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Abstract—This paper demonstrates a method to extract
impedance-attenuation corners of a stripline with user-prescribed
confidence levels. This is done using a sparse-grid-based surrogate
model to quickly generate vast Monte Carlo datasets from which
the impedance-attenuation distribution is calculated. Ellipses are
fit to this distribution as equi-density contours to enclose a
proportion of the solution data. Appropriate corners can be
read off these ellipses and applied to broadband simulation.
The results are compared against three measured test coupons,
showing capability to analyze a PCIe Gen. 5 link. Realistic
modeling of geometries and material variations is emphasized.

Index Terms—corner model, sparse grid, Monte Carlo

I. INTRODUCTION

Electrical interconnect performance is becoming increas-
ingly difficult to characterize and control as the demand for
fast data rates grows. Imperfect manufacturing processes
lead manifested designs to not possess their intended physical
properties and provide uncontrollable variation in performance
characteristics. Interconnect characterization based on the
nominal design is thus unrealistic. The worst-case behavior
can be studied but represents a performance outlier. Corner
modeling is a way to capture realistic variation from the
nominal behavior. Current corner modeling algorithms rely on
fast but unreliable boundary scan methods or expensive Monte
Carlo (MC) procedures [1], [2].

The method proposed by this paper combines the best of
both approaches by creating a surrogate model that accurately
and efficiently maps cross-section and material parameters to
corresponding attenuation and impedance (α,Z0) values. This
model is used to generate vast amounts of MC data, which is
then binned into a 2D density. Ellipses centered on the nominal
solution are fit as effective equi-density contours using an iter-
ative algorithm. The high/low impedance/attenuation (HZLA,
LZLA, HZHA, LZHA) corners can be read from the contour,
and the corresponding parameter configurations can be found
easily. They are then inputted to Ansys 2D Extractor for
broadband S-parameter extraction and eye diagram simulation.

Section II introduces the EM simulation methodology, the
surrogate model development, the contour fitting and the
corner identification algorithm. Section III discusses the results
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of the procedure and the eye characteristics of each calculated
corner, with concluding remarks offered in Section IV.

II. THE CORNER MODELING PROCESS

A. EM Simluation & Parameter Variation

The corner location procedure will be done using both a
single-ended and a differential stripline, defined in Table I and
Fig. 1. These models are solved with Ansys 2D Extractor at a
single frequency to extract the RLGC parameters. The single-
ended line’s attenuation α and characteristic impedance Z0

can be calculated at solution frequency f = 20GHz via

α = Re [(R+ jωL)(G+ jωC)] , (1)

Z0 = Re [(R+ jωL)/(G+ jωC)] , (2)

where ω = 2πf . The differential impedance for the two-line
structure is found by extracting RLGC for the left half of
Fig. 1(b) and doubling the calculated impedance from (2). The
attenuation is found directly from (1). Placing a conducting
boundary as shown rejects all common-mode fields.

The 2D models are built to reflect consequences of realistic
manufacturing procedures, including a trapezoidal conductor
with angle ϕ to model chemical etching effects and holding
pitch s+w constant due to tight photolithography tolerances.
The dielectric constant ϵr and tangent delta tan δ were mea-
sured at 20GHz using short pulse propagation (SPP) [3].

A parameter ξ with a symmetric tolerance ξ = µ ± 3σ
is modeled as a Gaussian random variable with mean µ and
standard deviation σ, i.e. a parameter’s tolerance represents its

TABLE I
PARAMETERS & TOLERANCES

Name Symbol Nominal Tolerance Unit
Perm. ϵr 3.25 +0.25/-0.15 -

Loss Tan. tan δ 0.00325 +0.0024/-0.0020 -
Thickness t 0.6 +/-0.1 mil

Width w 4.7 +/-0.6 mil
Prepreg size h1 4.2 +/-1.0 mil

Core size h2 4.0 +/-0.7 mil
Pitch s+ w 9 -∗ mil

Gnd. width wgnd 200 - mil
Gnd. thick. tgnd 1.2 - mil
Edge angle ϕ 78.23 - deg
Cu resist. ρ 1.9 - µΩ-cm
∗A dashed tolerance represents a fixed parameter.

20
22

 IE
EE

 3
1s

t C
on

fe
re

nc
e 

on
 E

le
ct

ric
al

 P
er

fo
rm

an
ce

 o
f E

le
ct

ro
ni

c 
Pa

ck
ag

in
g 

an
d 

Sy
st

em
s (

EP
EP

S)
 |

 9
78

-1
-6

65
4-

50
75

-1
/2

2/
$3

1.
00

 ©
20

22
 IE

EE
 |

 D
O

I: 
10

.1
10

9/
EP

EP
S5

38
28

.2
02

2.
99

47
14

1

Authorized licensed use limited to: University of Illinois. Downloaded on March 15,2023 at 21:44:44 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 1. Cross section of single-ended (a) and differential-mode (b) striplines.
Conducting boundary can be used for efficient differential-mode impedance
extraction.

3σ value. Asymmetric parameters, e.g. ξ = µ+3σ2/−3σ1, are
modeled with a modified Gaussian distribution, characterized
by probability density function with a spread of σ1 below and
σ2 above the center value µ:

f(u) =
2

(σ1 + σ2)
√
2π

exp
(
− (u−µ)2

2σ2
1

)
, u ≤ µ,

exp
(
− (u−µ)2

2σ2
2

)
, u > µ.

(3)

B. Sparse Grid Surrogate Model

Surrogate modeling provides a way around the computa-
tional expense of MC simulation. The Tasmanian software
package allows creation of such a model based on sparse
grid collocation [4]. The sparse grid is a set of points in the
design space that serves as a high-dimensional interpolation
grid. Simulations can be run for each point in the grid, and the
results can be interpolated. This interpolation can be evaluated
in a split-second, and yields a good approximation to the 2D
simulation of the same input. Details can be found in [5].

Interpolations for α and Z0 at 20GHz are formed by
simulating RLGC for each point on the sparse grid with
2D Extractor and interpolating the calculated (α,Z0) over
the sparse grid. Several surrogate models were tested against
4,000 MC datapoints, which each model computed in less than
110ms with mean errors less than 1% and 0.1% in α and Z0,
respectively, demonstrating the sparse grid’s reliability. The
selected model used a precision 3 ‘level’ grid based on the
Clenshaw-Curtis rule, taking 389 simulations to form, which
is a one-time cost similar to a boundary scan [1].

C. Fitting the Equi-Density Contour

Locating the corners begins by first finding the distribution
of (α,Z0) based on parameter values from Table I. This is
done with a massive MC batch to be run with the surrogate
model. This paper uses two million samples, a job that would
take 2D Extractor days to calculate but the surrogate model
can perform in seconds. The distribution can be approximated

by binning the (α,Z0) scatter data into nx × ny = 200× 200
cells and counting the number of solutions lying within each
cell. The resulting density histogram resembles a hill peaking
near the nominal solution. The shape and orientation of the
distribution is due to the near-Gaussian input parameters
and the slight nonlinear dependence of (α,Z0) on the input
parameters. This histogram can be characterized by equi-
density contours, as in a topographical map. The histogram’s
shape suggests the ellipse as a good equi-density contour.

Three coordinate systems are defined to help identify the
ellipse: (α,Z0) is the main working system, (x, y) results from
centering and normalizing (α,Z0), and (η, ν) is a version of
(x, y) rotated by θf so the η axis aligns with the semimajor
axis of the ellipse, as summarized in (4) and (5). Attenuation
and impedance ranges are denoted ∆α and ∆Z0.

R =

(
cos θf − sin θf
sin θf cos θf

)
, M =

(
∆α/nx 0

0 ∆Z0/ny

)
,

(4)(
α
Z0

)
=

(
αnom

Z0,nom

)
+M

(
x
y

)
,

(
x
y

)
= R

(
η
ν

)
. (5)

The ellipse will lie in (α,Z0) space centered on the nominal
solution (αnom, Z0,nom). Its orientation can be found by first
specifying a threshold percentage of the peak density, like an
equipotential contour on a topographical map. A sweep of
the angle from the x-axis, θ, tracking the distance r to the
prescribed threshold in (x, y)-space is fit into (6). The tilt angle
θf and semimajor/minor axes a and b thus can be recovered.

r2(θ) =

(
cos2 (θ − θf )

a2
+

sin2 (θ − θf )

b2

)−1

. (6)

This procedure is iterated by lowering the threshold until
the ellipse encloses a certain proportion of the solution data,
i.e. a given inclusion rate. A solution’s inclusion within the
contour can be tested by evaluating the face equation of (7)
after appropriate transformation to (η, ν) using (4) and (5):

contour:
η2

a2
+

ν2

b2
= 1; face:

η2

a2
+

ν2

b2
≤ 1. (7)

D. Corner Identification

The corners can be read off this ellipse through any desired
means. This paper employs a procedure based on [1]. The
ellipse can be bound by a rectangle sharing its extreme α and
Z0 values, i.e. α = αnom ± δα, Z0 = Z0,nom ± δZ0. The
impedance is then scaled by C = δα/δZ0 after shifting to the
origin, which stretches the rectangle into a square of length
2δα and scales the ellipse impedance extrema to ±δα. The
corners are read as each intersection of the ellipse and the
diagonals of the square, reverting to (α,Z0) using the scaling.

III. NUMERICAL EXAMPLES

The procedure outlined in Section II was applied to single-
ended and differential models with 1σ, 2σ and 3σ inclusions
(68%, 95% and 99%). The corners were located using the
scaling method, as shown in Fig. 2 for the 3σ differential
case. The three differential-line ellipses are shown with the
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MC scatter data in Fig. 3. Table II lists the parameters for each
3σ corner, each behaving as expected; low-Z corners share
high widths, low-A corners share low loss tangents.

Three test coupons were measured for model validation. The
(α,Z0) of each coupon was found using VNA measurements
and simulated TDR, and are plotted in Fig. 3. Each fall within
the 2σ contour, demonstrating the inclusion as a confidence
in the performance of a manufactured board. The four 3σ
corners were run in a broadband simulation to compute their
S-parameters as 7cm lines. The dielectric was modeled with a
multipole Debye fit based on measured data [6]. The insertion
losses of each model, summarized in Table III, are compared
at the fundamental frequencies of PCIe Gen. 4 and 5 (8
and 16GHz, respectively), and the material characterization
frequency of 20GHz. The corners form a bound on the
insertion loss, bounded below by HZLA and above by LZHA.

The eye was simulated using a PRBS-23 sequence with a
rate of 32Gbps and a 7ps rise/fall time, to emulate the line as
a PCIe Gen. 5 link. The results are summarized in Table IV.
The high-A corners showed the smallest eye heights. The eye
width sensitivity is accentuated by the line length, showing
low sensitivity in general. A similar bounding on the eye
characteristics based on the inclusion level is expected.

Fig. 2. Differential-line 3σ-inclusion ellipse and bounding square in
scaled/centered attenuation-impedance space.

Fig. 3. Samples of differential-line MC data with derived equi-density
contours and corners for 1σ, 2σ and 3σ inclusion.

IV. CONCLUSION

The proposed corner modeling scheme is capable of charac-
terizing PCIe Gen. 5 interconnect performance. A well-trained
surrogate model makes the process as expensive as a boundary
scan. The scheme offers flexibility in the precise control
of the inclusion rate. The simplicity of the contour choice
allows for easy implementation while maintaining accurate
results. Further work may include a more robust density-
finding algorithm based on kernel density estimation.
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TABLE II
3σ CORNER PARAMETER CONFIGURATIONS

Param. ϵr tan δ t w h1 h2

Unit - - mil mil mil mil
Differential (fixed 9mil pitch)

HZLA 3.25 0.00170 0.607 4.47 5.25 4.15
LZLA 3.23 0.00159 0.689 4.98 3.79 4.13
HZHA 3.22 0.00503 0.591 4.42 4.45 4.24
LZHA 3.26 0.00449 0.605 4.82 3.29 4.07

Single-Ended
HZLA 3.12 0.00190 0.633 4.43 4.66 4.20
LZLA 3.34 0.00155 0.576 5.11 3.80 4.20
HZHA 3.43 0.00472 0.650 4.43 4.78 4.56
LZHA 3.23 0.00461 0.646 4.80 3.36 4.10

TABLE III
INSERTION LOSS COMPARISON AGAINST MEASUREMENT

Insertion loss (dB)
f 3σ Corners Measured

(GHz) HZLA LZLA HZHA LZHA #1 #2 #3
8 1.15 1.42 1.36 1.67 1.31 1.30 1.26
16 1.82 2.20 2.21 2.69 2.13 2.08 2.06
20 2.14 2.42 2.65 3.02 2.52 2.44 2.45

TABLE IV
EYE CHARACTERISTICS OF 7CM & 20CM LINE

7cm line 20cm line
Height (mV) Width (UI) Height (mV) Width (UI)

Nominal 379.34 0.9202 247.58 0.7545
HZLA 385.15 0.9261 260.61 0.7725
LZLA 368.73 0.9202 242.02 0.7345
HZHA 347.85 0.8603 213.38 0.7345
LZHA 355.33 0.9022 180.10 0.6826
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