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Abstract—A tandem neural network (NN) with R? score-based
loss function is proposed in this paper for channel inverse design.
Tandem NN consists of an inverse neural network from target
performance to design parameters and a pre-trained forward
neural network from design parameters to design targets. The
training of the actual INN uses the fixed pre-trained forward
model to evaluate the inverse design output. A channel inverse
design example for target impedance and attenuation at multiple
frequency points is applied in this paper to evaluate the
performance of tandem NN. Numerical results show that tandem
NN achieves a good design result compared with target
performance and regular NN.
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I. INTRODUCTION

Channel design is one of the most critical problems in
modern electronic integrated systems. Inverse design of high-
speed channel for target performance often needs to consider
high-dimensional design parameters. Utilizing machine
learning technology as an automatic method is a recent
research trend to solve the problem of inverse design.
Optimization methods, such as genetic algorithm [1] and
Bayesian optimization [2-4], are widely used to find the
optimal design for target specifications. Since the optimization
step is always time-consuming, finding the direct inverse
mapping architecture from target performance to design
parameters also attracts the attention of researchers. Deep
neural network (NN) [5] least-squares support vector machine
[6], support-vector-regression based active subspace method
[7-8] are employed for this purpose.

Considering that directly training a regular NN model from
target performance to design parameters suffers from a “one-
to-many” property. This paper utilizes tandem NN to help
overcome the training confusion, which consists of an inverse
neural network (INN) and a pre-trained forward neural network
(FNN). FNN is trained as a physics predictor at the first step.
An R? score-based loss function calculated in the physics
domain by pre-trained FNN is used to evaluated INN design
outputs and update INN neural weights. After training,
additional target performance can be fed into INN and
calculate corresponding design parameters. A channel inverse
design example for target impedance and attenuation at
multiple frequency points is demonstrated to evaluate the
performance of TNN in this work.

This paper is organized as follows: Section II presents the
tandem neural network structure methods with its training and

testing steps. Section III evaluates the tandem NN method with
its application to a channel inverse design problem. Meanwhile,
inverse design results of the example are illustrated as well in
Section III with a comparison of the regular NN method. This
paper concludes in Section I'V.

II. METHODOLOGY

A. Neural Network

Finding a mapping from design targets X={xi,...,xa} to
design parameters ¥Y={yi,...,yn} is a direct way for inverse
design. NN, as a popular surrogate model, is widely used for
this kind of design problem. As shown in Fig. 1, regular NN
structure design takes design targets as inputs and design
parameters as outputs and then utilizes the error between
expected and predicted design parameters as a loss function to
update the neural weights during training.

However, a NN model in reality used for directly
calculating the design parameters from desired targets always
fails due to the “one-to-many” property of the inverse problem.
In other words, the fact that several nonunique solutions exist
for the same design target makes NN confused in the training
process.

B. Tandem Neural Networks

To overcome the above captioned problem, tandem NN [9]
is applied for inverse design which consists of a pre-trained
FNN as a physics predictor in neural network training. As
shown in Fig. 2, a tandem neural network consists of a normal
INN and a pre-trained FNN. In tandem NN, the loss function
does not compare ambiguous design layouts but operates in the
physics domain (e.g., the characteristic impedance rather than
the design parameters). In this way, different design parameters
which lead to a similar physical response no longer confuse the
NN, and all correct solutions to a given design problem yield
positive training feedback.

o o
« O e el
% ,4.. (y)\’ ‘ . L — »
SO
x—— O Q@ O
xn @ <)" ). WO—
L A

NN Model

Fig. 1. NN for inverse design.
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Fig. 2. Tandem neural network for inverse design.

The tandem NN training and testing steps are as follows:

e A forward NN from design parameters to target
performance is trained at first.

e  The training of the actual INN subsequently uses the
fixed pre-trained forward model to evaluate the
inverse design output.

e New testing data uses trained INN to get inverse
design parameters.

R? score as a statistical measure for the regression model is
the proportion of the variation in the dependent variable that is
predictable from the independent variables, which is always in
the range from 0 to 1. In the best case, the prediction values
from the regression model exactly match the expected values,
which results in an R?score equal to 1. The closer the R? score
gets to 0, the worse the model predicts. Previous work [10]
shows that for regression analysis evaluation, the R? score is
more informative than other commonly used indicators, such as
mean squared error (MSE), mean absolute error (MAE), et. al.

Thus, in this work, a loss function based R? score is defined
for neuron weights updating in the NN training process:
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where f; is the prediction result of y;.

III. RESULTS AND DISCUSSION

To evaluate the performance of tandem NN with its
application to signal integrity, we consider an example of
channel inverse design example for target impedance and
attenuation.

Fig. 3 describes an embedded microstrip line with four
geometry parameters, for which we consider the characteristic
impedance and attendance of the trace in the middle. TABLE I
shows nominal value and range for these four parameters.
Channel Impedance and attenuation at 2 GHz, 3 GHz, 4 GHz, 5
GHz, and 6 GHz under nominal design parameters are shown
in Fig. 4 and utilized as target performances. In this way,
tandem NN is applied in this example to design channel
geometry parameters from target impedance and attenuation at
multi-frequency points.

Fig. 3. Embedded Microstrip lines.
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Fig. 4. Impedance and attenuation of the embedded microstrip line.

TABLE L CHANNEL DESIGN PARAMETERS
Parameter Nominal Value Range Unit
w 140 70-210 um
N 150 75-225 um
H,; 30 15-45 um
H, 100 50-150 um

A tandem NN consists of a 3-hidden-layer INN and a pre-
trained 3-hidden-layer FNN is utilized in this example. The
neurons of the input layer, three hidden layers, and the output
layer for INN are 10, 50, 50, 10, 4, while in FNN are 4, 50, 50,
10, 10. Rectified Linear Unit (ReLU) is an activation function
to help increase the nonlinear relationship in hidden layers.
Adaptive Moments Estimation (Adam) optimization method is
applied to update neuron weights based on the defined loss
function.

There are 300 training samples and 300 validation samples
generated from ANSYS Q2D Extractor. Pre-trained FNN
achieves 0.0232 training loss and 0.0254 validation loss. The
final training loss and wvalidation loss for tandem NN are
0.0052 and 0.0064.

Additional 50 target performance requirements are used for
the model test, which applied well-trained INN in Tandem NN
to calculate design parameters. These inverse design
parameters are fed into ANSYS to calculate its impedance and
attenuation performance. Fig. 5 compares the performance
results from the tandem NN inverse design with a target
performance. Results show that tandem NN can successfully
help design channel parameters from target requirements.

In the meanwhile, a regular NN with the same hyper-
parameters settings as INN is utilized as a comparison method.
Numerical results of mean squared error (MSE) and R? score
shown in TABLE II found that tandem NN that utilizes a pre-
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Fig. 5. Comparison between inverse design results and expected design
targets: (a) impedance at 2 GHz; (b) attenuation at 2 GHz; (c) impedance at
5GHz; (d) attenuation at SGHz.

TABLE II. COMPARISON RESULTS OF TANDEM NN AND REGULAR NN
Tandem NN Traditional NN
Parameter MSE
2 2 2
MSE (Q%) R* score (dBY) R’ score

Impedance 0.729 0.991 2.660 0.967
2GHz

Attenuation 0.015 0.964 0.035 0914

Impedance 0.732 0.991 2.672 0.967
3GHz

Attenuation 0.010 0.974 0.030 0913

Impedance 0.734 0.991 2.680 0.967
4GHz

Attenuation 0.007 0.976 0.028 0910

Impedance 0.736 0.991 2.687 0.967
5GHz

Attenuation 0.006 0.977 0.027 0.904

Impedance 0.737 0.991 2.692 0.967
6GHz

Attenuation 0.006 0.977 0.026 0.898

trained NN to evaluate inverse design help solve the training
confusion in regular NN and leads to better results.

IV. CONCLUSION

The tandem NN with R? score-based loss function is
implemented in this work for channel inverse design which
consists of an INN from target performance to channel design
parameter and a pre-trained FNN from channel to performance
evaluation. Neuron weights in tandem NN are trained from the
loss function evaluated by fixed pre-trained FNN with the INN
design outputs. A channel inverse design example for target

impedance and attenuation at multiple frequency points is
applied in this paper to evaluate the performance of tandem NN.
Numerical results show that tandem NN achieves a good
design result compared with target performance and regular
NN. The different NN evaluation methods in the training step
with pre-trained NN help tandem NN overcome the “one-to-
many” inverse confusion in regular NN.
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