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Abstract

Ferropericlase [(Mg,Fe)O] is one of the major constituents of Earth’s lower mantle and the most
abundant mineral inclusion in sub-lithospheric diamonds. Although a lower mantle origin for
ferropericlase inclusions has often been suggested, some studies have proposed that many of these
inclusions may instead form at much shallower depths, in the deep upper mantle or transition zone.
No straightforward method exists to discriminate ferropericlase of lower-mantle origin without
characteristic mineral associations, such as co-existing former bridgmanite. To explore
ferropericlase-diamond growth relationships, we have investigated the crystallographic orientation
relationships (CORs), determined by single-crystal X-ray diffraction, between 57 ferropericlase
inclusions and 37 diamonds from Juina (Brazil) and Kankan (Guinea). We show that ferropericlase
inclusions can develop specific (16 inclusions in 12 diamonds), rotational statistical (9 inclusions in
7 diamonds) and random (32 inclusions in 25 diamond) CORs with respect to their diamond hosts.
All measured inclusions showing specific CORs were found to be Fe-rich (Xreo > 0.20). Coexistence
of non-randomly and randomly oriented ferropericlase inclusions within the same diamond indicates
that their CORs may be variably affected by local growth conditions. However, the occurrence of
specific CORs only for Fe-rich inclusions indicates that Fe-rich ferropericlases have a distinct genesis
and are syngenetic with their host diamonds. This result provides strong support for a dual origin for
ferropericlase in Earth’s mantle, with Fe-rich compositions likely indicating redox growth in the
upper mantle, while more Mg-rich compositions with random COR mostly representing ambient

lower mantle trapped as protogenetic inclusions.

Keywords: Ferropericlase - diamond - crystallographic orientation relationship - growth relationship

© syngenesis - protogenesis.
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1. Introduction

Diamonds are the only natural samples through which we can investigate the mineralogy and
geological processes occurring in Earth’s mantle at depths down to ~ 800 km depth. Most information
is provided by mineral and fluid inclusions entrapped by diamonds during their crystallization
(Meyer, 1987; Shirey et al., 2019, 2013; Weiss et al., 2015). Ferropericlase, an oxide mineral with
composition ranging from MgO (periclase) and wiistite (FeO), is the most abundant inclusion in
super-deep diamonds, i.e., forming at sub-lithospheric depths. Experiments and theoretical models on
pyrolitic compositions indicate that ferropericlase is stable in the lower mantle, at depths between ~
660 and 2900 km, and represents ~ 17% of the mantle phase assemblage in a “fertile” mantle bulk
composition, the remainder being represented by bridgmanite (76%) and CaSiOs-perovskite (7%)
(Akaogi, 2007; Ishii et al., 2018). The predicted chemical composition of lower-mantle ferropericlase
is Mg-rich, with Xreo (FeO molar fraction) ranging from 0.08 to 0.18 (Hirose, 2002; Irifune, 1994;
Ishii et al., 2018, 2011; Kuwahara et al., 2018). Ferropericlase, however, represents ~ 42% of the
inclusions reported within super-deep diamonds, far more abundant and showing much more variable
compositions with Xreo up to 0.85 than would be expected for pyrolitic mantle (Walter et al., 2022

and references therein).

Numerous studies (see Walter et al., 2022 for a review) tried to explain these discrepancies and
unravel the possible geological processes involved in formation of ferropericlase-bearing diamonds.
Assuming that ferropericlase-bearing diamonds crystallized in the lower mantle, Liu (2002) proposed
a model according to which (Fe-rich) ferropericlase and diamond can simultaneously precipitate
through decarbonation of (Mg,Fe)COs. Alternatively, Ryabchikov & Kaminsky (2013) and
Kaminsky & Lin (2017) supposed the existence of a non-pyrolitic source in the lower mantle.
However, experiments demonstrate that ferropericlase can be stable in mantle rocks at depths
shallower than the lower mantle (Brey et al., 2004). In particular, Thomson et al. (2016) showed that

ferropericlase with variable Fe contents plus diamond can crystallize simultaneously by interaction

3
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between mantle peridotite and slab-derived carbonatite melts in the deep upper mantle or transition
zone. Therefore, in the absence of limiting characteristic mineral associations, such as the presence
of former bridgmanite, the depth of origin of ferropericlase-bearing diamonds remains uncertain.
Only inclusions associated with low-Ni enstatite, considered to be the back-transformation product
of bridgmanite (Stachel et al., 2000), can safely be ascribed to the lower mantle. About 15% of these

also co-exist with MgSiOs; or/and CaSiO3 phases in diamonds (Walter et al., 2022).

Determining ferropericlase-diamond growth relationships, for instance whether the inclusion and host
crystallized simultaneously or whether the inclusion preceded the host, is crucial for determining the
possible genetic processes that formed ferropericlase-bearing diamonds. Determination of
crystallographic orientation relationships (CORs) for inclusion-diamond systems is commonly used
to derive information about their growth relationships (Milani et al., 2016; Nestola et al., 2019, 2017,
2014, Nimis et al., 2019, 2018; Pamato et al., 2021; Pasqualetto et al., 2022). In a preliminary study,
Nimis et al. (2018) determined CORs for nine Fe-rich (Xreo = 0.33 to > 0.64) ferropericlase inclusions
in two diamonds from Juina, Brazil. These inclusions are specifically oriented with their diamond
hosts, with the principal crystallographic axes of ferropericlase fixed to those of the diamond host,
suggesting an epitaxial relationship. Accordingly, Nimis et al. (2018) proposed that such
ferropericlase nucleated during the growth history of the diamond, probably by the same type of redox

reactions investigated by Thomson et al. (2016) at depths of the deep upper mantle or transition zone.

In order to increase the statistical significance of the data and to gain further insight into
ferropericlase-diamond growth relationships, we have determined the CORs for 57 ferropericlase
inclusions in 37 diamonds spanning a large compositional range to determine possible associations

between ferropericlase Fe-content and the depth origins of ferropericlase-bearing diamonds.

2. Samples and Methods

2.1. Samples
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In this work, we investigated 57 ferropericlase inclusions within 37 diamonds from two classic super-
deep diamond localities. A representative example of one of these diamonds is shown in Fig. 1. Of
the investigated samples, 34 diamonds with 49 inclusions in total come from Juina, Brazil, and 3
diamonds with 8 inclusions in total come from Kankan, Guinea. All the studied diamonds come from
alluvial deposits. They are colourless to pale yellow-brown and their size ranges from ~ 1.5 to 5 mm.
They show octahedral to irregular shapes and contain from one to four optically visible and
measurable ferropericlase inclusions. The ferropericlase inclusions, are sub-rounded to irregular, 50-
200 um in size, dark in colour and show characteristic iridescence. In some specimens, other mineral
and fluid phases also occur (such as calcite, dolomite, magnesite, nahcolite, olivine, breyite and a

fluid phase similar to that reported in Nimis et al., 2016).
2.2. Single-crystal X-ray diffraction

X-ray diffraction data for 24 ferropericlase inclusions and 18 diamonds were collected using a Rigaku
Oxford SuperNova diffractometer located at the Department of Geosciences, University of Padua.
This instrument is equipped with a Dectris Pilatus 200K area detector and a Mova X-ray micro source,
operating at 50 kV and 0.8 mA. The detector distance is 68 mm and the diffractometer is controlled
by the Crysalis-PRO™ software. Initially, each ferropericlase inclusion was centred optically and
subsequently more precisely aligned by X-ray diffraction. The diffraction data were collected in 360°
phi-scan mode. Each frame width was 1° and the exposure time was 25-60 s per frame, as a function
of the inclusion size. The Crysalis-PRO™ software was also used to process the collected data. By
indexing the position of the diffracted peaks from the inclusions and the hosts, we determined their
orientation matrices, which represent the inclusion or host orientation relative to the reference system
of the diffractometer. Through the indexing procedure, we could unambiguously distinguish

diffraction peaks from ferropericlase apart from those of diamond in the same data set.

The remaining 33 ferropericlase inclusions within 19 diamonds were analysed at the single-crystal

X-ray diffraction beamline (13-BM-C) of the GeoSoil Enviro Center for Advanced Radiation Sources

5
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(GSECARS), Advanced Photon Source (APS), Argonne National Laboratory, USA. For the
synchrotron X-ray diffraction experiments, centering ferropericlase inclusions in diamond was
facilitated using the 2D radiography attachment on beamline 13-BM-C (Wenz et al. 2019). For
diffraction, the X-ray beam was focused to 12 um horizontal by 18 pum vertical at full-width half-
maximum. Final centering and diffraction were carried out on the six-circle goniometer following the
methods detailed in Zhang et al. (2017). Step scans were obtained with one-degree steps over 180°
with an exposure time of one second per step using a MAR 165 CCD detector. Additional details
about the combined 2D radiography and synchrotron X-ray diffraction data collection and software

are reported in Wenz et al. (2019).

2.3. COR determination: OrientXplot software and misorientation distribution analysis

The OrientXplot software (Angel et al., 2015) was used to determine and plot the CORs. This program
processes each orientation matrix and displays a stereogram of the crystallographic orientations of
inclusions relative to their host, avoiding ambiguities arising from crystal symmetry. In this case, both
inclusions and hosts are cubic. Consequently, for each ferropericlase-diamond pair, 576
symmetrically equivalent orientations are possible. Therefore, for each inclusion-host pair, we have
chosen to plot the orientation for which [1 1 O]rper is closest to [1 1 O]pia and [0 O 1]kper 1S closest to

[0 0 1]pia.

In order to determine the statistical significance of CORs in our inclusion-host systems, we carried
out a misorientation distribution analysis. For this purpose, we considered the angles between the
crystallographic axes or planes of ferropericlase and diamond that are the most likely to form non-
random CORs (e.g., Nimis et al., 2019; Pasqualetto et al., 2022). The calculated misorientation
distributions were compared with a theoretical model of 2 million randomly oriented matrices through
the Kolmogorov-Smirnov test for two samples (see Wheeler et al., 2001 for more information).

Identification of specific, rotational statistical or random CORs was then based on the presence or not
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of a statistically significant similarity between one or more pairs of specific crystallographic

directions of inclusions and hosts (Griffiths et al., 2016; Habler and Griffiths, 2017).

To increase the number of data and the statistical significance, the same procedures were extended to
include also two ferropericlase inclusions in diamond AZ/ previously studied by Anzolini et al.

(2019).

2.4. Ferropericlase chemical composition

The chemical compositions of three ferropericlase inclusions (inclusions in samples AZ 08, AZ 15
and 4Z 20) were determined using a Tescan Solaris dual beam FE-SEM, equipped with an Ultim®
Max 65 EDS spectrometer. Analytical conditions were 15 keV, 3 nA, and 20 s counting time.
Analyses were standardised using pure oxides as standards, excepting Na, which was calibrated on
albite. In addition, the chemical data of four ferropericlase inclusions within KK207 diamond were
collected by electron probe micro-analysis using a JEOL JXA-8900R with 5 wavelength dispersive
spectrometers, located at the University of Alberta. The beam energy was 20 keV energy with 30 nA
of beam current and 2 um diameter. The counting time was 20 seconds for Si Ka, Fe Ka, Mn Ka, Ni
Ka, Zn Ka, 30 seconds for V Ka, Ti Ka, Cr Ka, 40 seconds for Na Ka, K Ka, Ca Ka, Mg Ka, and

120 seconds for Al Ko.

3. Results

3.1. Crystallographic orientation relationships (CORs)

A COR is defined as a systematic relation between the crystallographic orientations in an inclusion-
host system. Four types of CORs can be distinguished based on the degrees of freedom between
inclusion and host orientations: specific, rotational statistical, dispersional statistical and random
(Griffiths et al., 2016; Habler and Griftiths, 2017). This classification is only descriptive and
independent from the mechanisms of their formation. In specific CORs, at least two crystallographic

directions of the inclusion are fixed to the host (0 degrees of freedom). In rotational statistical CORs,

7
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only one inclusion crystallographic orientation is fixed to that of the host (1 degree of freedom). In
dispersional statistical CORs, an inclusion crystallographic direction is not exactly fixed to the host,
but is dispersed around it within a certain misorientation angle range (2 degrees of freedom, but within
strict limits). In all other cases, the inclusion crystallographic directions are randomly oriented relative

to the host (2 degrees of freedom, with no limit).

The CORs for all the 57 analysed ferropericlase inclusions are shown in Fig. 2. Sixteen inclusions
have the three principal crystallographic axes (a1, a2, a3) within 0-12° of those of their diamond hosts
(Fig. 3a). Despite the angular mismatch being in some cases greater than the measurement
uncertainties of +4° (Nimis et al., 2019), all inclusions have their [1 1 2] axis within uncertainty of [1
1 2]pia at <#4°. These results are similar to those reported by Nimis et al. (2018) on nine ferropericlase
inclusions in two diamonds. As suggested by Nimis et al. (2018), the small angular misorientation of
the main crystallographic axes may be due to a slight rotation around the [1 1 2] direction, caused by
post-entrapment plastic deformation, which is well documented in super-deep diamonds (e.g. Agrosi
et al., 2017; Howell et al., 2012). All these inclusions are thus interpreted to have been specifically
oriented at the time of their incorporation. Another nine inclusions have their [1 1 0] direction almost
parallel (within #4°) to [1 1 O]pia and the other crystallographic directions randomly rotated around
this axis (Fig. 3b). These relationships indicate a rotational statistical COR. The remaining inclusions
(32 inclusions in 25 diamonds) do not show any particular crystallographic orientation with respect
to their hosts (Fig. 3c). The statistical significance of the observed specific and rotational statistical
CORs was tested by comparing the observed misorientation angle distributions against a theoretical

random distribution (Kolmogorov-Smirnov test for two samples, p < 0.001).

Diamonds containing more than one ferropericlase inclusion (13 out of 37 diamonds) showed further
interesting features. In three of these samples (5a08, 5a26, 5a27), inclusions that are specifically
oriented coexist with others that are randomly oriented (Fig. 4a). Diamond 5a06 contains one

specifically oriented inclusion and one that suggests a rotational statistical COR (Fig. 4b). In
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diamonds 5a04 and 6b23, one inclusion with a rotational statistical COR and one randomly oriented
inclusion coexist (Fig. 4c). Finally, in four diamonds (KK34, KK207, 6a05, 6b17) more than one

inclusion share a similar orientation, but they are randomly oriented relative to their diamond hosts

(Fig. 5).

3.2. Ferropericlase chemical composition

The chemical compositions of ferropericlase inclusions in diamond AZ 08 (1 inclusion), AZ 15 (1
inclusion), AZ 20 (1 inclusion) and KK207 (4 inclusions) are reported in Table 1. The Xreo fraction
ranges from 0.14 to 0.32. Previous data for other crystallographically analysed ferropericlase
inclusions in diamonds studied by (Anzolini et al., 2019) and Nimis et al. (2018) are reported in the

same Table.

Discussion

Our analysis of 57 ferropericlase inclusions within 37 diamonds shows that ferropericlase can develop
specific (16 inclusions in 12 diamonds), rotational statistical (9 inclusions in 7 diamonds) and random
(32 inclusions in 25 diamonds) CORs with respect to their diamond hosts. Non-random (i.e., specific
and rotational statistical) CORs indicate that mechanical or surface interaction occurred between
ferropericlase and diamond during formation of the inclusion-host system (Habler and Griffiths,
2017; Wheeler et al., 2001). Mechanical juxtaposition of two well-shaped crystals is most likely to
generate rotational statistical CORs, in which the two crystals share the axes normal to the juxtaposed
faces (Nimis et al., 2019; Wheeler et al., 2001). In our samples characterised by rotational statistical
COR, ferropericlase and diamond share a common [1 1 0] axis. If the driving force for this COR was
mechanical, this would imply juxtaposition of the {1 1 0} faces of both minerals. Although
ferropericlase and diamond can rarely develop {1 1 0} faces during their growth (Koretsky et al.,
1998; Sunagawa, 1990), their crystals commonly have octahedral habits with well-formed {1 1 1}

faces. Consequently, one would expect to observe frequent rotational statistical CORs around [1 1 1]
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and not around [1 1 0]. Therefore, we do not favour a role of mechanical interaction in the

development of rotational statistical CORs in our samples.

Surface interaction may also cause the development of non-random CORs (Wheeler et al., 2001). In
fact, under favourable conditions, two mineral grains may align their crystal lattices or one of their
lattice directions to minimize their interface energy. Nimis et al. (2018) discussed the possible
scenarios that could lead to crystallographic alignment between inclusion and host by surface
interaction in super-deep diamonds. These scenarios include (1) grain rotation during static
recrystallization, or (2) mutual growth or epitaxial nucleation during crystallization from a fluid or
melt. Scenario 1 was considered to be highly unlikely, given the high-stress environment in which
super-deep diamonds form. Scenario 2 implies precipitation of the included minerals during the
growth history of diamond and we suggest may apply to all investigated ferropericlase-diamond pairs

showing non-random CORs.

Coexistence of non-random and random CORs in some of the studied diamonds (Fig. 4) is not in
conflict with the above interpretation, since local physical-chemical and stress conditions may affect
the efficiency of surface interactions (Mutaftschiev, 2001; Wheeler et al., 2001). Therefore, the
absence of a non-random COR should not be considered as evidence against contemporaneous
growth. Also, a rotational statistical CORs could reflect a “starting preferred crystallographic
orientation” between ferropericlase and diamond. This would explain the coexistence in some of our

samples of rotational statistical and either specific or random CORs within the same diamond.

Four diamonds each contain pairs of ferropericlase inclusions, which are iso-oriented with respect to
each other, but are randomly oriented with respect to their diamond hosts (Fig. 5). In one of these,
diamond 65617, [1 1 O]pper 1s 4° from [1 1 O]pia, but this relatively small misalignment may well
represent just one of an infinite number of possible random orientations. Inclusion iso-orientation

without a specific COR with the diamond host is considered to be evidence of a protogenetic origin

10
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of the inclusions (Milani et al., 2016; Nestola et al., 2014; Nimis et al., 2019; Pamato et al., 2021;

Pasqualetto et al., 2022).

Our compilation of ferropericlase inclusions for which both CORs and chemical data are available
(Anzolini et al., 2019; Nimis et al., 2018; and present study) (Table 1) indicates a strong relationship
between ferropericlase Fe content and ferropericlase-diamond growth relationships. Almost all (12
out of 13) Fe-rich ferropericlase inclusions (Xreo > 0.2) present specific CORs. Evaluating the
relationship between the Fe-rich composition of ferropericlase and the development of specific COR
through a not-parametric statistical test (Fisher’s exact test), we have obtained very low probabilities
(p < 0.001) that the presence of this specific COR is independent from the Fe-rich composition of
ferropericlase within the studied population. This indicates that the association between these two
parameters is highly statistically significant. On the other hand, 4 out of 5 Mg-rich ferropericlase
inclusions with Xreo < 0.2 present random CORs, while the remaining one is compatible with both a
random and a rotational statistical COR. In diamond KK207, multiple Mg-rich inclusions show
evidence of a protogenetic origin (Fig. 5). Moreover, the reported Mg-rich ferropericlase inclusions
have chemical compositions similar to those of ferropericlases in association with former bridgmanite
within diamonds (n=33, Xrco ranging ~0.10 to 0.31 and one sample having Xreo ~ 0.35, Davies et
al., 2004; Harte and Harris, 1994; Hayman et al., 2005; Stachel et al., 2000; Tappert et al., 2009).
Note that ferropericlases with Xreo > 0.2 are not in chemical equilibrium with co-existing former
bridgmanite and these were probably entrapped during different diamond growth events, reflecting
different chemical environments in Earth’s mantle (Harte and Harris, 1994; Hayman et al., 2005).
These results strongly suggest that Fe-rich and Fe-poor ferropericlases generally form by distinct

processes under distinct conditions.

We suggest that Fe-rich ferropericlase inclusions, which frequently present specific CORs, are
syngenetic with their diamond hosts and were formed in the deep upper mantle or transition zone by

redox processes similar to those reproduced in Thomson et al.’s (2016) experiments (Fig. 6a).
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Conversely, Mg-rich ferropericlase inclusions, which have chemical compositions similar to those of
ferropericlases associated with low-Ni enstatite (evidence of a lower mantle origin; Davies et al.,
2004; Harte and Harris, 1994; Hayman et al., 2005; Stachel et al., 2000; Tappert et al., 2009) and
those predicted for lower-mantle ferropericlase (Akaogi, 2007; Ishii et al., 2018), present random
CORs, and in some cases show clear evidence of protogenesis. Consequently, we propose that these
Mg-rich ferropericlases represent parts of pre-existing mineral assemblages, which were partially
dissolved and passively entrapped by diamond during its precipitation in the lower mantle (Fig. 6b).
These results thus allow future geochemical studies of ferropericlase to confidently distinguish those
formed at relatively shallow mantle levels by slab mantle interaction from those likely present in the
upper mantle before diamond crystallisation and entrapment. The observed relationships indicate that

Fe-rich ferropericlase is unlikely to reflect a typical upper or lower mantle composition.

Conclusions

The results of this study can be summarised as follows.

1) The determination of the relative crystallographic orientations of 57 ferropericlase inclusions
in 37 diamonds revealed the occurrence of specific, rotational statistical and random CORs.

2) A non-random COR is typical of Fe-rich (Xreo > 0.2) ferropericlase inclusions, whereas Fe-
poor (Xreo < 0.2) ferropericlase inclusions show random CORs and sometimes exhibit clear
evidence of protogenesis.

3) Fe-rich ferropericlase inclusions presenting non-random CORs are interpreted to have been
formed together with their host diamonds in the deep upper mantle or transition zone, probably
by interaction of mantle peridotite with slab-derived carbonatite melts.

4) Mg-rich ferropericlase inclusions presenting random CORs could be remnants of pre-existing

mineral assemblages, which were entrapped by the growing diamonds in the lower mantle.

The dual origin of ferropericlase inclusions in diamonds (Fe-poor protogenetic vs. Fe-rich syngenetic)

provides a simple explanation for the observed discrepancies between theoretical mineralogical
12
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models for the lower mantle and the relative abundance and composition of ferropericlase inclusions

in diamonds.
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Figures

Figure 1. One of the studied ferropericlase-bearing diamonds (4Z 08) under incident light. This
specific sample comes from Juina (Brazil), is pale-yellow and has an elongated irregular shape. The
ferropericlase inclusion (within the red circle and indicated by the red arrow) is dark in colour and

~250 pm sized.
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464  Figure 2. Crystallographic orientation relationships (CORs) between all analysed 57 ferropericlase
465  inclusions and their 37 diamond hosts, plotted using OrientXplot software (Angel et al., 2015). Open

466  symbols plot in the lower hemisphere.
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Figure 3. Stereographic projections showing ferropericlase inclusions presenting a) specific CORs

(16 inclusions in 12 diamonds), b) rotational statistical CORs ([1 1 OJgper // [1 1 O]pia, 9 inclusions in

7 diamonds) and ¢) random CORs (32 inclusions in 25 diamonds) relative to their diamond hosts.
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488  Figure 4. Stereographic projections of diamonds containing ferropericlase inclusions which present
489  a)both specific and random CORs (5a08, 5a26, 5a27), b) both specific and rotational statistical CORs

490  (5a06) and c) both rotational statistical and random CORs (5a04, 6b23) relative to their diamond

491  hosts.
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Figure 5. Crystallographic orientation relationships (CORs) of ferropericlase inclusions within KK 34,
KK207, 6a05 and 6b17 diamonds. Multiple ferropericlase inclusions are defined by the numbers close
to dots (i.e. 1, 2,...). Blue circles indicate the ferropericlase inclusions presenting similar CORs, but
different and random CORs to their diamond host. These inclusions are protogenetic, representing

remnant parts of pre-existing mono-crystals that were dissolved and entrapped during diamond

precipitation.
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Figure 6. Possible scenarios for the formation of Fe-rich and Fe-poor ferropericlase-bearing diamonds
in Earth’s mantle. a) Precipitation of diamonds and Fe-rich ferropericlase due to reactions between
slab-derived carbonatite melts and peridotitic rocks, at depths of the deep upper mantle or of the
transition zone (Thomson et al., 2016). In this case, the ferropericlase inclusions are syngenetic and
generally develop specific CORs with their diamond hosts. b) Formation of diamonds in the
uppermost lower mantle. In this case, pre-existing Mg-rich ferropericlase inclusions are partially
dissolved and passively incorporated into the growing diamonds, without development of particular
CORs. Multiple inclusions in individual diamonds may be iso-oriented if they are derived from the
same original ferropericlase grain. Only in this case do the inclusions have chemical compositions

similar to those experimentally predicted for ferropericlase in the lower mantle.
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Tables

Table 1. Chemical composition and interpreted COR of ferropericlase inclusions.

Eart and Planetary Science Letters: Accepted version 02/23/23

Diamond Inclusion | Chemical composition Type of COR

Nimis et al. 2018 BZ270 1 (Mgo.s6Fe034)O Specific
2 (Mgo.s5Feo35)O Specific

3 (Mgo.ssFeo3s)O Specific

4 (Mgo.e5Fe035)O Specific

5 (Mgo.ssFeo34)O Specific

JUc4 1 (Mgo.43Feo57)0 Specific

2 (Mgo.s6Feo.44)O Specific

3 (Mgo.s7Fe0.43)O Specific

4 (Mgo.36Fe0.64)O Specific

Anzolini et al. 2019 AZ1 AZ1 1 (Mgo.s1Fe039)O Specific
AZ1 2 (Mgo.soFe0.41)O Specific

This study AZ 08| AZ 08 01 (Mgo.ssFe032)O Random
AZ 15| AZ 15 01 (Mgo.soFeo.20)O Random

AZ 20| AZ 20 01 (Mgo.soFeo31)O Specific

KK207 1 (Mgo.ssFeo.14)O Random

6 (Mgo.seFeo.14)O Random

11 (Mgo.seFeo.14)O Random

13 (MgoseFeo.14)O | Rotational statistical
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