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Abstract—This article presents a physics-oriented, mathemat-
ically tractable, statistical wave model for analyzing the wave
physics of high-frequency reverberation in complex cavity envi-
ronments. The key ingredient is a vector dyadic stochastic Green’s
function (SGF) method that is derived from the Wigner’s random
matrix theory and Berry’s random wave hypothesis. The SGF sta-
tistically replicates multipath, ray-chaotic communication between
vector sources and vectorial electromagnetic fields at displaced
observation points using generic, macroscopic parameters of the
cavity environment. The work establishes a physics-based modeling
and simulation capability that predicts the probabilistic behavior of
backdoor coupling to complex electronic enclosures. Experimental
results are supplied to validate the proposed work.

Index Terms—Chaos, electromagnetic coupling, Green function,
intentional electromagnetic interference, statistical analysis.

I. INTRODUCTION

HE study of electronics in strongly confined electromag-
T netic (EM) environments has long been a topic of interest
in EM compatibility (EMC) and interference (EMI) commu-
nities [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12],
[13]. One well-known example is the mode-stirred reverberation
chamber, which has been utilized as a standard laboratory facility
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for EMC testing (emissions, immunity, shielding effectiveness,
etc.) [14], [15], [16], [17], [18], and recently applied as an
efficient emulator for wireless multipath fading scenarios [19],
[20], [21], [22]. Another important application is the intentional
EMI (IEMI) to electronics housed inside metallic enclosures
(e.g., computer chassis, aircraft cabin) [23], [24], [25], [26],
[27], [28], [29]. Radio-frequency (RF) power from external
sources may penetrate into the target system through back-door
channels, such as seams, apertures, and cooling vents [so-called
“ports of entry (POEs)”]. The induced currents and voltages at
the pins of internal electronics [so-called “ports of interference
(POIs)”’] may disrupt the normal functionality of circuits com-
ponents, resulting in either a short/long-term electronic upset
or permanent damage, subject to increased levels of pulsed
energy. As electronics are increasingly densely packed, working
at higher frequencies, and operating at lower voltages, they are
more sensitive and vulnerable to IEMI effects.

It is recognized that wave propagation inside electrically
large enclosures may undergo multiple reflection/scattering
from boundaries and internal structures, thus leading to ran-
domized phase, polarization, and direction of wave fields. In
the short wavelength limit, the wave scattering process may
exhibit chaotic ray trajectories, albeit underline wave equation
is linear [30], [31], [32]. From the eigenmode perspective, the
complex boundary of the enclosure can lead to high modal
density and high modal overlap. Under high-frequency rever-
beration, the wave fields inside enclosures are very sensitive
to the exact geometry of interior structures. Minor differences
in the system configuration can result in significantly different
EM field distributions inside the enclosure. Research regarding
IEMI effects on electronic systems has shown large variations
not only between designs but also between different serial num-
bers due to assembly methods, cable routing, and component
variations [33].

Given the sensitive nature of electromagnetic wave physics to
environmental details, it is crucial to develop stochastic models
to account for the large variations in local field responses. In
this regard, a stochastic Green’s function (SGF) approach has
been introduced in [34] as a model solution to the scalar wave
equation in wave-chaotic environments. The SGF is based on the
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physics of wave-chaotic systems [35], [36] and the mathematics
of random matrix theory (RMT) [37], [38]. At its heart, the
SGF makes use of a statistical representation of the eigenmodes
and eigenfrequencies of an enclosed EM environment. The
SGF has both a mean and fluctuating component, and thus, it
separates the coherent and incoherent influences the currents in
one element have on fields of another element. Moreover, the
statistics of the SGF are determined by generic, macroscopic
parameters of the cavity environment, including the operating
frequency, cavity volume, loading, and wall losses. Thus, in
applying the SGF details of the geometry that affect the precise
spatial field distributions are dropped from the description,
while the abovementioned generic parameters are retained in
the formulation and allow for the calculation of the statistics of
the field fluctuations.

In this article, we present a stochastic dyadic Green’s function
(DGF) approach as a means to relate the vector EM field to
its vector source. The rationale behind this is that the variation
and correlation of vectorial components are different at various
locations, e.g., the center of the cavity, close to the wall, and
close to the aperture. We have derived a mathematical framework
accounting for all scenarios rigorously. Subsequently, we discuss
the application of stochastic DGF (S-DGF) approach to three
well-known problems of interest: 1) EM radiation and emission
in complicated enclosures, 2) stochastic EM field coupling to
conducting wires with loads, and 3) aperture coupling/excitation
of large cavities from an external plane wave source. Finally, the
proposed statistical models are validated in several experimental
settings. These include the coupling of radiation to wires in
a mode-stirred reverberation chamber and the excitation of an
enclosure through apertures.

II. METHODOLOGY
A. Introduction to Scalar Stochastic Green’s Function

Recently, a SGF approach [34] was introduced to model EM
wave physics inside large enclosures using generic, macroscopic
parameters of the cavity interior. The SGF can be considered as a
theoretical extension of the random coupling model (RCM) [26],
[39], [40] in which elements of the simulation domain are treated
as “ports” in the wave-chaotic cavity environment. The basics of
so-called wave chaos and RMT are discussed in [6], [7], [8], and
[41]. Compared to previous works, the SGF combines coherent
and incoherent propagation into a unified form, which includes
universal statistical aspects predicted by the RMT as well as
deterministic coupling characteristics.

Consider the second-order scalar wave equation inside a
metallic cavity with distributed losses. The cavity wall will be
treated as a perfect electric conductor (PEC) boundary condition.
Inside the cavity, it is filled with a statistically homogeneous
medium with permittivity e and permeability p. To account
for the energy losses occurring inside the cavity, a uniform,
finite conductivity o of the medium is introduced. The Green’s
function for a source point at location r’ satisfies

(V? +w?pe — jwpo) G (r;r) = =6 (r —x'). (D)

IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY

If we introduce the following notations as in [42]: Wave number
k = w,/p€, and cavity quality factor () = we/o, the Green’s
function can be constructed from the eigenfunction expansion
using the cavity-mode theory [43], [44]

/ i (1, ki) s (r) Ky
G(m;k):ng_;f_(;g ) o

where 1; and k; are eigenfunctions (cavity eigenmodes) and
eigenvalues (eigenfrequencies). It is noted that in principle we
could introduce a statistical quality factor to account for the
mode-dependent fluctuations in () values. Our assumption is that
we are considering losses that are not too localized in space. For
example, the quality factor ) due to surface losses in a cavity
with regular ray trajectories varies from mode to mode. However,
if the ray trajectories are ergodic, as assumed here, each mode
samples the losses equally and the modal fluctuations in quality
factor are small [45], [46]. Even if losses are localized but there
is a large number of localized loss regions, the fluctuations in
quality factors are reduced [47].

As indicated by (2), the communication between source point
r’ and receiving point r is determined by a linear combination
of cavity eigenmode contributions. Whereas (2) is in principle
exact, it is impractical to compute these eigenfunctions and
eigenvalues, due to the uncertainty and complexity of the en-
vironment.

In prior work [34], we prescribe substituting approximate,
statistically defined eigenfunctions and eigenvalues. In partic-
ular, the eigenfunction statistics are derived from the Berry’s
random wave model [35] and eigenvalues statistics generated by
the Wigner’s random matrix theory [37]. The resulting Green’s
function, which is statistical in nature, is named the stochastic
Green’s function. The SGF may be considered an effective,
probabilistic solution to wave propagation in wave-chaotic cav-
ities, which statistically describes the coherent and incoherent
components between a pair of source and receiving points. It can
then be used to solve self-consistently for the wave propagation
in the wave-chaotic media.

We remark that the statistics of the SGF do not depend on the
exact geometry of the enclosure or the precise configuration
of internal structures within the enclosure. Rather, they are
determined by a few generic, macroscopic properties of the
cavity environment, including the operating frequency, cavity
volume, loading, and wall losses.

B. Development of Stochastic Dyadic Green’s Function

In this work, we extend the scalar SGF to the S-DGF, which
is particularly convenient for analyzing vectorial EM fields.
Starting from the second-order vector wave equation inside a
3-D metallic cavity, the vector DGF for a source point at location
r’ satisfies

VXxVxG-— (w?pe — jwpo) Gr)=-I6(r—r).
3)
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The Green’s function in the dyadic form can be constructed from
the eigenfunction expansion

= W (r, ki) @ W (v, k;)
G(r’r/)zz kQ—kQ—jE
i i Q

“

where ® indicates an outer product between two vectors. ¥; is
the ¢th vector eigenfunction of the cavity with PEC boundary
condition. The derivation of (4) is given in Appendix A.

In the following discussion, (4) will be reexpressed approxi-
mately by replacing the exact vector eigenmodes with approx-
imate modes based on superpositions of random plane waves
(RPW), and by replacing the exact eigenfrequency spectrum
with one modeled by RMT. The goal is to arrive at a model
DGF that replicates the statistical features of the exact DGF.
The approximate modes and spectrum will thus be constrained
by the properties of the actual cavity. The resulting statistical
model does not predict precise values for a specific, well-defined
geometry. Rather, it predicts the probability distribution function
of cavity EM fields for an ensemble of statistically similar cavity
environments.

Assuming both field and source points, r, r’ are far away from
the cavity boundary, the eigenfunction ¥; is locally approxi-
mated by a superposition of many plane waves with uniformly

distributed orientation and polarization
U, (r ki) = W (v ki) 0+ W7 (v, ) & 5)

with the vector components ¥¢ and ‘I’f expressed as

N
0 NPT & .
U (v, ki) ~ ]\1[13100; [an, cos Ppcos (K&, v+ B,)]  (6)

N
\II? (r,k;) ~ lim

N—o0
n=1

[an sin dJnCOS (kzénr+ Bn)] . (7)

The polarization angle v,,, direction &,,, and phase 3,, are inde-
pendent, uniform random variables. The amplitude a,, satisfies
(aman) = ﬁémn, in which V is the volume of the cavity.

The RPW hypothesis in (5) is argued on the basis that the
waves, when thought of as rays, propagate through the enclosure
chaotically and ergodically. This means that nearby rays diverge
from each other exponentially, and eventually each ray visits
everywhere at all angles. This requires that the internal surfaces
of the enclosure not be shaped so as to create periodic ray
trajectories which are stable in the sense that nearby trajectories
donot diverge exponentially, e.g., a Fabrey—Perot resonator [48].

By converting the spherical coordinates to the Cartesian co-
ordinates, we can rewrite (5) as

W (r ki) =07 ()X + U ()3 + 97 (r)2 (8)
where the vector components are
N
U (r) ~ lm » [a,(—costy,sine¢,—
N~>oon:1
sin ¢y, cos ¢y, cos 0y,) cos (ki€ -r+ 5y,)] 9)
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Fig. 1. Notation for the covariance derivation.

N
UY (r) ~ J\lfl~r>noo [an (cos Py, cos ¢y, —

n=1
sin 1, sin ¢,, cos 0,,) cos (k;&,, - v+ 5,)]

N
U? (r)~ ]\lflinoo [an, sin 4, sin 8, cos (k;&, v+ B,)] .

n=1

(10)

(1)

The central limit theorem implies, being the sum of contri-
butions from a large number of RPWs, all U7, \Ilzy and W7 are
zero mean Gaussian random variables. To derive their variances,
we replace the sum over the plane wave contributions by a
continuous average over all directions for the propagation vector
and polarizations, i.e.,

N =5 [T [Tao [Caotssney

where f represents a general function in terms of 6, ¢, and .
As is shown in Appendix B, one can obtain the variances as

1

Vi = (V7 (r), 97 (x)) = 357 (12)
1

Vi = (¥ (1), ¥} (1)) = 547 (13)
1

Viw = <\I’1Z (r), w7 (r)) = 3V (14)

Viy = Vir = V. = 0. (15)

The next step is to derive the covariance between W;(r, k;)
and ¥, (r,’ k;). Without loss of generality, let r and r’ located on
the Z-axis separating over a distance R = |r — r’|, as illustrated
inFig. 1. The covariance function between vectorial components
can be derived as (the proofs are shown in Appendix C)

1
Wfi (ki)

1
ﬁfi (kiR)

Cax(R) = (W7 (r), U7 (x')) (16)

Cyy(R) = (¥} (v), ¥} (v)) = (17)

Coe(B) = (V3 (1), 05 () = 500 () (1)

Restrictions apply.
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where f) (k;R) and f,,(k; R) represent transversal and longitu-
dinal correlation described by

sin k; R sink;R — k;Rcosk; R
1
fu (ki) = 2 kiR (k;R)® } (1
sin (k;R) — k; R cos (k; R)
kiR) =3 . 20

The results agree with the existing literature [49], [50].

We can then reveal the statistical property of eigenfunctions
with correlated Gaussian random variables using the discrete
Karhunen-Loeve expansion [51], [52]. The eigenfunctions are
constructed by correlated Gaussian random variables wy, wf’

w} and (w¥)', (w?), (w?)', defined as
W, (v, k) ~ W'k 4wy + wiz Q1)
Wi (v ki) = (i) R+ (w)) g + ()2 (22)

where the covariance matrix of the six Gaussian random vari-

ables [w¥, w!, wz, (w?), (w?),’ (w7)'] is given by
[ Viw 0 0  Cw(R) O 0
0 Vyy 0 0  Cu(R) 0
0 0 V.. 0 0 C.-(R)
Cox(R) 0 0 Viz 0 0
0 Cyy(R) 0 0 Vo 0
0 0  C..(R) 0 0 V.. |
(23)

Accordingly, the outer product ¥,(r, k;) ® ¥,(r’, k;) can be
written in a dyadic expression

D (r,r'; k) = w’ (w?) &KX + w’ (w!)'KY + w’ (w?)'Xz
+ w! (W) g% 4+ w! (w!)'yy + w! (wi)'yz
+wj (w])' 2% + wj (w}) 2y + wj (w])'22.
(24)

It is easy to show that the mean value of above dyadic is
(Dr.x'ski)) = Coa R)ZR + C, (R)FY + Cou(R)22. (25)

After incorporating the Berry’s RPW hypothesis and statisti-
cal approximation of the eigenfunction outer product, (4) can be
approximated by

= D(r.r';k;
G‘S (I‘, I‘/; k) ~ Z kQ(k% (26)

JQ
Similar to the scalar SGF study, (26) can also be compared
with the vector DGF in a homogeneous medium. We recall the
well-known DGF formulation

S
VV) e 27

Go (r,v'; k) = <I+ —

k2 ) 4x v/ —r|

where T is the identity tensor. The explicit dyadic form of (27)
can be written as
1) RR

— 3 3
Go(r,r';k) = { {(kQRQ + R
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j 1 A e~ JjkR
11— - I —— ;. 28
+ ( kR k2R2) } 4R (28)
Regarding the two points shown in Fig. 1, we have the real
and imaginary parts

Re {GO (r,r'; k)]

N>

An k3R3
coskR+ kRsinkR\ ,. . ..
k 2kRcoskR — 2sinkR\ ..
— e Z27
sinkR — kRcoskR
k3R3

k |:(2COS kR + 2kRsinkR> 5

coskR B
kR

m [EO (r,r'; k)] =

B sinkR -
kR

47

> (X% + yy)} . (30)

In addition, by applying the Sokhotski-Plemel;j theorem, the
real part, Re [Go(r, 1'; k)], can also be expressed as

Re{Go (r,v'; k)} 173/ k2dk2k2lm[G0(r vk )} 31)

where P denotes the Cauchy principal value. Equation (31) gives
rise to the Kramers—Kronig relation.
Next, by substituting (16)—(18) into (25), we can show that

<ﬁ(r,r';kzi)> =

Starting from (26), we now take an average over the outer
product of eigenfunctions. Since the eigenfunctions are orthog-
onal and the statistics of the eigenfunctions are taken to be
independent of those of the eigenvalues in this process, we have

<ﬁ(r, r'; ki)>

27‘;Im [GO (r,r'; k; )}

(32)

7

(Gstrxih) =305 e (33)
B l 272 Im[Gy (v, '3 k;)] 34)

kVok2 — k2 k2

Q
—EZ%
2
T k? —k; ke

12

Im [Eo (r,r'; k:z)}
(35

A(k2 —
~ — %Z > (7161]32 Im [Go (r,r'; kl)} )
(36)

In (35), we have introduced a function A(k?) ~ 27%/(k;V),
which can be understood as the approximate spacing between
adjacent squared eigenvalues, (k2 1 — k2). The physical justifi-
cation goes as follows. For a 3-D EM cavity, the model density
is given by the Weyl formula, p(k) ~ (k* V)/m? [8]. Thereby,
the spacing between adjacent eigenvalues can be expressed as
A(k) =1/p(k) ~ % /(k* V') and the spacing between squared
eigenvalues is A(k?) = 2kA(k) ~ 2% /(kV) [13].

In (36), a complex wavenumber k is introduced as k = k(1 —
7/2Q). For electrically large, high-Q) cavities, the k2 can be
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approximated as

72 12 J L\ 2 J
i1 gg) =1 (1- %)
Comparing (36) and (31), the sum over eigenmodes can
then be written as a frequency-domain integral on average. By
using the Sokhotski—Plemelj theorem for the real line, the mean
value of (36) approaches the deterministic, homogeneous dyadic
Green function when k/Q < 1

<ES (r,r'; k)> ~ Re [éo(r, r/;k)} —4Im {EO(I‘, r';k)} . (38)

The construction of the S-DGF is analogous to the RCM [8]
and the scalar SGF [34]. We first separate the sum in (26) into
two components. The first component consists of many terms in
which the denominator has the property of k? % k2, whereas
the second component includes the terms with denominator
k? ~ k*. The mean value of the first component asymptotically
reproduces the principal integral and, thereby can be expressed

(37)

as Re [G(r, r’;k)]. Moreover, the fluctuating contribution of S-
DGF is dominated by the second component for which k? ~ k2.
Consequently, it suffices to construct the expression of S-DGF
as

Gs (r,r'; k)~ (39)

[Go rorh } +Z D(r,1; k‘

When we apply the S-DGF to a point source electric current,
the first part in (39) has the physical meaning of the reactive
field that relates to the nonradiative, stored energy; whereas the
second part represents the fluctuating radiative field.

Finally, we utilize the RMT to analyze the statistical property
of cavity eigenvalues [34]. For problems satisfying the time-
reversal symmetry, the Gaussian orthogonal ensemble (GOE)
of random matrices is considered. After we calculate the eigen-
values A from the GOE random matrices, the statistical property
of normalized eigenvalues is approximated by

2 _ 1.2 2
p_@z<k—%uﬁk

A AQ
where the « is a macroscopic dimensionless loss-parameter
defined by o = k* V/(272Q), and the A is the mean spacing
between adjacent square eigenvalues when k2, ~ k2. According
to the definition of A(k2,) function introduced following (36),
we have A = 272 /(kV'). After incorporating the RMT approx-
imation, the final expression of S-DGF is given by

) A= (hp —ja)A  (40)

Gs (r,r'; k)= Re[Go r,r’ }-ﬁ-z ) BV

—ja 272’

rrk @1

Equation (41) is a central result of our approach. It is an
expression for the mean and fluctuating parts of the Green’s
function describing how a current source at point r creates a
vector field at point r’. Here it is assumed that the two points r
and r’ are both far from cavity boundaries and only the direct
propagation of radiation from r to r’ contributes to the mean
part. The modifications to (41) when one or both of the points
are near a boundary will be introduced in the next section. The
fluctuating part of (41) is evaluated in two steps. First, one

generates six zero mean Gaussian random variables from an
ensemble with a covariance matrix given by (23). Then one
inserts these random variables in (21) and (22). Finally, for each
term in the sum evaluate the denominator using a numerically
generated spectrum. It is through the covariance matrix and
eigenvalue spacing distribution that information about the cavity
under consideration is conveyed.

C. Analysis of Dipole Radiation Inside Enclosures

Equation (41) can be directly utilized to analyze electromag-
netic radiation problems inside wave-chaotic environments. For
example, we consider a small electric dipole of length [ placed
inside a 3-D metallic enclosure. The dipole is located at the origin
with its wire directed along the Z-axis. The current follows a
triangular variation and the peak current at the center is denoted
by L.

The radiated electric field can be expressed as

E:jw,u/ Gs (r,v') - J(v) dr' = jwuGs (r,7) 2% (42)

where the definition of S-DGF is given in (41).

When the field point is far away from the origin, the electric
field is dominated by the incoherent (diffusive) propagation.
Equation (42) simplifies to: E ~ jw,ués,%, where the expres-
sion of Gg can be written as

v zZk
Am — jau 27
where w;@, wy , , and (wZ,) are independent, zero mean

Gaussian random varlables.
Namely, the radiated electric field E consists of three diffuse
scalar components

I kV z (wz,) I kV
E, = jops S =mml gy, wr (44
JOrs 55 T —ja MY 44
. U EV o~ wY (wz) I kV
E = M: oM 4
v = JWhG o G — ja Hy 5= (49
I kV ) Il kV
E,=j § CACH 4
) o 1 539z (46)

where we have introduced three parameters ¢, g,., and g..
to simplify the expression. Those parameters depend on Gaus-
sian random variables wy,, w¥,, w7, RMT-based calculation
of eigenvalues A,,, and the cavity loss -parameter «. Since the
Gaussian random variables are uncorrelated, the mean value of
E;, E,, or E; is zero. Often at times, one may also be interested
in the mean of the squared electric field amplitude, as it is related
to the energy density inside the cavity. To derive it, we first need
to calculate the variance of g.., gy., and g. . in (44)—(46).

Appendix D provides the detailed derivation. The results
show that the variance is: Var(g,.) = Var(g,,) = Var(g..) =
7/(9V2a). As a result, the mean of the squared amplitude of
scalar components is derived as

(IEal?) = (B ") = (E.?) = =

> Q

A

In*.  47)

727T
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Fig. 2. Illustration of wave field close to cavity boundary.

Therefore, the mean value of the squared amplitude of vector
electric field E reads

(80} (o (o) S22

In a reverberation chamber setting, the result of (48) is related to
the square of the chamber constant. Equation (48) will be used in
Section III-B to generate a reverberation chamber environment.

D. Analysis of Wave Field Close to Planar Boundary

We note that in the derivation of S-DGF method, both source
and receiving points are assumed to be away from cavity walls.
Cavity eigenfunctions can, thereby be locally approximated
by an isotropic, random superposition of plane waves. It is
clearly not the case in the evaluation of wave fields close to
cavity boundaries. Due to the presence of close-by walls, the
statistical properties of S-DGF are different from the uniform,
isotropic case. In particular, when the field point is located at the
highly conducting wall, the EM boundary condition needs to be
satisfied exactly.

For the purpose of illustration, we consider the case of source
electric current located at r' radiating electric field inside a
metallic cavity. The receiving field point at r is close to a planar
cavity wall on the xy plane, as shown in Fig. 2. To incorporate
the reflected field from the cavity wall, the RPW approximation
of eigenfunctions in (8) is modified as

s (r) = UF (1) %+ U (1) 9 + ¥ (r) 2
SO ()R- W )y + T ()2 (49)

where ri(= 2% + y¥ — 22) denotes the image position of r(=
xX + y¥y + 2Z). Since ¥ only consists of the plane waves prop-
agating toward the boundary, <\il;‘, \J:Jj> = (UF,Ur)/2.

The variances of vector components in W¢ are derived in
Appendix E. The results are as follows:

Ve = (% WE () % WE (1) = 50 [1 = [ (k)] (50)
Vi = (995 (1), () = 50 [1- £ (k)] D)

N . 1
Voo = (295 (r),2- %5 (r)) = 3V
The variations in the transverse and longitudinal components
act differently, as indicated in the expression. When the observa-
tion point r is far away from the boundary, i.e., k;h > 1, we have

[L+f/) (kih)] . (52)
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Fig. 3. Illustration for the aperture coupling problem.

fi(ksh) = 0and f,,(k;h) ~ 0. The variations in (50)—~(52) will
reduce to the uniform case in (12)—(14). At the wall boundary
z=0,1ie., kih =0, we have f, (k;h) ~ 1 and f,,(k:h) ~ 1,
thereby

Vie = Vyy =0 (53)
2

22 = F1r 54

v 3V (54)

where the tangential components are zero and the normal com-
ponent is doubled, thereby the boundary condition of the eigen-
function is enforced.

To simplify the expression of the resulting vector SGF, we
may rewrite (49) as

WS (r) = WS (r) — B¢ (ry) + 222 WS (). (55)

By following a similar procedure in Section II-B to derive the
eigenfunction tensor product, ¥¢$(r) ® W;(r'), we can obtain
the vector dyadic SGF for the boundary electric field

—e,j —=

G (r,r)=Gg (r,r)—Gg (r;, 1) +22% - Gg (r;, 1) .
(56)

The expression has an analogy with the well-known half-space
electric DGF of the first kind [53].

E. Analysis of Cavity Aperture Excitation

In many practical electronic systems, the enclosure may be
open to the outside with multiple apertures in the cavity wall.
Given the incident external RF radiation, the size and shape of
the aperture determine the amount of EM power coupled into
the cavity. Therefore, it is important to quantitatively study the
site-specific aperture excitation and coupling [23], [54], [55],
[56], [57], [58].

Consider a cavity wall with an irregular aperture sitting in
the xy plane, as illustrated in Fig. 3. The aperture is illuminated
by an EM plane wave due to external RF sources. We start by
introducing an artificial surface S, over the aperture opening.
The computational domain can then be decomposed into the
interior confined cavity subregion and exterior host body subre-
gion. Naturally, the exterior traveling wave physics and interior
cavity resonance physics can then be separated.

Based on the equivalence principle, one can obtain an equiva-
lentexterior problem by filling the interior subregion with a PEC.
The exterior subregion is then formulated by a surface integral
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equation (SIE), whose unknowns involve the magnetic current
M™ = E x 2 at the aperture [54]. At the aperture surface, we
have the magnetic field relation

H/ (r) = 2H™ (r) + H" (r) on S,. (57)

The H?‘ represents the tangential components of the total mag-
netic field. The HI™ denotes the tangential components of the
incident magnetic field. The Hf”"" represents the tangential
components of radiated magnetic field by the surface magnetic
current M*. Assuming a locally quasi-planar cavity wall at the
aperture location, we have

H5’+(r)=2@m (// Go(r,r’)-M+(r’)dS’> (58)
Sa

Ui
where the n = /2 is the wave impedance, the 7. (e) is a
tangential trace operator defined by: 7-(u) := i X (u x fi)|g, .
Here the surface normal i = Z for the exterior subregion.

An equivalent problem can be obtained for the interior cavity
subregion with the aperture covered by an electric conductor.
To formulate the aperture SIE of the interior subregion, we first
introduce the electric S-DGF of the second kind starting from
the eigenfunction expansion

—h,m h ; m (p/ L.
G (I‘,I'/) — Z ‘1’1 (r7k1)®‘1’1 (r7k1).

s — (59)
K2~k — 5

As comparable to (49), the RPW approximation of the magnetic
field eigenfunction ¥ (r) can be expressed as

T () = U (1) %+ VY (1) § + O (r) 2

+ U7 () &+ UV (1) § — U7 (1)) 2. (60)

A similar expression of the RPW model is used for the source
eigenfunction ¥ (r')

W (r) ~ U2 ()& + BV (¢) § + UZ (r) 2

+U7 () %+ Y (r)y — Ui (r)z. (6D

The aperture SIE for the interior subregion in terms of mag-
netic field is given by

HY (r) = —r, (/ ég’m(r,r') -M(r) dS”) (62)
n Sa

where the equivalent magnetic current M~ =Ex(-2) =

—M™ enforces the continuity of tangential electric field at the

aperture. It is noted that the radiated magnetic field, H}" (r), is

the same as the total magnetic field H; (r) as there is no incident

field inside the cavity.

Finally, by applying the boundary condition at the aperture,
i.e., the continuity of magnetic fields for exterior and interior
subregions, H; (r) = H;(r), we have

~H%"(r) + HY (r) = 2H™ (r) on S,. (63)

Through interface condition and the Galerkin testing
method [59], the surface IEs in (58), (62), and (63) can be cast
in a matrix equation of the following form:

[Yh™ 4 Y™ M = ' (64)

- - " - Hine
A 1 Cavitywall [, kine
E Inboherent Coherent -
E coppling | coupling | Aperture
i‘ Cohdyctingwire

N »I

Fig. 4. Schematic diagram of conducting wire problem.

where the H' represents the excitation vector. The Yg " is the
aperture admittance matrix for the exterior region in terms of
free-space DGF, whereas the Yg’m is the aperture admittance
matrix for the interior cavity region. The detailed expression of
(64)is given in Appendix F. The solution of aperture currents can
then be used to analyze the statistics of transmitted power into
the enclosure as well as the statistical shielding effectiveness.
The variability is due to only approximately known information
of the interior cavity being used to construct the S-DGF model.

F. Stochastic Field Coupling to Conducting Wires

Wires and cables are routinely used in electronic systems
to interconnect antennas, printed circuit boards, and electronic
components. They often introduce additional coupling paths
from external IEMI sources to sensitive circuitry inside com-
puter enclosures. Thereby, itis important to study the mechanism
of wire coupling and interference from the external RF sources.
In general, the induced current and voltage on the wire/cable de-
pend on the self-capacitance, self-inductance, length and radius
of the wire, load impedances at the terminal, and statistical EM
fields inside the electronic enclosure [60], [61], [62], [63], [64],
[65].

A generic problem statement is given in Fig. 4. A U-shaped
thin conducting wire is placed parallel to the cavity wall with
both ends terminated with linear loads. Assuming the wire
radius is much smaller than the wavelength, we can neglect the
transverse component of the current inside the wire. Namely,
the electric current only has a longitudinal component that is
uniformly distributed over the periphery of the wire. The induced
current J; along the wire and voltages at the port, due to an
incident EM wave, can then be calculated by an electric field
integral equation (EFIE) [66].

With the Galerkin method and appropriate basis along with the
testing functions, the problem of stochastic EM fields coupling
from the aperture to the conducting wire can be recast in a matrix
equation of the following compact form:

Ma B ﬁinc
-] e

where M,, and J; are solution vectors for magnetic current at
the aperture and electric current on the conducting wire. Com-
paring with (64), we have included the stochastic IE matrix Z’
accounting for the EFIE of conducting wire, in which triangular
functions are used as basis and testing functions. Note that the

h,m h,m h,j
Yo"+ YET Cy
e,m e,j

CS ZS
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Illustration of the numerical experiment for the dipole radiation prob-

coupling matrices, Cg’j and C3™ between aperture and wire are
also generated by the stochastic IE operator with the S-DGF as
the kernel.

By solving (65) with different S-DGF IE matrices in the
statistical ensemble, one can predict the statistics of induced
voltages/currents at the wire ports due to coupled EM fields
inside the enclosure, as a function of frequency and incident
angle of external IEMI sources.

‘We remark that as the Green’s function and integral equation
methods are used to model the metal wire, both transmission line
physics and high-frequency field coupling are modeled correctly.
Furthermore, the proposed S-DGF rigorously integrates both
the coherent propagation from apertures to conducting wires,
and incoherent diffuse coupling due to multiple rays bounced
from the cavity wall. Therefore, the statistical prediction of
conducting wire pickup incorporates the relative location and
orientation between apertures and wires, which is another unique
aspect of the proposed work.

III. VALIDATION AND VERIFICATION
A. Electromagnetic Radiation in Wave-Chaotic Enclosures

The first numerical study concerns an EM radiation problem
with a small electric dipole of length / inside a 3-D metallic
enclosure. The goal is to validate the statistics of radiated electric
field predicted by the S-DGF in (41) with full-wave numerical
simulations. The results will be useful to assess fundamental EM
radiation properties inside wave-chaotic enclosures.

The design of the numerical experiment is illus-
trated in Fig. 5. The dimension of the cavity is
[—0.5m,0.5 m]:[—0.5 m, 0.5 m]:[—0.5 m, 0.5 m| in length,
width, and height. The cavity wall is treated as the PEC boundary
condition. The cavity volume is filled with a lossy dielectric
material with a dielectric constant of 1 and a loss tangent
of 0.00194 at 2.475 GHz. Together with the cavity volume
1 m3, we can obtain the cavity quality factor Q = 515.625
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Fig. 6. PDFs of Re[E,] comparing full-wave simulations and statistical pre-
dictions.

and the cavity loss parameter o = 13.7. A small electric
dipole of length | = 4 mm directed along with y-axis is placed
at [0.15m,0.15 m,0 m]. The current follows a triangular
variation and the peak current at the center is denoted by
I =1A. Finally, to generate a configuration ensemble in the
full-wave simulation, we have included an irregular Z-folded
stirrer consisting of five 0.3 by 0.3- m metallic plates that are
arranged in different folding angles. The center of the stirrer is
located at z = —0.25m and y = —0.25 m.

On the statistical prediction using the S-DGF method, we can
express the radiated electric field as

= = Il

E:jw,u/ Gs (r,r') - J (') dr’ = jwuGs (r, 1) -95.
(66)
To assess the statistics of radiated E-field as a function of
distance to the dipole, we consider a number of probe locations

inside the same xz-plane as the dipole. The y component of the
electric field at a probe location can be expressed as

B kwpllV | j  (coskR coskR+ kRsinkR
Vo 4n 2V kR k3R3
J N Wi (@h)'
+= ~ 67
™ ; )Vm - ja ( )

It is noted that due to the coherent coupling between the source
and receiving points, w¥, and (wY,)" are correlated Gaussian
random variables, constructed by the covariance matrix in (23).

Regarding the full-wave simulation, we have used a commer-
cial software (CST) to simulate the same EM radiation problem.
In the simulation setup, the mode stirrer is rotated through 12
positions over 360 degrees. At each stirrer position, we collect
electric field samples at the xz plane of dipole location from
2.45 to 2.5-GHz with 0.25-MHz increment. Around 36, 54, 72 k
samples of electric fields are collected at circles of radius Ry =
0.035 m, Ry = 0.085 m, R3 = 0.16 m, respectively.

The probability density functions (PDFs) obtained from full-
wave simulation and the S-DGF prediction are plotted for
Re[E,], Im[E,], and amplitude |E,| in Figs. 6-8. The mean
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TABLE 1
MEAN VALUES OF RE[E, | AND IM[E,|

R CST Proposed work
Re[Ey] | Im[Ey] | Re[Ey] | Im[E,]
0.035m | 43.525 -64.014 | 47.580 -58.492
0.085m | -31.265 -2.745 -35.104 -3.257
0.16m 11.888 -7.727 16.127 -6.149

values of the data are given in Table I. We observe that, as the
distance between the dipole location and receiving point de-
creases, there is an increase in the coherent coupling component,
which results in a larger mean value. The results show generally
good agreement between the first-principles simulation and the
statistical prediction.

B. stochastic Field Coupling to a Conducting Wire

In the literature, the stochastic field-to-wire coupling has
been studied theoretically and experimentally in reverberation
chambers. For this validation, the mode-stirred chamber de-
scribed in [67] is used. The dimensions of the chamber are
7.9 x 6.5 x 3.5 m. The U-shaped conducting wire has a length
1.1 m and a 4-mm? cross-section. The distance between the
parallel segment to the chamber wall is 32 mm. The mode stirrer

/" Cavi . ™,
/ ty Dipole ;
| = :
i D i
i Conducting wire ) :
| g le L » Radiusr |
! Ry R Z*AH i
. * - Loads k!
Fig. 9. Illustration of the radiated dipole and conducting wire.
1.6
—Measurement
1.4/ +Proposed work
0.2 0.4 0.6 0.8 1
Frequency (GHz)
Fig. 10. Mean of the squared magnitude of coupled voltage.

is rotated in steps of 10 degrees for a frequency range from 200
to 1000 MHz in steps of 1 MHz.

To replicate such a testing environment using the proposed
work, a simulation setup shown in Fig. 9 is designed. The length
L, height H, and radius 7 are the same as the experimental
setting. The wire is terminated with R; = Ry = 502 at both
ends. A small dipole antenna is utilized to generate the stochastic
field inside the cavity. By placing the dipole far away from
the conducting wire, (kD > 1), we can utilize the S-DGF
to calculate the power density of radiated diffusive field as:
(|E|?) = %. Next, based on the chamber constant
([67, Fig. 3]) and quality factor (Fig. 4 in [68]), we can retrieve
the dipole current Iy! that is needed to generate the same
statistical cavity environment.

Both the dipole and the conducting wire are treated using the
EFIE [66] with the S-DGF as the kernel. A set of 5 k Gaussian
Orthogonal Ensemble (GOE) random matrices with dimensions
of 2000 x 2000 are used to generate an ensemble of S-DGF
EFIE matrices. As a result, 5k induced voltage samples at the
wire terminal across Ry are computed. The mean of the squared
magnitude (|V|?) is compared with the measurements [67] in
Fig. 10. Good agreement is observed.

C. Experimental Validation

Next, we experimentally validate the proposed work using
a complex wave scattering environment. Fig. 11 illustrates the
testing environment of an aluminum box (of length 1.27 m,
width 1.22 m, and height 0.65 m) with irregular internal scat-
terers and a conducting paddle stirrer. Two monopole antennas
with electrical length 2. /3 at frequency 6.45 GHz are mounted on
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(W]

Fig. 11. Configuration of the cavity testing environment. (a) Exterior view.
(b) Interior view.

the cavity wall as transmitter (Tx) and receiver (Rx). As shown
in Fig. 11, they are separated over a distance of L = 0.61 m,
which is about 13.12 A.

In the measurement setup, both monopole antennas are con-
nected to the N5242 A PNA-X Microwave Network Analyzer.
The paddle-wheel mode stirrer that is controlled by a LabVIEW
program rotates 200 positions over 360 degrees. A total number
of 20-k S-parameter measurements are collected from 6.44 to
6.45 GHz with 0.1 MHz frequency stepping. In the simulation
setup, the volume of the cavity is calculated as 1.0071 m?® and the
estimated cavity loss-parameter o = 10.16. A total set of 20-k
GOE random matrices with dimensions of 2000 x 2000 are used
to generate S-DGF IE matrices. Therefore, 20-k S-parameter
samples are computed with the proposed work. The PDFs of
S-parameter amplitudes, [S11| and [Si2|, are compared to the
measurement result in Fig. 12. A good agreement is observed.

To validate the proposed work in the case of coherent cou-
pling, we adjust the distance between the two monopole antennas
as 3.16 cm (i.e., 0.68 1), as shown in Fig. 13. Since these two
antennas are close to each other, we expect an increase of the
coherent coupling component, which leads to a greater mean
value of the Si5 parameter. The comparison of measurement
and simulation results are shown in Fig. 14. The results again
agree very well.

D. Aperture Coupling From External Plane Wave

Finally, we consider a numerical study of aperture cou-
pling from the external incident plane wave. A PEC

IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY

mMeasurement (S1 1)
mMeasurement (S1 2)
~-Stochastic Prediction (811)
-Stochastic Prediction (S ’ 2)

0.8 1

Fig. 12.

Fig. 13.  Measurement configuration of nearby antennas.
14
mMeasurement (Sﬂ)
12 mMeasurement (S 4 2)
- Stochastic Prediction (S, )
10 "

-Stochastic Prediction (S : 2)

0 0.2 0.4 0.6 0.8 1
IS

Fig. 14. PDFs of |S11| and |S;2| for nearby antennas.

enclosure of cuboid shape with three apertures on the cav-
ity wall was chosen as the test case. The configuration of
the cavity is shown in Fig. 15. The dimension of the cavity
is [-0.5m,0.5m]:[—0.5m, 0.5 m]:[-0.5m,0.5m] in length,
width, and height. Three apertures with circular shape, square
shape, and rectangular shape are located in the xy plane, yz
plane, and xz plane, respectively. The radius of the circular
aperture is 0.1 m. The size of the square aperture is 0.2 by
0.2 m. And the size of the rectangular aperture is 0.1 by 0.3 m.
An irregular Z-folded stirrer is introduced to emulate complex

Authorized licensed use limited to: University of lllinois. Downloaded on January 17,2023 at 20:44:49 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LIN et al.: PREDICTING STATISTICAL WAVE PHYSICS IN COMPLEX ENCLOSURES

Einc,
kine

| 1m

-

0.1m

(b)

Fig. 15. Configuration of the cavity with apertures and stirrer.

internal structures inside realistic cavities [69], [70]. The stirrer
has five 0.3 by 0.3-m metallic plates that are arranged in different
folding angles, as shown in Fig. 15(b). The center of the stirrer
is located at x = —0.25 m and y = —0.25 m. The enclosure is
illuminated by an external plane wave at 1 GHz. The incident
wave vector is k=(0, 0, —1), and the electric field is along the x
direction.

Our goal is to predict the statistics of coupled internal elec-
tric field density at specific locations. Two probe locations are
selected as: P1=(0.15m, O m, —0.15m), and P2=(0.05m, O m,
0.4m). It is noted that the P2 location is much closer to the
illuminated aperture than the P1. Thereby, a stronger coherent
coupling should be expected.

The statistical prediction consists of two steps. The first one
is to estimate the cavity quality factor and the loss parameter
a. As there are no internal losses inside the cavity, the quality
factor is determined by the power loss due to the aperture
leakage only. Consider a plane wave impinging on the wall
aperture, the power leakage problem can be solved by the EFIE
method formulated on the aperture surface. The leakage power
is calculated by integrating the Poynting vector over the surface
of the aperture. Next, the parameter of leakage cross-section
Olkg 1s calculated by dividing the leakage power with incident
power [11]. In the context of random superposition of plane
waves in cavity environments, the mean leakage cross-section,

IFull-wave Simulation
-0 Stochastic Prediction

0.7

2
IE|
(@
0.7 EFull-wave Simulation
-o- Stochastic Prediction
0.6
0.5

IEJ?
(b)

Fig. 16. PDF of the amplitude square of electric field at two probe locations.

(o), is obtained by averaging the leakage cross-section for
many plane wave incidence angles and polarizations in the
angular domain. Together with the volume of the chassis, i.e.,
V = 1m?, the quality factor is obtained as () = 984.5 and the
loss-parameter o = 0.473.

We can then utilize the calculated loss-parameter o = 0.473
to generate the S-DGF IE matrices in (65). A total set of 10-k
GOE random matrices with dimensions of 2000 x 2000 are used
to generate S-DGF IE matrices. Therefore, a total number of 10-k
electric field samples at locations P1 and P2 are computed with
the proposed work.

To validate the statistical prediction, we have conducted the
full-wave simulation utilizing the CST software. In the CST
simulation setup, the mode stirrer is rotated through 12 positions
over 360 degrees. At each stirrer position, an ensemble of electric
fields for the specific pickups is generated from 0.99to 1.01 GHz
with 0.25-MHz increment. Thus, a total number of 972 electric
field samples are collected for each location point in the exper-
iment. The statistical prediction and the full-wave simulation
results are presented in Fig. 16. It is noted that the CST full-wave
simulations were limited to 12 stirrer configurations, which
result in coarser resolution in the histograms.

Both the stochastic and full-wave simulations were conducted
on a workstation with Intel Xeon silver 4114 CPU and 208 GB of
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memory. The construction of 10-k S-DGF IE matrices took 26.2
min, and the solution of the IE matrices was obtained in 7 min.
Regarding the full-wave simulations of 12 cavity configurations,
each simulation took 5 h and 15 min on average. Thereby, a
total time of 3780 min is required to obtain the results of the
configuration ensemble.

IV. CONCLUSION

In this article, we have proposed a sS-DGF method as an
effective statistical solution to the vector wave equation in large,
complex enclosures. The S-DGF is based on a statistical de-
scription of the eigenmodes of an enclosed EM environment. The
eigenfunction statistics are derived from the vector random wave
model, taking into account different orientations of polarization.
A tensor representation of field-field correlation is utilized for the
transversal and longitudinal field-field correlations. The eigen-
values statistics are generated by the Wigner’s random matrix
theory.

As a statistical wave model, the S-DGF self-consistently char-
acterizes coherent and incoherent propagations from the vector
EM source to the vector EM field using generic, macroscopic
parameters of the cavity environment. By analogy with the stan-
dard Green’s function in a deterministic environment, we expect
the S-DGF to play an important role in the numerical modeling
of the vector wave equation in confined EM environments.

Applicationwise, the work can be used for the study of an-
tennas and electronics within large and complicated enclosures,
such as EMC testing in reverberation chambers and wireless
networks in industrial environments. In the context of IEMI
coupling, the work serves as a physics-oriented computational
model, which integrated the deterministic (POEs and POIs)
and statistical (cavity interior) attributes in a rigorous and
comprehensive way. Such a modeling capability is valuable
for predicting intentional interference, assessing vulnerabilities,
protecting sensitive electronics, and developing frequency-agile
waveforms.

Our future work is devoted to expanding the S-DGF method
from the spatial domain to the space-wavenumber domain and
the space-time domain. The research goal is to accomplish
a computational statistical model for the temporal, spectral,
and spatial characteristics of wave physics in large, complex
enclosures.

APPENDIX A

A. Derivation of the Dyadic Green’s Function Using
Eigenfunction Expansion

Consider the second-order vector wave equation
V XV XE(r)—k’E(r) = —jwued (r')

where %2 is the square of complex wave number, defined by

(68)

k= W poe — jwpoo = k> — jk*/Q. (69)
The vector DGF satisfies
VxVxG(rr)—k2Grr)=-Isr—r). (70)
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According to the nomenclature of dyadic analysis, Tis the unit
dyad (idemfactor), which can be decomposed into XX + §¥ +
22. Therefore, the DGF G can be also decomposed into three
vector components G,,, with m = (x,y, z), satisfying

V XV X Gy, (r,1) — E2G,, (r,7') = =i (r — ') . (71)

We remark that G,,, (r, r’) represents the vector electric field due
to an infinitesimal electric dipole oriented in the direction of m
and located at r’.

To solve (71), we expand G, (r,r’) in the basis of the
eigenfunctions of the cavity with PEC boundary condition, i.e.,
G (r,r') =5, C"U,(r, k;), where

V x V x U, (r,k;) — k2, (v, k;) =0
ﬁX\Pi(r,ki)ZO

in volume V' (72)
on boundary S. (73)

The eigenfunctions are orthogonal, (U,(r,k;), U, (r,k;)) =
d;;, with respect to the inner product

(u,v) :/ u-vdV. (74)
v
Next, testing (71) with U, (r, k;) yields
mVU; (v, k) o
cm = ——— m=(X,y,%2). 75
: Z e (%.9.2) (75)
Then we have
0, N (v ks
G (rr) =Y k)il k) g

k2 — k2

i
By utilizing (76) and the definition of tensor product, we

obtain the DGF in the form of G(r,r') =Y G, (r,r')i,
which leads to the expression in (4).

B. Variance of the Cavity Eigenfunction

To derive the variance of eigenfunctions ¥;(r), we recall that
the polarization angle ,, in the vector components is uniformly
distributed in [0, 27]. We first calculate the variance of the
spherical vector component by

21

27
(W) (r), 0! (r)) = %/ cos? Py dip, X Vi

/ cos? (k;i&, -r+ B,) dpsin 0df

1 1

~ 9 V 2V
Similarly, we can obtain

(), w¢<>> 5
(W] (r), w7 (r)) = (V] (r)) =0.

Thus, the resulting variance of eigenfunctions W;(r) can be
calculated by

(Wi (r),¥;(r)) =

-
) <\

(W (), (x)) + (U7 (r), 97 ()
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+ (W (x), 07 (r) ) + (U7 (r), ¥ (r))

Next, we show that the same result can be obtained using
the Cartesian coordinate expression in (8). To simplify the
expression, we assume the direction &,, and r are located at x-y
plane. We first calculate the variance of the vector component

by
2 1 27
/ / / cos 1% sin ng n

+ sin? ¢, cos? ¢, cos 9] A de, sin 0do

(W (r), 97 (r) =

Similarly, we have for the result of the y component. The
derivation of the z component is given by

1 27 . 1 T 3
— sin® ¥, di, X = sin” 0df
2 0 2 0

21
Xii
V 2w

(W7 (r), w7 (r))

27
/ cos? (kiép-r+ By) do
0

1
Xi
Vv

N |
X
Wl o

1
3V
C. Autocorrelation of Eigenfunctions

Asillustrated in Fig. 1, the covariance function of longitudinal
vector components can be calculated by

(U (r), 07 (r'))
:% <sin2 y, sin? 0, cos (ki@ - + B,) cos (ki&, -1’ + Bn))
1
V<Sm U 8in®0,, [cos(k; &, 2R) +cos(k;é, - (r+1')+28,)])
1 Qﬂ sin? i, dip ><1/7r sin® 6, cos (k; R cos 0,,) d6)
L 1 (1 — u?) cos (k; Ru) du
4V ) 4 !
_ l sink;R — k;Rcosk; R
4 (kiR)’

1
=37/ (k:R) .
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Similarly, we could also derive the covariance function be-
tween transverse vector components

(U7 (r), W7 (') = (¥ (r), ¥ (r))

B 3 sin k; R B sink;R — k;Rcosk; R
V| kR (k;R)®
— L (R)

3V L i .

D. Derivation of the Variance Var(g..)

From (44), we introduce g, as

M .oy
Zw’(w )
s Nm m 77
g Am — Jo 77

m

where wy, and (wZ,)’ are two independent, zero mean Gaussian
random Varlables with the variance of 1/(3 V)2. According to
RMT, ,, follows uniform distribution in [—M /2, M /2] (M >
1). Then, we have the PDF of im described by

M % M
Y <h <X

otherwise. (78)

It is easy to prove that the mean (g,,) = 0, then the variance of
g~ can be derived as

Var (g,:) = (lga-I") = <Z L ) +a)2}2>

1
79‘/2;5\«%”"_&2.

Based on the Monte Carlo integration, we have

i 1 /M/2 dh /°° i
— )2, + a2 M2 A 4?0 A2 4 a?
_ arctan (Xm/a) o
B o Tl

Thus, we have Var(g,.) =7/(9V?2a). Fig. 17 shows the
variance of g, with increasing a (assuming 1/(9V?) = 1),
where a good agreement is observed as expected. Similarly,
we can also obtain Var(g,.) = /(9 V?«a) and Var(g..) =
27/(9 V2a), where g, and g, are introduced in (45) and (46),
respectively.

E. Derivation of Eigenfunctions Close to Boundary

Consider the RPW approximation of eigenfunction in (49),
the variance of normal vector components is calculated by

(2 ¥ (r),2
-
(s

W (1)
HOER HOR HOER HOY

}2 + [\i’f (ri)} 2 n Q\i/f (I‘) ‘i/f (ri)> . (79)
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Fig. 17.  Variance of g, . with increasing a.

Since <\i'f, \i/f> = (U7, 0?)/2, we have the results of the
first two items

<[x:u ]+ [# (ri)]2> _ %

One can derive the third cross term through a similar proce-
dure in Appendix C

2 (W (1), 05 (1)) = 5027 (ki)

By substituting (80) and (81) into (79), the variance of normal
vector component in (52) can be obtained. The derivation of
the variance in tangential vector components follows a similar
procedure and is skipped herein.

(80)

81)

F. Finite Dimensional Discretization of Aperture SIE Matrices

To obtain the discrete system of (64), the aperture surface S, is
discretized by a collection of triangular meshes denoted by "
Both trial and test functions utilize the surface div-conforming
vector Rao—Wilton—Glisson (RWG) functions [71], A", which
are defined over K"

By substituting (58) and (62) into (63), we have

o, ( / 5 Go(r,r') - M(r) dS’) +
M(r') dS’) — o (y).

:h,m
T (// Gg (r,1)
Sa ko

The right-hand-side (RHS) vector in (64) can be calculated by
applying the RWG testing function

el

The aperture admittance matrix for the exterior subregion using
the free-space DGF reads

yhm o / / / / Al (r)- [WT (Eo(r, r’)) -kh(r')} dS'dS. (84)

Kk Kh

(82)

H (r)dS. (83)
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Next, we will derive the aperture admittance matrix of the
interior subregion. At the aperture surface, the magnetic field

eigenfunction, \Illh(r), in (60) reduces to
Wl (r) ~ 207 (r) % + 20 (r)§ onS,. (85)

Similarly, from the expression of source eigenfunction, " (r'),
in (61), we have

PN (r) ~ 207 (¢r') % + 20 (r)§ onS,. (86)
The outer product of ¥ (r) and ¥ (r') on S, gives rise to
! (1) @ B ()
=207 (r) U7 (') XX + 207 (r) UY (r') Xy
+20 (r) UF (x) g% 4207 (r) U (r') 3§
=27, (¥ (r) @ 7 (¥; (r))

where the W¥; is the RPW with uniformly distributed orientation
and polarization defined in (8).

As a result of the derivation that was introduced in Section
II-B, the tangential component of the electric S-DGF of the
second kind becomes

o (Gg’m(r,r’)) — 7, (2Re[Go(r,1')))

T <2ﬁ(r,r’;k‘m)) YV
* Z j\m - ja 2m

87)

>3- (8%)

m

Accordingly, the aperture admittance matrix of the interior sub-
region consists of two parts. We have for the first part

I ]

Kk Kch

=Re [Yg’m} .

2Re {Go(r r )D -xh(r’)} ds'ds

(89)

Regarding the second part, we first check the outer product in
the numerator with trial and testing functions

/ / / / M) [7” (Qﬁ(r’ ' km>) '”(r/)} ds'ds

KhoKh
= // / / Ar(r)- 270, (W, (v) @7, (B, ()]-A"(x')dS'dS
oh h
_ / / / / AR (x) 7y (B, (1))] [r (B ())-2R(x')]dS'dS
KhoKh
:2//Ah r)-m r))dS /ﬂ'.,- (W, (r)-A"r")dS'.
. . (90)

From the property of RPW approximation, it is easy to show
that both [A"(r) -7, (¥,,(r))] and [7, (¥, (r))-A"(x")] satisfy
the Gaussian distribution. The matrix entries in (90) are the result
of a product of the Gaussian random variables, whose covariance
function [after multiplying the remaining coefﬁc1ent V. in (88)]
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is expressed by

<//// A (r)- {WT (2ﬁ(r7r’;km)) 5:2%}’(1")] dS'dS>
KCh KCh

:////)Lh(r)-<7r7 <2§(r,r’;km)) > %-Ah(r’)dS’dS
K:h, K:h,

Q

[ﬁo (r, r’)] ) ~Ah(r’)} ds'ds

3

I (2

1 h
——1I [Y ’m} .
—Im | Y

In the above derivation, we have used the result of (32) and the
fact of k,,, =~ k. Then, the correlated Gaussian random variables
associated with individual RWG functions can be constructed
using the discrete Karhunen—Loeve expansion

(@] = —%Im [YE""’] (W] - 1)

Finally, the aperture admittance matrix of the interior subregion
is written as

~ =T
WmWm (92)
Am — JQ

Vi = Re[vE"] + 2

A statistical ensemble of admittance matrix Yg’m can be ac-
quired by repeatedly applying (92) to different GOE random
matrices.
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