
Accepted version of manuscript, published in Journal of Fluid Mechanics, vol. 928, A29, doi:10.1017/jfm.2021.825 1

Self-similar fault slip in response to fluid injection
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There is scientific and industrial interest in understanding how geologic faults respond to
transient sources of fluid. Natural and artificial sources can elevate pore fluid pressure on
the fault frictional interface, which may induce slip. We consider a simple boundary value
problem to provide an elementary model of the physical process and to provide a benchmark
for numerical solution procedures. We examine the slip of a fault that is an interface of
two elastic half-spaces. Injection is modeled as a line source at constant pressure and fluid
pressure is assumed to diffuse along the interface. The resulting problem is an integro-
differential equation governing fault slip, which has a single dimensionless parameter. The
expansion of slip is self-similar and the rupture front propagates at a factor λ of the diffusive
lengthscale

√
αt. We identify two asymptotic regimes corresponding to λ being small or

large and perform a perturbation expansion in each limit. For large λ, in the regime of a so-
called critically stressed fault, a boundary layer emerges on the diffusive lengthscale, which
lags far behind the rupture front. We demonstrate higher-order matched asymptotics for the
integro-differential equation, and in doing so, we derive a multipole expansion to capture
successive orders of influence on the outer problem for fault slip for a driving force that
is small relative to the crack dimensions. Asymptotic expansions are compared to accurate
numerical solutions to the full problem, which are tabulated to high precision.

1. Introduction

The coupling of fluid flow and fracture of an elastic medium has an extensive history in
the context of open-mode fractures, specifically hydraulic fracture, in which an injected
fluid drives crack opening. Early work presumed laminar flow of the fluid in a planar crack
(Khristianovic and Zheltov 1955; Barenblatt 1956) leading to similarity solutions and
crack-tip asymptotics (Spence and Sharp 1985; Desroches et al. 1994) that depart from
the square-root asymptotic behavior of classical linear elastic fracture mechanics. Further
developments include explicit consideration of fluid leak-off into the elasticmedium (Lenoach
1995; Adachi and Detournay 2008), the possibility of fluid lagging behind the crack tip
(Garagash and Detournay 2000), and turbulent flow (Lister 1990b; Tsai and Rice 2010),
with Detournay (2016) providing a more complete review of related progress. In addition to
applications to oil and gas extraction from subsurface reservoirs, such models have also been
widely applied to magmatic intrusions (Lister 1990a,b; Rubin 1995; Bunger and Cruden
2011; Michaut 2011).

The interplay between fluid flow and elasticity has received renewed interest in a
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comparable problem of fluid-driven delamination of a thin elastic sheet from a rigid substrate.
In this problem, the sheet’s elastic response is represented by classical beam theory, such that
elastic interactions are local and solutions are found in a relatively straightforward manner.
In comparison, hydraulic fracture in a full space, in which elastic interactions are non-
local, reduces to singular integro-differential equations, requiring more specialized solution
techniques. A peculiarity of the thin-sheet problem is that the inherent neglect of variations
over distances on the order of the sheet thickness necessitates regularization of fluid flow
near the fracture tip (Flitton and King 2004). This regularization may either take the form of
a fluid lag behind the tip (Hewitt et al. 2015; Ball and Neufeld 2018; Wang and Detournay
2018) or a pre-existing thin-film of fluid, such that a rupture front is no longer precisely
defined (Flitton and King 2004; Hosoi and Mahadevan 2004; Lister et al. 2013; Hewitt et
al. 2015; Peng and Lister 2020), or may be bypassed altogether by explicit consideration of
near-tip phenomena over distances comparable to the sheet thickness (Lister et al. 2019).
We now look to examine the shear-fracture counterpart to the above problems, in the

context of fluid-induced slip of geologic faults, the thin-sheet limit of which is of interest
in the modeling of landslides (Palmer and Rice 1973; Puzrin and Germanovich 2005;
Viesca and Rice 2012), snow-slab avalanches (McClung 1979), and short-timescale ice-
sheet motion (Lipovsky and Dunham 2017), among other problems. A source of fluid in
the subsurface can drive the sliding-mode fracture of a geologic fault by locally reducing
the fault’s frictional shear strength below an ambient level of shear stress such that fault
must slide. The fluid source may be natural, such as from mineral dehydration of subducted
sediments (Peacock 2001) or from a mantle source (Kennedy et al. 1997), or artificial,
such as from the subsurface injection of fluids at kilometer scale depths for the disposal of
wastewater (Healy et al. 1968) or for the enhancement of permeability in geothermal, oil, or
gas reservoirs. Despite wide interest, simple solutions for fluid-induced fault slip are scarce.
In the context of frictional fracture, much of the development of fluid-fracture interaction

has focused on geologic fault phenomena, including earthquakes and slow, aseismic slip.
Fluid-driven fault slip has been studied in the context of earthquake nucleation via the
initiation of aseismic slip (Viesca and Rice 2012; Garagash and Germanovich 2012; Jha
and Juanes 2014; Ciardo and Lecampion 2019; Zhu et al. 2020; Garagash 2021), or
strictly stable, aseismic slip (Rutqvist et al. 2007; Garipov et al. 2016; Bhattacharya and
Viesca 2019; Dublanchet 2019; Yang and Dunham 2021). In addition, there has been
substantial focus on fluid-involved feedback mechanisms during seismic or aseismic fault
rupture, in which the role of fluids is in response to sliding such that rupture is fluid-assisted
or fluid-inhibited. These including dilatancy (Rice 1973; Yang and Dunham 2021; Brantut
2021), thermal pressurization by frictional heating (Rice 2006; Noda et al. 2009; Schmitt et
al. 2011; Garagash 2012; Viesca and Garagash 2015) and chemical decomposition (Platt
et al. 2015). Within this body of work, solutions are nearly entirely numerical.
We examine a model for fluid-driven fault rupture, in which the condition of fluid flow is

rudimentary but physically plausible and comparable to the starting assumption of laminar
flow in hydraulic fracture. We consider a planar fault in an unbounded, linear-elastic medium
under a uniform state of stress prior to injection. Quasi-static deformation is in-plane or
anti-plane, such that the corresponding fault slip is mode II or mode III rupture. We use a
boundary integral formulation to relate the crack-face displacement and traction. Injection is
modeled as a line source of fluids at constant pressure following which fluid migration, and
the concomitant rise in pore fluid pressure, is restricted to occur along the fault plane. The
fault strength is frictional and is the product of a constant coefficient of friction and the local
effective normal stress, the difference between the fault-normal traction and the local pore
fluid pressure.
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This problem was presented in Bhattacharya and Viesca (2019) and is a variation of one
considered in depth by Garagash and Germanovich (2012) (hereafter referred to as GG12).
GG12 examined the response to injection of a fault under the same elastic and fluid conditions
considered here. However, GG12 considered a fault friction coefficient that weakens with
slip, a feature that gives rise to rich behavior, including the possibility of dynamic rupture
nucleation and arrest, corresponding to an earthquake source. GG12 found two end-member
regimes corresponding to marginally pressurized and critically stressed faults, which reflect
the pre-injection state of stress. The authors showed that these regimes lead to a rupture front
lagging or outpacing fluid diffusion, respectively, and that, in the critically stressed regime,
fault slip can be described by a boundary-layer analysis. However the slip-dependent strength
in that problem required numerical solution, even in end-member regimes, and growth of the
slipping region was non-trivial and dependent on at least two problem parameters.

A constant Coulomb friction coefficient necessitates stable growth of fault rupture.
Furthermore, the propagation of fault slip occurs in self-similar manner in response to a
self-similar source. Additionally, the problem has a single dimensionless parameter, with
the same two end-member regimes as in the problem considered by GG12. The simpler
problem admits closed-form perturbation expansions in these regimes, and readily allows for
higher-order asymptotic matching of the boundary-layer problem in the critically stressed
regime. In this regime, where the rupture front races ahead of the elevated fluid pressure
distribution, the problem provides for the development of a multipole expansion to consider
the higher-order source effects. The problem is also amenable to accurate numerical solutions
for the cases intervening the two end-member regimes and we provide tabulated solutions to
high precision.

We begin in Sections 2 and 3 by providing a problem statement and summary of
asymptotic solutions to leading order in the critically stressed and marginally pressurized
limits. Subsequently, we return to the full problem and summarize its solution in Section 4.
Finally, we revisit the end-member regimes and derive the asymptotic solutions to second
order. In the marginally pressurized limit, the solution can be written as a single perturbation
expansion (Section 5). In the critically stressed limit, inner and outer perturbation expansions
are found and the two solutions are matched to construct a composite solution (Sections 6–8).
We compare the asymptotic expansions to numerical solutions to the full problem throughout.

2. Problem formulation

2.1. Fluid mechanics

A planar fault slip surface along y = 0 is modeled as an interface within a poroelastic layer
of thickness h that is itself embedded within an elastic body. The layer corresponds to a fault
core that is presumed to be much more permeable than the surrounding host rock, but having
comparable elastic properties. We assume that fluid flow within the layer follows Darcy’s
law and we examine the injection of fluid directly into the fault core as a source of constant
pressure distributed across the layer thickness at x = 0. For this poroelastic configuration,
which is an in-plane version of an axisymmetric case considered by Marck et al. (2015),
the pore fluid pressure distribution is uniform across the layer thickness and its distribution
p(x, t) along the fault coordinate x satisfies a diffusion equation

pt = αhy pxx



4

10 10 10 10
0

10
1

10
2

10
3

0

.2

.4

.6

.8

1

0

.2

.4

.6

.8

1

0 0.2 0.4 0.6 0.8 1

0

.2

.4

.6

.8

1

a(t) = λ
√
αt

√
αt

σ

σ

τ

τ

τ

τ

x

y

0 1 2 3 4

0

.1

.2

.3
µ, ν

h

Figure 1: Counter-clockwise: (top left) Unbounded elastic body containing a fault, loaded
remotely with fault-normal and shear stress σ, τ. The fault is embedded within a thin
poroelastic layer, assumed to be much more permeable than surroundings. Fluid injected
at x = 0 diffuses along fault as

√
αt, inducing quasi-static slip out to a distance a(t). Fault

has constant friction coefficient f . (bottom left) Black: relation between rupture growth
factor λ and a parameter reflecting the initial state of stress and injection pressure, where
σ′ = σ − po and po is pre-injection fault fluid pressure. Dashed: asymptotic behaviors,
eqs. (3.2) and (3.5). (bottom right) Same as bottom left, with abscissa arranged to occupy
a finite interval. (top right) Plot of self-similar slip distributions at three instants in time
after the start of injection, t = 1, 5, and 10 min., for the specific choices σ = 50 MPa, τ =
12 MPa, po = 20 MPa, ∆p = 12 MPa, f = 0.5, αhy = 0.01 m2/s, µ = 30 GPa, ν = 1/4,
µ′ = 20 GPa. For these choices, the parameter (1− τ/τp)σ′/∆p = 0.5. The corresponding
self-similar slip distribution and factor λ are given in Table S1 in the supplementary
materials.

where αhy is the hydraulic diffusivity of the fault core and where the pore pressure is subject
to the conditions of the initial state and injection at constant pressure ∆p at x = 0,

p(x,0) = po, p(0, t > 0) = ∆p

the known solution to which is

p(x, t) = po + ∆p erfc(|x |/
√
αt) (2.1)

where we adopt a nominal diffusivity

α = 4αhy
in which the hydraulic diffusivity αhy = k/(βη), where k is the Darcy permeability of the
layer, η is the viscosity of the permeating fluid, and β is a storage coefficient reflecting the
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compressibility of the fluid and porous matrix. As noted by Marck et al. (2015), when the
diffusive distance

√
αt is much larger than the layer thickness h, the local response of the

poroelastic layer is effectively that of uniaxial vertical strain in proportion to the local pore
fluid pressure.

2.2. Solid mechanics

We assume that the poroelastic layer thickness h is small such that the condition
√
αt � h

is quickly achieved. In the case, the presence of the layer, apart from its role in conducting
fluids, need not be explicitly considered and the shear and normal traction conditions on
the layer-medium boundary may be directly applied to the sliding interface. Furthermore,
provided

√
αt is sufficiently greater than h, we may reasonably neglect any fault-normal

stress changes due to the swelling of the poroelastic layer about the source (Marck et al.
2015). The medium containing the fault is assumed to be linearly elastic and its deformation,
along with slip on the fault, may be in-plane or anti-plane. The in-plane case is illustrated in
Fig. 1 (top left). The shear modulus of the medium is µ and the Poisson ratio ν. We define
the effective elastic modulus µ′ = µ/[2(1 − ν)] for in-plane (mode-II) case and µ′ = µ/2 for
anti-plane (mode-III) case. We denote the initial (pre-injection) fault shear stress τ (in-plane
or anti-plane), the fault friction coefficient f , the initial total fault-normal compressive stress
σ, and the initial effective normal stress σ′ = σ − po, where po is the pre-injection pore
fluid pressure in the layer. The initial fault strength is τp = fσ′.
The fault obeys a Coulomb friction law: the local shear strength of the fault τs is a constant

proportion of the local effective normal stress, with a constant coefficient of friction f

τs(x, t) = f [σ − p(x, t)] (2.2)

Where sliding occurs, this strength must equal the shear stress on the fault. The shear stress
can be decomposed into a sum of the initial shear stress τ plus quasi-static changes due to a
distribution of slip δ (e.g., Rice 1968), such that the stress-strength condition is

τs(x, t) = τ +
µ′

π

∫ a(t)

−a(t)

∂δ(s, t)/∂s
s − x

ds (2.3)

where x = ±a(t) are the crack-tip locations.

3. Summary of results

After non-dimensionalizing, the problem is found to have the sole parameter(
1 −

τ

τp

)
σ′

∆p
(3.1)

that is bounded between 0 and 1. The upper bound denotes a marginally pressurized fault,
where the fluid pressure increase is just sufficient to initiate sliding: f [σ − (po + ∆p)] = τ.
The lower bound denotes a critically stressed fault, where the initial shear stress is equal to
the initial shear strength: τ = τp.
The solution consists of a self-similar distribution of slip, in which the crack front grows

as
a(t) = λ

√
αt

and the slip distribution can be written as

δ(x, t) ⇒ δ(x̄)
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Figure 2: (left) Self-similar distributions of slip δ with distance from injection point
x, which is scaled by the crack half-length a(t) = λ

√
αt. Solid red and black curves

are numerical solutions to the full problem. Dashed curves are leading-order asymptotic
solutions. Each curve corresponds to one value of λ in the range λ = 10−3, 10−2, ... ,103.
Black curves correspond to λ = 10−3, 10−2, 10−1, 100 from top to bottom, with the first
three indistinguishable on this scale; red curves correspond to λ = 101, 102, 103 from top
to bottom. Cyan-dashed: solution for small λ, eq. (3.3). Blue-dashed: “outer" solutions for
large λ, eq. (3.6). To facilitate comparisons, two vertical scales are used: one for black and
cyan-dashed curves, and another for red and blue-dashed curves. (right) For large values
of λ, the distribution of slip is plotted over distances scaled by

√
αt, which is much smaller

than the crack length a(t). This “inner" behavior is described by eq. (3.7), a single numerical
solution shown here as black-dashed curves. Curves correspond to λ = 101, 102, 103 from
bottom to top.

where the similarity coordinate is
x̄ = x/a(t)

The factor λ, to be solved for, determines whether the crack lags (λ < 1) or outpaces (λ > 1)
the diffusion of pore pressure, which stretches as

√
αt. λ depends uniquely on the sole

parameter (3.1), and that dependence is illustrated in Fig. 1b and tabulated at the top of Table
S1 in the supplementary materials. The self-similar profile of slip, as it depends on |x |/a(t),
is also presented in the bottom of Table S1 for several values of the parameter (3.1). Scaled
plots of the self-similar profile for various values of λ are shown in Fig. 2. In the limit that
the parameter (3.1) approaches its end-member values, closed-form expressions for λ and δ
are available and provided below to leading order, with detailed derivations in the Sections
that follow.

3.1. Marginally pressurized faults, τ → f (σ′ − ∆p)

In this limit, the parameter (1 − τ/τp)σ′/∆p → 1, the factor λ � 1 (i.e., the rupture lags
the diffusion of pore fluid pressure), and the relation between the two follows the asymptotic
expansion

(1 − τ/τp)σ′/∆p ≈ 1 −
4
π3/2 λ −O(λ3) (3.2)

The slip distribution in this limit is

δ(x̄) ≈
λ2√αt f∆p

µ′
2
π3/2

(√
1 − x̄2 − x̄2atanh

√
1 − x̄2

)
+O(λ4) (3.3)

and the accumulation of slip at the center is

δ(0) ≈
2
π3/2

λ2√αt f∆p
µ′

+O(λ4) (3.4)
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Figure 3: The maximum slip, which occurs at x = 0, as it relates to the factor λ shown as
(left) semi-log and (right) log-log plots. Red-dashed: end-member scalings at small λ, eq.
(3.4), and at large λ, eq. (3.9). Blue-dashed: approximation of δ(0) for all λ, eq. (3.11).

The derivation of this solution is detailed in Section 5.

3.2. Critically stressed faults, τ → τp

In this limit (1 − τ/τp)σ′/∆p → 0, λ � 1 (i.e., the rupture outpaces the diffusion of fluid
pressure), and the asymptotic relation is

(1 − τ/τp)σ′/∆p ≈
2
π3/2

1
λ
+O(λ−3) (3.5)

Similarly to the problem considered by Garagash and Germanovich (2012), the solution
for slip can be decomposed into an outer solution on distances comparable to the rupture
distance a(t), and an inner solution on distances comparable to the diffusion lengthscale

√
αt.

The two solutions are matched at an intermediate distance.
The outer solution for the slip distribution is

δ(x̄) ≈
√
αt f∆p
µ′

2
π3/2

(
atanh

√
1 − x̄2 −

√
1 − x̄2

)
+O(λ−2) (3.6)

where x̄ is the similarity coordinate used above. The derivation of this solution may be found
in Section 6.

The inner solution is given by the expression

δ(x/
√
αt) ≈ δ(0) −

√
αt f∆p
µ′

∫ x/
√
αt

0

[
1
π

∫ ∞

−∞

erfc(| ŝ |)
x̂ − ŝ

dŝ
]

dx̂ +O(λ−2) (3.7)

The underlined portion is evaluated numerically and provided as a supplementary function
f (x/
√
αt) in Table S2 with the similarity coordinate

x̂ =
x
√
αt

For large distances x/
√
αt, f behaves as

f (x̂) ≈
2
π3/2

(
ln | x̂ | +

γ

2
+ 1

)
+O

(
x̂−2

)
(3.8)

where γ = 0.57721566... is the Euler-Maraschoni constant. Using this asymptotic behavior
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scalings as the parameter approaches its bounds, derived from eqs. (3.4) and (3.9) and the
asymptotic relations between the parameter and λ, eqs. (3.2) and (3.5).

to match the inner solution at large x/
√
αt with the outer solution at small x/a(t) provides

the slip at the center

δ(0) ≈
√
αt f∆p
µ′

2
π3/2 [ln(2λ) + γ/2 +O(λ−2)] (3.9)

in the large λ limit.

Other properties of f (x/
√
αt) include

f ′′(x̂) = −
2
π3/2 exp(−x̂2)Ei(x̂2)

where Ei(x) = −
∫ ∞
−x

exp(−u)/u du is the exponential integral, and in the limit that x/
√
αt is

small, f behaves as

f (x̂) ≈
2
π3/2 x̂2

(
ln

1
| x̂ |
−
γ

2
+

3
2

)
+O

(
x̂4 ln | x̂ |

)
(3.10)

A detailed discussion of the inner solution and its matching to the outer solution, can be
found in Sections 7 and 8.

3.3. Accumulation of slip at the injection point

Figs. 3 and 4 show the solution for the peak slip, located at the injection point, as it depends
on the parameter (3.1) or the factor λ. An approximation of peak slip at the injection point
that respects the asymptotic behavior at both critically stressed and marginally pressurized
limits—eqs. (3.4) and (3.9)—and is to within 5% error over the intervening range of λ, is

δ(0) ≈
λ
√
αt f∆p
µ′

2
π3/2

λ

1 + λ2/[ln(6 + 2λ) + γ/2]
(3.11)

4. Non-dimensionalization and solution to full problem

Combining eqs. (2.1)–(2.3) and rearranging leads to the non-dimensionalized equation(
1 −

τ

τp

)
σ′

∆p
− erfc |λ x̄ | = −

1
π

∫ 1

−1

dδ̄/ds̄
x̄ − s̄

ds̄ (4.1)
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8 . Cyan-dashed

curve is the second-order term of the expansion, eq. (5.6)

where we have used x = a(t)x̄, a(t) = λ
√
αt, and δ(x, t) = δ̄[x/a(t)]a(t) f∆p/µ′. The solution

we seek is the slip distribution δ̄ and the crack-growth prefactor λ, including their dependence
on the problem parameter (1 − τ/τp)/σ′/∆p.
We begin by looking for the solution for λ. To do so, we first note that to avoid a singularity

in shear stress ahead of the crack tips, which is necessary because the Coulomb friction
requirement implies a finite shear strength of the interface, the crack-tip stress intensity
factors of the rupture must be zero. This condition implies (Appendix A)(

1 −
τ

τp

)
σ′

∆p
=

1
π

∫ 1

−1

erfc|λx |
√

1 − x2
dx (4.2)

which provides an implicit solution for λ as it depends on the problem parameter. This
relation is easily determined numerically since, for a given λ, the integrand on the right hand
side can be evaluated by Gauss-Chebyshev quadrature (Appendix B). The behavior at large
and small values of λ, eqs. (3.2) and (3.5), is found by asymptotic approximation of the
integral.
To solve for δ̄, we note that (4.1) may be inverted for dδ̄/dx̄ (Appendix A)

dδ̄
dx̄
= −

√
1 − x̄2

π

∫ 1

−1

erfc|λs̄ |
√

1 − s̄2

1
x̄ − s̄

ds̄ (4.3)

After having determined λ via (4.2), the right hand side may be numerically evaluated
and integrated to arrive to δ̄(x̄) using a Gauss-Chebyshev quadrature for singular integrals
(Erdogan et al. 1973; Viesca and Garagash 2018). The numerical solution of (4.2) and (4.3)
for λ and δ̄(x̄) is detailed in Appendix B.

5. Solution in the marginally pressurized limit

For λ � 1, we may use the expansion of the function

erfc|λ x̄ | ≈ 1 −
2
√
π
|λ x̄ | +

2
3
√
π
|λ x̄ |3 + ... (5.1)

to expand the integral in eq. (4.2) as(
1 −

τ

τp

)
σ′

∆p
=

∫ 1

−1

erfc|λx |
√

1 − x2
dx ≈ 1 −

4
π3/2 λ +

8
9π3/2 λ

3 +O(λ5) (5.2)
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g(x) h(x)

1
√

1 − x2

δ′′D(x)
1
π

√
1 − x2

x2

δ′D(x) −
1
π

√
1 − x2

x

δD(x)
1
π
atanh

√
1 − x2

sign(x)/2
1
π

x atanh
√

1 − x2

|x | −
1
π

1
π

x2 atanh
√

1 − x2

|x |x
2

3π
x3 atanh

√
1 − x2 +

2
3π

x
√

1 − x2

|x |3 −
1

3π
1

2π
x4 atanh

√
1 − x2 +

1
2π

x2
√

1 − x2

Table 1: Select solutions h(x) to the problem g(x) = 1
π

∫ 1
−1

h′(s)
x−s ds, with h(±1) = 0.

In turn, we use eqns. (5.1) and (5.2) to reduce eq. (4.1) to

1
π

∫ 1

−1

dδ̄/ds̄
x̄ − s̄

ds̄ ≈ λ
(

4
π3/2 −

2
√
π
| x̄ |

)
+ λ3

(
−

8
9π3/2 +

2
3
√
π
|x |3

)
+O(λ5) (5.3)

We write the solution to the above equation as the perturbation expansion

δ̄(x̄) ≈ λδ0(x̄) + λ3δ1(x̄) +O(λ5) (5.4)

where δ0 and δ1 satisfy

1
π

∫ 1

−1

dδ0/ds̄
x̄ − s̄

ds̄ =
4
π3/2 −

2
√
π
| x̄ |,

1
π

∫ 1

−1

dδ1/ds̄
x̄ − s̄

ds̄ = −
8

9π3/2 −
2

3
√
π
| x̄ |3

The solutions to which

δ0(x̄) =
2
π3/2

(√
1 − x̄2 − x̄2atanh

√
1 − x̄2

)
(5.5)

δ1(x̄) =
1

3π3/2

(
(x̄2 − 2)

√
1 − x̄2 + x̄4atanh

√
1 − x̄2

)
(5.6)

are found by the linear superposition of particular solutions to the general problem

g(x) =
1
π

∫ 1

−1

h′(s)
x − s

ds

that are provided in Table 1 and found following Appendix A. Using (5.4), the slip at the
injection point in the marginally pressurized limit evaluates to

δ(0) ≈
λ
√
αt f∆p
µ′

(
2
π3/2 λ −

2
3π3/2 λ

3 +O(λ5)

)
(5.7)
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6. Outer solution in the critically stressed limit

We now look for an asymptotic expansion of the solution in the critically stressed limit, in
which the rupture front outpaces fluid pressure diffusion, λ � 1. As noted by GG12 for their
problem, the solution consists of an outer solution on distances comparable to the rupture
distance a(t) and an inner solution on distances comparable to

√
αt. To look for the outer

solution we solve for the slip distribution satisfying eq. (4.1) after expanding the two terms
on the left hand side in the large λ limit. We begin by considering the expansion of the
following function as λ→∞

erfc |u|√
1 − (u/λ)2

≈ erfc |u| +
1

2λ2 u2erfc |u| +O(λ−4) (6.1)

This function appears in the integral (4.2) following the change of variable u = λ x̄, such that(
1 −

τ

τp

)
σ′

∆p
=

1
πλ

∫ λ

−λ

erfc|u|√
1 − (u/λ)2

du ≈
2
π3/2

1
λ
+

1
3π3/2

1
λ3 +O(λ−5) (6.2)

In addition, we perform a multipole expansion of the distribution (Appendix C)

erfc |λ x̄ | ≈ p0δD(x̄) − p1δ
′
D(x̄) + p2δ

′′
D(x̄) +O(λ−5) (6.3)

where δD is the Dirac delta and its first and second derivatives, δ′D(x) and δ
′′
D(x), with the

properties ∫ ∞

−∞

δD(x)dx = 1,
∫ ∞

−∞

xδ′D(x)dx = 1,
∫ ∞

−∞

x2

2
δ′′D(x)dx = 1

and where the coefficients

p0 =

∫ 1

−1
erfc |λ x̄ | dx̄ =

1
λ

∫ λ

−λ
erfc | x̂ | dx̂ =

2
√
π

1
λ
+O(exp(−λ2)/λ) (6.4)

p1 =

∫ 1

−1
x̄erfc |λ x̄ | dx̄ = 0 (6.5)

p2 =

∫ 1

−1

x̄2

2
erfc |λ x̄ | dx̄ =

1
3
√
π

1
λ3 +O(exp(−λ2)/λ3) (6.6)

exhibit beyond-all-orders decay at large λ at the rate exp(−λ2), following the leading-order
term. With eqs. (6.2) and (6.3), the equation governing the slip distrbution (4.1) becomes

1
π

∫ 1

−1

dδ̄/ds̄
x̄ − s̄

ds̄ ≈
1
λ

(
−

2
π3/2 +

2
√
π
δD(x̄)

)
+

1
λ3

(
−

1
3π3/2 +

1
3
√
π
δ′′D(x̄)

)
+O(λ−5) (6.7)

As for the marginally pressurized case, we look for a solution in the form of a perturbation
expansion

δ̄(x̄) ≈
1
λ
δ0(x̄) +

1
λ3 δ1(x̄) +O(λ−5) (6.8)

where δ0 and δ1 now satisfy

1
π

∫ 1

−1

dδ0/ds̄
x̄ − s̄

ds̄ = −
2
π3/2 +

2
√
π
δD(x̄),

1
π

∫ 1

−1

dδ1/ds̄
x̄ − s̄

ds̄ = −
1

3π3/2 +
1

3
√
π
δ′′D(x̄)

and the solutions

δ0(x̄) =
2
π3/2

(
atanh

√
1 − x̄2 −

√
1 − x̄2

)
(6.9)
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δ1(x̄) =
1

3π3/2

(√
1 − x̄2

x̄2 −
√

1 − x̄2

)
(6.10)

are again found by superposing solutions provided in Table 1.

From the above, the outer solution for slip near x̄ = 0 has the behavior

δ(x̄) ≈
λ
√
αt f∆p
µ′

[
1
λ

2
π3/2

(
log

2
| x̄ |
− 1 +

x̄2

4
+O(x̄4)

)
+

1
λ3

1
3π3/2

(
1
x̄2 −

3
2
+O(x̄2)

)
+O(λ−5)

]
(6.11)

7. Inner solution in the critically stressed limit

To examine the behavior of slip on the diffusive lengthscale
√
αt, we perform a change of

variable to the scale distance x̂ = λ x̄ = x/
√
αt, such that eq. (4.3) becomes

λ
dδ̄
dx̂
= −

√
1 − (x̂/λ)2

π

∫ λ

−λ

erfc| ŝ |√
1 − (ŝ/λ)2

1
x̂ − ŝ

dŝ (7.1)

Rescaling slip as δ̂ = λδ̄ = δ/(
√
αt f∆p/µ′), we perform a series expansion of the square-root

terms for large λ

dδ̂
dx̂
≈ −

1
π

(
1 −

1
λ2

x̂2

2
+O(λ−4)

) ∫ λ

−λ

(
erfc | ŝ | +

1
λ2

ŝ2

2
erfc | ŝ | +O(λ−4)

)
1

x̂ − ŝ
dŝ (7.2)

and regroup terms of similar order

dδ̂
dx̂
≈ −

1
π

∫ λ

−λ

erfc | ŝ |
x̂ − ŝ

dŝ +
1
λ2

(
x̂2

2
1
π

∫ λ

−λ

erfc | ŝ |
x̂ − ŝ

dŝ −
1
π

∫ λ

−λ

(ŝ2/2)erfc | ŝ |
x̂ − ŝ

dŝ
)
+O(λ−4)

(7.3)
Given the beyond-all-orders decay, for modestly large values ŝ, of the term erfc | ŝ | ≈
exp(−ŝ2)/(

√
π ŝ) appearing in all of the integrands above, the limits of the integrals may

pass to∞ without consequence for the above expansion in powers of λ. Hence,

dδ̂
dx̂
≈ −

1
π

∫ ∞

−∞

erfc | ŝ |
x̂ − ŝ

dŝ +
1
λ2

(
x̂2

2
1
π

∫ ∞

−∞

erfc | ŝ |
x̂ − ŝ

dŝ −
1
π

∫ ∞

−∞

(ŝ2/2)erfc | ŝ |
x̂ − ŝ

dŝ
)
+O(λ−4)

(7.4)
The above integrals are Hilbert transforms, defined as

H[ f (s)] =
1
π

∫ ∞

−∞

f (s)
x − s

ds

which have the property

H[s2 f (s)] = H[(s2 − x2 + x2) f (s)]

= x2H[ f (s)] +H[(s − x)(s + x) f (s)]

= x2H[ f (s)] −
1
π

∫ ∞

−∞

s f (s)ds −
x
π

∫ ∞

−∞

f (s)ds

that, when applied to the third integral in eq. (7.4)

1
π

∫ ∞

−∞

(ŝ2/2)erfc | ŝ |
x̂ − ŝ

dŝ =
x̂2

2
1
π

∫ ∞

−∞

erfc | ŝ |
x̂ − ŝ

dŝ −
x̂
π3/2 (7.5)
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Figure 6: Spatio-temporal component, f (x/
√
αt), of “inner" solution for slip δ in the

critically stressed limit, eq. (3.7). Shown in black on linear (top), log-linear (left), and
logarithmic (right) axes. Red- and blue-dashed curves: outer and inner asymptotic behavior
of f , eqs (3.8) and (3.10).

leads to the reduction of eq. (7.4) to

dδ̂
dx̂
≈ −

1
π

∫ ∞

−∞

erfc | ŝ |
x̂ − ŝ

dŝ +
1
λ2

x̂
π3/2 +O(λ−4) (7.6)

Subsequently integrating from 0 to x̂, we find the inner solution to within a yet-undetermined
constant δ(0)

δ̂(x̂) ≈ δ̂(0) −
∫ x̂

0

[
1
π

∫ ∞

−∞

erfc |s |
x − s

ds
]

dx +
1
λ2

x̂2

2π3/2 +O(λ−4) (7.7)

We define the underlined term as the function f (x̂) whose first derivative is the Hilbert
transform

f ′(x̂) =
1
π

∫ ∞

−∞

erfc |s |
x̂ − s

ds

Since the transform commutes with derivatives, [H(g)]′ = H(g′), we find that f ′′ has the
concise expression

f ′′(x̂) = −
2
π3/2

∫ ∞

−∞

sign(s) exp(−s2)

x̂ − s
ds
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Figure 7: Self-similar distribution of slip in the critically stressed limit (large λ). In this limit,
the rupture extent a(t) outpaces the diffusive distance

√
αt. (left and right) Black curves

from right to left correspond to full solutions self-similar slip profiles for λ = 10,100,1000.
(left) Red-dashed and blue-dashed correspond to outer and inner solution expansion to first
order. (right) Red-dashed and blue-dashed correspond to outer and inner solution expansion
to second order. Outer solution is given by eqs. (6.8–6.10). Inner solution given by eq. (7.7).

which may be further simplified

f ′′(x̂) = −
2
π3/2 exp(−x̂2)

∫ ∞

0

exp(x̂2 − s2)

x̂2 − s2 2sds

= −
2
π3/2 exp(−x̂2)

∫ ∞

−x̂2

exp(−u)
u

du

= −
2
π3/2 exp(−x̂2)Ei(x̃2) (7.8)

with the change of variable u = s2 − x̂2 used in the intermediate step. In Fig. 6 we plot f (x̂)
found by numerically integrating twice the expression for f ′′(x̂), eq. (7.8).
For x̂ near 0,

f ′′(x̂) = −
2
π3/2 (ln | x̂ | + γ) +O(x̂2)

and upon integrating twice with f (0) = f ′(0) = 0, the behavior of f in this region is

f (x̂) =
2
π3/2 x̂2

(
ln

1
| x̂ |
−
γ

2
+

3
2

)
+O(x̂4 ln | x̂ |)

For large x̂

f ′′(x̂) = −
2
π3/2

(
1
x̂2 +

1
x̂4

)
+O(x̂−6)

Upon integrating twice with the condition that f ′(∞) = 0,

f (x̂) = c +
2
π3/2

(
ln | x̂ | −

1
6x̂2

)
+O(x̂−4) (7.9)

where c is a yet-undetermined constant of integration.
We determine the constant c following an approach used by Garagash and Germanovich

(2012), in which the order of integration in eq. (7.7) is swapped leading to an alternative
expression for f (x̂)

f (x̂) =
∫ x̂

0

[
1
π

∫ ∞

−∞

erfc |s |
x − s

ds
]

dx =
1
π

∫ ∞

−∞

erfc |s | ln
����1 − x̂

s

���� ds (7.10)
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Figure 8:Comparison of approximations to the full solution of peak fault slip (black curve) in
the vicinity of λ = 1. First- and second- order approximations in the marginally pressurized
and critically stressed limits, given respectively by eqs. (5.7) and (8.1), are shown as
red-dashed and red-dot-dashed curves. Blue-dashed curve: approximation provided for all
values of λ, eq. (3.11).

and the expansion ln |1 − x̂/s | = ln | x̂ | − ln |s | + ln |s/x̂ − 1| is used to decompose the latter
integral for f (x̂) into the sum

f (x̂) =
1
π

∫ ∞

−∞

erfc |s |ds ln | x̂ | −
1
π

∫ ∞

−∞

erfc |s | ln |s |ds +
1
π

∫ ∞

−∞

erfc |s | ln
��� s
x̂
− 1

��� ds

(7.11)

=
2
π3/2 ln | x̂ | +

2
π3/2

(
1 +

γ

2

)
+

1
π

∫ ∞

−∞

erfc |s | ln
��� s
x̂
− 1

��� ds (7.12)

Comparing (7.9) and (7.12), we see that the asymptotic behavior of the last integral in (7.12),
for large x̂, is given by the terms in (7.9), excluding the constant and the logarithmic terms.
We also retrieve the value of the constant c

c =
2
π3/2

(
1 +

γ

2

)
from which we conclude that the inner solution for slip has the asymptotic behavior at large

x̂

δ(x̂) ≈ δ(0) −
√
αt f∆p
µ′

[
2
π3/2

(
1 +

γ

2
+ ln | x̂ | −

1
6| x̂ |2

+O(x̂−4)

)
−

1
λ2

x̂2

2π3/2 +O(λ−4)

]
(7.13)

8. Matching inner and outer solutions

We match the outer and inner solutions by equating eqs. (6.11) and (7.13) and solving for
δ(0), the slip at the center in the critically stressed limit

δ(0) ≈
√
αt f∆p
µ′

2
π3/2

[
γ

2
+ ln(2λ) −

1
4λ2 +O(λ−4)

]
(8.1)

which completes the expression for the inner solution (7.7). In Fig. 7, we overlay the inner and
outer solutions, to first and second order, above the full solutions for several large values of λ.
The intermediate matching of the solutions is evident in the overlap of the dashed curves. As
an aside, we can now show approximations to the slip at the center to first and second order



16

in both the critically stressed and marginally pressurized limits in Fig. 8. For comparison,
we also show the full solution, as well as the ad hoc approximation (3.11) constructed using
the first-order asymptotics.

Using the inner and outer solutions, we construct a composite approximation (e.g., Hinch
1991)

δcomp(x̄) = δin(λ x̄) + δout (x̄) − δoverlap(x̄)
where δin and δout are the inner and outer solutions, eqs. (7.7) and (6.8), and

δoverlap(x̄) =
2
π3/2

(
log

2
x̄
− 1 +

x̄2

4

)
+

1
λ2

1
3π3/2

(
1
x̄2 −

3
2

)
+O(λ−4)

is their common intermediate form. In Fig. 9 we compare the full numerical solution against
the inner, outer, and composite solutions for a modestly large value of λ = 5. The composite
solution has an approximate error of O(λ−(n+2)) where n = 2 or 4 is the order neglected in
the asymptotic expansion.

9. Summary and conclusion

The quasi-static rupture of a fault driven by a source of fluids has been studied in detail.
Tracking the rupture of the fault corresponds to a free boundary problem for which both
the size of the slipping domain and the distribution of slip within must be solved. Both
depend on a single dimensionless parameter whose limits correspond either to a fault whose
initial, pre-injection shear stress is relatively close to the fault’s pre-injection shear strength
or to a fluid pressure increase that is marginally sufficient to induce sliding. Because the
problem involves contact between elastic half-spaces, interactions between points on the
fault are non-local, in that slip in one location induces changes in the shear stress over the
entire fault plane. The resulting equation governing slip evolution is an integro-differential
equation. In addition to the crack-tip boundary condition that slip vanish at the rupture front,
the condition determining the free boundary is the absence of a stress singularity ahead of
the rupture front, which corresponds to the boundary condition that the gradient of slip also
vanishes at the rupture front. Moreover, because the friction coefficient is held constant, there
is an absence of an elasto-frictional lengthscale that may be otherwise present in problems for
which friction depend explicitly on slip or its history. Correspondingly, the only lengthscale
in the problem is the diffusive length

√
αt with the consequence that spatial dependence of

slip scales directly with this lengthscale, implying the self-similar propagation of slip.

In a fashion similar to the earthquake-nucleation problem considered by GG12, we present
asymptotic perturbation expansion solutions in the marginally pressurized and critically
stressed limits and tabulate numerical solution for the intervening cases. In the critically
stressed limit, the problem has both an inner solution on the scale of diffusion and an
outer solution on the scale of the crack front. An advantage of the posed problem is that
the marginally pressurized expansion and the outer solution of the critically stressed limit
are expressible in concise closed form. For the latter, we develop a multipole expansion
method to develop successive approximations of a distributed loading beyond a point-force
approximation. The leading-order term of the inner solution of the critically stressed limit
is solved numerically and tabulated. Key findings include that the rupture run-out distance
from the point of injection follows a(t) = λ

√
αt, where λ is an amplification factor, originally

solved for and presented by Bhattacharya and Viesca (2019). As noted there, if we denote the
dimensionless problem parameter asT ≡ (1−τ/τp)σ′/∆p, then in themarginally pressurized
limit, λ ≈ (π3/2/4)(1 −T) and in the critically stressed limit, λ ≈ (2/π3/2)T−1. Furthermore,
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Figure 9: Solution for self-similar slip profile in black for λ = 5. (top) superimposed
blue- and red-dashed curves, respectively, showing inner and outer solutions to (top-left)
leading and (top-order) next order. (middle-left) Superposition of leading and next-order
composite solutions as blue- and red-dashed curves (middle-right). The difference between
the self-similar solution and the composite solutions at leading- and next-order, respectively
blue and red-dashed curves. (bottom) Semi-logarithmic plots comparing the leading- and
next-order composite solutions, in blue- and red-dashed, to the self-similar solution, in
black.

in the marginally pressurized limit, slip accumulates as δ ∼ λ2√αt f∆p/µ′. In the critically
stressed limit, slip accumulates as δ ∼

√
αt f∆p/µ′ on inner distances of the order

√
αt from

the injection point and as δ ∼ λ−2√αt f∆p/µ′ at distances comparable to the rupture length
λ
√
αt.

Supplementary data. Supplementary material is available at
https://doi.org/10.1017/jfm.2019...
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Appendix A. Finite Hilbert transform solutions

The problem for slip posed as eq. (4.1) has the form of a finite Hilbert transform

g(x) =
1
π

∫ 1

−1

h′(s)
x − s

ds (A 1)

where, here, g(x) corresponds to a prescribed loading and h of the distribution slip on the
interface that is in quasi-static equilibrium with the loading. The solution to eq. (A 1) is the
known inversion (e.g., Mushkhelishvili 1958; King 2009)

h′(x) =
C

√
1 − x2

−
1

√
1 − x2

1
π

∫ 1

−1

√
1 − s2g(s)

x − s
ds C =

1
π

∫ 1

−1
h′(s)ds (A 2)

Since slip vanishes at the rupture boundaries, the corresponding condition on h is h(±1) = 0
and hence C = 0.

As an example solution, consider the distribution g(x) = δD(x), which is equivalent to a
distribution of a point-force at the origin in the corresponding crack problem. The inversion
for h′(x) is

h′(x) = −
1

√
1 − x2

1
π

∫ 1

−1

√
1 − s2δD(s)

x − s
ds = −

1
π

1
x
√

1 − x2
(A 3)

and integrating again with respect to x, with the condition h(±1) = 0, we find that

h(x) =
1
π
arctanh

√
1 − x2 (A 4)

In Table 1, we present a number of similarly derived solutions from which we draw in the
main text.

From eq. (A 2), we find that h′(x) has the behavior in the limit x → ±1

h′(x) = −
1√

2(1 ∓ x)

1
π

∫ 1

−1

√
1 ± s
1 ∓ s

g(s)ds (A 5)

We may compare this behavior to the leading-order term in the Williams (1957) solution for
slip near the tip of a crack located at x = ±a

δ(x) =
K
µ′

√
2(a ∓ x)

π

dδ
dx
= ∓

K
µ′

√
1

2(a ∓ x)
(A 6)

where K is the conventionally defined mode-II or mode-III stress intensity factor and the
corresponding leading order term in the distribution of stress ahead of the tip is τtip(x) =
K/

√
2π(x ∓ a). We may define a quantity k corresponding to the stress intensity factor K by

k = K/(µ′
√

a), and in comparing the latter expression in (A 6) with eq. (A 5), we can derive
an analogous expression for an intensity factor k± at x = ±1

k± =
1
√
π

∫ 1

−1

√
1 ± s
1 ∓ s

g(s)ds

Requiring that this intensity factor vanish at both tips, hence implies that two conditions be
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satisfied by the distribution g(s) ∫ 1

−1

√
1 ± s
1 ∓ s

g(s)ds = 0

which can be recast as the sum and the difference of these two conditions, leading respectively
to ∫ 1

−1

g(s)
√

1 − s2
ds = 0

∫ 1

−1

sg(s)
√

1 − s2
ds = 0 (A 7)

In the problem for the slip distribution, eq. (4.1), we identify

g(s) = erfc |λs | −
(
1 −

τ

τp

)
σ′

∆p
(A 8)

The first condition of (A 7) to be satisfied by (A 8) corresponds to eq. (4.2) in main text,
which provides the direct relation between λ and the problem parameter (1 − τ/τp)σ′/∆p.
The second condition of (A 7) is trivially satisfied by (A 8), since g(s) is an even function for
that case.

The non-singular stress conditions (A 7), if present, can be taken into account in the
inversion for h′(x), eq. (A 2), which may be rewritten as

h′(x) = −
1

√
1 − x2

1
π

∫ 1

−1

√
1 − s2g(s)

x − s
ds +

1
√

1 − x2

1
π

∫ 1

−1

(x + s)g(s)
√

1 − s2
ds

= −

√
1 − x2

π

∫ 1

−1

1
√

1 − s2

g(s)
x − s

ds (A 9)

Upon substituting eq. (A 8) in eq. (A 9), the contribution of the constant parameter (1 −
τ/τp)σ

′/∆p vanishes, and we retrieve eq. (4.3) in the main text.

As another example, we again consider the distribution g(x) = δD(x), for which the
inversion for h′(x) with the non-singular condition on h′(x) is

h′(x) =
−
√

1 − x2

π

∫ 1

−1

1
√

1 − s2

δD(s)
x − s

ds = −
1
π

√
1 − x2

x
= −

1
π

(
1

x
√

1 − x2
−

x
√

1 − x2

)
h(x) =

1
π

(
arctanh

√
1 − x2 −

√
1 − x2

)
(A 10)

to which we may compare, eq. (A 4), the inversion for the same distribution g(x) without the
non-singular condition.

In writing an asymptotic expansion for slip in powers λ in the marginally pressurized
and critically stressed limits, we derived spatial distributions for slip at each order (δ0 and
δ1) using results presented in Table 1. Note that the compilation of inversions in Table 1
used (A 2) and did not incorporate the non-singular crack conditions (A 7) in the inversion
for h′(x) from g(x). However, when solving for δ0 and δ1, the non-singular conditions are
implicitly incorporated in the expansion for the stress parameter (1 − τ/τp)σ′/∆p in terms
of λ. The resulting expressions for δ0 and δ1 are fully equivalent to the solutions that would
have been found had the conditions (A 7) been incorporated directly into the inversion. In
other words, we would have arrived to the same expressions for δ0 and δ1 in Sections 5 and
6 had we instead used the non-singular inversion (A 10) to construct the functions h(x) in
Table 1 and subsequently applied them to solve for δ0 and δ1. We recognize this, for instance,



20

in noting that the first term in the expansion for slip in the critically-stressed limit, eq. (6.9),
is given, to within the factor p0 = 2/

√
π by eq. (A 10).

Appendix B. Numerical solution procedure

To numerically solve for the slip distribution δ̄(x̄) from eq. (4.3), given a value of λ, we
use Gauss-Chebyshev quadrature for singular integrals (Erdogan et al. 1973; Viesca and
Garagash 2018). We begin by separating the singular integral in eq. (4.3)

φ(z̄) = −
1
π

∫ 1

−1

erfc|λs̄ |
√

1 − s̄2

1
z̄ − s̄

ds (B 1)

and note that the slip distribution is given by the integration

δ̄(x̄) =
∫ x̄

−1

√
1 − z̄2φ(z̄)dz̄ (B 2)

We numerically approximate the integral (B 1) at a discrete set of points zi

φ(z̄i) ≈ −
1
n

n∑
j=1

erfc|λs̄j |
z̄i − s̄j

(B 3)

where the quadrature points s̄j and z̄i are

z̄i = cos(πi/n) i = 1, ... , n − 1 (B 4)
s̄j = cos[π( j − 1/2)/n] j = 1, ... , n

We again use Gauss-Chebyshev quadrature (Mason and Handscomb 2002) to approximate
the integral (B 2) at a set of points xk

δ̄(x̄k) ≈
1
n

n−1∑
i=1
(1 − z̄2

i )φ(z̄i)H(x̄k − z̄i) (B 5)

where x̄k = s̄k for k = 1, ... ,n and H(·) is the Heaviside step function.

We may similarly approximate the relation between (1 − τ/τp)σ′/∆p and λ by first
prescribing a value of λ and then numerically evaluating the integral (4.2) by Gauss-
Chebyshev quadrature (

1 −
τ

τp

)
σ′

∆p
≈

1
n

n∑
j=1

erfc|λsj | (B 6)

where sj is defined as before.

Appendix C. Multipole expansion

Here we derive the multipole expansion of eqs. (6.3–6.6). This expansion was used to derive
the outer solution in the critically stressed limit, for which the rupture extent a(t) �

√
αt,

such that the fluid pressure source appears localized about the origin. We begin by noting
that the solution to the problem for h(x)

g(x) =
1
π

∫ 1

−1

h′(s)
x − s

ds (C 1)
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with the boundary conditions h(−1) = h(1) = 0, may be also written in terms of the Green’s
function G(x, x ′) satisfying

δD(x − x ′) =
1
π

∫ 1

−1

G(s, x ′)
x − s

ds

Using the inversion eq. (A 2), the Green’s function is

G(x, x ′) = −
1

√
1 − x2

1
π

∫ 1

−1

√
1 − s2δD(s − x ′)

x − s
ds (C 2)

= −
1
π

√
1 − x ′2

1 − x2
1

x − x ′

and the solution to eq. (C 1) can be written as

h′(x) =
∫ 1

−1
G(x, x ′)g(x ′)dx ′ (C 3)

We derive a multipole expansion for eq. (C 1) by considering that a Taylor series expansion
of the Green’s function in eq. (C 3) about the origin x ′ = 0

h′(x) =
∫ 1

−1

[
G(x,0) + x ′

∂G
∂x ′

����
x′=0
+

x ′2

2
∂2G
∂x ′2

����
x′=0
+ ... +

x ′n

n!
∂nG
∂x ′n

����
x′=0

]
g(x ′)dx ′

reduces to

h′(x) = p0G(x,0) + p1
∂G
∂x ′

����
x′=0
+ p2

∂2G
∂x ′2

����
x′=0
+ ... + pn

∂nG
∂x ′n

����
x′=0

(C 4)

where the coefficients of this series are

p0 =

∫ 1

−1
g(x ′)dx ′, p1 =

∫ 1

−1
x ′g(x ′)dx ′,

p2 =

∫ 1

−1

x ′2

2
g(x ′)dx ′, ..., pn =

∫ 1

−1

x ′n

n!
g(x ′)dx ′

The expansion of g(x) implied by eq. (C 4) is found by first noting that, from eq. (C 2),

∂nG
∂x ′n

= −
1

√
1 − x2

1
π

∫ 1

−1

√
1 − s2[(−1)nδ(n)D (s − x ′)]

x − s
ds (C 5)

where δ(n)D is the n-th derivative of δD with respect to its argument. When evaluating eq.
(C 5) at x ′ = 0 and comparing with eq. (A 2), we see that eq. (C 5) is the inverted solution
for h′(x) when g(x) = (−1)nδ(n)D (x), hence substituting eq. (C 4) into eq. (C 1) yields

g(x) = p0δD(x) − p1δ
′
D(x) + p2δ

′′
D(x) − ... + (−1)npnδ

(n)
D (x)

where the leading two terms are the sourcemonopole and dipole approximations, respectively.
For n = 0,1,2, the first few functions of x in eq. (C 4) are

G(x,0) = −
1
π

1
x
√

1 − x2
,

∂G
∂x ′

����
x′=0
= −

1
π

1
x2
√

1 − x2
,

∂2G
∂x ′2

����
x′=0
=

x2 − 2
x3
√

1 − x2

Multiplying these functions by (−1)n and integratingwith respect to x, we find the expressions
in Table 1 for h(x) when g(x) = δD(x) or one of its first two derivatives.
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