. PDFs of Ey amplitude comparing full-wave simulations and statistical
predictions.

TABLE I
MEAN VALUES OF RE[Ey ] AND IM[Ey ]

values of the data are given in Table I. We observe that, as the

distance between the dipole location and receiving point de-

creases, there is an increase in the coherent coupling component,

which results in a larger mean value. The results show generally

good agreement between the first-principles simulation and the

statistical prediction.

B. stochastic Field Coupling to a Conducting Wire

In the literature, the stochastic field-to-wire coupling has

been studied theoretically and experimentally in reverberation

chambers. For this validation, the mode-stirred chamber de-

scribed in [67] is used. The dimensions of the chamber are

7.9× 6.5× 3.5m. The U-shaped conducting wire has a length

1.1 m and a 4-mm2 cross-section. The distance between the

parallel segment to the chamber wall is 32 mm. The mode stirrer

Fig. 9. Illustration of the radiated dipole and conducting wire.

Fig. 10. Mean of the squared magnitude of coupled voltage.

is rotated in steps of 10 degrees for a frequency range from 200

to 1000 MHz in steps of 1 MHz.

To replicate such a testing environment using the proposed

work, a simulation setup shown in Fig. 9 is designed. The length

L, height H , and radius r are the same as the experimental

setting. The wire is terminated with R1 = R2 = 50Ω at both

ends. A small dipole antenna is utilized to generate the stochastic

field inside the cavity. By placing the dipole far away from

the conducting wire, (kD � 1), we can utilize the S-DGF

to calculate the power density of radiated diffusive field as:
〈

|E|2
〉

= ω2µ2Q(I0 l)2

24πkV . Next, based on the chamber constant

([67, Fig. 3]) and quality factor (Fig. 4 in [68]), we can retrieve

the dipole current I0 l that is needed to generate the same

statistical cavity environment.

Both the dipole and the conducting wire are treated using the

EFIE [66] with the S-DGF as the kernel. A set of 5 k Gaussian

Orthogonal Ensemble (GOE) random matrices with dimensions

of 2000× 2000 are used to generate an ensemble of S-DGF

EFIE matrices. As a result, 5 k induced voltage samples at the

wire terminal across R2 are computed. The mean of the squared

magnitude
〈

|V |2
〉

is compared with the measurements [67] in

Fig. 10. Good agreement is observed.

C. Experimental Validation

Next, we experimentally validate the proposed work using

a complex wave scattering environment. Fig. 11 illustrates the

testing environment of an aluminum box (of length 1.27 m,

width 1.22 m, and height 0.65 m) with irregular internal scat-

terers and a conducting paddle stirrer. Two monopole antennas

with electrical length λ/3 at frequency 6.45 GHz are mounted on
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Fig. 11. Configuration of the cavity testing environment. (a) Exterior view.
(b) Interior view.

the cavity wall as transmitter (Tx) and receiver (Rx). As shown

in Fig. 11, they are separated over a distance of L = 0.61 m,

which is about 13.12 λ.

In the measurement setup, both monopole antennas are con-

nected to the N5242 A PNA-X Microwave Network Analyzer.

The paddle-wheel mode stirrer that is controlled by a LabVIEW

program rotates 200 positions over 360 degrees. A total number

of 20-k S-parameter measurements are collected from 6.44 to

6.45 GHz with 0.1 MHz frequency stepping. In the simulation

setup, the volume of the cavity is calculated as 1.0071m3 and the

estimated cavity loss-parameter α = 10.16. A total set of 20-k
GOE random matrices with dimensions of 2000× 2000 are used

to generate S-DGF IE matrices. Therefore, 20-k S-parameter

samples are computed with the proposed work. The PDFs of

S-parameter amplitudes, |S11| and |S12|, are compared to the

measurement result in Fig. 12. A good agreement is observed.

To validate the proposed work in the case of coherent cou-

pling, we adjust the distance between the two monopole antennas

as 3.16 cm (i.e., 0.68 λ), as shown in Fig. 13. Since these two

antennas are close to each other, we expect an increase of the

coherent coupling component, which leads to a greater mean

value of the S12 parameter. The comparison of measurement

and simulation results are shown in Fig. 14. The results again

agree very well.

D. Aperture Coupling From External Plane Wave

Finally, we consider a numerical study of aperture cou-

pling from the external incident plane wave. A PEC

Fig. 12. PDFs of |S11| and |S12|.

Fig. 13. Measurement configuration of nearby antennas.

Fig. 14. PDFs of |S11| and |S12| for nearby antennas.

enclosure of cuboid shape with three apertures on the cav-

ity wall was chosen as the test case. The configuration of

the cavity is shown in Fig. 15. The dimension of the cavity

is [−0.5m, 0.5m]:[−0.5m, 0.5m]:[−0.5m, 0.5m] in length,

width, and height. Three apertures with circular shape, square

shape, and rectangular shape are located in the xy plane, yz

plane, and xz plane, respectively. The radius of the circular

aperture is 0.1 m. The size of the square aperture is 0.2 by

0.2 m. And the size of the rectangular aperture is 0.1 by 0.3 m.

An irregular Z-folded stirrer is introduced to emulate complex
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Fig. 15. Configuration of the cavity with apertures and stirrer.

internal structures inside realistic cavities [69], [70]. The stirrer

has five 0.3 by 0.3-mmetallic plates that are arranged in different

folding angles, as shown in Fig. 15(b). The center of the stirrer

is located at x = −0.25 m and y = −0.25 m. The enclosure is

illuminated by an external plane wave at 1 GHz. The incident

wave vector is k=(0, 0,−1), and the electric field is along the x
direction.

Our goal is to predict the statistics of coupled internal elec-

tric field density at specific locations. Two probe locations are

selected as: P1=(0.15m, 0m, −0.15m), and P2=(0.05m, 0m,

0.4m). It is noted that the P2 location is much closer to the

illuminated aperture than the P1. Thereby, a stronger coherent

coupling should be expected.

The statistical prediction consists of two steps. The first one

is to estimate the cavity quality factor and the loss parameter

α. As there are no internal losses inside the cavity, the quality

factor is determined by the power loss due to the aperture

leakage only. Consider a plane wave impinging on the wall

aperture, the power leakage problem can be solved by the EFIE

method formulated on the aperture surface. The leakage power

is calculated by integrating the Poynting vector over the surface

of the aperture. Next, the parameter of leakage cross-section

σlkg is calculated by dividing the leakage power with incident

power [11]. In the context of random superposition of plane

waves in cavity environments, the mean leakage cross-section,

Fig. 16. PDF of the amplitude square of electric field at two probe locations.

〈σlkg〉, is obtained by averaging the leakage cross-section for

many plane wave incidence angles and polarizations in the

angular domain. Together with the volume of the chassis, i.e.,

V = 1m3, the quality factor is obtained as Q = 984.5 and the

loss-parameter α = 0.473.

We can then utilize the calculated loss-parameter α = 0.473
to generate the S-DGF IE matrices in (65). A total set of 10-k
GOE random matrices with dimensions of 2000× 2000 are used

to generate S-DGF IE matrices. Therefore, a total number of10-k
electric field samples at locations P1 and P2 are computed with

the proposed work.

To validate the statistical prediction, we have conducted the

full-wave simulation utilizing the CST software. In the CST

simulation setup, the mode stirrer is rotated through 12 positions

over 360 degrees. At each stirrer position, an ensemble of electric

fields for the specific pickups is generated from 0.99 to 1.01 GHz

with 0.25-MHz increment. Thus, a total number of 972 electric

field samples are collected for each location point in the exper-

iment. The statistical prediction and the full-wave simulation

results are presented in Fig. 16. It is noted that the CST full-wave

simulations were limited to 12 stirrer configurations, which

result in coarser resolution in the histograms.

Both the stochastic and full-wave simulations were conducted

on a workstation with Intel Xeon silver 4114 CPU and 208 GB of
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memory. The construction of 10-k S-DGF IE matrices took 26.2

min, and the solution of the IE matrices was obtained in 7 min.

Regarding the full-wave simulations of 12 cavity configurations,

each simulation took 5 h and 15 min on average. Thereby, a

total time of 3780 min is required to obtain the results of the

configuration ensemble.

IV. CONCLUSION

In this article, we have proposed a sS-DGF method as an

effective statistical solution to the vector wave equation in large,

complex enclosures. The S-DGF is based on a statistical de-

scription of the eigenmodes of an enclosed EM environment. The

eigenfunction statistics are derived from the vector random wave

model, taking into account different orientations of polarization.

A tensor representation of field-field correlation is utilized for the

transversal and longitudinal field-field correlations. The eigen-

values statistics are generated by the Wigner’s random matrix

theory.

As a statistical wave model, the S-DGF self-consistently char-

acterizes coherent and incoherent propagations from the vector

EM source to the vector EM field using generic, macroscopic

parameters of the cavity environment. By analogy with the stan-

dard Green’s function in a deterministic environment, we expect

the S-DGF to play an important role in the numerical modeling

of the vector wave equation in confined EM environments.

Applicationwise, the work can be used for the study of an-

tennas and electronics within large and complicated enclosures,

such as EMC testing in reverberation chambers and wireless

networks in industrial environments. In the context of IEMI

coupling, the work serves as a physics-oriented computational

model, which integrated the deterministic (POEs and POIs)

and statistical (cavity interior) attributes in a rigorous and

comprehensive way. Such a modeling capability is valuable

for predicting intentional interference, assessing vulnerabilities,

protecting sensitive electronics, and developing frequency-agile

waveforms.

Our future work is devoted to expanding the S-DGF method

from the spatial domain to the space-wavenumber domain and

the space-time domain. The research goal is to accomplish

a computational statistical model for the temporal, spectral,

and spatial characteristics of wave physics in large, complex

enclosures.

APPENDIX A

A. Derivation of the Dyadic Green’s Function Using

Eigenfunction Expansion

Consider the second-order vector wave equation

∇×∇×E (r)− k̃2E (r) = −jωµ0J (r′) (68)

where k̃2 is the square of complex wave number, defined by

k̃2 = ω2µ0ε− jωµ0σ = k2 − jk2/Q. (69)

The vector DGF satisfies

∇×∇×G (r, r′)− k̃2G (r, r′) = −Iδ (r− r′) . (70)

According to the nomenclature of dyadic analysis, I is the unit

dyad (idemfactor), which can be decomposed into x̂x̂+ ŷŷ +

ẑẑ. Therefore, the DGF G can be also decomposed into three

vector components Gm with m = (x, y, z), satisfying

∇×∇×Gm (r, r′)− k̃2Gm (r, r′) = −m̂δ (r− r′) . (71)

We remark thatGm(r, r′) represents the vector electric field due

to an infinitesimal electric dipole oriented in the direction of m̂

and located at r′.
To solve (71), we expand Gm(r, r′) in the basis of the

eigenfunctions of the cavity with PEC boundary condition, i.e.,

Gm(r, r′) =
∑

i C
m
i Ψi(r, ki), where

∇×∇×Ψi (r, ki)− k2iΨi (r, ki) = 0 in volume V (72)

n̂×Ψi (r, ki) = 0 on boundary S. (73)

The eigenfunctions are orthogonal, 〈Ψi(r, ki),Ψj(r, kj)〉 =
δij , with respect to the inner product

〈u,v〉 =
∫

V

u · vdV. (74)

Next, testing (71) with Ψi(r, ki) yields

Cm
i =

∑

i

m̂Ψi (r
′, ki)

k̃2 − k2i
, m̂ = (x̂, ŷ, ẑ) . (75)

Then we have

Gm (r, r′) =
∑

i

Ψi (r, ki) m̂Ψi (r
′, ki)

k̃2 − k2i
. (76)

By utilizing (76) and the definition of tensor product, we

obtain the DGF in the form of G(r, r′) =
∑

m Gm(r, r′)m̂,

which leads to the expression in (4).

B. Variance of the Cavity Eigenfunction

To derive the variance of eigenfunctions Ψi(r), we recall that

the polarization angle ψn in the vector components is uniformly

distributed in [0, 2π]. We first calculate the variance of the

spherical vector component by

〈

Ψθ
i (r) ,Ψ

θ
i (r)

〉

=
1

2π

∫ 2π

0

cos2 ψndψn × 2

V

1

4π
∫ π

0

∫ 2π

0

cos2 (kiên ·r+ βn) dφ sin θdθ

=
1

2
× 1

V
=

1

2V
.

Similarly, we can obtain

〈

Ψφ
i (r) ,Ψ

φ
i (r)

〉

=
1

2V
〈

Ψθ
i (r) ,Ψ

φ
i (r)

〉

=
〈

Ψφ
i (r) ,Ψ

θ
i (r)

〉

= 0.

Thus, the resulting variance of eigenfunctions Ψi(r) can be

calculated by

〈Ψi (r) ,Ψi (r)〉 =
〈

Ψθ
i (r) ,Ψ

θ
i (r)

〉

+
〈

Ψφ
i (r) ,Ψ

φ
i (r)

〉
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+
〈

Ψθ
i (r) ,Ψ

φ
i (r)

〉

+
〈

Ψφ
i (r) ,Ψ

θ
i (r)

〉

=
1

V
.

Next, we show that the same result can be obtained using

the Cartesian coordinate expression in (8). To simplify the

expression, we assume the direction ên and r are located at x-y

plane. We first calculate the variance of the vector component

by

〈Ψx
i (r) ,Ψ

x
i (r)〉 =

1

2

∫ π

0

1

2π

∫ 2π

0

1

2π

∫ 2π

0

[

cos2 ψn sin
2 φn

+sin2 ψn cos
2 φn cos

2 θ
]

dψndφn sin θdθ

× 2

V

1

2π

∫ 2π

0

cos2 (kiên ·r+ βn) dφ

=

(

1

2
× 1

2
× 1 +

1

2
× 1

2
× 1

3

)

× 1

V

=
1

3V
.

Similarly, we have for the result of the y component. The

derivation of the z component is given by

〈Ψz
i (r) ,Ψ

z
i (r)〉 =

1

2π

∫ 2π

0

sin2 ψndψn × 1

2

∫ π

0

sin3 θdθ

× 2

V

1

2π

∫ 2π

0

cos2 (kiên ·r+ βn) dφ

=
1

2
× 2

3
× 1

V

=
1

3V
.

C. Autocorrelation of Eigenfunctions

As illustrated in Fig. 1, the covariance function of longitudinal

vector components can be calculated by

〈Ψz
i (r) ,Ψ

z
i (r

′)〉

=
2

V

〈

sin2 ψn sin
2 θn cos (kiên · r+ βn) cos (kiên · r′ + βn)

〉

=
1

V

〈

sin2ψn sin
2θn[cos(kiên ·ẑR)+cos(kiên ·(r+r′)+2βn)]

〉

=
1

V

1

2π

∫ 2π

0

sin2 ψndψn×
1

2

∫ π

0

sin3 θn cos (kiR cos θn) dθn

=
1

4V

∫ 1

−1

(

1− u2
)

cos (kiRu) du

=
1

V

sin kiR− kiR cos kiR

(kiR)3

=
1

3V
f// (kiR) .

Similarly, we could also derive the covariance function be-

tween transverse vector components

〈Ψx
i (r) ,Ψ

x
i (r

′)〉 = 〈Ψy
i (r) ,Ψ

y
i (r

′)〉

=
2

V

[

sin kiR

kiR
− sin kiR− kiR cos kiR

(kiR)3

]

=
1

3V
f⊥ (kiR) .

D. Derivation of the Variance Var(gxz)

From (44), we introduce gxz as

gxz =

M
∑

m

wx
m(wz

m)′

λ̃m − jα
(77)

where wx
m and (wz

m)′ are two independent, zero mean Gaussian

random variables with the variance of 1/(3V )2. According to

RMT, λ̃m follows uniform distribution in [−M/2,M/2] (M �
1). Then, we have the PDF of λ̃m described by

f
(

λ̃m

)

=

{

1
M −M

2 ≤ λ̃m ≤ M
2

0 otherwise.
(78)

It is easy to prove that the mean 〈gxz〉 = 0, then the variance of

gxz can be derived as

Var (gxz) =
〈

|gxz|2
〉

=

〈

M
∑

m

{wx
m(wz

m)′}2
λ̃2
m + α2

〉

=
1

9V 2

M
∑

m

1

λ̃2
m + α2

.

Based on the Monte Carlo integration, we have

M
∑

m

1

λ̃2
m + α2

≈
∫ M/2

−M/2

dλ̃m

λ̃2
m + α2

≈
∫ ∞

−∞

dλ̃m

λ̃2
m + α2

=
arctan

(

λ̃m/α
)

α

∣

∣

∣

∣

∞
−∞ =

π

α
.

Thus, we have Var(gxz) = π/(9V 2α). Fig. 17 shows the

variance of gxz with increasing α (assuming 1/(9V 2) = 1),

where a good agreement is observed as expected. Similarly,

we can also obtain Var(gyz) = π/(9V 2α) and Var(gzz) =
2π/(9V 2α), where gyz and gzz are introduced in (45) and (46),

respectively.

E. Derivation of Eigenfunctions Close to Boundary

Consider the RPW approximation of eigenfunction in (49),

the variance of normal vector components is calculated by

〈ẑ ·Ψe
i (r) , ẑ ·Ψe

i (r)〉

=
〈

Ψ̃z
i (r) + Ψ̃z

i (ri) , Ψ̃
z
i (r) + Ψ̃z

i (ri)
〉

=

〈

[

Ψ̃z
i (r)

]2

+
[

Ψ̃z
i (ri)

]2

+ 2Ψ̃z
i (r) Ψ̃

z
i (ri)

〉

. (79)
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Fig. 17. Variance of gxz with increasing α.

Since
〈

Ψ̃z
i , Ψ̃

z
i

〉

= 〈Ψz
i ,Ψ

z
i 〉/2, we have the results of the

first two items
〈

[

Ψ̃z
i (r)

]2

+
[

Ψ̃z
i (ri)

]2
〉

=
1

3V
. (80)

One can derive the third cross term through a similar proce-

dure in Appendix C

2
〈

Ψ̃z
i (r) , Ψ̃

z
i (ri)

〉

=
1

3V
f// (kih) . (81)

By substituting (80) and (81) into (79), the variance of normal

vector component in (52) can be obtained. The derivation of

the variance in tangential vector components follows a similar

procedure and is skipped herein.

F. Finite Dimensional Discretization of Aperture SIE Matrices

To obtain the discrete system of (64), the aperture surfaceSa is

discretized by a collection of triangular meshes denoted by Kh.

Both trial and test functions utilize the surface div-conforming

vector Rao–Wilton–Glisson (RWG) functions [71], λ
h, which

are defined over Kh.

By substituting (58) and (62) into (63), we have

2πτ

(
∫∫

Sa

G0(r, r
′) ·M(r′) dS ′

)

+

πτ

(
∫∫

Sa

G
h,m

S (r, r′) ·M(r′) dS ′
)

= 2
jη

k0
Hinc

t (r) . (82)

The right-hand-side (RHS) vector in (64) can be calculated by

applying the RWG testing function

H
inc

=

∫∫

Kh

λ
h (r) · 2jη

k0
Hinc

t (r) dS. (83)

The aperture admittance matrix for the exterior subregion using

the free-space DGF reads

Y
h,m
0 =2

∫∫

Kh

∫∫

Kh

λ
h(r)·

[

πτ

(

G0(r, r
′)
)

·λh(r′)
]

dS ′dS. (84)

Next, we will derive the aperture admittance matrix of the

interior subregion. At the aperture surface, the magnetic field

eigenfunction, Ψh
i (r), in (60) reduces to

Ψh
i (r) � 2Ψ̃x

i (r) x̂+ 2Ψ̃y
i (r) ŷ onSa. (85)

Similarly, from the expression of source eigenfunction, Ψm
i (r

′),
in (61), we have

Ψm
i (r′) � 2Ψ̃x

i (r
′) x̂+ 2Ψ̃y

i (r
′) ŷ onSa. (86)

The outer product of Ψh
i (r) and Ψm

i (r
′) on Sa gives rise to

Ψh
i (r)⊗Ψm

i (r′)

= 2Ψx
i (r)Ψ

x
i (r

′) x̂x̂+ 2Ψx
i (r)Ψ

y
i (r

′) x̂ŷ

+ 2Ψy
i (r)Ψ

x
i (r

′) ŷx̂+2Ψy
i (r)Ψ

y
i (r

′) ŷŷ

= 2 πτ (Ψi (r))⊗ πτ (Ψi (r
′)) (87)

where the Ψi is the RPW with uniformly distributed orientation

and polarization defined in (8).

As a result of the derivation that was introduced in Section

II-B, the tangential component of the electric S-DGF of the

second kind becomes

πτ

(

G
h,m

S (r, r′)

)

= πτ

(

2Re
[

G0(r, r
′)
])

+
∑

m

πτ

(

2D(r, r′; km)
)

λ̃m − jα

kV

2π2
. (88)

Accordingly, the aperture admittance matrix of the interior sub-

region consists of two parts. We have for the first part
∫∫

Kh

∫∫

Kh

λ
h(r)·

[

πτ

(

2Re
[

G0(r, r
′)
])

·λh(r′)
]

dS ′dS

= Re
[

Y
h,m
0

]

. (89)

Regarding the second part, we first check the outer product in

the numerator with trial and testing functions
∫∫

Kh

∫∫

Kh

λ
h(r)·

[

πτ

(

2D(r, r′; km)
)

·λh(r′)
]

dS ′dS

=

∫∫

Kh

∫∫

Kh

λ
h(r)·[2πτ (Ψm (r))⊗πτ (Ψm (r′))]·λh(r′)dS ′dS

=

∫∫

Kh

∫∫

Kh

2
[

λ
h(r)·πτ (Ψm (r))

][

πτ (Ψm (r′))·λh(r′)
]

dS ′dS

=2

∫∫

Kh

λ
h(r)·πτ (Ψm(r))dS

∫∫

Kh

πτ (Ψm(r′))·λh(r′)dS ′.

(90)

From the property of RPW approximation, it is easy to show

that both [λh(r)·πτ (Ψm(r))] and [πτ (Ψm(r′))·λh(r′)] satisfy

the Gaussian distribution. The matrix entries in (90) are the result

of a product of the Gaussian random variables, whose covariance

function [after multiplying the remaining coefficient kV
2π2 in (88)]
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is expressed by

<

∫∫

Kh

∫∫

Kh

λ
h(r)·

[

πτ

(

2D(r, r′; km)
) kV

2π2
·λh(r′)

]

dS ′dS>

=

∫∫

Kh

∫∫

Kh

λ
h(r)·<πτ

(

2D(r, r′; km)
)

>
kV

2π2
·λh(r′)dS ′dS

≈
∫∫

Kh

∫∫

Kh

λ
h(r)·

[

πτ

(

− 2

π
Im

[

G0 (r, r
′)
]

)

·λh(r′)

]

dS ′dS

= − 1

π
Im

[

Y
h,m
0

]

.

In the above derivation, we have used the result of (32) and the

fact of km ≈ k. Then, the correlated Gaussian random variables

associated with individual RWG functions can be constructed

using the discrete Karhunen–Loeve expansion

[w̃m] =

√

− 1

π
Im

[

Y
h,m
0

]

[wm] . (91)

Finally, the aperture admittance matrix of the interior subregion

is written as

Y
h,m
S = Re

[

Y
h,m
0

]

+
∑

m

w̃mw̃
T
m

λ̃m − jα
. (92)

A statistical ensemble of admittance matrix Y
h,m
S can be ac-

quired by repeatedly applying (92) to different GOE random

matrices.
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