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ABSTRACT

Background: Optogenetic modalities as well as optochemical and photopharmacological strategies, collectively termed optical methods, have
revolutionized the control of cellular functions via light with great spatiotemporal precision. In comparison to the major advances in the pho-
tomodulation of signaling activities noted in neuroscience, similar applications to endocrine cells of the pancreas, particularly insulin-producing -
cells, have been limited. The availability of tools allowing light-mediated changes in the trafficking of ions such as K™ and Ca®* and signaling
intermediates such as cyclic adenosine monophosphate (CAMP), renders B-cells and their glucose-stimulated insulin secretion (GSIS) amenable
to optoengineering for drug-free control of blood sugar.

Scope of review: The molecular circuit of the GSIS in B-cells is described with emphasis on intermediates which are targetable for optical
intervention. Various pharmacological agents modifying the release of insulin are reviewed along with their documented side effects. These are
contrasted with optical approaches, which have already been employed for engineering B-cell function or are considered for future such ap-
plications. Principal obstacles are also discussed as the implementation of optogenetics is pondered for tissue engineering and biology appli-
cations of the pancreas.

Major Conclusions: Notable advances in optogenetic, optochemical and photopharmacological tools are rendering feasible the smart engi-
neering of pancreatic cells and tissues with light-regulated function paving the way for novel solutions for addressing pancreatic pathologies

including diabetes.

© 2022 The Author(s). Published by Elsevier GmbH. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. INTRODUCTION

The regulation of major cellular functions using light has become
possible through molecular customization of cells and advances in
optogenetic and optochemical methods. These modalities afford su-
perior spatial and temporal resolution allowing for precise stimulation
of cells and tissues in contrast to pharmacological interventions.
Optogenetic strategies were adopted early on in neuroscience with
significant progress noted in their implementation [1,2], but recent
successes have been reported for hearing restoration, bladder control,
and cardiac muscle pacing [3—6]. Moreover, light-mediated modula-
tion of cellular signaling pathways has become part of the tool chest for
understanding fundamental subcellular processes driving physiological
responses by cells and cell ensembles.

Yet, the adoption of optical modulation systems in pancreas biology
and tissue engineering has been relatively limited. While the exocrine
pancreas produces digestive enzymes, the endocrine compartment

supplies various hormones which are essential for homeostasis,
including the control of blood sugar [7]. The pancreatic endocrine
tissue comprises multiple cell types organized in clusters or islets
traversed by blood vessels. Hormone secretion is orchestrated through
interactions among neighboring cells and by extracellular stimuli.
Greater understanding of this complex environment is necessary for
developing effective therapies for pathologies of the pancreas. Among
the endocrine cells, insulin-producing B-cells along with glucagon-
secreting a-cells play a critical role in the maintenance of normogly-
cemia. This is evident in diabetes where extensive damage of the [3-
cells due to autoimmunity (type 1 diabetes; T1D) or insulin resistance
(type 2 diabetes; T2D) mandates the administration of exogenous in-
sulin in all T1D patients and over 30% of patients with advanced T2D.
However, control of diabetes is suboptimal relying on manual calcu-
lation of the amount of insulin to be infused based on factors such as
blood glucose, food caloric intake, etc. Patients with T2D are pre-
scribed pharmacological regimens for boosting the amount of insulin
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Abbreviations

AC adenylyl cyclase

Ach acetylcholine

ADP adenosine diphosphate

ATP adenosine triphosphate

ATP/ADP  ATP/ADP ratio

BldD ¢-di-GMP—binding domain derived
BLINK1 blue light-gated K™ channel 1

BLINK2 blue light-gated K channel 2

BLUF blue light using flavin adenine dinucleotid
bPAC Beggiatoa photoactivatable adenylyl cyclase

bReaChES red-shifted channelrhodopsin

cAMP cyclic adenosine monophosphate

cGMP cyclic guanosine monophosphate

ChR2 channelrhodopsin 2

CRY2 cryptochrome 2

DAG diacylglycerol

EPAC exchange protein directly activated by cAMP
EuPAC Euglena gracilis photoactivatable adenylyl cyclase

FAD flavin adenine dinucleotide

FADH reduced flavin adenine dinucleotide
GDL D-glucono-d-lactone

Gl gastrointestinal

GIP gastric inhibitory polypeptide

G receptors coupled G; o subunit
GLC phospholipase C

GLP-1 Glucagon-like peptide 1

GLUT1 glucose transporter 1

GLUT2 glucose transporter 2

GPCR G-protein-coupled receptor

GPP4 dipeptidyl peptidase-4

Galg receptors coupled Gq o subunit
Golg receptors coupled Gg o subunit
GSIS glucose-stimulated insulin secretion
HVCC high voltage-gated Ca?* channel
IBMX 3-isobutyl-1-methylxanthine

IP3 inositol trisphosphate

JellyOp rhodopsins from the jellyfish Carybea rastonii

Katp ™ ATP-sensitive K* channel

Kv voltage-dependent K channel
LAPD light-activated PDE

LED light-emitting diodes

LoV light, oxygen, and voltage

MGCTVSAE myristoylation/palmitoylation domain

MIN6-ChR2 MIN6 insulinoma cells transfected with the ChR2 gene
NADH Nicotinamide adenine dinucleotide

NFAT the nuclear factor of activated T cells

NIR near-infrared

NIRW near-infrared window

0aPAC Oscillatoria acuminata photoactivatable adenylyl cyclase
p65 NF-kB—transactivating domain

PAC Photoactivatable adenylyl cyclase
PAC-K SthK and PAC system
PDE phosphodiesterase

PEG polyethylene glycol

PHYB phytochrome B

PIP, phospholipid phosphatidylinositol bisphosphate
PKA protein kinase A

PKC protein kinase C

PLGA polylactic-co-glycolic acid

PMA phorbol 12-myristate 13-acetate

RP reserve pool

RRP readily releasable pool

SGLT sodium-glucose cotransporter

shGLP1 short variant of the human GLP-1

SNARE Soluble N-ethylmaleimide-sensitive factor attachment protein
receptor

SthK small cCAMP-gated K™ channel

STZ streptozotocin

T1D type 1 diabetes

T2D type 2 diabetes

TCA tricarboxylic acid

TXNIP thioredoxin-interacting protein

VDCC voltage-dependent calcium channels

VP64 a tetramer of the VP16 activation domain;

released by their pancreas or facilitating the removal of excess glucose
from the bloodstream. Nonetheless, compliance and side effects such
as severe hypoglycemia, kidney dysfunction, and liver damage are
vexing issues.

Basic research in pancreas biology and translation to clinically
relevant technologies stand to benefit from advances in optogenetics.
Islet hormone secretion is mediated by the trafficking of ions (e.g.,
Ca2+, K*) across compartments, membrane depolarization, and
changes in metabolic and signaling intermediates (e.g., cyclic
adenosine monophosphate (CAMP)). Conceivably, these molecular
events can be paired with photoactivatable moieties such as opsins,
which modify ionic fluxes across membranes, and proteins featuring
domains of light, oxygen, and voltage (LOV), adenylyl cyclase activity
(e.g., bPAC [8,9]), or interacting complementary regions (e.g.,
phytochrome B (PHYB), cryptochrome 2 (CRY2) [10], phytochrome
interacting factor 6 (PIF6) [11]). For instance, elevated GSIS has been
reported in B-cells expressing channelrhodopsin 2 (ChR2) where
exposure to light activates ChR2 causing membrane depolarization
and activation of Ca®" channels [12]. Also, B-cells expressing bPAC
exhibit higher insulin secretion rates when exposed to blue light [13]

further supporting the use of optogenetic tools for advancing our
knowledge of pancreas physiology and the development of medically
relevant treatments.

It should be noted that this review focuses on B-cells, rather than other
islet cell types, since amelioration of the reduction in/ablation of 3-cell
mass and insulin release is a major aim of relevant cell replacement
strategies. To this end, the molecular pathway underpinning the
glucose-stimulated insulin secretion (GSIS) of B-cells is presented with
emphasis on intermediates amenable to optical intervention. Moreover,
the drug-based modulation of these pathways is described along with
documented off-target effects. Against this backdrop, we look mainly
at reported optogenetic approaches, in addition to optochemical, and
photopharmacological ones and how these have been or can be
employed for engineering islet cell function. Major challenges to the
realization of these objectives are discussed in the last section. As
noted in the fields of brain biology and heart pathophysiology, opto-
genetics will help gain new insights regarding the complex functions of
the pancreas, particularly of hormone-secreting islet cells. Conversely,
light-regulated engineered cells and tissues can be part of therapeutic
solutions for maladies of the pancreas.
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2. MOLECULAR CIRCUIT(S) GOVERNING GSIS OF -CELLS

2.1. Glucose metabolism in B-cells

Glucose sourced via ingestion of food in the small intestine enters the
bloodstream and eventually reaches the liver and the pancreas.
Plasma glucose levels of 4—5 mM are reported in the fasting state, and
~7 mMis considered the threshold for metabolic events in pancreatic
B-cells [14], which are the sole secretors of insulin in the body. A basic
description is provided below of the molecular pathway(s) involved in
[-cell GSIS with emphasis on major intermediates, which are potential
targets for optogenetic intervention.

To enter B-cells (Figure 1), glucose undergoes facilitated diffusion
through the transmembrane glucose transporter GLUT1 (in humans) or
GLUT2 (in rodents). Intracellular glucose is phosphorylated by gluco-
kinase (hexokinase IV in humans) in the first step of glycolysis,
eventually leading to the generation of pyruvate. Pyruvate enters the
Krebs’ (tricarboxylic acid; TCA) cycle in the mitochondria, producing
nicotinamide adenine dinucleotide (NADH) and reduced Flavin adenine
dinucleotide (FADH). These energy carriers are reduced by oxidative
phosphorylation in a highly 0,-intensive process to generate ATP [15].
Under suboptimal oxygen supply, animal cells can convert pyruvate to
lactate, but B-cells express minimal levels of the catalyzing enzyme
lactate dehydrogenase [16].

The primary effect of glucose catabolism is the increase in the ratio of
ATP to ADP (ATP/ADP) with multiple downstream effects. ATP binds to
an ATP-sensitive Kt (Karp') channel, which consists of four pore-
forming inward rectifier potassium channel subunits (Ki6.2; KCNJ11)
and four sulfonylurea receptor subunits (SUR1; ABCCS) [14,17]. The
Ki6.2 subunits bind metabolism-generated ATP causing the Karp"
channels to close. The SUR1 subunits feature nucleotide-binding sites
inducing Katp™ closure upon interacting with insulin secretagogues
such as sulfonylurea and glinide [14,17]. With Karp™ channels shut,
membrane permeability is altered contributing to its depolarization.

Glucose @

TCA cycle

Mitochondria
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Hence, plasma glucose >6 mM reduces Kap" channel activity by
more than 75%. Conversely, B-cells are electrically silent in the
absence of glucose due to active Karp™ channels and the maintenance
of K efflux [14]. Serving as a halting mechanism of GSIS are the
voltage-dependent K* channels (K,) and Ca?*-sensitive voltage-
dependent K™ channels that repolarize the cell membrane, effec-
tively suspending Ca?*t transport [14].

As the B-cell membrane depolarizes with elevated ATP/ADP, it reaches
an activation threshold for voltage-dependent calcium channels (VDCC)
to increase conductance and allow Ca’' to enter the cell [14].
Membrane depolarization and intracellular Ca®* concentration
([Ca2+]i) are both oscillatory rather than biphasic [17]. The rise in -cell
[Ca”]i induces the fusion of insulin granules to the plasma membrane
via a soluble N-ethylmaleimide-sensitive factor attachment protein
receptor (SNARE) and the eventual release of the hormone [17].

In addition to the Karp"-mediated insulin secretion, a parallel pathway
(Kap™ channel-independent or metabolic amplifying pathway) in B-
cells is responsible for regulating at least 50% of the total hormone
release postprandially [18]. The pathway involves transmembrane G-
protein-coupled receptors (GPCRs) which are important drug targets.
Stimulated GPCRs proceed to activate heterotrimeric G-proteins
composed of a, B, and y subunits. The o subunits are divided into four
functionally distinct classes: Gq, Gs, Gi, and Gi2/13. The type of acti-
vated G,, dictates the role of GPCR signaling on the B-cell signaling and
insulin secretion [19,20].

GPCR-mediated triggering of Gy leads to phospholipase C (PLC)-
catalyzed conversion of phospholipid phosphatidylinositol bisphos-
phate (PIP,) into diacylglycerol (DAG) and inositol trisphosphate (IP3)
with subsequent release of Ca* from the endoplasmic reticulum (ER)
triggering the release of insulin [19].

The Gs a-subunit can bind to the membrane-associated protein ade-
nylyl cyclase (AC). There are nine transmembrane and one soluble
isoforms of AC in different tissues with two main catalytic domains C1

Membrane

( depolarization 1

2+ (J
Ca 0.0

vbce 00

Golgi

Preproinsulin

NZNTZ N7 N7 N7 N7
Nucleus

Figure 1: Beta-cell GSIS molecular pathways. Glucose enters the 3-cell from the bloodstream via the GLUT transporter and is catabolized yielding ATP. ATP induces the closure of
Karp™ channels causing changes in membrane conductance leading to its depolarization. In response, VDCCs enhance Ca2" influx, which triggers the migration and fusion of
secretory granules to the cellular membrane, leading to insulin secretory granule exocytosis. Among various types of GPCRs, incretins that activate Gq can stimulate PLC to convert
PIP, to DAG and IP3, and release cytosolic [Ca?*]; that results in insulin release. On the other hand, G;-coupled GPCR inhibits AC, while incretins, such as GLP-1, can bind to G, and
stimulate AC activity. AC catalyzes the conversion of ATP to cAMP, which activates both PKA and EPAC enhancing VDCC activity, and eliciting insulin exocytosis. The PDEs degrade

CAMP.
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and C2 [21]. Both insulinoma lines and primary B-cells in humans and
rodents express different AC isoforms, including AC5 and AC6 [22] as
well as the Ca®*- and calmodulin-activated isoforms AC1, AC3, and
AC8 [23]. Activation of AC results in the conversion of ATP to cyclic
adenosine monophosphate (CAMP). Conversely, phosphodiesterases
(PDEs) continually degrade cCAMP [24], bringing its concentration down
to baseline once the incretin signal is attenuated. There are eleven PDE
isoforms, of which human and rodent islets, and 3-cell lines express:
PDE1, PDE3, PDE4, PDE7, PDE8, PDE10, and PDE11 [25]. Among the
PDE subtypes expressed in [3-cell, PDE1, PDE3, and PDE4 are better
studied and account largely for the regulation of cAMP levels in the
context of GSIS [26]. Thus, Gs-targeting incretins promote the elevation
of intracellular cAMP. In contrast, the activation of G; results in inhib-
itory effect of AC, cAMP formation and insulin secretion.

The incretin-mediated increase in cAMP leads to activation of the
protein kinase A (PKA), which phosphorylates and enhances the
function of VDCCs, allowing for greater Ca?*t influx, and therefore
stimulation of membrane fusion and exocytosis of insulin granules
[18,27]. PKA also directly phosphorylates and closes Karp' channels in
an ADP-dependent manner resulting again in augmenting membrane
depolarization and VDCC activity [18]. Cyclic AMP may enlarge the
readily releasable pool (RRP) of granules in a concentration-dependent
manner independent of Ca2+, priming B-cells at stimulatory ambient
glucose concentration [17].

In addition to PKA, the exchange protein directly activated by cAMP
(EPAC) is a cAMP sensor, which like PKA features a cAMP binding
domain, and regulates functions such as cell adhesion and junctions,
secretion, differentiation, gene expression, and apoptosis [28]. While the
roles of EPAC and PKA in insulin secretion require further elucidation,
EPAC is involved in the priming of vesicles, inhibiting Kamp" through
interaction with SUR1, and regulating ryanodine-sensitive Ca>" chan-
nels in Ca®>"-induced Ca?* release from internal stores [29—31].

The biphasic nature of insulin secretion begins with a largely Cat-
dependent, high amplitude burst of insulin exocytosis over a short
duration sourced from the RRP, whose granules are already docked
and primed at the plasma membrane. The second phase consists of a
lower amplitude period of insulin output over a longer duration and is
derived from the supplementation of the RRP by the granule storage
pool, or reserve pool (RP). Insulin secretion is also known to exhibit
oscillatory behavior in intervals of approximately 5 min in human pa-
tients [32]. The secretion of insulin is concomitant to that of C-peptide
— a byproduct of proinsulin processing representative of de novo in-
sulin synthesis — in a 1:1 molar ratio.

3. PHARMACOLOGICAL/CHEMICAL AGENTS MODULATING
INSULIN SECRETION

There are several known secretagogues eliciting the release of insulin
by B-cells, and some have been utilized in the treatment of T2D. Our
discussion is limited to insulinotropic agents (Table 1) acknowledging
that drugs in clinical use for managing blood glucose may target
extrapancreatic tissues. For instance, biguanides (e.g., metformin) act
on the liver, lessening glucose production, and sodium-glucose
cotransporter (SGLT) inhibitors reduce the renal reabsorption of
glucose [33,34].

As discussed already, cAMP and its modulators, ACs and PDEs, are
central to the circuit regulating B-cell insulin secretion. Trans-
membrane ACs are stimulated by the G,g subunit of GPCRs, which in
turn are targeted by incretins such as the gastric inhibitory polypeptide
(GIP) and the glucagon-like peptide 1 (GLP-1) released from the gut
after food ingestion. The GLP-1, which is a Gg-binding incretin

Table 1 — Summary of agents that modulate various targets in GSIS
pathway.

Molecule Target Type References
ChR2 Gast Optogenetics [12,79—82]
red-shifted channelrhodopsin CaZt 1 Optogenetics [78]
(bReaChES)
Dihydropyridine Ca®t ¢ Pharmacological [47]
Phenylalkylamine Ca>* 1 Pharmacological [47—50]
Benzothiazepine Ca?* 1 Pharmacological [47,51]
Caged Ca®* Ca®t ¢ Optochemical [102]
euPAC, 0aPAC, bPAC, PACmn,  cAMP1 Optogenetics [8,9,13,63
NIRW-AC —74]
LA-PD CAMP | Optogenetics [75]
PAC-K CcAMP 1, Optogenetics [71]
Kt
Ach GPCR with  Pharmacological [52,53]
Gg 1
GIP, GLP-1 GPCR with  Pharmacological [14,15,18,27]
Gs 1
JellyOp GPCR with  Optogenetics [55,56]
Gs 1
Short- and long-wavelength- GPCR with  Optogenetics [61,62]
sensitive opsins Gi 1
Melanopsin GPCR with  Optogenetics [58]
Gg 1
Meglitinides Karp 71 Pharmacological [44]
Sulfonylurea Katp T L Pharmacological [41—43]
BLINK1, BLINK2 Karp L Optogenetics [76,77]
Azobenzene-sulfonylurea Kare + 1 Photopharmacological [94—97]
IBMX PDE | Pharmacological [39,40]
PMA PKC1 Pharmacological [57]

upregulates intracellular cAMP, in addition to stimulating GLUT2 and
glucokinase. These actions result in inhibition of Karp™ and K, channels
(reducing membrane repolarization), promotion of insulin biosynthesis,
suppression of apoptosis and stimulation of proliferation of B-cells,
curbing glucagon secretion (thus, preventing the release of glucose
into the blood from hepatic storage), and delaying gastric emptying
[14,15,18,27]. Because GIP and GLP-1 are rapidly degraded by
dipeptidyl peptidase-4 (DPP4) [35], longer-acting agonists of the
incretins (such as exendin-4 [36]) have been used for T2D treatment
while DPP4 inhibitors are in development. It is reported that the use of
GLP-1 agonists is linked to a lower risk of hypoglycemia for T2D
patients.

The natural diteprenoid forskolin also activates ACs in a rapid, dose-
dependent and reversible manner by binding close to the enzyme’s
catalytic site promoting C1 and C2 assembly [37]. Because forskolin
has a broad spectrum of actions including the inhibition of glucose
transporters and ion channels [37], and the increase of acetylcholin-
esterase, its activity as an insulin secretagogue lacks high specificity
[38].

Inhibitors of PDEs prolong elevated intracellular cAMP, thereby
amplifying the secretion of insulin by B-cells. A competitive selective
PDE inhibitor is 3-isobutyl-1-methylxanthine (IBMX), which acts on all
isoforms except PDE 8 or 9 [39]. At 16.7 mM glucose, the addition of
5 uM forskolin or 25 puM IBMX to diabetic rat islets leads to a 1.5- or
1.8-fold increase in insulin release, respectively [40].

The rise in cAMP induces the closure of Karp™ channels evoking B-cell
membrane depolarization, ca’t influx, and insulin release. Sulfonyl-
ureas, which are benzoic acid derivatives, bind to the SUR1 subunits of
the Karp™ channel, inhibiting the K™ influx, triggering the same process
train as elevated cAMP resulting in hormone secretion [41]. It should
be noted, however, that this sulfonylurea-triggered production of in-
sulin in B-cells is essentially independent of extracellular glucose
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levels, given that the binding of sulfonylureas diminishes the ability of
Kae™ channels to sense intracellular ATP and ADP fluctuations in
response to the rise and fall in extracellular glucose. This explains the
risk for hypoglycemia and hyperinsulinism for T2D patients associated
with this class of agents. Chronic administration of sulfonylureas also
reduces SUR1 expression on the surface of B-cells exacerbating T2D,
but this effect can be reversed by discontinuing the treatment.
Moreover, several cell types beyond B-cells express Karp™ channels
lowering the specificity of the anti-diabetic effect of sulfonylureas.
Accordingly, sulfonylurea regimens have been linked to higher risks of
adverse cardiovascular outcomes in T2D given that cardiomyocytes
also express Karp™ channels [42]. Unlike the first generation of sul-
fonylureas (e.g., acetohexamide, chlorpropamide, tolazamide, and
tolbutamide) which had a high dosage requirement (100—2,000 mg/
daily), second-generation agents (e.g., glyburide, glipizide, gliclazide,
and glimepiride) are significantly more effective and potent (1—20 mg
per day) with fewer side effects [43].

Meglitinide was introduced in 1995 as another T2D drug binding to
the SUR1 and stimulating insulin secretion. Meglitinide analogs such
as repaglinide, nateglinide, and mitiglinide, bind to distinct sites of the
SUR1 with lower affinity compared to sulfonylureas. The shorter half-
life of meglitinides may point to a lower likelihood of cardiovascular
implications for diabetic patients compared to sulfonylurea treatment
[42]. Additionally, nateglinide is 1000-fold more selective for
Katp™ channels in B-cells vs. cardiomyocytes. In albino mouse islets,
100 pM of tolbutamide, 1 pM of glipizide or 100 uM of meglitinide
stimulates a rapid 8- to 9-fold increase of insulin secretion above
basal values within 10 min in the presence of 10 mM glucose [44,45].
In pancreas, high voltage-gated Ca?*t channels (HVCCs) also play a
significant role of in B-cell glucoregulatory insulin release, as the influx
of calcium ions via HVCC initiate the Ca®* -dependent exocytosis of
insulin [46]. HVCCs are multi-protein complexes comprising several
different subunits, including the primary pore-forming transmembrane
a1 subunit, along with auxiliary extracellular (o23), intracellular (f),
and transmembrane () subunits [47]. Pharmacological Ca* channel
blockers such as dihydropyridine (nifedipine), phenylalkylamine
(Verapamil), and benzothiazepine (diltiazem), target L-type channels
and are widely used to treat hypertension, inhibiting Ca®* from
entering vascular smooth muscle and myocardial cells [47]. An early
study shows nifedipine has a stronger effect on $-cell electrical activity
compared to Verapamil. However, upon glucose stimulation, murine [3-
cells show high sensitivity to Verapamil but not nifedipine [48]. In
rodent B-cells and islets as well as in human islets, Verapamil de-
creases the expression of thioredoxin-interacting protein (TXNIP),
prevents {3 cell apoptosis, and preserves functional B-cell mass [49]. In
one pilot study involving recent-onset T1D patients, once-daily oral
Verapamil (from 120 mg to 360 mg) reduces the need for exogenous
insulin dosage, and frequencies of hypoglycemia compared to the
placebo group [50]. The International Verapamil S.R./Trandolapril
Study revealed an association between calcium channel blockers use
and a lower risk for newly diagnosed T2DM However, intoxication by
an overdose of Verapamil or diltiazem may result in hyperglycemia, as
the agonists bind to the L-type HVCCs and diminish the release of
insulin [51]. Among the GPCR-targeting agents to modulate [Ca”]i,
acetylcholine (Ach), for instance, is a ligand of M3 muscarinic ACh
receptors (M3Rs) inciting Gy-type GPCRs, activating the PLC pathway
thereby augmenting [Ca2+]i, and GSIS in rodent and human islets
[52,53].

Other secretagogues operate beyond regulating the activity of cAMP,
Karp™ OF Ca?t channels. Certain amino acids, including leucine,
isoleucine, alanine, and arginine, enhance insulin secretion from
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primary islet cells and B-cell lines under specific conditions [54,55].
Cationically charged L-arginine directly triggers membrane depolari-
zation at neutral pH only in the presence of glucose [56]. Other non-
charged amino acids depolarize the cell membrane indirectly via a
Na™ transport-dependent mechanism. The phorbol 12-myristate 13-
acetate (PMA) diester triggers insulin secretion by activating the pro-
tein kinase C (PKC) isoforms o, & and/or . Rat islets treated in 1 uM of
PMA for 2 h exhibit enhanced insulin release both at baseline and after
stimulation with glucose and tolbutamide. At the peak of first-phase
insulin secretion, 20 mM glucose induces a 15-fold increase in
PMA-treated islets vs. untreated islets. A less pronounced increase (3-
fold) is also observed in the second phase [57].

While this is not an exhaustive review of pharmacological interventions
for augmenting the secretion of insulin, it illustrates that these are
associated with off-target effects and negative interactions, motivating
research towards the generation of strategies for effective approaches
characterized by greater specificity and fewer side effects.

4. OPTOGENETIC APPROACHES

4.1. Optogenetic regulation of GPCRs

Optogenetic tools have been reported for precise spatial and temporal
control of GPCR signaling in B-cells. Mansouri et al. introduced mel-
anopsin, a Gg-linked GPCR that can activate the PLC path which results
in increases in cytosolic Ca®" and insulin release, as demonstrated
with the INSvesc cells, a subvariant of the human insulin-releasing [3-
cell line 1.1E7 [58]. The new cell line (iB-cells) stably expressed a
luciferase insulin reporter construct, and melanopsin that was excited
at 475 nm or with a smartphone flashlight. Peak insulin release was
observed within 15 min of illumination in vitro. When iB-cells encap-
sulated in alginate-poly(L-lysine)-alginate beads were transplanted
subcutaneously in STZ-treated diabetic C57BL/6JRj mice, blood insulin
levels were elevated compared to STZ-mice alone and STZ-mice with
transplanted cells but kept in the dark. Glucose tolerance testing
showed that the hyperglycemia improved significantly with 15 min of
flashlight illumination, even though INSvesc and if3-cells cells per se
are not capable to sense glucose. Of note, melanopsin is a promis-
cuous receptor activating Gq, Gi and Gs proteins [59] while the use of
another opsin (Neuropsin/OPN5), which activates G signaling specif-
ically [60], may increase the effectiveness of optogenetic insulin
release by B-cells.

Gg protein-coupled rhodopsins such as JellyOp from the jellyfish
Carybea rastonii [55] mediate Gs-signaling inducing transmembrane
ACs to increase intracellular cAMP. Cardiomyocytes expressing JellyOp
exhibited accelerated spontaneous beating with blue light illumination
similar to B-adrenergic stimulation using pharmacological means [56].
Short- and long-wavelength-sensitive opsins have been used for
control of Gj signaling cascades to inhibit AC, cCAMP in neuronal sys-
tems [61] and cardiomyocytes to decrease the beating rate [62] yet
such applications have not been reported in B-cells to date.

4.2. Optogenetic targeting of intra-f3-cell cAMP

4.2.1. Photoactivatable ACs (PACs)

The central role of cAMP in the regulation of B-cell GSIS has motivated
the search for tools that modulate this secondary messenger
(Figure 2). Photoactivatable adenylyl cyclases (PACs) are expressed in
bacteria and other microorganisms including Euglena gracilis (euPAC)
[63], Oscillatoria acuminata (0aPAC) [64], and Beggiatoa (bPAC) [8,9]
while artificial PACs resulting from protein engineering are also
available (see below) [65]. The euPACs are large tetrameric proteins
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Figure 2: Optical methods for modulating cell function using light. Three types of optical (optogenetics, photopharmacological and optochemical) approaches employed in the
engineering of B-cells. (A) Light illumination stimulates PACs to upregulate conversion from ATP to intracellular cAMP thereby enhancing GSIS (See section 4.2.1). (B) Upon
photoisomerization, azobenzene-based derivatives of sulfonylureas close the Karp ™ channels leading to membrane depolarization, increases in [Ca®*]; and eventually the secretion

of insulin [92]. (C) UV radiation cleaves photo-chelator nitrophenyl-EGTA with high affinity for Ca®* and decages Ca®*

(>100 kDa) with two blue light using flavin adenine dinucleotide
(BLUF) photoreceptor domains and two AC domains [66]. The complex
exhibits baseline AC activity in the dark that is stimulated 80-fold in the
light. Optostimulation of euPAC was demonstrated in Xenopus oocytes
and HEK293 cells whereas its expression in the neuronal cells of
Drosophila resulted in altered grooming behavior in response to blue
light [67]. Yet, the large molecular mass, low solubility, significant dark
activity, and moderate activation by light have prevented the wider use
of euPACs in optogenetic applications.

In comparison, bPAC is a smaller protein (350 aa) encoded by a ~ 1 Kb
gene, and it displays lower dark activity, high stimulation index (up to
300-fold increase in activity upon blue light stimulation), superior
solubility, and short half-life of the active lit state. These attributes
result in greater and longer augmentation of cAMP synthesis upon
illumination [8,9,68,69]. The bPAC protein, originating in the sulfide-
oxidizing Beggiatoa bacterium in sea floor environments, is a homo-
dimer of an N-terminal BLUF photoreceptor domain and a C-terminal
type Il AC domain [8,68]. The flavin adenine dinucleotide (FAD) needed
for BLUF activity is available natively in animal cells [9]. Absorption of
photons and the resultant excitation cause secondary structural
changes in the BLUF domain [68—70], which are required to activate
the AC site. The absorption maximum of the original bPAC has been
cited as 440 nm, indicating a high photosensitivity, possibly due to the
bPAC’s native deep-sea environment, where light exposure is likely

raising [Ca®*]; and leading to insulin release [99].

minimal [8,68,70]. Various PACs have been used for modulation of
cAMP in different cell types and in some instances, in combination with
engineered ion channels (see PAC-K system [71] below).

In the context of B-cell GSIS, Zhang et al. expressed the bPAC gene in
MING insulinoma cells and murine islets. The expression of bPAC did
not affect MING cell growth, proliferation, and viability. Exposure of
bPAC-expressing B-cells to blue light led to increased intracellular
cAMP and insulin secretion. Photostimulation in the absence of glucose
increased cAMP but did not elicit the production of insulin suggesting
that glucose-independent hormone release is unlikely despite elevated
cAMP. Interestingly, the oxygen consumption rate was not increased
despite the blue light-mediated GSIS amplification. Upon trans-
plantation of B-cells carrying bPAC to mice with streptozotocin (STZ)-
induced diabetes, increased plasma insulin levels, heightened glucose
tolerance and reduced blood glucose levels were measured [13,72].

Beyond natural PACs, the promise of proper optogenetic modulation of
cAMP for controlling diverse functions of therapeutic interest has
spurred the engineering of proteins featuring AC activity and photo-
activatable moieties.

To this end, Yang et al. engineered PACmn to overcome the residual
dark activity from natural soluble PACs [73]. PACmn is a modified bPAC
with point mutations and membrane-anchoring peptides of the tyro-
sine kinase Lyn for membrane localization. Compared to the wild type
bPAC, PACmn has a cyclase activity with three-fold lower light to dark
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ratio (>4,000) and shows a twice faster off-kinetics in oocytes. It is
interesting that the construct that displays the highest light to dark
activity ratio (>7,000) exhibits reduced light activity. In rat hippo-
campal neurons, PACmn shows no dark activity and accumulation of
cAMP or PKA. The AC activity is observed by FRET in response to brief
blue light illumination and diminishes within seconds for cAMP or
~10 min for PKA.

Moreover, a near-infrared optical window (NIRW)-absorbing PAC was
reported by Fomicheva et al. [74]. Compared to blue light, NIRW light
penetrates tissues at a greater depth (several centimeters), rendering
NIRW-stimulated ACs an attractive modality for biomedical applica-
tions. Additionally, red light is less energy-intensive than blue light
easing the design demands of envisioned optogenetic devices. It
should be noted that photoreceptors relevant to the NIRW light are
absent in most animal cells — unlike blue light flavins, which are
naturally occurring — lowering the potential for side effects (e.g.,
photooxidative damage) [65].

Engineered NIRW-ACs were constructed using bacteriophytochrome
receptors with light sensitivity in the 670—760 nm spectral region and
by fusing a type Il homodimeric AC and a photosensory module from
the bacteriophytochrome Rhodobacter sphaeroides [74]. Phyto-
chromes bind covalently to bilin chromophores or (specific to bacter-
iophytochromes) biliverdin 1Xa., which is naturally occurring in animal
cells [65]. In the dark state, NIRW-AC’s enzymatic domain monomers
are misaligned by photosensory modules preventing the formation of a
homodimer. Upon absorption of NIRW photons, biliverdin IXa. isom-
erization and alignment of the enzymatic domain monomers transpire,
transitioning the synthetic AC into the active state [65,74].

The NIRW-AC engineered by Fomicheva et al., designated as llaM5,
mediated precise control of neuronal spindle waves in mice [74]. From
the perspective of using llaM5 in solutions for treating T2D, red
spectral region-photoactivatable ACs would allow for greater tissue
penetration, reduced energy of illumination, and potentially lower
phototoxicity of B-cells [69,70].

4.2.2. Light-activated PDE

The Mdglich group reported the generation of a synthetic light-
activated PDE (LAPD) [75]. The LAPD was created by combining the
photosensor module of Deinococcus radiodurans with the catalytic
domain of the human PDE2A. Irradiation of LAPD with red light (650—
700 nm) activates its hydrolytic activity of CAMP, whereas illumination
with far-red light (theoretically 700—750 nm; however, an 850-nm
LED was used in the study) reverts LAPD to its inactive state. It
should be noted that for its function LAPD requires the chromophore
biliverdin that is present in various animal tissues, but its supply can be
augmented via co-expression of heme oxygenase, which converts
heme to biliverdin. LAPD followed Michalis-Menten kinetics with a
maximum reaction rate at substrate saturation of 1.8 and 6.5 pM/
(min-nM LAPD) in the dark- and red-light-adapted states, respectively.
The corresponding values for substate affinity (Ky) were 470 and
180 1M. Upon expression of LAPD in zebrafish embryos, CAMP levels
were reduced ~40% with red light exposure vs. control embryos
without LAPD. Conversely, no significant difference was noted in
intracellular cAMP when embryos were illuminated with infrared light.
Exogenous provision of biliverdin was not required.

This work shows that LAPD can be functionally expressed in vivo.
However, the utilization of LAPD for the optogenetic regulation of
cellular functions — including GSIS — is lacking. This may be due to
various reasons including that LAPD has dual specificity catalyzing the
hydrolysis of cAMP and cyclic guanosine monophosphate (cGMP)
similar to the human PDE2A. The simultaneous activation by LAPD of
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cAMP- and cGMP-participating pathways may confound strategies
intended for optogenetic control. Moreover, the red-light induction
index of LAPD is more than one order of magnitude less than that of
bPACs. Yet, the prospect is appealing of using LAPD to accelerate the
reduction of cCAMP levels following its excursion (e.g., in GSIS) thereby
improving the overall kinetics of an optogenetically driven response.

4.3. Optogenetic regulation of K™ for insulin secretion

The secretion of insulin by B-cells involves the action of membrane
potential-modulating K* channels. In recent years, various groups
have worked on engineering optogenetic channels with K* trafficking
activity. The Moroni group reported an engineered blue light-gated K™
channel (BLINK1), in which a LOV2 photoreceptor domain controls a
miniature channel pore, Kcv, in a reversible manner [76]. BLINK1,
which was tethered to the plasma membrane through a myristoylation/
palmitoylation domain (MGCTVSAE), was expressed in oocytes and
cultured HEK293T cells permitting repeated inhibition by blue light
(455 nm) without inactivation. Moreover, BLINK1 RNA was injected in
zebrafish embryos, which respond to touch with a burst of swimming
(escape response). BLINK1-expressing embryos exhibited a reduced
escape response when exposed to blue light, but not when kept in the
dark.

A second version of the BLINK1 channel, coined BLINK2, was reported
with a C-terminal signal and the ER export motif of the K;;2.1 and 14-3-
3 (TASK1-3, KAT1) binding sites. BLINK2 exhibits improved surface
export compared to BLINK1 and its post-illumination activity lasts tens
of minutes [77] making this optogenetic K* channel suitable for ap-
plications requiring durable light—off activity. To this end, rats with
paclitaxel-induced allodynia, a neuropathic pain model, were intra-
thecally injected with a BLINK2 plasmid. lllumination with blue light
reduced nociception for at least 30 min and up to 3 h. Given the
disparate kinetics, a K channel like BLINK1, rather than BLINK2, with
faster on/off kinetics, conceivably can be a suitable candidate for the
photoregulation of insulin secretion in B-cells.

Light-controlled K™-based hyperpolarization has also been reported in
conjunction with PAC activity [71]. The small cAMP-gated K* channel
SthK of the Spirochaeta thermophila confers strong repolarization/
hyperpolarization. Co-expression of SthK and PAC (PAC-K system) in
ventricular cardiomyocytes resulted in outward currents with a 10 ms
exposure to 460 nm light suppressing electrically-evoked action po-
tentials for extended periods, and silencing cardiomyocyte contrac-
tions. Similarly, PAC-K expression in cultured hippocampal neurons
induced hyperpolarization with repetitive low-frequency or continuous
exposure to low intensity blue light. In the same report, the PAC-K
system was combined with a red-shifted channelrhodopsin
(bReaChES) [78], which triggers action potentials by 550 nm light
pulses, demonstrating dual-color optogenetic excitation and inhibition
of membrane polarization-based cellular activity. Because the PAC-K
system modulates both the intracellular cAMP and membrane poten-
tial, its consideration for use with different cell types including B-cells,
warrants extensive investigation and significant tuning of its activity to
avoid adverse non-specific effects.

4.4. Optogenetic regulation of Ca* for insulin release

Opsins are expressed across various organisms, from algae and fungi
to animals. Channelrhodopsin-2 (ChR2; channelopsin-2 + retinal),
which has been utilized extensively in optogenetic systems, acts as a
cation channel that is activated by light. When exposed to blue light
(~460—480 nm) the C. reinhardtii-derived ChR2 augments its
conductance for monovalent (e.g., Na™), and divalent cations (e.g.,
cat, Ba2+). Generally, the permeability of ChR2 appears to decrease
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with increasing atomic radius of the cations [79]. Yet, ChR variants
have been engineered to respond to light wavelengths beyond the blue
light, significantly expanding the repertoire of optogenetic applications
for ChRs [80,81].

The flux modulation of ions, especially of Ca*, has motivated the use
of ChRs for optogenetic control of B-cell membrane depolarization and
insulin secretion. The insulin secreted by murine MING insulinoma cells
transfected with the ChR2 gene (MIN6-ChR2) increased by ~ 60%
upon irradiation with a 470 nm laser for 20 s vs. non-irradiated cells
[12], notably though in the absence of glucose. Insulin secretion was
mediated by the changes in [Ca”]i due to ChR2 activation, as evi-
denced by patch-clamp analysis and the abrogation of insulin release
in the presence of mibefradil dihydrochloride (a Ca* channel blocker).
Upon subcutaneous delivery of MIN6-ChR2 cells to STZ-treated dia-
betic mice, blood glucose was lowered with irradiation (peak conc. of
18.6 mM) compared to that in animals receiving the cells but no light
stimulation (peak conc. of 26.8 mM). The irradiation did not induce
apoptosis of cells retrieved from the mice suggesting the lack of
cytotoxicity due to ChR expression and activity. Reinbothe et al.
examined islets isolated from transgenic mice with insulin promoter-
driven expression of ChR2 [82]. As in MIN6 cells, exposure of islets
from transgenic ChR2 mice in culture to blue light amplified [Ca2+]i
and insulin secretion at low and intermediate but not at high con-
centrations of glucose. There was no change in glucagon release. In
diabetic mice on high-fat diet, irradiation led to greater insulin
secretion at high glucose indicating a compensatory potentiation of the
Ca®* response in these animals.

4.5. Non-B-cell optogenetic approaches

Extrapancreatic cells have also been targeted for optogenetic engi-
neering and regulation of blood glucose with potential applications to
diabetes. Elegant work by the Fussenegger group demonstrated the
co-expression by HEK293 cells of melanopsin as well as a short variant
of the human GLP-1 (shGLP1) gene driven by a promoter targeted by
the nuclear factor of activated T cells (NFAT) [83]. Blue light activates a
G-protein (melanopsin) cascade leading to the increase of [Ca”]i. This
in turn, induces calcineurin mobilizing the NFAT transcription factor to
initiate the transcription of target genes. When supernatant from blue
light-exposed HEK293 cells expressing melanopsin and the NFAT-
targeted promoter/shGLP1 was transferred to FTC-6 B-cells, insulin
secretion was evoked. Upon implantation of the engineered HEK293
cells to diabetic db/db mice, both circulating shGLP1 and insulin levels
went up with 48 h of exposure to blue light. In a glucose tolerance
assay, the reduction of blood sugar concentration after glucose in-
jection was also higher in diabetic mice receiving the cells and illu-
minated with light vs. animals without photostimulation.

Along the same vein, Shao et al. reported a far-red light (FRL)-inducible
system with activation of the engineered bacterial photoreceptor BphS,
which converts GTP into c-di-GMP [84]. Increased c-di-GMP produc-
tion triggers the binding of transactivating elements (BldD: a c-di-
GMP—binding domain derived from sporulating actinomycetes; p65:
the NF-kB—transactivating domain; VP64: a tetramer of the VP16
activation domain) to a promoter with BldD-specific operator DNA
sites, turning on the expression of transgenes including shGLP-1 and
mouse insulin. Alginate-encapsulated HEK293 cells carrying the
requisite set of genes for reconstituting the aforementioned opto-
genetic circuit, were delivered subcutaneously to diabetic mice. The
mice exhibited improved blood glucose profile in glucose tolerance
tests 48 h post-implantation. Moreover, db/db mice with implanted
cells had blood sugar levels close to those of wild-type animals for
about 13 days with FRL illumination. The irradiation regimen was

realized by combining smartphone technology, glucose sensing, and
LED/hydrogel interfacing. Furthermore, a smartphone-based system
(semi-automatic theranostic system) was reported that features blood
glucose monitoring coupled to a wirelessly controlled LED for illumi-
nation of insulin-producing HEK293 cells entrapped in a hydrogel [85].
Yu et al. illustrated a similar system with FRL-induced BphS stably
expressed in human mesenchymal stem cells which were implanted
while encapsulated in poly-(L-lysine)-alginate microcapsules [86]. The
implanted cells with exposure to light caused a reduction in hyper-
glycemia in a mouse model (STZ) of T1D for 40 days. Under illumi-
nation, the expression of the cardiac oxidative stress marker
malondialdenyde was reduced, while superoxide dismutase, gluta-
thione, and total antioxidant capacity showed significant increase, vs.
those in STZ-treated animals without receiving cells, and those that
received cells but were kept in the dark.

5. OPTOCHEMICAL AND PHOTOPHARMACOLOGICAL
APPROACHES

Parallel avenues for photocontrol of cellular activity are afforded by
optochemistry (Figure 2), employing chemical constructs (rather than
genetic as in optogenetics) with structural configuration that can be
altered in response to light. For instance, caging compounds have
been employed, which are capable of reversibly binding to a substrate
or signaling intermediate of interest. Exposure to light induces the
release of the bound substrate modifying a particular cellular function
[87,88]. In addition to their high spatiotemporal precision and
reversibility, optochemical methods rely on synthetic and thus more
readily available agents. This is in contrast to optogenetic strategies
entailing photosensitive proteins (e.g., PACs) whose expression re-
quires molecular cloning and delivery of the corresponding genes for
transcription and translation [89,90]. Yet, subcellular localization and
photorelease efficiency are significant challenges of optochemical
systems, as well as the formation of toxic byproduct(s) [91]. Opto-
chemistry has notably been employed to aid several forms of bio-
modulation, including control of proteins, peptides, small molecules,
and nucleic acids (see below) [92]. Current investigations of opto-
chemistry focus on shifting the photoactivation to the near-infrared
(NIR) region and increasing the decaging efficiency of caged groups
through chemical synthesis and structure design. For example, the
potential for orthogonal decaging and activation is enhanced with
increased 7t-conjugation, and varying the caging group solubility im-
proves intracellular or membrane localization of the optochemical
moiety [89].

Exploiting the high spatiotemporal resolution and specificity of opto-
chemical methods, the dynamic and synergistic nature of [B-cell
signaling and patterns for insulin secretion along with islet B-cell
heterogeneity were studied, revealing contributory interactions such as
the role of lipids in hormone release [91]. Exhibiting the significance of
lipid localization in B-cells’ secretory function, Nadler et al. demon-
strated that uncaging of photocaged lipid-arachidonic acid at the B-cell
plasma membrane enhanced Ca?t oscillation frequency, while
uncaging within the cytoplasm conversely hindered Ca* oscillations
[93].

This and other studies support the use of optochemistry as well as
photopharmacology (Figure 2), i.e., the use of a photosensitive moiety
as a drug or ligand, for altering GSIS. Among proposed applications are
azobenzene-based derivatives of sulfonylureas [94—97], diltiazem
[98], and light-activated incretins [94,99—101] as photo-
pharmacological methods; photocaged Ca2+, ATP, and secondary
messengers such as cAMP [89,91,102]. These optical tools are
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expected to facilitate investigations of B-cell GSIS potency and perti-
nent signaling pathways in cells under normal and pathological
conditions.

6. OUTLOOK

The clinical realization of optogenetic approaches to treat diabetes
share the challenges already faced in the field of islet transplantation,
such as cell sourcing and delivery methods, and necessitates the
progression of new technologies aligned for the photomodulatory na-
ture of engineered cells, including illumination methods and seamless
cellular interfacing with electronics.

Notable advances in the differentiation of human pluripotent stem cells
(hPSCs) have brought us closer to the manufacturing of functional islet
cells, strengthening the prospect of applying optomethods for control
of hormone secretion in these cells. Several groups have reported the
conversion of hPSCs to B-cell-like cells co-expressing biomarkers
such as PDX1, MAFA, NKX6.1, and secreting variable amounts of in-
sulin in response to glucose and other secretagogues [103—106].
Major efforts also focus on the generation of clusters comprising
multiple cell types akin to the native pancreatic islets, for instance,
organoids mimicking the ultrastructural and functional characteristics
of the pancreatic endocrine compartment [107—109].

The engineering of hPSC-derived islet cells for functional regulation
with light will entail distinctive issues given that these cells have
several features of adult islet cells but are not identical. Differentiated
hPSC progeny typically exhibits an immature phenotype although these
cells may undergo maturation in vivo. Insulin produced by hPSC-
specified B-cells is detected at least 2—4 weeks post-
transplantation [103,110]. Reaggregating INS™ cells after 20 days of
differentiation, which induces maturation in culture, shortens this time
frame, and C-peptide is detected 3 days after delivery to diabetic
animals [104]. Hence, optogenetic modules for hPSC-derived insulin-
producing cells may need to be compatible with the evolving pheno-
type until cells reach a fully mature state. Moreover, whether these
islet cells maintain stable biochemical and functional properties in the
long run is unclear. Successful optoregulation will rely on faithful
recapitulation of the molecular circuitry of B-cell GSIS by insulin-
producing cells from hPSCs. To this end, stem cell-derived B-cell-
like cells reportedly increase their Ca* influx with glucose challenge,
shut their Karp™ channels upon incubation with sulfonylureas, and
secrete C-peptide in response to secretagogues such as KCl and
exendin-4 [103,104]. However, detailed understanding of the GSIS
cascade of stem cell-derived B-cells is warranted before optoengin-
eering is considered. In fact, differential stimulation and sensing (e.g.,
ion channel activity), and disparate insulin content are documented
among stem cell-derived and native islet cell populations
[103,111,112]. This heterogeneity calls for optogenetic modulation
that should evoke a desired response in cells falling on a spectrum of
hormone production. Lastly, interactions should be considered among
a multitude of cell types within clusters of stem cell-derived islet cells
or organoids. For instance, glucagon production by a-cells and B-cell
insulin secretion act synergistically for proper maintenance of glucose
levels in vivo [113]. Hence, the effects of perturbations by optical
switches on the physiology of multicellular assemblies and blood sugar
control at the organism level should be researched.

Akin to the transplantation of islets, direct delivery of engineered [3-
cells will require chronic immunosuppression motivating encapsulation
technologies. Since the study by Lim and Sun [114] of islet encap-
sulation in alginate microcapsules for transplantation in STZ-treated
diabetic rats, relevant encapsulation modalities have advanced
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significantly. The selection of scaffolding materials is a critical
parameter in the encapsulation of islet cells. Alginate, which is a
polysaccharide derived from seaweed, has been reported extensively
as a cell entrapment agent because of its minimal cytotoxicity and
benign conditions for hydrogel formation. However, alginate implants,
including these containing islets [115,116], promote the growth of
fibrotic tissue around them. Other materials have also been utilized
including agarose [117], hyaluronic acid [118], polylactic-co-glycolic
acid (PLGA) [119], and polyethylene glycol (PEG) [120]. To reduce
adverse immune reactions by the host, the delivery has been combined
of cells with immunomodulatory factors such as TNFo and FasL
[121,122].

The efficient exchange of nutrients, waste products, oxygen and insulin
between the cells and their milieu is another important consideration
for islet cell delivery technologies. Cells experience significant diffusion
limitations over distances longer than 100—200 pwm from vasculature
[123]. Native islet microcirculation is realized by a network of capil-
laries traversing the islet core [124]. Hypoxia of encapsulated islets,
which is a particularly vexing issue given the low solubility of O, in
aqueous environments and the high metabolic activity of islet cells,
may be alleviated using perfluorocarbon emulsions, organosilicon
compounds (e.g., PDMS) and other soluble factors.

The photoregulation of cellular function requires materials with high
light transmissibility, raising a unique challenge in the design of
optogenetically engineered islet cell delivery systems. Constructs
harboring islets with photosynthetic algae have been reported with the
latter supplying O to islets with light delivery [125]. The murine islets
and algae were co-encapsulated in sodium alginate beads based on
the preparation method by Lim et al. [114], and placed in a chamber
illuminated with an optical fiber, without details about the type of light.
A 50% reduction of maximal stimulated insulin release was observed
when the cells were kept in the dark for 30 min vs. cells with
continuous exposure to light for the same interval. Alginate beads
loaded with MIN6 cells expressing bPAC and implanted subcutane-
ously in STZ-treated mice, were successfully stimulated by an external
blue LED array [72]. Animals with optogenetically engineered B-cells
and exposed to blue light exhibited a better response to glucose
tolerance test and higher plasma insulin levels vs. animals with the
engineered B-cells but without photostimulation. Of note, alginate
hydrogels formed with CaCO3 and D-glucono-d-lactone (GDL) exhibit
high transparency [126] with consistent compressive modulus and
strength (Figure 3). To date, there are no reports of biomaterials

25
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Figure 3: Alginate hydrogels for cell encapsulation. Alginate hydrogel formed with
1.5% (w/v) sodium alginate in PBS, and various concentrations of CaCl, or CaCO5:GDL
(1:2 molar ratio). Gels formed with CaC0O3:GDL show higher transparency. Gelation with
CaC03 and GDL results in improved transparency compared to CaCl,-crosslinked
alginate gels at higher Ca>* concentration.
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Review

besides alginate developed for use with optogenetically engineered
islet cells.

The intended site of implantation and light wavelength for optogenetic
stimulation are also major factors in the design of constructs harboring
optoengineered islet cells. Light source integration with the delivery
scaffold increases its size. Subcutaneous implantation, while permit-
ting stimulation of the delivered cells by an external light, is typically
linked to poor vascularization and blood supply. Moreover, promising
results have been reported upon islet cell implantation in the omentum
[127], which affords high blood circulation, and accessibility for cell
transplantation and retrieval. For optogenetically engineered cells, the
proximity of the omentum to the skin bodes well for extracorporeal
photostimulation. Implantation sites located deeper in the body will
require the inclusion of a light source such as low energy light-emitting
diodes (LEDs) in the delivery construct. This poses considerations
about efficient powering of the light source. One potential solution is
the wireless power transfer through inductive charging of the
implanted light using an external charging device. Alternatively, cells
may be engineered for stimulation by light in the infrared region (e.g.,
using a NIRW light-stimulated AC [74]) penetrating tissues deeper than
light at shorter wavelengths.

Optogenetic device-based solutions envisioned for diabetes, feature
control of the light source through coupling with continuous glucose
monitoring of blood glucose, for instance, via readily available trans-
dermal sensors (e.g., Dexcom Inc.), and wearable devices measuring
glucose ocularly [128] or in biofluids such as sweat and saliva
[129,130]. Complete linking of the cellular component, light source
and glucose monitor can be achieved with software driving the
operation of this closed loop for autonomous maintenance of normo-
glycemia, potentially eliminating error-prone user input and suboptimal
sugar regulation. Advances in sensors, wireless communication and
powering, and interfacing of biocomponents with electronics,
demonstrate that interdisciplinary effort is pivotal for developing such
closed-loop optogenetic systems. At the same time, the remarkable
progress in photomodulation of cellular function and relevant tech-
nologies makes compelling the engineering of products ensuring
reliable, robust and drug-free management of blood glucose in diabetic
patients.
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