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SUMMARY

Flexible polymer dielectrics which can function well at elevated temperatures
continue to be significant in harsh condition energy storage. However, state-of-
the-art high-temperature polymers traditionally designed with conjugated struc-
tures for better thermal stability have compromised bandgaps and charge injec-
tion barriers. Here, we demonstrate a self-assembled polyvinyl alcohol (PVA)/
montmorillonite (MMT) coating to impede charge carriers injecting into the poly-
imide (PI) polymer film. The anisotropic conductivity of the 2D nanolayered
coating further dissipates the energy of charges through tortuous injection path-
ways. With the coating, high field pre-breakdown conduction measurement and
space-charge profiling of Pl films reveal a clear shifting of the dominant mode
of conduction from the bulk-limited hopping to Schottky-injection limited conduc-
tion. The coating thus imparts Pl films with a significantly suppressed electrical
conduction (~10x), and substantially improved discharge efficiency (7 x) and en-
ergy density (2.7 x) at 150°C. The facile and scalable flow-induced fabrication un-
leash enormous applications for harsh condition electrification.

INTRODUCTION

Dielectric thin films with ultrahigh charging-discharging rate and high voltage withstanding are critical to power
converter, pulsed power, and electric propulsion applications (Mannodi-Kanakkithodi et al., 2016; Pan et al.,
2019), with advantages of graceful failure mode, flexibility for roll-to-roll winding and/or conformal coating pro-
cesses, and scalability for electronic device fabrication. However, conventional high-strength polymers can op-
erate only at relatively low temperatures, e.g., of <85°C for the biaxially oriented polypropylene (BOPP) (Rabuffi
and Picci, 2002; Tan et al., 2014). Such constraint brought up great challenges for emerging harsh condition elec-
trifications in More-Electric-Aircraft (MEA), downhole oil and gas exploitations, and offshore wind power, where
new wideband semiconductors (SiC, GaN) could enable system designs to offer unprecedentedly high power
density and payload efficiency but would require also an operation temperature surpassing 150°C for all the com-
ponents (Ho and Jow, 2012; Watson and Castro, 2015). Among the existing high-performance polymers, poly-
imides (PI) offer the best-balanced properties of flexibility, high mechanical strength, superior temperature,
and chemical resistances, and are therefore widely used in high-end applications of aerospace and military elec-
tronics, PCBs and busbar laminates, HV isolators, and in nearly all the flexible electronics today (Ji et al., 2019).
Even so, owing to their conjugated aromatic structures, Pls have intrinsically low bandgaps (Wu et al., 2020)
that give rise to a drastic increase in the electrical conduction and thus limited dielectric strength at high electric
fields, especially under also elevated temperatures, preventing their further use in aforementioned harsh condi-
tion electrifications (leda, 1984; Wu et al., 2020).

In addition to bulk limited processes of charge transport and breakdown, injection of charges from electrodes
plays key roles in governing the electrical conduction of polymer dielectrics (Dissado and Fothergill, 1992,
leda, 1984; Makasheva et al., 2016; Sessler et al., 1986; Xia and Zhang, 2004). Imperfections on the surface of poly-
mer films stemming from complex morphological and conformational disorders of polymers introduce surface
defect states, via which charges can inject into the bulk of the film over the lowered energy barrier (Coelho, 1974;
Hughes, 1980; Kamal et al., 2020; Roy et al., 2005). Therefore, to explore flexible dielectric materials utilizing es-
tablished high-temperature polymers, an alternative strategy is to inhibit charge injection from electrodes and
thus suppress the conduction current with the interface engineering technique (Zhang et al., 2021a). Inorganics
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Figure 1. Materials and characterization

(A) Schematic of the coating and tortuous injection pathways of electrons.

(B) XRD patterns of the coated P! films.

(C and D) TEM images of the cross-section of the nanocoating at low (C) and high (D) magnifications.

deposition (CVD) and physical vapor deposition (PVD) typically requiring high-temperature processing, compli-
cated chemical reactions, and/or high voltage plasma assistance (Azizi et al., 2017; Zhou et al., 2018). Despite
these cumbersome and laborious processes, risks remain during scaling-up as essentially a single pinhole
may lead to the complete failure of the system. Organic-inorganic composite materials were also demonstrated
to improve the dielectric properties at elevated temperatures, while they cannot directly utilize commercially
available dielectricfilms, which also limited the scaling-up (Ai et al., 2020; Yu et al., 2022). Itis desirable to develop
facile and scalable coating techniques with high throughput to further expand surface engineering techniques to
actual applications.

We demonstrated a facile flow-induced self-assembly coating approach for re-surface engineering (Zhang
etal., 2021a). Compared to chemical vapor or physical deposition of inorganics, solution-based coating is
economically more scalable and higher throughput (Zhu et al., 2016). Specifically, we introduced a polyvinyl
alcohol (PVA)/montmorillonite (MMT) solution-based self-assembly coating with hundreds of highly or-
dered organic/inorganic alternating layers on Kapton Polyimide (Pl) films. The 2D nanosheets are engi-
neered to form a high-quality defect-tolerant coating and the large band gap of MMT is employed to
help to suppress the charge injection (Zhang et al., 2021b; Zhu et al., 2016). In this work, we focus on the
high-temperature dielectric behavior of Pl with PVA/MMT self-assembly coating.

RESULTS AND DISCUSSION

As schematically shown in Figure 1A, the multilayered, highly ordered structure of the coating is expected
to not only impede charge injection via the revived Schottky barrier but also further dissipate the hot elec-
tron energies through tortuous layered injection pathways. Pl film of 230 um is employed for the study of
space charge distribution by using the pulsed electro-acoustic (PEA) technique (thick films are needed
owing to the limited spatial resolutions of PEA) (Tefferi et al., 2019). All other investigations are based
on Pl films with a thickness of 13 um. The flexible and transparent Pl films with a thickness of 13 um with
or without coating are shown in Figure S1. The high transparency of the coated Pl film indicates that the
MMT nanosheets were well-assembled with a high degree of orientation, thus minimizing the light scat-
tering. The XRD patterns of the coated Pl films are shown in Figure 1B. The intensive basal diffraction peaks
again suggest that a well-ordered layered structure has been formed on the two Pl films. As expected, the
substrate thickness barely affects the overall coating structure. The interlayer distance of the assembled
MMT nanosheets was ca. 2.73 nm on each substrate. TEM images of the cross-section of the nanocoating
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(on 13 um Pl film) at different magnifications are shown in Figures 1C and 1D. A well-oriented, layered struc-
ture of nanosheets is observed, which is in good agreement with the XRD characterization. Considering the
coated samples are designed for high-temperature applications, the nanocoatings were also crosslinked
to achieve high stability. The evidence of crosslinking is shown in the FTIR spectra in Figure S2.

Breakdown strength is the foremost parameter for harsh-condition electrifications. To demonstrate the
defect tolerance capability of the nanosheets coating, the characterization of breakdown strength was per-
formed based on 50 points of measurements. The probability function and survival function of Weibull fit-
tings indicate higher breakdown strength of the coated Pl films (Figures 2A, 2B, S3, and S4). From the survival
function fitting, it can be clearly observed that even the breakdown strength minimum of the coated film is
higher than the breakdown strength maximum of the uncoated film. The characteristic breakdown strength
evaluated by the Weibull model at the 63.2% (1-1/e) failure probability is improved from 487 MV/m to 530
MV/m with the coating. The shape factor of the Weibull breakdown strength for the coated film is as high
as 84, indicating the homogeneity of the coating. The high breakdown strength of 50 data points, each
measured over a large active area of 1 cm by 2 cm, also demonstrated the superior defect tolerance capa-
bility of the coating. The morphology of the breakdown regions for the uncoated and coated Pl films was
shown in Figure S5 to exhibit the damage patterns following a dielectric breakdown. Extensive radial traces
are apparent for the coated films, which result from the tortuous charge-spreading pathways branching
along and between the highly aligned inorganic MMT nanosheets. To experimentally demonstrate the
blocking effect of the coating, we investigated the charge distribution across the thickness of Pl films under
100 kV/mm for 10 min by using the PEA method as illustrated in Figures 2C and 2D (Tefferi et al., 2019). The
position of interest across the thickness is normalized to the total thickness of the film (230 pm) and pre-
sented per unit (P.U.) in which zero and one correspond to the positions of cathode (negative electrode)
and anode (positive electrode), respectively. With the layered nanosheets coating, the Pl film shows signif-
icantsuppression for both the homo-polar and the hetero-polar charges that would otherwise presentin the
uncoated Pl owing to the charge injection next to the anode and the accumulation of the migrated charges
under the electric field close to the cathode. In addition, the electric field distribution related to the charge
density profile could be calculated using the Gauss's law as presented by (1)

E(x) = ! /Xp(x)dx (Equation 1)
0

EoEr

where p(x) is the charge density, E(x) is the electric field, ey is the vacuum permittivity, and ¢, is the relative
permittivity of the material. The electric field distribution after charge injection is illustrated in Figures 2E
and 2F. Owing to the injection and accumulation of charge across the specimen especially adjacent to the
cathode, the electric field in the bulk of the Pl film is highly distorted by the local field induced by the space
charges; contrarily, in the coated Pl film, a much uniform electric field distribution is presented, attributed
to less charge injection through the coating. For the uncoated PI, the maximum local field reaches up to
168 kV/mm (a +68% enhancement) while it is only 118 kV/mm (+18%) in the coated PI film (Figure Sé).
The largely suppressed conduction owing to less charge injection and more uniform electric field distribu-
tion across the specimen is beneficial to the higher breakdown strength and higher operational field.

For capacitive energy storage, conduction loss is the major source of energy dissipation under high electric
fields and elevated temperatures. The high field conduction was experimentally investigated using a de-
signed system that can dynamically cancel the capacitive component of the current. The remaining signal
output represents the time-integrated conduction current across the sample, with accuracy for the small
resistive current down to 10 ppm (Li et al., 2016). The integral conduction current (ICC) and conduction cur-
rent density under 150°C are shown as a function of the electric field (Figures 3A and 3B). The conduction
model taking into account the Schottky effect is used to reveal the impact of the coating on charge injec-
tion, as expressed in Equations (2) and (3) (Sessler et al., 1986).

J = AT? exp[f (qs - ﬁE”Z) /kT] (Equation 2)
with

1/2

6 = (63/471'808,) /
where Jis the conduction current, A is a constant, T is the temperature in Kelvin, E is the electric field, ¢ is
the injection barrier, k is the Boltzmann constant, e is the electronic charge, ¢ is the vacuum permittivity,

(Equation 3)
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Figure 2. Charge injection and breakdown strength
(A and B) Characteristics of the breakdown strength from Weibull distribution.
(C and D) Injected charge densities in (C) uncoated Pl and (D) coated PI.

iScience

B
Survival Function

100
;\;; 80 Coated Kapton
z 60 | Uncoated Kapton
S 40
7]
a 20

0

450 460 470 480 490 500 510 520 530 540 550

Breakdown Strength (MV/m)

Charge density (C/m*)

100
1.0 Anode
80

0.8 - 60

e
N
1
w
S

Position (P.U.)
>

Time (min)

Position (P.U.)

10 Anode 160

140
0.8 120

100
0.6 80

60
0.4

40

20
0.2

0

=20
. Cathode

-40

0 2 4 6 8 10

Time (min)

(E and F) Electric field distribution in the (E) uncoated Pl and (F) coated P!l film after charge injection.

and ¢, is the relative permittivity. Significant parameters can be obtained by combining the integral rela-

tionship between ICC and J in Equation (4).

IcC = / Jdt

(Equation 4)

The calculated g, for uncoated Plis 1.2, which is much smaller than the measured ¢, (3-3.2, Figure S7), indicating
that the charge transport behavior for uncoated Pl deviates significantly from the interface limited conduction
model (Figure 3C). However, the calculated e, for coated Pl is 3.6, slightly higher than the measured ¢, (3-3.25),
suggesting a plausible Schottky barrier (interface) limited charge transport (Figure 3D). For uncoated PI, defect
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Figure 3. Electrical conduction

(A) Integral conduction current at 150°C.

(B) Conduction current density at 150°C.

(C) Schematic of bulk limited conduction for uncoated PI.

(D) Schematic of Schottky injection interface limited conduction for PVA/MMT coated PI.

formation through the long chain disorder of polymers in the interface region leads to charge injection over a
much smaller energy barrier compared to the theoretic Schottky barrier. As a result, the charge transport is
controlled by the bulk of the film rather than by the interface. The well-aligned, highly ordered structure of the
PVA/MMT coating revived the Schottky barrier of Pl, restoring the interface limited conduction. The conduction
currentofuncoated Plis, therefore, analyzed using the hopping conduction model (experimental section). Attrib-
uted to the revived Schottky barrier, the conduction current was nearly one order of magnitude lower with the
coating, on a side-by-side comparison with uncoated Pl (Figure 3B).

The high electric field energy storage performance was characterized via displacement-electric field (DE) loops.
The area inside the loops represented energy dissipation. At the same electric field, Pl films with the coating ex-
hibited much narrower DE loops relative to the uncoated films (Figures 4A and 4B), especially at 150°C, indicating
the suppression of energy loss by the coating. Figure 4C summarized the charge-discharge efficiency (i), which is
the ratio of discharged energy density and the total input energy density, of Pl films under 100°C and 150°C as a
function of the electric field. As the Joule heating produced by the conduction current can lead to thermal break-
down of dielectric materials at electric fields far below their intrinsic breakdown strength, dielectrics with low
charge-discharge efficiency are not suited for capacitors applications. Therefore, we selected 90% as a fixed ef-
ficiency to make comparisons among coated and uncoated films under different temperatures. With the electric
field increasing, the discharged energy density increased quadratically (U, = 1/2¢0e,E%, where U is the discharged
energy density) while the charge-discharge efficiency decreased owing to the exponentially increased conduc-
tion loss. The electric field correlated with the efficiency (1) of 90% is marked as Ego. Under 100°C, Egq is 280
MV/m for the uncoated film, which is improved to 380 MV/m for the coated film. Under 150°C, Egq is 188 MV/
m and 314 MV/m for the uncoated and coated films, respectively. With the coating, Eoo was increased by 36% un-
der 100°C and 67% under 150°C. Contributions of the coating could also be evaluated by the temperature depen-
dence of Egp from another perspective. From 100°C to 150°C, a more intense charge injection gave rise to higher
conduction loss. Eggwas decreased by 33% for the uncoated Pl film but only 17% for the coated film. The less tem-
perature dependence of E¢g demonstrated again the blocking effect of the coating in charge injection and regu-
lation of the conduction current at elevated temperatures. The discharged energy densities with an efficiency
above 90% were shown in Figure S8, which was improved from 0.48 J/em® to 1.3 J/em® (2.7%) at 150°C. The
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Figure 4. Energy storage performance

(A and B) DE loops of (A) the uncoated Pl film and (B) the coated PI film at 150°C.

(C) Discharge efficiency under elevated temperatures as a function of the electric field at 100°C and 150°C.
(D) Discharge efficiency of the PVA/MMT coated Pl relative to reported Pl-based dielectrics at 150°C.

charge-discharge efficiency at 150°C for the PVA/MMT coated Pl outperforms the best-reported Pl composites or
Pl with coatings from a side-by-side comparison (Figures 4D and Table S1) (Ai et al., 2020; Azizi et al., 2017; Dong
etal., 2021; Zhang et al., 2021b; Zhou et al., 2018). Although Pl with one extra Al,Os layer inside the Pl film (Al,O3-
PI-Al,O3-PI-Al,O3) shows slightly higher efficiency at ~400 MV/m, the complicated composite architecture is not
applicable for commercially available polymer films (Dong et al., 2021). Instead, this facile, highly scalable assem-
bly of the MMT nanosheets coating can be readily applied to Pl and other polymer films for mass production.

MMT nanosheets are covered by PVA chains when they are mixed in an aqueous suspension (Ding et al.,
2017). Thus, there will be virtually no direct bonding between MMT and Pl. Instead, a thin layer of PVA is
bonded with PI. The Pl surface was corona discharge treated and thus it became hydrophilic, generating
a strong interface with PVA. As a result, the coating layer is very difficult to be peeled off the substrate
(damaged during the peeling process), indicating the strong bonding between the coating and the Pl sub-
strate. This method is universal for various types of polymer substrates and 2D nanosheets. We have coated
on many other different polymer substrates including polylactic acid (PLA), polyethylene terephthalate
(PET), polypropylene (PP), high-density polyethylene (HDPE), low-density polyethylene (LDPE)
(Ding et al., 2017; Zhang et al., 2021b), polystyrene (PS), polyvinylidene fluoride (PVDF), paper (Chavez
et al., 2021), cardboard (Williams et al., 2021), and cotton fabrics (Zhang et al., 2017, 2018, 2020, 2021c).
We have also used many different 2D nanosheets including MMT (Ding et al., 2017; Zhang et al., 2021¢),
Laponite (Liu et al., 2021), graphene oxide (Liu, 2018), layered double hydroxide (Yu et al., 2016), and a-zir-
conium phosphate (Liu, 2018).

Conclusions

In summary, we demonstrated a flexible high-temperature dielectric film by incorporating a 2D nanosheets
coating on both sides of the commercially available polyimide films. A flow-assisted approach was developed
to assemble the laminated single-layer nanosheets on the surface of polymer dielectric films. High field conduc-
tion studies show a clear shifting of conduction modes from the bulk-limited hopping conduction in uncoated Pl
to electrode-limited Schottky injection in Pl with the nanoclay coating. The great suppression of conduction loss
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gave rise to significantly improved charge-discharge efficiency under high electric fields and largely improved
overall breakdown strength and energy storage densities, especially at elevated temperatures. The facile and
scalable fabrication, and more importantly, the defect tolerance from the well-aligned laminated structure reveals
its tremendous potential in resurrecting commodity high-temperature polymer dielectrics like Kapton Pl for
extensive uses in the rapidly expanding, large scale harsh-condition electrifications.

Limitations of the study

In the follow-up research, it is expected to further investigate the long-term stability of the coated Pl films
and integrated capacitors under concurrent elevated temperature and high electric field.
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REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, peptides, and recombinant proteins

Polyimide (PI) American Durafilm 50HN (.0005") Kapton® Film x 25"
polyvinyl alcohol (PVA) Kuraray Mowiol® 8-88

montmorillonite (MMT) Minerals Technologies Inc. PGN

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by
the lead contact, Luyi Sun (luyi.sun@uconn.edu) and Yang Cao (yang.cao@uconn.edu).

Materials availability
This study did not generate new unique reagents.

Data and code availability

All data are available in the paper and in supplemental information, and/or from the corresponding authors
upon reasonable request. This paper does not report original code.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

This work did not need any unique experimental model.

METHOD DETAILS
Materials and characterizations

To fabricate the self-assembled coating, a dispersion of well-exfoliated montmorillonite (MMT) nanosheets
and polyvinyl alcohol (PVA) (0.75 wt. % MMT + 0.75 wt. % PVA + 98.5 wt. % water) was prepared in advance.
The low-viscosity dispersion helped to generate a quick flow and a thin liquid layer, both of which are favor-
able for achieving a high level of orientation of MMT nanosheets. The corona discharge treated Pl films with
two thicknesses, 13 and 230 um, were dip-coated with the above-mentioned aqueous dispersion and then
vertically hung in an oven to be dried and crosslinked at 60°C. Thickness measurements of the nanocoat-
ings were performed on a Semiconsoft MProbe Thin Film Measurement System (Southborough, MA). For
the coated Kapton substrate, at least 10 thickness measurements were performed. The average results with
standard deviations are reported. The resulting coating layer was measured to be 347 + 15 nm. This thick-
ness results in a complete coverage of the substrate material with a defect-free charge-injection capability
while maintaining the flexibility of the Pl film, contributing to an optimized breakdown strength. The thick-
ness of the self-assembly coating can also be adjusted by changing the cycle of dip coating.

The X-ray diffraction (XRD) patterns were recorded on a Bruker D2 diffractometer using a graphite mono-
chromator with Cu K « radiation. Cross-sectional TEM images of the nanocoating structure were captured
using a Tecnai T-12 TEM. The coated PI film (13 um in thickness) was embedded into epoxy and micro-
tomed into thin slices (thickness ca. 100 nm) on a Reichert-Jung Ultracut E ultramicrotome. The cross-sec-
tions were placed onto a 400-mesh copper grid with a carbon supporting film forimaging at an accelerating
voltage of 100 kV.

FTIR spectra were recorded on a Nicolet Magna-IR 560 spectrophotometer. Freestanding thin films were
delaminated from the substrates for FTIR characterization. To verify the crosslinking of the nanocoatings on
the Pl films, the FTIR spectrum of the delaminated nanocoating was collected (Figure S1). For comparison,
the spectrum for the crosslinked nanocoating (PVA/MMT-C) is compared with the spectra for MMT, PVA,
crosslinked PVA (PVA-C), and non-crosslinked nanocoating (PYA/MMT-N). The additional peak at ca.
1106 cm™" for the crosslinked coating is an indicator of the formation of Si-O-C bonds from the reaction
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between the Si-OH groups in MMT and the C-OH groups in GA. Upon crosslinking, there is also a reduction
in intensity in O-H stretching (ca. 3370 em™") and C-OH stretching (ca. 1060 em™).

Electrical measurement

Breakdown-strength measurements were performed at room temperature under a direct-current voltage
ramp of 300 V/s, and the active testing area was 1 X 2 cm?. The electrodes on the test sample films are evap-
orated aluminum (Al) metalized BOPP films. A thicker Kapton Pl film (120 pm) with a window of 1 X 2 cm?
was inserted between the sample under investigation and the high voltage metalized film electrode to con-
trol the active electrode area (Figure S3). The high voltage was generated by a Stanford PS375 high-voltage
power supply and controlled by a ramp-signal generator.

The space charge distribution was measured using Pulsed Electro Acoustic (PEA) method(Arab Baferani
etal., 2021; Tefferi et al., 2019). The acoustic pulse was obtained by the application of the voltage impulses
with 1-2 ns rise time and a peak voltage of 350V. For PEA measurement, the specimens were coated on
both sides with 60/40 weigh% Au/Pd sputter coating with a diameter of 1 cm.

The conduction at the high field was measured with a specially designed capacitive cancellation measure-
ment system (Li et al., 2016). The system uses a small sinusoidal modulation signal superimposed on the
voltage ramp to track the capacitive current under transient condition. Using the negative feedback
loop formed with a dual-phase lock-in amplifier, the capacitive current can be actively canceled via dynamic
gain control throughout the measurement. The hopping conduction model in Equation (5) described the
electric field dependence of the conduction current, where Jy is proportional to the density of injected
charge carriers, and 1 is the hopping distance. The hopping distance was 2.39 nm for the uncoated Pl film.

J = Jpsinh (e_EA) (Equation 5)

The dielectric spectroscopy measurement was conducted using a Solartron SI 1260 frequency response
analyzer with a Solartron 1296 dielectric interface. The sample in a test cell was put in an oven with a Delta
Design 9015 temperature controller, which can control the temperature fluctuation within +0.5°C in the
whole measurement. The measurement was carried out at temperature starting from 30°C to 150°C. Before
each measurement, a 30-min stabilization at a set temperature was used to guarantee the sample was in a
uniform steady isothermal state.

DE loop was employed using a modified Sawyer-Tower polarization loop tester with a unipolar positive half
sinusoidal wave of 100 Hz. The measurement system consisted of a Trek Model 10/40 10 kV high voltage
amplifier and an OPA541 operational amplifier-based current-to-voltage converter. Gold/Palladium elec-
trodes are coated on both sides of the film with a diameter of 3 mm using the sputter coating method to
ensure a good contact between electrodes and the film.

QUANTIFICATION AND STATISTICAL ANALYSIS

Our study doesn't include quantification or statistical analysis.
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