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Abstract—A tandem neural network (NN) with R2 score-based 
loss function is proposed in this paper for channel inverse design. 
Tandem NN consists of an inverse neural network from target 
performance to design parameters and a pre-trained forward 
neural network from design parameters to design targets. The 
training of the actual INN uses the fixed pre-trained forward 
model to evaluate the inverse design output. A channel inverse 
design example for target impedance and attenuation at multiple 
frequency points is applied in this paper to evaluate the 
performance of tandem NN. Numerical results show that tandem 
NN achieves a good design result compared with target 
performance and regular NN.  
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I.  INTRODUCTION 

Channel design is one of the most critical problems in 
modern electronic integrated systems. Inverse design of high-
speed channel for target performance often needs to consider 
high-dimensional design parameters. Utilizing machine 
learning technology as an automatic method is a recent 
research trend to solve the problem of inverse design. 
Optimization methods, such as genetic algorithm [1] and 
Bayesian optimization [2-4], are widely used to find the 
optimal design for target specifications. Since the optimization 
step is always time-consuming, finding the direct inverse 
mapping architecture from target performance to design 
parameters also attracts the attention of researchers. Deep 
neural network (NN) [5] least-squares support vector machine 
[6], support-vector-regression based active subspace method 
[7-8] are employed for this purpose.  

Considering that directly training a regular NN model from 
target performance to design parameters suffers from a “one-
to-many” property. This paper utilizes tandem NN to help 
overcome the training confusion, which consists of an inverse 
neural network (INN) and a pre-trained forward neural network 
(FNN). FNN is trained as a physics predictor at the first step. 
An R2 score-based loss function calculated in the physics 
domain by pre-trained FNN is used to evaluated INN design 
outputs and update INN neural weights. After training, 
additional target performance can be fed into INN and 
calculate corresponding design parameters. A channel inverse 
design example for target impedance and attenuation at 
multiple frequency points is demonstrated to evaluate the 
performance of TNN in this work.  

This paper is organized as follows: Section II presents the 
tandem neural network structure methods with its training and 

testing steps. Section III evaluates the tandem NN method with 
its application to a channel inverse design problem. Meanwhile, 
inverse design results of the example are illustrated as well in 
Section III with a comparison of the regular NN method. This 
paper concludes in Section IV. 

II. METHODOLOGY 

A. Neural Network 

Finding a mapping from design targets X={x1,…,xn} to 
design parameters Y={y1,…,ym} is a direct way for inverse 
design. NN, as a popular surrogate model, is widely used for 
this kind of design problem. As shown in Fig. 1, regular NN 
structure design takes design targets as inputs and design 
parameters as outputs and then utilizes the error between 
expected and predicted design parameters as a loss function to 
update the neural weights during training. 

However, a NN model in reality used for directly 
calculating the design parameters from desired targets always 
fails due to the “one-to-many” property of the inverse problem. 
In other words, the fact that several nonunique solutions exist 
for the same design target makes NN confused in the training 
process. 

B. Tandem Neural Networks  

To overcome the above captioned problem, tandem NN [9] 
is applied for inverse design which consists of a pre-trained 
FNN as a physics predictor in neural network training. As 
shown in Fig. 2, a tandem neural network consists of a normal 
INN and a pre-trained FNN. In tandem NN, the loss function 
does not compare ambiguous design layouts but operates in the 
physics domain (e.g., the characteristic impedance rather than 
the design parameters). In this way, different design parameters 
which lead to a similar physical response no longer confuse the 
NN, and all correct solutions to a given design problem yield 
positive training feedback. 

 

Fig. 1. NN for inverse design. 
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Fig. 2. Tandem neural network for inverse design. 

The tandem NN training and testing steps are as follows:  

 A forward NN from design parameters to target 
performance is trained at first.  

 The training of the actual INN subsequently uses the 
fixed pre-trained forward model to evaluate the 
inverse design output. 

 New testing data uses trained INN to get inverse 
design parameters. 

R2 score as a statistical measure for the regression model is 
the proportion of the variation in the dependent variable that is 
predictable from the independent variables, which is always in 
the range from 0 to 1. In the best case, the prediction values 
from the regression model exactly match the expected values, 
which results in an R2 score equal to 1. The closer the R2 score 
gets to 0, the worse the model predicts. Previous work [10] 
shows that for regression analysis evaluation, the R2 score is 
more informative than other commonly used indicators, such as 
mean squared error (MSE), mean absolute error (MAE), et. al.  

Thus, in this work, a loss function based R2 score is defined 
for neuron weights updating in the NN training process: 
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where fi is the prediction result of yi. 

III. RESULTS AND DISCUSSION 

To evaluate the performance of tandem NN with its 
application to signal integrity, we consider an example of 
channel inverse design example for target impedance and 
attenuation.  

Fig. 3 describes an embedded microstrip line with four 
geometry parameters, for which we consider the characteristic 
impedance and attendance of the trace in the middle. TABLE I 
shows nominal value and range for these four parameters. 
Channel Impedance and attenuation at 2 GHz, 3 GHz, 4 GHz, 5 
GHz, and 6 GHz under nominal design parameters are shown 
in Fig. 4 and utilized as target performances. In this way, 
tandem NN is applied in this example to design channel 
geometry parameters from target impedance and attenuation at 
multi-frequency points. 

 

Fig. 3. Embedded Microstrip lines. 

 

Fig. 4. Impedance and attenuation of the embedded microstrip line. 

TABLE I.  CHANNEL DESIGN PARAMETERS 

Parameter Nominal Value Range Unit 

W 140 70-210 um 

S 150 75-225 um 

H1 30 15-45 um 

H2 100 50-150 um 

 

A tandem NN consists of a 3-hidden-layer INN and a pre-
trained 3-hidden-layer FNN is utilized in this example. The 
neurons of the input layer, three hidden layers, and the output 
layer for INN are 10, 50, 50, 10, 4, while in FNN are 4, 50, 50, 
10, 10. Rectified Linear Unit (ReLU) is an activation function 
to help increase the nonlinear relationship in hidden layers. 
Adaptive Moments Estimation (Adam) optimization method is 
applied to update neuron weights based on the defined loss 
function. 

There are 300 training samples and 300 validation samples 
generated from ANSYS Q2D Extractor. Pre-trained FNN 
achieves 0.0232 training loss and 0.0254 validation loss. The 
final training loss and validation loss for tandem NN are 
0.0052 and 0.0064. 

Additional 50 target performance requirements are used for 
the model test, which applied well-trained INN in Tandem NN 
to calculate design parameters. These inverse design 
parameters are fed into ANSYS to calculate its impedance and 
attenuation performance. Fig. 5 compares the performance 
results from the tandem NN inverse design with a target 
performance. Results show that tandem NN can successfully 
help design channel parameters from target requirements. 

In the meanwhile, a regular NN with the same hyper-
parameters settings as INN is utilized as a comparison method. 
Numerical results of mean squared error (MSE) and R2 score 
shown in TABLE II found that tandem NN that utilizes a pre- 
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                            (a)                                                              (b) 

        
                            (c)                                                             (d) 

Fig. 5. Comparison between inverse design results and expected design 
targets: (a) impedance at 2 GHz; (b) attenuation at 2 GHz; (c) impedance at 
5GHz; (d) attenuation at 5GHz.  

TABLE II.  COMPARISON RESULTS OF TANDEM NN AND REGULAR NN 

Parameter 
Tandem NN Traditional NN 

MSE (Ω2) R2 score 
MSE 
(dB2) 

R2 score 

2GHz 
Impedance 0.729 0.991 2.660 0.967 

Attenuation 0.015 0.964 0.035 0.914 

3GHz 
Impedance 0.732 0.991 2.672 0.967 

Attenuation 0.010 0.974 0.030 0.913 

4GHz 
Impedance 0.734 0.991 2.680 0.967 

Attenuation 0.007 0.976 0.028 0.910 

5GHz 
Impedance 0.736 0.991 2.687 0.967 

Attenuation 0.006 0.977 0.027 0.904 

6GHz 
Impedance 0.737 0.991 2.692 0.967 

Attenuation 0.006 0.977 0.026 0.898 

 

 

trained NN to evaluate inverse design help solve the training 
confusion in regular NN and leads to better results. 

IV. CONCLUSION 

The tandem NN with R2 score-based loss function is 
implemented in this work for channel inverse design which 
consists of an INN from target performance to channel design 
parameter and a pre-trained FNN from channel to performance 
evaluation. Neuron weights in tandem NN are trained from the 
loss function evaluated by fixed pre-trained FNN with the INN 
design outputs. A channel inverse design example for target 

impedance and attenuation at multiple frequency points is 
applied in this paper to evaluate the performance of tandem NN. 
Numerical results show that tandem NN achieves a good 
design result compared with target performance and regular 
NN. The different NN evaluation methods in the training step 
with pre-trained NN help tandem NN overcome the “one-to-
many” inverse confusion in regular NN. 
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