

We Don't Want Your Water: Broadening Community Understandings of and Engagement in Flood Risk and Mitigation

Liz Skilton¹, Anna C. Osland², Emma Willis¹, Emad H. Habib^{3*}, Stephen R. Barnes², Mohamed ElSaadani³, Brian Miles⁴, Trung Q. Do³

¹Department of History, Geography and Philosophy, University of Louisiana at Lafayette, United States, ²Kathleen Babineaux Blanco Public Policy Center, University of Louisiana at Lafayette, United States, ³Department of Civil Engineering and Louisiana Watershed Flood Center, University of Louisiana at Lafayette, United States, ⁴Center for Coastal and Ocean Mapping, University of New Hampshire, United States

Submitted to Journal: Frontiers in Water

Specialty Section: Water and Human Systems

Article type:
Original Research Article

Manuscript ID: 1016362

Received on: 10 Aug 2022

Revised on: 02 Sep 2022

Journal website link: www.frontiersin.org

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest

Author contribution statement

All authors contributed to the study conception and development. LS and AO coordinated and facilitated the focus groups. All authors contributed to data collection and initial discussions about collected data. LS, AO, and EW performed the data analyses. ME and EH developed the maps. EW and AO made the tables and figure. LS, AO, and EW wrote the manuscript draft. All authors contributed to manuscript revisions.

Keywords

hydroinformatics tools1, flood mitigation2, risk perception3, flood communication4, community engagement5, focus groups6

Abstract

Word count: 160

Managers, community leaders, and the public frequently encounter communication barriers that hinder implementation of community flood mitigation despite opportunities to use new hydroinformatics tools to understand flood risk. Due to changing flood risk, communities across the USA will have an increased need to communicate with a variety of stakeholders about flood risk and mitigation. Lafayette, La., USA, having recently experienced a major flood event (the 2016 Louisiana Floods), is representative of other communities experiencing changes to flood impacts because of climatic changes, development, and other factors. Using focus groups, this study delves into better understanding the disconnect between individual and community perceptions of flood risks, and how emerging hydroinformatics tools can bridge these gaps. Our research demonstrates the need for scalable tools and technology that can illustrate local context, include local historical and simulated events at multiple levels of community impact, provide comprehensive community perspectives, and allow individuals to expand their knowledge beyond their homes, businesses, and places of work.

Contribution to the field

Managers, community leaders, and the public frequently encounter communication barriers that hinder implementation of community flood mitigation despite opportunities to use new hydroinformatics tools to understand flood risk. These communication barriers pose a sizable hurdle for improving overall community awareness and mitigation of flood impacts. Recent research indicates that disparate levels of risk perception impact a community's ability to function cohesively including which decisions they should make to mitigate or prevent increasing flood risk. Individuals often have a tendency to underestimate risk for themselves and the potential impacts on their community. This underestimation of risk negatively affects individuals' perspective on flood risk. While efforts have been made to address the gaps using hydroinformatics tools, limitations remain in their regular use. Using focus groups, this study delves into better understanding the disconnect between individual and community perceptions of flood risks, and how emerging hydroinformatics tools can bridge these gaps. Our research demonstrates the need for scalable tools and technology that can illustrate local context, include local historical and simulated events at multiple levels of community impact, provide comprehensive community perspectives, and allow individuals to expand their knowledge beyond their homes, businesses, and places of work.

Funding statement

This work was financially supported by a National Science Foundation Smart and Connected Communities Grant (Award# 2125472). The substance and findings of the work are dedicated to the public. The authors and publisher are solely responsible for the accuracy of the statements and interpretations contained in this publication. Such interpretations do not necessarily reflect the view of the NSF.

Ethics statements

Studies involving animal subjects

Generated Statement: No animal studies are presented in this manuscript.

Studies involving human subjects

Generated Statement: The studies involving human participants were reviewed and approved by University of Louisiana at Lafayette Institutional Review Board. The patients/participants provided their written informed consent to participate in this study.

Inclusion of identifiable human data

Generated Statement: No potentially identifiable human images or data is presented in this study.

Data availability statement

Generated Statement: The raw data supporting the conclusions of this article will be made available by the authors, without undue reservation.

We Don't Want Your Water: 1 2 Broadening Community Understandings of and Engagement in Flood Risk and Mitigation 3 By Liz Skilton^{1†}, Anna C. Osland^{2†}, Emma Willis^{1†}, Emad Habib^{3*}, Stephen R. Barnes², Mohamed 4 ElSaadani³, Brian Miles⁴, and Trung Do³ 5 ¹Department of History, Geography and Philosophy, University of Louisiana at Lafayette, 6 7 Lafayette, LA, United States, ²Kathleen Babineaux Blanco Public Policy Center, University of 8 Louisiana at Lafayette, Lafayette, LA, United States, ³Department of Civil Engineering and Louisiana Watershed Flood Center, University of Louisiana at Lafavette, Lafavette, LA, United 9 States, ⁴Center for Coastal and Ocean Mapping, NOAA-University of New Hampshire Joint 10 Hydrographic Center, Durham, NH, United States 11 †=These authors share first authorship of this article. 12 *Correspondence: Emad Habib, emad.habib@louisiana.edu 13 14 **ABSTRACT** 15 Many communities across the USA and globally lack full understanding of the flood risk that 16 may adversely impact them. This information deficit can lead to increased risk of flooding and a 17 18 lack of engagement in mitigation efforts. Climatic changes, development, and other factors 19 have expedited changes to flood risk. Due to these changes, communities will have an 20 increased need to communicate with a variety of stakeholders about flood risk and mitigation. Lafayette Parish, Louisiana, USA, having recently experienced a major flood event (the 2016 21 Louisiana Floods), is representative of other communities experiencing changes to flood 22 impacts. Using focus groups, this study delves into better understanding the disconnect 23 between individual and community perceptions of flood risks, and how emerging 24 hydroinformatics tools can bridge these gaps. Using qualitative analysis, this study evaluated 25 the resources individuals use to learn about flooding, how definitions of community impact 26 27 flood mitigation efforts, how individuals define flooding and its causes, and where gaps in 28 knowledge exist about flood mitigation efforts. This research demonstrates that individuals conceive of flooding in relationship to themselves and their immediate circle first. The study 29 30 revealed division within the community in how individuals think about the causes of flooding 31 and the potential solutions for reducing flood risk. Based on these results, we argue that 32 helping individuals reconceive how they think about flooding may help them better appreciate the flood mitigation efforts needed at individual, community, and regional levels. Additionally, 33 we suggest that reducing gaps in knowledge about mitigation strategies and broadening how 34 35 individuals conceive of their community may deepen their understanding of flood impacts and what their community can do to address potential challenges. 36

37 **Keywords:** flood mitigation₁, community engagement₂, risk perception₃, flood communication₄,

38 focus groups₅, hydroinformatics tools₆

sustainable economic growth in the future.

39

40

54

55

56

57

58

59

60 61

62

63

64 65

66 67

68 69

1. INTRODUCTION

Bridging the gap between individual perception of flooding and understanding of community 41 42 risk is a significant challenge for flood managers, community leaders, and the public. This gap 43 poses a sizable hurdle for improving overall community awareness and mitigation of flood 44 impacts. Recent research indicates that disparate levels of risk perception (Lechowska, 2018; 45 Wang et al., 2018; Verlynde et al., 2019) impact a community's ability to function cohesively 46 including which decisions they should make to mitigate increasing flood risk. This can have 47 important social and economic implications for the community in terms of which strategies are adopted to address flood mitigation. For example, a recent study reported high benefit-to-cost 48 ratios when assessing different strategies for reducing flood damages in the United States by 49 avoiding development in floodplains and investing in land acquisition and conservation 50 practices, versus allowing development and paying for flood damages when they inevitably 51 occur (Johnson et al., 2020). Similar assessments, when performed at a specific community 52 53 scale, would provide valuable information to different stakeholders regarding their decisions in

pursuing strategic flood reduction measures while simultaneously ensuring a progressive and

- Individuals often have a tendency to underestimate risk for themselves and the potential impacts on their community (Filatova et al., 2011; Haer et al., 2020; Bakkensen and Barrage, 2021). This underestimation of risk negatively affects individuals' perspective on flood risk. Individual risk is often understood through the lens of whether a particular location flooded during a past flood of note, which translates into a misperception of binary risk (e.g., inside or outside of the flooded area). Economic and social linkages within a community can amplify flood impacts, making the actual risk more consequential than the sum of individual risks. For example, if one house is flooded, it may have a negligible effect on another family; however, if a whole neighborhood (or large section of a city) floods, businesses and employers' customers or workers are impacted. On the social side, flooding might cause strain on an individual's social network and place an obligation on individuals to provide support to the impacted areas. These additional levels of risk are typically unaccounted for in an individually-focused risk assessment that stops at the local scale (e.g., home, place of work, or immediate social circle) and are generally more difficult for individuals to assess accurately.
- In addition to complications with individually focused risk assessment, individual risk is also nested within community risk. Currently, there is a lack of shared understanding and communication among stakeholders in many flood-prone communities (residents, governments, elected officials, developers, advocacy groups, and technical experts), which often lead to conflicting views on causes of flooding and which flood mitigation measures may

75 be most effective (Bixler et al., 2021; Mostafiz et al., 2021; Wilson et al., 2021). Such conflicting 76 views are manifest across different stakeholders within the community, including the public, 77 government officials, engineers and planners, and as such will impact how the community 78 moves forward with addressing flood risk. Some of these conflicting views have led to litigation 79 within and between neighboring communities (Capps, 2022; KATC, 2022; Turk, 2022). The lack 80 of shared understanding can impact the public's support (or lack thereof) for a viable mitigation 81 project, or the likelihood of community members rallying behind a less effective project. 82 Likewise, the public may not be adequately equipped with resources or information that allow 83 them to communicate their needs to the engineers, planners and officials who are ultimately 84 responsible for designing and implementing certain projects. Typical examples of projects for 85 which divergent views may arise are nature-based solutions for flood mitigation, versus other 86 alternatives that include major structural and channel modifications (e.g., Kumar et al., 2021; Saad and Habib, 2021). Additionally, there are limitations to how individuals define community. 87 88 If individuals view their community as only extending to their neighborhood, city, county (called "parish" in Louisiana), this limits their awareness and engagement with community flood risk 89 and mitigation efforts. 90

Since the passage of the National Flood Insurance Act of 1968, efforts have been made to 91 92 address the gaps between individual and community flood risk. Federal Emergency Management Agency (FEMA) Flood Maps are the most well-known and utilized resource on 93 flooding, yet they have limitations that reduce their usage and educational value. The new 94 95 insurance pricing methodology, known as Risk Rating 2.0 (Federal Emergency Management 96 Agency, 2022), is expected to bring new dimensions to how communities deal with floods. 97 Using new data and modeling technologies, the Risk Rating 2.0 is intended to improve the 98 accuracy of a property's flood risk profile, as opposed to an aggregated quantification that is currently followed. However, the new rating system is expected to result in dramatic premium 99 100 increases for some areas of the US, which may further complicate community-level perceptions of flood risk (Littlejohns, 2019; National Association of Realtors, 2022). 101

102

103104

105

106

107

108109

110

111

112113

114

This study focuses on better understanding the disconnect between individual and community perceptions of flood risks including: a) divergent perceptions of flood risk and causes; b) definition of community; c) the needs and effectiveness of mitigation efforts; and, d) the current limitations and availability of flood information and resources. The study also presents some insights on how emerging hydroinformatics tools including hydrodynamic modeling and geospatial visualization fused with socioeconomic data can bridge these gaps (Mostafiz et al., 2022). Flood risk communication engages individuals and communities in the process of mitigation and response to flooding. If individuals do not understand why or how individuals and communities are connected, they cannot fully understand how they should respond to extreme events or implement mitigation efforts to prevent these events. Improving the understanding of flood risk can help decision-makers (e.g., planners, developers) develop more effective flood risk mitigation strategies with enduring public support (Sadiq et al., 2019; Verlynde et al., 2019).

115

116

2. THE STUDY CONTEXT: LAFAYETTE PARISH, LOUISIANA, USA

- 117 The area of interest in this project is Lafayette Parish (county) in south Louisiana, USA. This
- 118 region has several urban centers, including the Cities of Lafayette, Scott, Youngsville, and
- Broussard (see figure 1). The parish has a population of 126,143 with 55,440 housing units and
- a median housing value of \$181,900 (US Census Bureau) and is home to 10,031 businesses with
- 131,571 employees and average annual pay of \$48,448 (U.S. Bureau of Labor Statistics, 2019).
- Lafayette Parish cities score low to medium-low on the Social Vulnerability Index.
- Louisiana is historically prone to significant riverine and coastal flooding due to its position on
- the Gulf of Mexico and in relation to the Mississippi River and its tributaries and distributaries.
- Located 90 miles inland from the Gulf of Mexico, Lafayette Parish experiences occasional
- riverine flooding but rare coastal flooding, leaving the community to initially consider itself as a
- low-risk flood zone. The area is characterized by low gradient topography, which results in slow
- drainage patterns and repetitive flooding (Watson et al., 2017). Combined with the presence of
- large natural storage areas (e.g., swamps) the area witnesses complex flow regimes such as
- reverse flows and backwater effects (Waldon, 2018; Saad et al., 2021) that complicate the
- decision-making process about which flood mitigation measures to pursue and may lead to
- controversial views about effectiveness of such measures.
- 133 In August 2016, Lafayette Parish experienced a historic flood caused by a low-pressure system
- that resulted in up to 31.39 inches of rain in three days (Wright, 2016). The amount of water
- overwhelmed existent drainage systems, driving 10 major rivers in the region beyond flood
- stage, and roughly equaled three times the amount of water left behind by Hurricane Katrina
- 137 (Samenow, 2016). Twenty-six of Louisiana's sixty-four parishes were declared federal disaster
- sites, including Lafayette Parish (Terrell, 2016; Louisiana Office of Community Development
- Disaster Recovery Unit, 2017; Federal Emergency Management Agency, 2020). Within the
- parish itself, significant flooding occurred to the City of Lafayette, outlying suburbs, and
- adjacent southern parishes (Heal and Watson, 2017). The 2016 Floods also drew attention to
- the connected nature of Lafayette Parish's watersheds, as communities downstream from the
- 143 City of Lafayette faced challenges regarding the flow of water through the region (see figure 2).
- 144 This historic flood continues to serve as a benchmark for flood-related risk assessments and
- mitigation strategies. It is also the primary metric used by individuals in the parish to assess
- their flood risk. In 2018, the City of Lafayette was selected to participate in the Mayors
- 147 Challenge sponsored by Bloomberg Philanthropies which resulted in the community identifying
- 148 flood risk as a primary challenge. This community exemplifies the experiences of other US
- 149 communities that increasingly find themselves at risk due to flooding caused by climate and
- 150 land use changes.

152	<< <insert 1="" about="" figure="" here="">>></insert>
153 154	<< <insert 2="" about="" figure="" here="">>></insert>
155	3. METHODS
156 157 158	The overall goal of this study was to test research hypotheses on possible solutions for communities' inability to reach consensus on diagnosis of and shared vision for addressing flood risk at both the individual and community scales.
159 160	Our four primary hypotheses for this study were:
161 162	1. There is a disconnect between individuals' understanding of their personal risk compared to their community risk.
163	2. The lack of stakeholder understanding of flood risk as individuals (e.g., flooding of
164	homes) and as a community (e.g., business interruptions) contributes to community
165 166	disengagement from flood mitigation decision making, both at individual (e.g., buy flood insurance) and community levels (e.g., vote on stormwater fees).
167	3. Gaps in flood communication between subject matter experts, policy makers, and the
168	public create conflicting understandings about flood risk and the opportunities for
169	mitigation.
170 171	4. Current flood information tools do not adequately communicate flood risk to all stakeholders equally.
172	stakenolaers equally.
173	In order to test these hypotheses, we held a series of focus groups (8 in total) with community
174	members of Lafayette Parish. Prior to each focus group, we circulated a pre-focus group survey
175	that we used to jumpstart discussions in the focus groups.
176	The goal of the focus groups was to bring together Lafayette Parish residents and hear their
177	perspectives on flood risk at both an individual and community level. We wanted to know
178	whether residents understood their flood risk as connected to larger community flood risk or as
179	solely an individualistic problem that affects them personally. We used a broad definition of
180	flood risk and allowed participants to define what flood risk meant to them. Participants
181 182	generally discussed flooding in relationship to their home or place of work, but some also discussed transportation systems, including the impact of flooding on their vehicles, commutes,
183	and popular locales.

Our belief was that most community members would have some understanding of how their

flood risk was tied to community flood risk, but that they may lack resources or information

that fully illustrated their connectivity to the community as a whole. Therefore, we designed

our focus group questions with an assumed baseline knowledge of individual flood risk, but a

lesser knowledge of community flood risk and mitigation efforts or tools that demonstrate

187

188 189

these factors. We share our belief here as a way of describing our own biases that may have

influenced the lens we used for study construction and data interpretation. However, we crosschecked these beliefs through the use of an optional pre-focus group survey to gain some background knowledge on our assumed beliefs and to guide initial discussions. While the current study was conducted prior to the full rollout of the FEMA Risk Rating 2.0 system, and as such could not be addressed in our analysis, it is expected that the new system will bring further complexities on how communities perceive, plan and make decisions about their flood risk.

We also wanted to learn through our study which types of hydroinformatic tools and resources they currently use to help understand their flood risk (both individually and collectively) and ascertain which types of tools or resources they might want to better help them understand future flood risk. Included in our definition of hydroinformatic tools and resources are those that fuse heterogeneous information from multiple sources such as socioeconomic analyses, hydrodynamic modeling and geospatial visualization.

Focus groups provide a semi-structured method for eliciting subject responses yet allow participants the opportunity to have unstructured dialogue on issues they felt were significant but might be overlooked in a more structured inquiry such as a survey (Krueger and Casey, 2014). Focus groups provide the opportunity to observe how community members communicate their understandings of flood risk and mitigation efforts to other community members (Krueger and King, 2005). This dialogue offered a way to analyze synergies between groups and individuals. It also illustrates the problems faced by communities in addressing flood risk at the community scale.

3.1 Description of Focus Groups

We conducted 8 focus groups (~7-15 individuals/group) with members of the greater Lafayette Parish community described above. Prior to the focus groups, we circulated an optional 11-question survey to utilize in our focus group discussions (see appendix). During the focus groups, discussions centered on what each group needs to better engage in flood mitigation and planning. To gauge the diversity of flooding impacts within the community, and based on input from the local government, we conducted focus groups for individuals in neighborhoods with repetitive flooding as well as those in neighborhoods with infrequent flooding. Participants included leaders from a variety of different groups (Table 1). Due to the COVID-19 pandemic, all focus group interviews were conducted virtually using Zoom. Our team had extensive experience during 2020 and 2021 conducting stakeholder focus groups using video conference tools (Habib et al., 2021). Focus groups were 1 hour and 30 minutes in length and included a pre-survey of 5-10 minutes. All focus groups were held during daytime periods. Two focus groups were held over the noon hour, three were held on Friday afternoons near the close of business. While we did schedule an evening meeting, it was cancelled due to lack of participant interest. Participants were not reimbursed for their time.

<<<Insert Table 1 About Here>>>

228229

230

3.2 Study Population

Our focus group interview study was approved by the University of Louisiana at Lafayette IRB 231 232 on December 2, 2021. Focus group interviews were conducted between January and March of 233 2022. Our total focus group participant sample size was 60, of these 47 took the pre-survey. 234 Participants received a link to the online pre-survey after indicating their interest in joining a 235 focus group. A reminder about the pre-survey was sent again a day before the focus group. 236 Most community members that participated in the focus group interviews were: a) from 237 Lafayette Parish, b) interested in flood mitigation or related issues, c) solicited through prior 238 contacts with community outreach organizations or individuals, d) or contacted using a snowball method of participant selection. While we did not request demographic or residency 239 information from focus group participants, most community members indicated in the focus 240 group discussions that they lived in Lafayette Parish. A small number shared that they were 241 242 residents of parishes adjacent to Lafayette Parish. We did not ask participants why they chose to volunteer their opinion, but we noticed that most participants indicated their interest in 243 244 flood mitigation or related issues. Additionally, while we did not track the age of our participants as a defined characteristic of our study, no members were under 18. Due to 245 pandemic-era restrictions that required Zoom focus group discussions, technological challenges 246 may have inadvertently limited access to our focus groups from those with digital literacy or 247 248 connectivity barriers. While we attempted to reach out to community groups representing these populations to increase participation in later focus groups, our efforts were only 249 minimally successful given the time restraints we had for our study. 250

251

252

3.3 Questions Asked

- 253 In our focus group interviews, we asked several questions related to our hypotheses (see table
- 254 2 for an abbreviated list of questions; see appendix for full list of questions). We also prompted
- participants with visuals (e.g., images of flooded cars and houses; road, gas station, and school closures; potential flood risk illustrations) pertaining to the questions asked and conducted
- polls to initiate discussion.
- 258 <<<Insert Table 2 About Here>>>
- A pre-focus group survey was circulated to participants prior to the focus group, asking them to
- reflect on their perceptions of community and individual risk of floods to their properties,
- businesses, and Lafayette Parish. We also asked participants to gauge their level of
- understanding of risk factors for flooding. Finally, we asked participants about the number of
- repeated flood incidents they have experienced.

During the focus group, we grouped questions into three sections for discussion. The first set of questions reviewed participants' understanding of their individual risk to flooding at their home/business/place of work. We asked questions about the number of times they or their business/place of work had flooded and their knowledge of the reasons behind this flooding.

In the second portion of the focus group, we asked participants to reflect on their understanding of community risk for flooding. We first asked participants to define their community and the types of flood risk affecting it and other surrounding communities. We prompted them with Zoom polls that asked them which social groups and key locations they prioritize during and after a flood. We asked questions about participants' perspectives on the perceived effectiveness of their local and state government in addressing flood risk. We also asked about their knowledge of the reasons and frequency of flooding in their community, as well as how their community responded to flood risk or floods in the past.

In the third and final section of our focus group interviews, we asked participants what tools and resources they or others use to understand community and individual flood risk. One set of questions asked about the types of flood information systems that participants have used or continue to use to understand their flood risk. These included the flood information systems that have already been developed, either on a national scale by governmental (e.g., FEMA Flood Map) or non-governmental organizations (e.g., First Street Foundation's FloodFactor); or on a regional or local scale, even if they were in a preliminary stage (e.g., the Lafayette Consolidated Government drainage project portal). We also shared examples of flood information systems from other states (e.g., Texas Onion Creek Flooding Simulation and Texas Water Board Development Flood Decision Support Toolbox). We provided static visuals of some of these current tools and asked participants which illustrations they found most useful and why. Another set of questions asked participants about effective ways to communicate about tools, resources, or information related to flood risk and in which forums to provide this communication. For example, we asked participants whether social media, websites, or other media outlets were effective in expressing flood risk, or what other mechanisms of communication might be more effective in the future.

292

293

294

295296

297

298299

300

268269

270

271

272

273274

275

276

277

278

279280

281

282

283

284285

286

287

288 289

290

291

3.4 Analytical Techniques & Qualitative Coding Methods

For the pre-surveys circulated to participants of the focus groups, we shared the mean and distribution of specific answers in the pre-survey to prompt discussion among participants during group interviews. The results of the pre-surveys were included in the focus group notes (Saldana, 2021). All focus group interviews were recorded and fully transcribed using Zoom auto transcription or Trint transcription software. Transcriptions were cross-checked following transcription conventions by undergraduate research assistants to ensure the text accurately represented individual participants' thoughts in response to questions.

301 Informed by a grounded theory approach to qualitative research analysis (Strauss and Corbin, 302 1998), the research team used our data to inform our analysis process and outcomes. The 303 research team began by collecting and collating detailed notes taken in two different ways 304 during the focus groups. One set of detailed notes primarily tracked emphasis, intensity, and 305 frequency of perspectives on questions and topics discussed. The second set of detailed notes 306 focused on recording the technical details of hydroinformatic data usage and understanding. A 307 final set of summary notes were created by the research team after the focus groups to collectively reflect on key themes and identify initial concepts for coding (Miles and Huberman, 308 309 1984). 310 Data were coded by hand (as opposed to using qualitative analysis software) using the coding 311 scale developed through the reflective process described above. The first round of coding 312 counted frequencies of particular themes such as Understanding of Flooding and its Causes 313 (e.g., localized, person/work/community), **Definition of Community** (e.g., property, neighborhood, city, parish, watershed, state), Gaps in Knowledge About Mitigation Efforts 314 (e.g., personal/government), and Resources Used to Learn About Flooding (e.g., 315 tools/technology). After the first round of coding the research team met to discuss initial coded 316 results and to collaborate to add data into more meaningful groups. At this time, the research 317 318 team also incorporated deviant case analysis to make sure minority opinions from the focus groups were represented in the research (Kitzinger, 1995). A second round of coding more 319 closely evaluated direct language used by participants to examine synergies between the 320 themes identified in the first round of coding as well as select key quotations that represented 321 322 emerging themes from the research findings. Throughout the coding process, the 323 multidisciplinary research team met frequently to discuss how to use knowledge learned from

327

328

329

330

331

332333

334335

324

325326

4. RESULTS

In reviewing the data collected from our focus groups and keeping in mind that the objective of this study was to evaluate how communities and individuals reach a shared vision of flood risk, we found that community members tend to discuss flooding and flood risk in relationship to themselves and their perceived view of community. This approach to thinking about flooding and flood risk shapes how they understand flooding and its causes, their definition of community, their gaps in knowledge about mitigation efforts, and the types of resources they use to learn about flooding.

the focus groups to develop preliminary tools to test in further field work with the community and to solidify research findings. The multidisciplinary nature of the research team produced

336

337

4.1 Understanding of Flooding and its Causes

meaningful discussion that informed the approach to coding.

At the beginning of our focus groups, we briefly reviewed the results from our optional pre-

focus group surveys. As we reviewed the results from the pre-focus group surveys, focus group

participants were offered the opportunity to add their input to the pre-survey results (if they

had not had a chance to fill out the pre-survey) and elaborate on their chosen selections in the

survey. As they did so, participants discussed how they defined flooding and its causes. They

also highlighted their experience with floods and how it relates to their knowledge about what

causes flooding or lack thereof.

343

344

350

375

Participants cited the 2016 Floods as a catalyst that changed perception and understanding of

flooding, with regards to either their own risk or the risk of others, stating so in 13 instances. In

347 terms of experience, many Lafayette Parish residents confronted the realities of flooding for

348 the first time in 2016. Others who did not flood, considered themselves or location relatively

safe from future flooding. From either point of view, participants regarded 2016 as a metric by

which to examine their risk moving forward. A participant noted "I just wonder... had we taken

351 the survey prior to 2016 flooding and [then again] after, what the results would have been.

352 Before that hundred year flood, I would've said low, but since our house experienced flooding, I

said high" (Department of History et al., 2022g, 10:40). Another said: "It's kind of silly because I

354 probably should have more knowledge about this, but in terms of my home, I guess I was

thinking that well, in 2016, we didn't experience any flooding. So I guess that's why I said it was

a pretty low chance of our home getting flooded" (Department of History et al., 2022a, 9:13).

357 The impact of the 2016 Floods forced individuals to think about flooding beyond their own

358 property. One individual noted that they now pay more attention to the impact of flooding on

manufacturing and oil and gas facilities in the region (Department of History et al., 2022b,

360 1:01:05). Manufacturing and oil and gas have historically been the predominant economic

drivers for the Lafayette Parish region (Wagner and Barnes, 2022).

362 The 2016 Floods also highlighted the disparity in understanding how the management of water

across the region impacts individual properties and the community. Drainage, inadequate

364 channel capacity, and outdated and under-designed infrastructure were all issues brought up

by participants as areas of misunderstanding when discussing causes of flood risk.

In discussing disparities in understanding the causes of flood risk, individuals also brought up

that each person's definition of flooding often shapes their understanding of flooding and the

368 narrative they use to describe community risk. It also impacts their willingness or desire to

engage with flood mitigation efforts. As one participant noted, "Even though your house

doesn't flood, our streets flood often" (Department of History et al., 2022d, 17:35). If you

define flooding as risk to personal property (like a house), street flooding may not be a concern.

372 In looking at flooding beyond just one's own property, the average Lafayette Parish resident

must then reckon with the impact of flooding to others in their community as well.

Lafayette Parish residents noted that they also need to broaden their understanding of what

causes flooding. Most participants mentioned development as the primary cause of increased

flooding in their community. They also mentioned increased volume of flood water, outdated or inadequate infrastructure, lower elevation, and proximity to water. In conversations, however, individuals expressed doubts about which factor was most important. This also varied based on whether they were discussing flooding from the viewpoint of their personal property or at the community level. This variance highlighted the need for accessible information tools that consider local knowledge and historic data.

382

383

4.2 Definition of Community

- Much like participants noted the challenges of understanding the impact of flood events on
- their community, they also noted differences in how various groups defined their community
- 386 (in relation to floods).
- Flood events create moments for individuals to evaluate community risk and response.
- According to focus group participants, the 2016 Floods caused them to reflect on how flooding
- affects both themselves and their community. It also revealed differences in the way individuals
- defined their community. Some participants noted that their community was defined broadly,
- including those in their neighborhood, city, or parish. Others suggested that only those within
- their immediate proximity, such as their direct neighborhood or within their pre-existing social
- 393 network, constituted their "community." Thus, their understanding of flood impact was reliant
- on experience held by those groups. A participant noted, "If you've flooded, you know. You
- 395 start paying attention. Or if you nearly flooded, you really start paying attention because you
- don't want it to happen again. Okay, so if you didn't flood. You know, you don't have interest in
- it, so you may not be paying that much attention" (Department of History et al., 2022b, 51:33).
- 398 A participant in a separate group concurred, "I feel like we're just so tempted to think of it as a
- 399 problem for the people who flooded" (Department of History et al., 2022f, 30:00).
- 400 Flood events also create moments of reevaluation of risk impact for both individuals and
- 401 businesses. One focus group participant noted the impact of flooding on business owners, their
- 402 workforce, and customers. While business owners experience damage to their property, they
- 403 also experience problems with an impacted workforce and customers made up of individuals
- 404 having to rebuild their own homes. As illustrated by the participant: "If you're a key employee
- for a business here in town and you got a chance to rebuild your house—which may take a year
- after a major flood like 2016—[the flood is] detrimental not only to your home, [but] to your
- business, enterprise, or even more." (Department of History et al., 2022b, 1:18:40).
- 408 This lack of awareness of the experiences of other groups creates a homogenized
- 409 understanding of flood risk and experience in a community and serves as an obstacle to
- 410 understanding the reasons for or importance of flood mitigation efforts. As a participant stated,
- "Unfortunately those people that are not subjected to [flooding] ... don't really have the

412 knowledge because they don't worry about it and [have not experienced it]" (Department of

History et al., 2022c, 56:09). This homogenized understanding of flood risk and experience also

414 lessens the awareness of experiences of already at-risk and under-resourced communities.

Within the focus groups we saw the dichotomy and friction between different groups and their 415

interests. See the excerpted exchange below from one of our focus group discussions of this

417 topic.

413

416

418

419

420

421

422

423 424

425

426

427

428

429

430

431

432

433

434 435

436

437

438 439

440

441

442 443

444

445

446

447 448 Participant 1, representing a marginalized group in the City of Lafayette community, stated:

The building I live in is elderly, low income housing, and our fear, the fear that multiplies over time is [...] the housing is allowed to deteriorate, more and more, [...] we become very worried that the next flood will be the one where they shut the place down and we have to go find somewhere else to live. Knowing how hard it is to find a place, an affordable place to live in Lafayette, it makes people willing to live with mold in their apartment and with their ceiling and walls falling, falling down because they really just don't want to lose a place to live because it might take a long time. It might take years to get another place to live. (Department of History et al., 2022b, 1:07:50)

In response to Participant 1's comments, Participant 2 replied:

The poor, unfortunately, are going to be living in the lower areas- in more vulnerable areas for flooding to begin with. So that's a known fact. [...] You can't do anything about low income people renting properties in low areas. That's just going to happen. (Department of History et al., 2022b, 1:08:56)

This exchange illustrates the differences in conceptions of community and acceptable levels of risk for those within and outside of an individual's defined social community.

In addition to complications raised by an individual's defined social community, very few participants saw their community extending beyond the geographic scope of the parish except when it negatively affected their own community. For example, the City of Lafayette's downstream suburbs of Youngsville and Broussard and the adjacent parishes of Vermilion and St. Martin complained of the excess runoff created by floodwaters in Lafayette Parish worsening flooding in their communities. This has unfortunately created animosity including lawsuits between some of these communities over flood mitigation efforts and understanding of flood risk (Capps, 2022; KATC, 2022; Turk, 2022). As noted by one participant:

There's a huge lack of understanding. There's a huge lack of trust between the parishes. I see this, you know, in communicating with these parish leaders. "We don't want Lafayette's water." You know, I've heard that story a bunch of times from different parishes around us. Well, I'm sorry. If you happen to be south of Lafayette, you're going to get Lafayette's water no matter what. It just happens to flow that way. So why can't we work together to try to solve this problem? (Department of History et al., 2022b, 30:40)

All of these factors—the fragmentation in defining one's community, the exclusion of certain populations from the definition of community, and the complication in extending the definition of community to include larger geographic scopes of community—create obstacles in understanding the multifaceted problems that affect communities. These conflicting definitions of communities complicate the creation and implementation of effective flood mitigation strategies.

455

456

480

481

483 484

485

4.3 Gaps in Knowledge About Mitigation Efforts

- In focus group discussions, there were significant gaps in the knowledge about mitigation.
- Participants noted a perceived lack of understanding about what local governments, builders
- and developers, and the state and federal governments were doing to mitigate flooding in
- Lafayette Parish and surrounding communities. Participants also self-identified their own
- 461 knowledge gaps about what they could do personally to mitigate flooding and the causes of
- 462 flooding.
- 463 Within discussions about the perceived lack of understanding about what local governments
- were doing to mitigate flooding, participants expressed concern about outdated and
- overextended infrastructure that they blamed for increased flooding. As one participant stated,
- 466 "These roads and our infrastructure [are] built to withstand a certain kind of storm, [...] and so
- their capacity isn't designed to handle it. It's not like they're designed wrong, they're just no
- longer keeping pace with the rate of precipitation that we're experiencing today" (Department
- 469 of History et al., 2022e, 33:53).
- 470 Another participant described how drainage frequently dominates conversations about
- 471 flooding, sometimes at the risk of ignoring other flood mitigation opportunities:
- 472 [Y]ou just can't keep people from talking about drainage. Somehow, we have got
- 473 to communicate that when you drain a property, that water doesn't just
- disappear. When you drain a property, you're draining it onto someplace else or
- into some stream. And it's very, very possible, and even likely, that when you do
- a project that reduces flooding on one property, you're going to increase
- 477 flooding on other properties. (Department of History et al., 2022c, 1:25:25)

A final concern raised by participants was the lack of knowledge and transparency about local

479 flood mitigation projects developed by the local and federal governments. As stated:

There's not really much visibility of this. Because I think: "Are they doing anything to mitigate flood risk? Are they doing work, you know, drainage

482 projects?" And I'm sure they are, but they're not really publicized. There's not a

real, clear list of projects and what order they're going to be done in and how

that priority was determined. How do you know who decides and how do they

decide what projects are going to be the most immediate and which ones are

going to be have to be done later? I don't know. (Department of History et al., 2022b, 28:00)

488

489 490

491

492 493

494

495

496

497 498

499

500 501

502

503

504

505

506

507508

509

510

511512

513

514

515516

517

518

519520

521

522

523

524

While participants expressed concern about the lack of knowledge regarding projects run by governmental entities, they also raised concern about projects undertaken by private groups. Due to rapid development in the City of Lafayette and the exurban area, builders and developers were a primary focus of participants' anxiety about unknown outcomes of geographic expansion. The conflict between expanding local revenue and the ability to address mitigation was expressed by one participant when they said, "We can let a developer build a subdivision there, and all of a sudden we've got millions of dollars of tax base and all kind of revenues. [But] we need to really seriously look at what we're doing" (Department of History et al., 2022b, 24:10).

Even developers themselves raised concerns about communicating the efficacy of flood reduction projects and regulating development. As one developer put it:

All those subdivisions that are getting permitted now, they're developing under some of the strictest drainage requirements that we've ever had- [but] we're just continuing to make it harder and harder as a community to drain because just now that we have more and more development, more and more concrete, it's like we're doing smart things at like a micro level, but then at a macro level, I think we're still kind of missing the boat. (Department of History et al., 2022f, 30:00)

These gaps in knowledge about what larger entities such as governmental bodies are doing to mitigate flooding in the community also extend to conflicts in perceptions of what individuals can and should be doing to mitigate flooding. Whether justified or not, many Focus Group participants believed that they had a good grasp on how to address flooding, but more firmly believed their fellow community members' knowledge was limited. Seventy-seven percent of participants expressed in a pre-focus group survey that they felt somewhat or very knowledgeable about their own personal flood risk and how to mitigate it. In comparison, they stated that 94 percent of other community members had moderate or very little knowledge about flood risk and how to mitigate it (see figure 3). In follow up focus group discussions, participants frequently expressed that rudimentary steps that could be taken to mitigate flooding on an individual level were often ignored or not met with immediacy. As one participant noted when reflecting on localized dumping and blockage of drainage systems, "If people understand that what they throw on the ground ends up in the waterway, maybe that would keep them from wanting to do that" (Department of History et al., 2022c, 1:16:00). Recent homebuyers and renters expressed a lack of clarity on what would happen with their property during flooding, which affected how they approached flood mitigation efforts personally. One participant stated, "Currently I'm renting, and I've been there for two and half years, but what happened five years ago, ten years ago- I have no idea, so a lack of information for me is definitely part of it" (Department of History et al., 2022h, 13:08).

525	<< <insert 3="" about="" figure="" here="">>></insert>
526 527 528 529	Participants also questioned if changes in flood risk were related to larger climatic shifts and to what degree this affects them locally. Discussions focused on rainfall amounts, storm intensity, and perceived knowledge of historic events. In discussing increased rainfall, participants were split on whether rainfall amounts have actually changed. As one participant stated, "[there has
530	been] very little change from '94 to 2020. The variation is only three or four inches here"
531 532	(Department of History et al., 2022e, 38:48). They instead cited other factors as the cause for increased flooding. Meanwhile, another participant expressed, "I can definitely see a change in
533	the intensity of storms and the amount of floods since I was a child up until I was an adult"
534	(Department of History et al., 2022a, 24:43). Despite this split in the perception of changes in
535	intensity, participants were hesitant to blame changes on climatic fluctuations. One argued,
536	"When you start telling them 'Okay, this is some of the problems' [They reply] 'Oh, no. That's
537	not the problem. The problem is climate change.' Well show me, okay?" (Department of History
538	et al., 2022b, 57:30). Instead of accepting climatic change as a driver of increased flooding,
539	participants were apt to divert the conversation back towards the impact of large scale
540	development.
541	In addition to the lack of knowledge about individual actions to mitigate flooding and its causes,
542	participants struggled to name tools or services that would help them adequately assess their
543	own risk. This was congruent with the common theme that there is a tangible disconnect
544	between citizens and the services that are meant to help them. Many participants either said
545	they had very little understanding of their own flood risk or public mitigation efforts currently
546	underway and directly expressed a desire for an open line of communication between flood
547	professionals and citizens.
548	Often these knowledge gaps were a result of flood knowledge based on personal experiences
549	rather than broader information tools. One participant stated, "Once you've experienced
550	[flooding], you are much more cognizant in making decisions based on that" (Department of
551	History et al., 2022g, 11:54). In contrast, participants who had not flooded were not
552	incentivized to look for information about flood mitigation. One admitted, "For most people,
553	unless you're directly affected by something, you just kind of disregard it, and that's been the
554	case for me" (Department of History et al., 2022h, 1:03:09).

4.4 Resources Used to Learn About Flooding

In our focus groups, community members identified hydroinformatic tools and technologies (e.g., geospatial data and model simulations, web-based flood portals, interactive

visualizations), analytical information about flooding, as well as trusted individuals as their sources for how they conceptualize and respond to flood information.

FEMA Flood Maps are the most frequently used resources to learn about flooding. Participants mainly cited FEMA flood maps when discussing purchasing homes, rather than during a flood event. Even then, many were quick to point out that these maps are not always accurate, and that "the water is not just going to stop at jurisdictional boundaries" (Department of History et al., 2022a, 38:23) and "the flooding isn't just going to stop at an imaginary line on a piece of paper" (Department of History et al., 2022a, 1:13:06). Participant use of FEMA flood maps localizes their understanding of flood risk to their individual property and how it affects their insurance rates, rather than shed light on community-wide risks.

The use of trusted individuals was the second-most used resource to learn about flood risk. Trusted individuals could be found in person, via social media, and through personal or recommended connections. These trusted individual conversations provide direct insight into details not fully represented on flood maps such as the proximity of water to structures on a property or the depth of the expected water during an extreme storm (not just a historic one). They were frequently combined with the use of FEMA Flood Maps to broaden the understanding of flood risk. One individual noted: "I bought my house and just looked at the FEMA maps [...]." In contrast, this individual's friends generally "relied on their realtor for that kind of information" (Department of History et al., 2022c, 35:19). Another participant noted that they sought out additional information from a trusted source, "I attended a seminar about flood insurance just this week from a gentleman, an engineer out of Baton Rouge, just working with the insurance companies" (Department of History et al., 2022b, 1:10:26). At the same

time, participants also cited social media and their social circles as sources for seeking

to communicate flood risk (e.g., National Weather Service, FloodFactor) were

underrepresented in participant responses.

After asking participants about their prior use of tools and resources, we demonstrated a few examples of current hydroinformatic tools and resources available from different flood-prone regions of the US. These included static maps of flooded areas, location of schools in reference to flood zones, demographic information for impacted community areas, static 3-D visuals of

information about flooding, indicating a level of community engagement. Resources intended

flooded bridges, and illustrations of potential flood depths within a structure or home.

Participants enjoyed visually appealing tools and resources, one participant referred to this type of information as "eye candy." Elaborating further, the participant stated:

[Although] I really like flood area maps [as] I think they provide very specific and very clean information, if you're trying to convince people like politicians or someone like me of something, [...] a beautiful presentation with animations [showing water rising or bridges going underwater] adds to the power. [I]f it's prettier, it's going to be more convincing to me and to a lot of, I think, millennial

folks who are used to pretty animations with all of their video games (Department of History et al., 2022b, 1:21:10).

Participants offered helpful feedback on which elements of the demonstrated tools and resources they reviewed. Generally they appreciated more visual illustrations with human-centered impact rather than ones that provided extracted numerical metrics but with fewer visuals. They also identified the potential for implementing these types of tools in their community and suggested groups that would benefit from using them. While our demonstrated examples did not include information about real-time warnings and flood depths, some participants expressed those would be useful features to have access to.

Demonstrating these examples also revealed other challenges in the community that were not necessarily met by highly detailed flood information tools and resources. As expressed by one participant in referencing the community's ALICE population, or those who are asset limited, income strained, and employed (United Way of Northern New Jersey, 2020):

In 2016, you know, a lot of our most economically distressed communities did not flood. [...] And so in our community, we have a lot of people in the ALICE population who don't think they're that much of a flood risk and they're not doing anything differently in their lives because they didn't flood in '16 and they've never flooded before. [... It] would take a real community education campaign with real resources behind it to get people to think differently about their relative risk and what, if anything, they need to do about it. [I think] they have so many, real daily stressors about how they're going to make their rent payment or how they're going to make their utility payment, or how they're going to pay for their school supplies for their kid, [that] if they didn't flood in 2016, you're not going to be able to get them to worry about it unless you've got some overarching story. (Department of History et al., 2022f, 01:22:39)

Overall, the feedback provided about current hydroinformatic tools and resources demonstrated in the focus groups was positive, with participants expressing the desire for more tools and resources that further met their expressed needs as well as a larger communication campaign to share information about flood risk and mitigation.

5. **CONCLUSIONS & RECOMMENDATIONS**

Through a set of focus groups with various stakeholders with the Lafayette Parish community, the current study examined how community members understand their flood risk, as individuals and as a community, how they define their community in the context of flood risk, and how they perceive the need and effectiveness of flood mitigation efforts within their

community. One of the key results that the current study revealed is that community members tend to understand flood risk based on their personal experience with past flood events and may lack a sense of the complicated facets of flood risk at a community level. This individualized perception of flood risk is mostly attributed to the lack of understanding of the causes of flooding and the interconnected flood dynamics across their immediate geographic circles. An individual-centric perception has also led to a multitude of community challenges such as: lack of awareness of elevated risk of under-resourced groups within the community; exclusion of certain populations from the definition of community; lack of trust between different stakeholders within the same community and across neighboring communities; disparity in understanding how the management of flood water across the region impacts individuals and the community as a whole; and conflicting views on the most effective flood mitigation strategies and projects that the community should pursue to reduce flood risk and impacts.

 Overall, our study can help flood managers and community leaders in framing how they address and communicate flood mitigation in their community. This research suggests that helping individuals reconceive how they think about flooding will help them understand the mitigation needed at individual, community, regional, and state levels. This includes helping individuals broaden how they describe community to deepen their understanding of flood impacts. This potentially broader understanding of flood risk could be especially helpful as FEMA rolls out Risk Rating 2.0. The results of our study suggest that efforts for enhancing flood risk understanding and engaging the community in flood risk mitigation should take into account the social and economic backgrounds of different sectors within the community. Discussions with focus group participants also indicate that there is a critical need to address the existing disconnect, and sometimes distrust, between the public and the ongoing efforts by local government (flood officials) as well as the engineering and research communities.

The perspective we found on flooding during our focus group conversations provides a useful framework for designing tools and resources that address flood risk. This framework would help community stakeholders understand flood risk and improve their engagement in mitigation efforts. Because people understand flooding in relation to themselves, community members often have an incomplete understanding of connected flood experience. Similarly, individuals view their personal and community's flood risk and mitigation efforts through the lens of past flood experience. This goes for both individuals and for developers looking to expand the built environment. By improving communication about the scale of flooding beyond a parcel to subdivision, city, or broader region it can change the narrative about flooding in a community. Understanding the limitations of individual and community perspective on flooding can help inform the development of tools to address known gaps.

Tools and technologies have already been identified as useful avenues for addressing these known gaps (Mäkinen, 2006; Voinov et al., 2018). However, as evidenced in our focus group

discussions, participants identified only a few tools related to flood risk. Any existing tools were used infrequently and often relegated to single or case-specific use. To address this problem, we suggest the following:

- a) that future flood information tools offer more scalable options that illustrate flood risk at individual (e.g., home or business), community (e.g., neighborhood or city), multiregional context (e.g., parishes/counties or watersheds), in addition to national context;
- b) that scalable options include both the inclusion of local historic events (which serve as reference points for a community) and simulated events at multiple levels of community impact (that represent known or concerning alterations affecting community risk like potential development and climatic fluctuations);
- c) that scalable options also provide comprehensive community perspectives in scaling that allow individuals to see flood events affecting them individually, their social networks, the city, parish, and linked communities (such as a watershed) to better represent the connected nature of flood experiences and their causal factors;
- d) that scalable options also include ways for people to visualize and expand their knowledge beyond and connected to their homes/businesses/places of work, including factors that most affect their day-to-day lives such as commuting routes impacted by localized flooding, school and business closures, and accessibility to key emergency resources such as hospitals so that there is an incentive for repeated use and thus greater possibility for continued learning opportunities.

These additions may propel community members to repeatedly engage with flooding tools, increasing the opportunity for flood managers and community leaders to build wider interest in flood mitigation efforts and needs. They also will help widen individuals' understanding of the problems faced by those experiencing flooding across and connected to their communities and expand ideas of personal responsibility in mitigating flood risk in a community.

We strongly believe that more effective flood information and resources delivered through hydroinformatics technology, education, and continued community conversations can address some of the issues raised by our focus group participants in this study and that these findings can be applied to other communities facing flooding. For these reasons, we are continuing to solicit additional help from our community in reviewing current and future hydroinformatics technologies through a series of workshops held between May and August 2022.

DATA AVAILABILITY

The raw data within the confines of our IRB approval supporting the conclusions of this article will be made available by the authors, without undue reservation.

705 **ETHICS STATEMENT** 706 This study involved human participants and was reviewed and approved by the University of 707 Louisiana at Lafayette Institutional Review Board. Written informed consent for participation 708 was required for this study in accordance with the national legislation and the institutional 709 requirements. 710 711 **AUTHOR CONTRIBUTIONS** All authors contributed to the study conception and development. LS and AO coordinated and 712 713 facilitated the focus groups. All authors contributed to data collection and initial discussions 714 about collected data. LS, AO, and EW performed the data analyses. ME and EH developed the 715 maps. EW and AO made the tables and figure. LS, AO, and EW wrote the manuscript draft. All authors contributed to pre-submission manuscript revisions, and LS, AO, EW, and EH revised 716 717 the manuscript based on reviewer feedback. 718 **FUNDING** 719 720 This work was financially supported by a National Science Foundation Smart and Connected 721 Communities Grant (Award# 2125472). The substance and findings of the work are dedicated to 722 the public. The authors and publisher are solely responsible for the accuracy of the statements 723 and interpretations contained in this publication. Such interpretations do not necessarily reflect 724 the view of the NSF. 725 726 **ACKNOWLEDGMENTS** 727 The authors wish to acknowledge the community members and organizations who participated 728 in and helped advertise the focus groups. 729 730 **FIGURES** FIGURE 1. Study Area-Lafayette, Louisiana, U.S.A. and Surrounding Cities 731 732 FIGURE 2. USGS August 2016 Flood Extent Map (Heal and Watson, 2017) 733 FIGURE 3. Pre-Survey Results About Personal & Community Flood Risk Knowledge 734 735 **TABLES**

Table 1: Description of Focus Group Attendees

Organization	Notes on Makeup of Group
Economic Development	Staff from both local and regional groups
Organizations	
Business leaders	Leaders represented the areas of engineering, land services,
	urban planning consulting, or marine services
Local government staff from the	Departments included Planning and Zoning, the Mayor's
cities of Lafayette, Scott,	Office, Administration, Public Works, Flood Administration
Youngsville, Broussard, Maurice,	
and Lafayette Parish	
Insurance agents	Agents represented both business and residential insurance
Regional Planning Commission	
staff	
Real estate agents	
K-12 educators	
Local environmental groups	Attendees represented both staff and members of these
	organizations
Local cultural institutions	Attendees represented both staff and members of these
	organizations
Regional United Way	Attendees represented both staff and volunteers
Unaffiliated citizens from	
urban/downtown	
neighborhoods	
Unaffiliated citizens from	
recently flooded neighborhoods	
Unaffiliated citizens without	
flooding experience	

737

736

738 Table 2: Abbreviated Focus Group Question Set

Question Set 1: Understanding Personal Risk
How likely is your home/business/place of work to flood?
How many times has your home/business/place of work flooded in the past?
What do you think are the primary sources of flooding at your home/business/place of work?
How do you perceive the effectiveness of efforts taken by your government to mitigate your
flood risk?
Poll Question: What factors most influenced or changed your understanding of flood risk?
Poll Question: When do you seek out new information on flood risk to your home/place of
work/community, and what types of information have you sought out?
When you want to learn more about your flood risk, what sources do you use?

Poll Question: In the future, what information would you need to better understand your risk of flooding?

Question Set 2: Understanding Community Risk

How knowledgeable are you or others in your community about flood risk?

How well do you think others in your community understand their personal flood risk?

Have you been involved in community efforts to talk about or combat flood risk?

Have you thought about other flood risks beside your own in your community?

Poll Question: If you've experienced a flood, how concerned were you about impacts to your social networks, the larger Lafayette community, key infrastructure, and essential services? What information would help you to understand flooding in your community and how it might impact your life during and immediately after a flood? (Visuals of flooded homes,

schools, etc. shown)

Do you know how long critical services might be unavailable after a flood? (Same visuals shown)

Is it more helpful to know what would be closed or a timetable for closure? (Same visuals shown)

Poll Question: After a flood, which groups would you check on (e.g., immediate family, social networks, church groups, and/or local businesses)?

Are there any groups missing from our list of groups to check on after a flood?

Looking at the groups you chose, how do you define community?

Question Set 3: Explaining Risk to Others

What methods do you believe are the most effective at communicating risk to those in your social groups?

Why do you think those are most effective?

What kinds of information or illustrations would best inform you of potential flood risk? Similarly, what kinds of information would best help you plan your response to flood risk in your community? Why? (Static visuals of hydroinformatic tools shown)

Are there any illustrations/apps/tools that would be more effective that we haven't shown yet?

Do you think there is anything else that we are missing about individual/community flood risk/mitigation?

739

740 **APPENDIX**

741 **Pre-Survey**

Question Set

How likely is your home to flood?

- a. Very low
- b. Low

- c. Moderate
- d. High
- e. Very High

How many times has your home flooded in the past?

- a. Never
- b. Once
- c. Twice
- d. 3 or More

Which of the following applies to you:

- a. Work for an employer
- b. Own my own business
- c. Own my own business and work for a separate employer
- d. None of the above

How likely is your place of work to flood?

- a. Very low
- b. Low
- c. Moderate
- d. High
- e. Not applicable

How many times has your place of work flooded in the past?

- a. Never
- b. Once
- c. Twice
- d. 3 or More
- e. Not applicable

How well do you understand your personal flood risk?

- a. No knowledge
- b. Very little knowledge
- c. Moderate knowledge
- d. Some knowledge

On average, how well do you think others in your community understand their flood risk?

- a. No knowledge
- b. Very little knowledge
- c. Moderate knowledge
- d. Some knowledge

In the past, have you been involved in neighborhood/community/business association efforts to talk about or combat flood risk?

- a. Never
- b. Once
- c. Twice
- d. 3 or More

If you have been involved in efforts to talk about or combat flood risk, what sort of community events/dialogues have you participated in that deal with flood mitigation? Please select all that you have been involved in.

- a. City/Parish Council Meetings
- b. Community or Neighborhood Group Meetings
- c. State or Federal Governing or Regulatory Meetings
- d. Online Community Forums
- e. Business Association Meetings
- f. Chamber of Commerce Meetings
- g. Non-Profit Organizational Activities and Events
- h. Flood Action Group Meetings
- i. Volunteer Organization Meetings

742

743 Full Focus Group Question Set

Question Set 1: Understanding Personal Risk

How likely is your home to flood?

How many times has your home flooded in the past?

How likely is your business/place of work to flood?

How many times has your business/place of work flooded in the past?

What do you think are the primary sources of or reasons for flooding at your home/business/place of work?

How do you perceive the effectiveness of recent and ongoing efforts taken by your government (local or state) to mitigate your flood risk?

Poll Question: What factors most influenced or changed your understanding of flood risk?

- **a.** Knowledge of prior flood where you live
- b. Knowledge of prior flood where you work
- **c.** Knowledge of changes to your flood risk in your area (such as Climate change, development impacts, rainfall and drought rates)
- **d.** Knowledge of your insurance cost
- e. Out of pocket personal cost in flood losses
- **f.** Knowledge of your flood zone
- **g.** Knowledge of your flood elevation

Poll Question: When do you seek out new information on flood risk to your home/business/place of work/community/area?

- **a.** When I bought my house
- **b.** When considering a new business location
- **c.** When a major rainstorm event or flood event is predicted
- d. When a major rainstorm event or flood event is occurring
- e. During hurricane season
- **f.** When an insurance adjuster assesses your property

What types of new information have you sought out regarding your flood risk?

When you want to learn more about your flood risk, what sources of information do you use? *Poll Question: In the future, what information would you need to better understand your risk of flooding?*

- **a.** Flood levels within your property, where you work, or business
- **b.** Expected damage to your property, where you work, or your business
- c. Alterations to the surrounding landscape that might influence your flood risk
- **d.** Different climatic or extreme event impact types and their influence of your flood risk

744

Question Set 2: Understanding Community Risk

How knowledgeable are you about flood risk?

On average, how well do you think others in your community understand their personal flood risk?

In the past, have you been involved in neighborhood/community efforts to talk about or combat flood risk?

Have you thought about other flood risks beside your own in your community?

In addition to your own flood risk, what other flood-related risks have you thought about?

Poll Question: If you've experienced a flood (like the 2016 Floods), how concerned were you about impacts to the following?

- **a.** Grocery stores
- **b.** Schools
- **c.** Hospitals
- **d.** Emergency Services
- e. Local businesses
- **f.** Key roads and bridges
- **a.** Gas stations
- **h.** Impacts to low-income areas in your community
- *i.* Impacts to family
- **j.** Impacts to friends
- **k.** Impacts to your co-workers or employees
- **I.** Damage or cleanup costs of local government

Why are these important?

What information would help you to understand flooding in your community and how it might impact your day-to-day life during and immediately after a flood? (Visuals of flooded homes, schools, etc. shown)

Within your community, do you have an idea of how long critical services might be unavailable after a flood? (Same visuals shown)

Is it more helpful to know what would be closed (hospitals, schools, businesses, etc.), or a timetable for closure (1-2 weeks, 3-4 weeks, etc.), and why or why not? (Same visuals shown)

Poll Question: After a flood, which groups would you check in on?

- **a.** Immediate family
- **b.** Work colleagues
- c. Neighbors
- **d.** Businesses located near your business
- e. Neighborhood
- **f.** Church/faith group
- **g.** School network
- h. Family friends
- i. Social media friends

Are there any groups missing from the research team's list of groups to check in on after a flood?

Looking at the groups you chose, how do you define community?

745

Question Set 3: Explaining Risk to Others

What methods do you believe are the most effective at communicating risk to those in your social groups? (Including neighborhoods, colleagues, school and community group networks, and families)

- a. Social media posts
- **b.** Apps or websites people can go to for information
- c. Pamphlets or flyers passed out and posted in affected regions
- d. Small educational sessions to demonstrate tools to key people in the region
- **e.** Spotlights on news sources (nightly TV, newspaper columns/specials, internet resources)

Why do you think the methods you chose are most effective?

What kinds of information or illustrations best inform you of potential flood risk? Similarly, what kinds of information best help you plan your response to flood risk in your community? (Static visuals of hydroinformatic tools illustrating the following were provided):

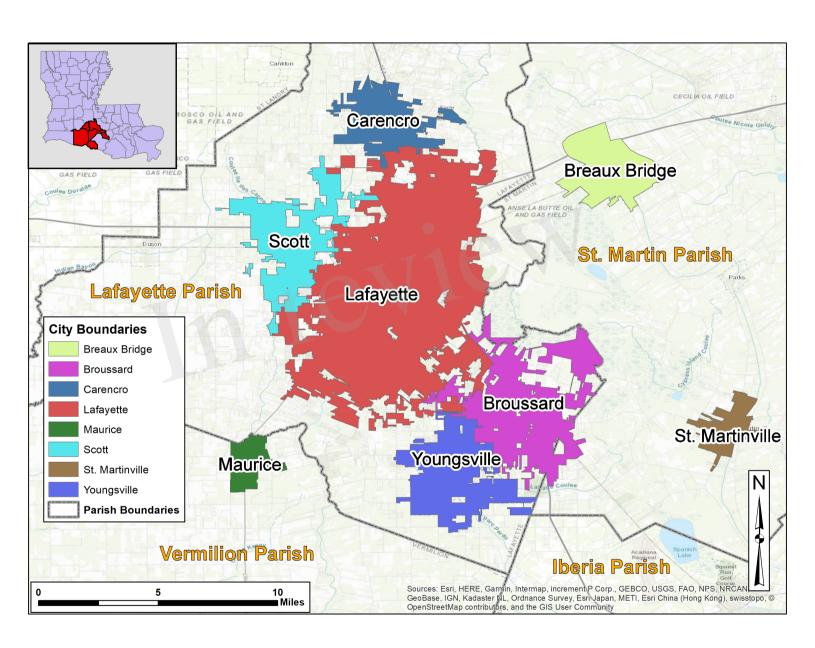
- a. Mapped geography of flooded and unflooded zones
- **b.** Location information on where schools/hospitals/businesses are compared to floods
- c. Demographic information about who may flood
- **d.** Visuals such as families in flooded homes, water on known roads, images of flooded local businesses

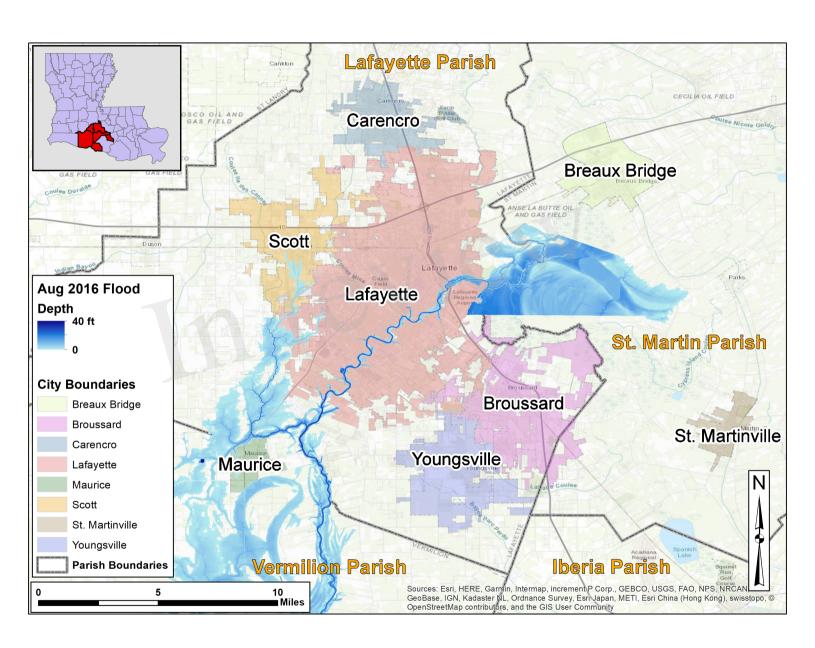
Why do you think the illustrations you chose are helpful?

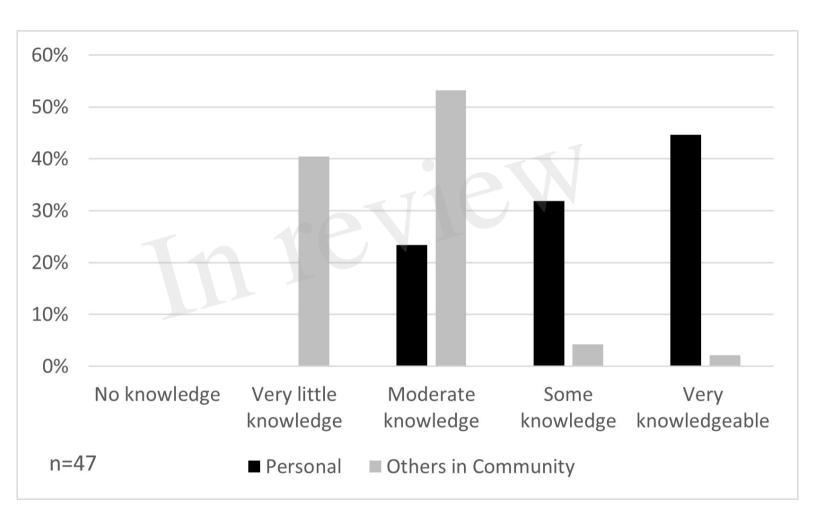
Are there any illustrations/apps/tools that would be more effective that we haven't shown yet?

Do you think there is anything else that we [the research team] are missing about individual/community flood risk/mitigation?

Do you have any other questions/comments about flood risk?


747	REFERENCES
748	Bakkensen, L. A., and Barrage, L. (2021). Flood Risk Belief Heterogeneity and Coastal Home
749	Price Dynamics: Going Under Water? Cambridge, MA: National Bureau of Economic
750	Research Available at:
751	https://www.nber.org/system/files/working_papers/w23854/w23854.pdf.
752	Bixler, R. P., Paul, S., Jones, J., Preisser, M., and Passalacqua, P. (2021). Unpacking Adaptive
753	Capacity to Flooding in Urban Environments: Social Capital, Social Vulnerability, and Risk
754	Perception. Frontiers in Water 3. doi: 10.3389/frwa.2021.728730.
755	Capps, A. (2022). Lafayette sues St. Martin, Corps of Engineers over Vermilion River spoil banks
756	removal. <i>Daily Advertiser</i> . Available at:
757	https://www.theadvertiser.com/story/news/local/2022/03/24/lafayette-sues-st-martin-
758	over-vermilion-river-spoil-banks-removal/7146795001/ [Accessed August 9, 2022].
759	Department of History, Kathleen Babineaux Blanco Public Policy Center, and Louisiana
760	Watershed Flood Center (2022a). Flood Focus Group 1 on January 13, 2022. University
761	of Louisiana at Lafayette: Lafayette, LA.
762	Department of History, Kathleen Babineaux Blanco Public Policy Center, and Louisiana
763	Watershed Flood Center (2022b). Flood Focus Group 2 on January 21, 2022. University
764	of Louisiana at Lafayette: Lafayette, LA.
765	Department of History, Kathleen Babineaux Blanco Public Policy Center, and Louisiana
766	Watershed Flood Center (2022c). Flood Focus Group 3 on January 27, 2022. University
767	of Louisiana at Lafayette: Lafayette, LA.
768	Department of History, Kathleen Babineaux Blanco Public Policy Center, and Louisiana
769	Watershed Flood Center (2022d). Flood Focus Group 4 on February 3, 2022. University
770	of Louisiana at Lafayette: Lafayette, LA.
771	Department of History, Kathleen Babineaux Blanco Public Policy Center, and Louisiana
772	Watershed Flood Center (2022e). Flood Focus Group 5 on February 4, 2022. University
773	of Louisiana at Lafayette: Lafayette, LA.
774	Department of History, Kathleen Babineaux Blanco Public Policy Center, and Louisiana
775	Watershed Flood Center (2022f). Flood Focus Group 6 on February 11, 2022. University
776	of Louisiana at Lafayette: Lafayette, LA.
777	Department of History, Kathleen Babineaux Blanco Public Policy Center, and Louisiana
778	Watershed Flood Center (2022g). Flood Focus Group 7 on February 17, 2022. University
779	of Louisiana at Lafayette: Lafayette, LA.


780 781	Department of History, Kathleen Babineaux Blanco Public Policy Center, and Louisiana Watershed Flood Center (2022h). Flood Focus Group 8 on March 3, 2022. University of
782	Louisiana at Lafayette: Lafayette, LA.
783 784	Federal Emergency Management Agency (2020). Louisiana Severe Storms and Flooding: DR-4277-LA. Available at: https://www.fema.gov/disaster/4277 [Accessed August 9, 2022].
785 786	Federal Emergency Management Agency (2022). Risk Rating 2.0: Equity in Action. Available at: https://www.fema.gov/flood-insurance/risk-rating [Accessed August 24, 2022].
787 788 789 790	Filatova, T., Parker, D. C., and Veen, A. van der (2011). The Implications of Skewed Risk Perception for a Dutch Coastal Land Market: Insights from an Agent-Based Computational Economics Model. <i>Agricultural and Resource Economics Review</i> 40, 405–423. doi: 10.1017/S1068280500002860.
791 792 793 794	Habib, E., Miles, B., Meselhe, E., and Skilton, L. (2021). Louisiana Watershed Initiative Storage and Management Plan, Produced for Louisiana Watershed Initiative (LWI) based on Focus Group Interviews with Those Leading Louisiana's 8 Watershed Regions 2020-21. Lafayette, LA: University of Louisiana at Lafayette.
795 796 797 798	Haer, T., Husby, T. G., Botzen, W. J. W., and Aerts, J. C. J. H. (2020). The safe development paradox: An agent-based model for flood risk under climate change in the European Union. <i>Global Environmental Change</i> 60, 102009. doi: 10.1016/j.gloenvcha.2019.102009.
799 800 801	Heal, E. N., and Watson, K. M. (2017). Flood Inundation Extent and Depth in Selected Areas of Louisiana in August 2016. <i>U.S. Geological Survey Data Release</i> ver 1.1. doi: 10.5066/F79K48C1.
802 803 804	Johnson, K. A., Wing, O. E. J., Bates, P. D., Fargione, J., Kroeger, T., Larson, W. D., et al. (2020). A benefit—cost analysis of floodplain land acquisition for US flood damage reduction. <i>Nat Sustain</i> 3, 56–62. doi: 10.1038/s41893-019-0437-5.
805 806 807	KATC (2022). Judge orders drainage work halted until case is settled. <i>KATC</i> . Available at: https://www.katc.com/news/lafayette-parish/judge-orders-drainage-work-halted-until-case-is-settled [Accessed August 9, 2022].
808	Kitzinger, J. (1995). Introducing Focus Groups. BMJ: British Medical Journal 311, 299–302.
809 810	Krueger, R. A., and Casey, M. A. (2014). <i>Focus Groups: A Practical Guide for Applied Research</i> . 5th edition. Thousand Oaks, California: SAGE Publications, Inc.
811 812	Krueger, R. A., and King, J. A. (2005). <i>Involving community members in focus groups</i> . Thousand Oakes: SAGE Publications, Inc.


813 814 815 816	Nature-based solutions efficiency evaluation against natural hazards: Modelling methods, advantages and limitations. <i>Science of The Total Environment</i> 784, 147058. doi: 10.1016/j.scitotenv.2021.147058.
817 818 819	Lechowska, E. (2018). What determines flood risk perception? A review of factors of flood risk perception and relations between its basic elements. <i>Nat Hazards</i> 94, 1341–1366. doi: 10.1007/s11069-018-3480-z.
820 821 822	Littlejohns, P. (2019). Risk Rating 2.0: What impact will America's new approach to flood risk have? <i>NS Insurance</i> . Available at: https://www.nsinsurance.com/analysis/risk-rating-2-0-impact/ [Accessed August 30, 2022].
823 824 825 826 827 828	Louisiana Office of Community Development Disaster Recovery Unit (2017). State of Louisiana Proposed Master Action Plan for the Utilization of Community Development Block Grant Funds in Response to the Great Floods of 2016. Baton Rouge, LA: Louisiana Office of Community Development Available at: https://www.doa.la.gov/media/hxjmbnxv/floods-master-action-plan_clean_06jan17.pdf.
829 830	Mäkinen, M. (2006). Digital Empowerment as a Process for Enhancing Citizens' Participation. <i>E-Learning and Digital Media</i> 3, 381–395. doi: 10.2304/elea.2006.3.3.381.
831 832	Miles, M. B., and Huberman, A. M. (1984). <i>Qualitative Data Analysis</i> . Beverly Hills: SAGE Publications, Inc.
833 834 835	Mostafiz, R. B., Bushra, N., Rohli, R. V., Friedland, C. J., and Rahim, M. A. (2021). Present vs. Future Property Losses From a 100-Year Coastal Flood: A Case Study of Grand Isle, Louisiana. <i>Frontiers in Water</i> 3. doi: 10.3389/frwa.2021.763358.
836 837 838 839 840	Mostafiz, R. B., Rohli, R. V., Friedland, C. J., and Lee, YC. (2022). Actionable Information in Flood Risk Communications and the Potential for New Web-Based Tools for Long-Term Planning for Individuals and Community. <i>Frontiers in Earth Science</i> 10. Available at: https://www.frontiersin.org/articles/10.3389/feart.2022.840250 [Accessed August 24, 2022].
841 842 843	National Association of Realtors (2022). NAR Myth Buster: FEMA Risk Rating 2.0. National Association of Realtors. Available at: https://www.nar.realtor/flood-insurance/narmyth-buster-fema-risk-rating-2-0 [Accessed August 30, 2022].
844 845 846	Saad, H. A., and Habib, E. H. (2021). Assessment of Riverine Dredging Impact on Flooding in Low-Gradient Coastal Rivers Using a Hybrid 1D/2D Hydrodynamic Model. <i>Frontiers in Water</i> 3. doi: https://doi.org/10.3389/frwa.2021.62882.

847 848 849	Saad, H. A., Habib, E. H., and Miller, R. L. (2021). Effect of Model Setup Complexity on Flood Modeling in Low-Gradient Basins. <i>Journal of the American Water Resources Association</i> 57, 296–314. doi: 10.1111/1752-1688.12884.
850 851 852	Sadiq, AA., Tyler, J., and Noonan, D. S. (2019). A review of community flood risk management studies in the United States. <i>International Journal of Disaster Risk Reduction</i> 41, 101327. doi: 10.1016/j.ijdrr.2019.101327.
853 854	Saldana, J. (2021). <i>The Coding Manual for Qualitative Researchers</i> . 4th ed. London: SAGE Publications, Inc.
855 856 857 858 859	Samenow, J. (2016). No-name storm dumped three times as much rain in Louisiana as Hurricane Katrina. <i>The Washington Post</i> . Available at: https://www.washingtonpost.com/news/capital-weather-gang/wp/2016/08/19/no-name-storm-dumped-three-times-as-much-rain-in-louisiana-as-hurricane-katrina/ [Accessed August 9, 2022].
860 861 862	Strauss, A., and Corbin, J. (1998). Basics of Qualitative Research: Second Edition: Techniques and Procedures for Developing Grounded Theory. 2nd edition. Thousand Oaks: SAGE Publications, Inc.
863 864 865 866	Terrell, D. (2016). The Economic Impact of the August 2016 Floods on the State of Louisiana. Baton Rouge: Louisiana Economic Development Available at: https://gov.louisiana.gov/assets/docs/RestoreLA/SupportingDocs/Meeting-9-28- 16/2016-August-Flood-Economic-Impact-Report_09-01-16.pdf.
867 868 869	Turk, L. (2022). Lafayette's 'new pace' of government lands its drainage strategy in court. <i>The Current</i> . Available at: https://thecurrentla.com/2022/lafayettes-new-speed-of-government-has-its-drainage-strategy-in-court/ [Accessed August 9, 2022].
870 871 872 873	United Way of Northern New Jersey (2020). On Uneven Ground, ALICE and Financial Hardship in the U.S. Available at: https://www.unitedforalice.org/Attachments/AllReports/2020AliceReport_National_Final.pdf [Accessed September 2, 2022].
874 875	U.S. Bureau of Labor Statistics (2019). State and County Employment and Wages. Washington, DC: U.S. Bureau of Labor Statistics Available at: https://www.bls.gov/cew/data.htm.
876 877 878 879	Verlynde, N., Voltaire, L., and Chagnon, P. (2019). Exploring the link between flood risk perception and public support for funding on flood mitigation policies. <i>Journal of Environmental Planning and Management</i> 62, 2330–2351. doi: 10.1080/09640568.2018.1546676.
880 881 882	Voinov, A., Jenni, K., Gray, S., Kolagani, N., Glynn, P. D., Bommel, P., et al. (2018). Tools and methods in participatory modeling: Selecting the right tool for the job. <i>Environmental Modelling & Software</i> 109, 232–255. doi: 10.1016/j.envsoft.2018.08.028.

883 884 885	Wagner, G., and Barnes, S. R. (2022). "The Economy of Louisiana," in <i>The party is over: the new Louisiana politics</i> , eds. C. L. Maloyed and P. Cross (Baton Rouge: Louisiana State University Press).
886	Waldon, M. G. (2018). High Water Elevations on the Vermilion River During the Flood of August
887	2016. Available at:
888 889	https://www.researchgate.net/publication/323108783_High_Water_Elevations_on_theVermilion_River_During_the_Flood_of_August_2016 [Accessed September 1, 2022].
890	Wang, Z., Wang, H., Huang, J., Kang, J., and Han, D. (2018). Analysis of the Public Flood Risk
891	Perception in a Flood-Prone City: The Case of Jingdezhen City in China. Water 10, 1577.
892	doi: 10.3390/w10111577.
893	Watson, K. M., Storm, J. B., Breaker, B. K., and Rose, C. E. (2017). Characterization of peak
894	streamflows and flood inundation of selected areas in Louisiana from the August 2016
895	flood. U.S. Geological Survey doi: 10.3133/sir20175005.
896	Wilson, B., Tate, E., and Emrich, C. T. (2021). Flood Recovery Outcomes and Disaster Assistance
897	Barriers for Vulnerable Populations. Frontiers in Water 3. doi:
898	10.3389/frwa.2021.752307.
899	Wright, P. (2016). Louisiana Flood by the Numbers: Tens of Thousands Impacted. The Weather
900	Channel. Available at: https://weather.com/news/news/louisiana-floods-by-the-
901	numbers [Accessed August 9, 2022].
902	

