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ABSTRACT
Creating models for modern high-speed receivers using circuit-
level simulations is costly, as it requires computationally expensive
simulations and upwards of months to finalize a model. Added
to this is that many models do not necessarily agree with the fi-
nal hardware they are supposed to emulate. Further, these models
are complex due to the presence of various filters, such as a deci-
sion feedback equalizer (DFE) and continuous-time linear equalizer
(CTLE), which enable the correct operation of the receiver. Other
data-driven approaches tackle receiver modeling through multiple
models to account for as many configurations as possible. This
work proposes a data-driven approach using generative adversar-
ial training to model a real-world receiver with varying DFE and
CTLE configurations while handling different channel conditions
and bitstreams. The approach is highly accurate as the eye height
and width are within 1.59% and 1.12% of the ground truth. The
horizontal and vertical bathtub curves match the ground truth and
correlate to the ground truth bathtub curves.

CCS CONCEPTS
• Hardware→Modeling and parameter extraction; Electro-
magnetic interference and compatibility; Analog and mixed-
signal circuits.

KEYWORDS
SerDes, receiver, behavior modeling, adaptive, generative, measure-
ment, GAN, DFE, IBIS-AMI
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1 INTRODUCTION
As transmission speed increases, the need for accurate link simula-
tion is essential in today’s devices. Signal and power integrity plays
a crucial role for these devices in determining whether the device
in question can successfully sample the data or not. Throughout
the design process, engineers must contend with lengthy itera-
tive simulations, which makes the entire process cumbersome. The
transmitter’s and receiver’s complexity increases as these devices
speed up. High-speed receivers have some combination of a CTLE,
feed-forward equalizer (FFE), and DFE filter to compensate for
channel impairments and distortions. The presence of these filters
helps cancel undesired effects such as inter-symbol interference
and equalize the impact of the channel.

Today’s designs consist of multiple intellectual property (IP)
blocks from various vendors. Vendors provide IBIS algorithmic
modeling interface (IBIS-AMI) models to system designers to share
details about their transmitter and receiver blocks while protecting
the underlying IP. However, IBIS-AMI has two significant draw-
backs: the engineering time required along with the computation
needed and correlation to actual devices. The first problem is cum-
bersome as the process requires iterative detailed circuit-level simu-
lations, which can take months. Further, simulations with IBIS-AMI
models do not necessarily reflect what the devices do in a real-world
setting, making the whole process fruitless [2].

Much work has gone into applying machine learning and other
data-driven approaches to solve the abovementioned issues. How-
ever, most of the work estimates the final system parameters, ob-
scuring away the modeling details from the engineer while using
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domain knowledge to reduce the problem space [6, 11, 15]. Previ-
ous work that attempts to recover a complete understanding of the
receiver performance through an eye diagram requires multiple
models for each tap configuration scenario [9, 10]. Further, previous
work has focused on varying the values of a single filter, whether
the CTLE or DFE [3, 7, 9]. We propose a conditional generative
adversarial network (cGAN) to model a receiver with varying CTLE
and DFE configurations through a single model for an actual device
by targeting its bit-error-rate (BER) plot. By doing so, the model
can predict unseen conditions and is capable of interpolating in-
termediate configurations and handling unseen bitstreams. More
importantly, there is only a single computation cost associated
with an entirely data-driven approach: training the model, which
is under 2 minutes per iteration or 2 hours for the entire training.

The contributions of this work are as follows:
• To the best of our knowledge, we are the first to use actual
device measurements to show that a cGAN is capable of
modeling a serializer/deserializer (SerDes) receiver.

• The DFE and CTLE values are jointly incorporated as tune-
able parameters from which the cGAN is able to determine
the correct operation of the receiver.

• We show the ability to window the time-series data prior to
transforming it into an image. Such a transformation enables
us to frame the problem as an image-to-image translation
task.

To that extent, the generated BER contour plot matches the
underlying characteristics: eye height and width with a root-mean-
squared error (RMSE) of 0.015. Additionally, the bathtub curves
extracted from the BER plots match the ground truths with a Pear-
son correlation coefficient (PCC) of 0.993.

The rest of the paper is as follows. Section II contains a brief
discussion of prior work and the necessary background. Section
III presents the proposed method, and Section IV discusses the
problem we analyzed and the dataset generation process. Section
V discusses the evaluation metric and presents the experimental
results. Finally, Section VI concludes the paper and presents a brief
overview of future work.

2 BACKGROUND
2.1 Prior Work
Utilizing ML for modeling a receiver is a very active area of research
as it solves multiple prevalent issues in the industry. Researchers
aim to solve two issues: decreasing the simulation time to perform
transient simulations and working around the complexity of devel-
oping IBIS-AMI models. Prior work falls into two major categories
to accomplish the above tasks: one that predicts eye-diagram char-
acteristics, and the other can predict waveforms and eye diagrams.

Kashyap et al. [6] do not explicitly model the receiver but deter-
mine the impact of channel parameters on the final eye diagram.
Specifically, they perform cross-correlation amongst the different
variables to remove redundant ones and streamline the learning
for an artificial neural network. Trinchero and Canavero [15] use
support vector machine (SVM) regression to predict the eye char-
acteristics given specific channel parameters. Lu et al. [11] extend
the work by demonstrating how a deep neural network (DNN) can
model a high-speed channel and its performance gains over SVM

regression for predicting eye characteristics. These studies though
valuable, are limited in terms of the results as predicting eye char-
acteristics only reveals information about 4 distinct points in the
eye-opening and not much more. The mentioned studies reduce the
problem’s dimension using domain knowledge or dimensionality
reduction and thus do not tackle the full-scale problem.

Other works look to model the receiver and its various compo-
nents to predict the transient waveform. Choi and Cheng demon-
strate a system identification (SID) approach for a high-speed serial
link and handle three cases: a backplane channel, a redriver, and
an active optical cable [3]. Each case creates individual models as
each case presents different parameters. Li et al. further the work
on the SID models by including the CTLE within a receiver using
nonlinear SID models and using PCC to determine which time
steps contribute toward inter-symbol interference (ISI) and disre-
gard other time steps [9, 10]. The latter work reconstructs an eye
diagram from the time series and demonstrates low error rates to
the ground truth eye characteristics by simulating millions of bits.
Though SID models have a significant advantage in faster training
than other methods, they suffer because each filter or channel con-
figuration requires an independent model, thus taking the same
training time as a deep learning (DL) model.

DL-models, especially recurrent neural networks (RNNs), promise
to effectively model the receiver’s transient. Nguyen et al. use an
RNN with long short-term memory (LSTM) cells to predict the
receiver behavior and further the work by modeling the impact of
non linearities introduced by the DFE [12, 13]. However, the studies
do not go beyond a single pulse response to model the receiver with
DFE taps and are forecasting future waveforms given a portion of a
waveform from a SPICE simulator. Kashyap et al. show how GANs
can predict receiver performance using an eye diagram; however,
they limit their work to a fixed tap setting [8].

A significant drawback with the current approaches is that they
are eye diagram based. As devices speed up, engineers refer to
BER plots and bathtub curves as a better metric to evaluate a high-
speed link, allowing them access to unique cases absent in an eye
diagram. Kashyap et al. shows how a cGAN can recover a BER
contour plot for varying DFE taps in a simulation environment [7].

2.2 Eye Diagrams and Bit-Error Rate (BER) Plots
Generally, engineers use eye diagrams, consisting of all possible
transitions overlaid on top of each other, to provide insight into
which transitions may present an issue or how jitter in the serial
link plays a role in determining the eye-opening. The open area of
the eye diagram is the region where one can sample the information
without any issues. In an eye diagram, the horizontal axis represents
the time, and the vertical axis represents the amplitude. Engineers
often want a large open eye, indicating low amplitude and timing
noise.

Though sufficient to relay information, it is impossible to capture
high bit-error rates, the number of bits that arrive at the receiver in
error per unit time, as low as 1 × 10−15 or 1 error in 1015 bits using
a sampling oscilloscope. As a result, many engineers use bathtub
curves and their 2D representations, BER contours plots, to measure
the performance of the link [1].
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Figure 1: BER contour plot and corresponding horizontal and
vertical bathtub curves.

Unlike eye diagram measurements, which require a sampling
scope, we obtain bathtub curves and their corresponding BER con-
tour plots by testing a device with a bit error rate tester (BERT).
The underlying sampling strategy used by a BERT enables the BER
contour plots to reveal edge cases, such as closed eyes that are
otherwise not possible by a sampling scope, thus demonstrating its
inherent advantage over the eye diagram [1]. In Figure 1, we show
a BER contour plot and how the horizontal and vertical bathtub
curves shown in black and pink, respectively, are embedded in the
contour plot. The dark region at the center is where one can sam-
ple the data effectively with low errors, whereas as we move out
towards the ends, the BERs increase as indicated by the green hue,
and finally, the errors become large as indicated by the yellow hue.

2.3 Generative Adversarial Network (GAN)
Generative adversarial networks are crucial in synthetic data gener-
ation, image translation, and anomaly detection. A GAN typically
consists of two modules: a generator that learns the distribution of
the dataset by generating samples similar to the ground truth and
a discriminator that distinguishes whether a sample presented to
it is from the dataset. Together the two modules play a min-max
game, where they try to outperform each other. Mathematically,
the training loss function is as follows:

𝐿GAN (𝐺, 𝐷) =E𝑥 [log𝐷 (𝑥)]
+E𝑧 [log(1 − 𝐷 (𝐺 (𝑧)))] , (1)

where 𝑥 represents samples in the dataset and 𝑧 is a random noise
vector from which the generator learns. The first term in the equa-
tion is the ability of the discriminator to distinguish samples over
the present in the dataset. The second term represents the ability
of the generator to fool the discriminator over all possible 𝑧 values.

cGANs are a variation of GANs where the generator’s output
is conditioned based on some known input, thereby making the
problem a supervised learning problem. Prior work has found that
passing the conditioning information to the discriminator increases
the quality of the generated outputs [5]. With this in mind, Equa-
tion 1 changes to handle a conditioning variable 𝑦 as follows:

𝐿cGAN (𝐺, 𝐷) =E𝑥,𝑦 [log𝐷 (𝑥 |𝑦)]
+E𝑥,𝑧 [log(1 − 𝐷 (𝐺 (𝑦, 𝑧) |𝑦))] . (2)

Specific to image translation tasks, having an additional ℓ1-loss
term which compares the ground truth BER plot to the generators’
improves the image quality. We weight the loss term by some factor
𝜆, which is a hyperparameter. Thus, the final equation to train the
cGAN is:

𝐿 = 𝐿cGAN (𝐺, 𝐷) + 𝜆ℓ1 . (3)

2.4 Gramian Angular Field (GAF)
Inspired by the prior work [4, 16] that encodes 1D time-series data
as 2D images and subsequently uses them for various tasks such as
classification and image translation, we do the same. In this work,
we convert the receiver input waveform measurement to a 2D im-
age representation, called a Gramian angular field (GAF) [16], and
use GANs to make the task an image-to-image domain translation
task. We use the GAF transform as it introduces new features not
present in the original time series representations [4]. The GAF
can effectively exploit the temporal correlation of the time-series
data, whereas other transformations, such as Markov transition
field (MTF), capture the transition dynamics instead [16]. Moreover,
the ability to model a receiver requires knowing the temporal rela-
tionship between different time steps to model the impacts of the
channel and ISI.

To implement a GAF, we rescale the time-series data such that
the newly scaled values lie in the [−1, 1] range. With the scaled
time series, we express it in the polar coordinate system by taking
the arccosine at each time step. At this point, one can construct
a Gramian angular sum field (GASF) by taking the cosine of the
trigonometric sum of each of the angles with each other. This
process generates a𝑚×𝑚 Gramian matrix, where𝑚 represents the
number of time steps used. The full Gramian matrix is shown below:

𝐺 =


cos(𝜙1 + 𝜙1) . . . cos(𝜙1 + 𝜙𝑛)
cos(𝜙2 + 𝜙1) . . . cos(𝜙2 + 𝜙𝑛)

.

.

.
. . .

.

.

.

cos(𝜙𝑛 + 𝜙1) . . . cos(𝜙𝑛 + 𝜙𝑛)


, (4)

where 𝜙𝑛 is the 𝑛th time step encoded in the polar coordinate
system.

3 METHOD
The Pix2Pix network [5], one of the prominent uses of a cGAN,
serves as our starting point. We use a similar U-Net-based generator
as the starting point but make modifications so that the model’s
output is conditional on the receiver input waveforms and the
tap configuration. The encoder network in the U-Net learns the
impact of the receiver waveform, whereas the decoder learns how
to reconstruct the BER contour plot from the low dimensional
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Figure 2: Discriminator architecture used for training all implementations. The discriminator takes in the concatenation of the
GASF, taps values (DFE and CTLE) and either the synthetic or ground-truth BER plot and outputs a local pixel map along with
a global prediction.

output of the encoder. The encoder model consists of convolution
layers to downsample the image, whereas the decoder consists of
ConvTranspose layers to upsample to the desired resolution. As the
output BER plots depend on the tap setting of the DFE and CTLE,
the model needs to be able to learn their impact. To accomplish
this, we add a fully connected network whose output combines
with that of the U-Net encoder. The decoder uses this combined
representation as an input for reconstructing the BER contour plot.
In this work, the U-Net encoder’s output is a 300-element vector,
and that of the tap network is a 40-element vector.

Figure 2 shows the discriminator model that we use in our
training. Unlike the PatchGAN discriminator used in the Pix2Pix
case, we opt to use a U-Net discriminator [14], which has a similar
architecture to the generator described above. By doing so, the
model predicts both the individual pixel level and an image level.
These two prediction levels enable the discriminator to focus on
global features and local details [14]. The global prediction gives a
simple binary classification to indicate whether the combination
of inputs is real or fake, whereas the local prediction is a binary
prediction on each pixel location. The global and local predictions
result from the input waveform, tap conditions, and the generated
or synthetic BER contour plot. The pink tap values correspond to
the CTLE tap, and orange corresponds to the DFE tap configurations.
There is a network at the bottleneck to make a global prediction,
and the decoder’s output is the local pixel prediction.

We further illustrate how having a U-Net discriminator enables
the generated BER plots to improve as training progresses in Fig-
ure 3. The generator uses the discriminator’s local and global pre-
dictions as feedback to modify its predictions for the next iteration.
However, we do not implement a hinge loss as a part of the training
and utilize the regular loss functions because the results thus are
sufficient for the task at hand.

Figure 3: Evolution of the discriminator’s local pixel predic-
tion through the training process showing the discrimina-
tor’s prediction over the output image as training progresses
showing the different regions that the discriminator believes
to be fake and how the generator uses that to minimize the
differences.

4 DATASET CREATION
4.1 Data Collection
We connect our transmitter to a channel emulator for the measure-
ments to configure different channel conditions with varying losses.
Then the transmitter sends a 15Gbps, pseudorandom bit stream
(PRBS)-15, and a scope (20 ps sampling resolution) captures the
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received waveform at the input to the receiver. With the preconfig-
ured CTLE–DFE tap setting, and other receiver tuning taps fixed,
the receiver’s sampler sweeps the threshold voltage/sampling clock
phase and generates the BER contour.

4.2 Data Preprocessing
We then randomly break up the original bitstream for each channel
condition for as many tap configurations that exist per channel.
After we split the receiver waveforms for each tap-BER present in
the dataset, we transform them into a GASF, one of the GAN inputs.
We limit the GASF generation to 256 timesteps because larger sizes
become harder to fit into memory and increase the GAN training
times. Due to the timestep limit, we further break each time series
into multiple windows with overlap between consecutive windows.
Thus, we can handle more extensive time series sequences and
maintain the temporal relationship between different windows–
Figure 2 further illustrates the different channels of the time series
being input into the model.

The BER contour plots captured by the tool are of a resolution of
330× 330, which we resize to 256× 256 image used by the GAN as a
target. To make the difference between different BER levels distinct,
we take log10 of the BER plot and replace the open eye area with a
positive value to allow for a gradual transition to areas where the
eye-opening is not feasible. The last step of the preprocessing is to
scale the data between [0, 1] to help with GAN converging to the
correct solution. Similarly, we scale each of the tap values so that
they are within the same interval.

5 EVALUATION RESULTS AND COMPARISON
5.1 Evaluation Metric
Previous work that recovers an eye diagram or BER contour vali-
dates its results by comparing the ground truth with eye-opening
characteristics or the horizontal bathtub curves at a single loca-
tion [7, 8]. However, our evaluation metric combines the two to
validate whether the eye-opening is correct and whether generated
contour plots are consistent. To confirm the results, we take a slice
of the BER contour plot at the center to get the horizontal and
vertical bathtub curves to evaluate along. Thus, final metric is as
follows:

𝐸𝑟𝑟 = 0.5 × 𝑅𝑀𝑆𝐸𝐶𝐻𝑅 + 0.5 × 𝑅𝑀𝑆𝐸𝐴𝐿𝐿, (5)

where the𝑅𝑀𝑆𝐸𝐶𝐻𝑅 is the root mean squared error for both the eye
height and width around the eye-opening and the 𝑅𝑀𝑆𝐸𝐴𝐿𝐿 is the
error for both the bathtub curves. As we cannot put the generated
results into the measurement scope to evaluate them, we create an
independent neural network trained on only the ground truth BER
contours and their corresponding eye characteristics, referred to as
a metric network. Then to show the similarity between the ground
truth and generated BER contour plots, we use the metric network
on the generated plot and determine how close its predicted eye
characteristics are to that of the ground truths.

5.2 Results
Figure 4 shows two sets of result from our test set for a high loss
channel (Figure 4a) and a low loss channel (Figure 4b). The first

Table 1: Real vs generated contour plot statistics

Eye Height Eye Width

% Error % Error

NN 0.70 0.85

Generated NN 1.59 1.12

(a) High Loss Channel

(b) Low Loss Channel

Figure 4: Results using the cGAN with the left indicating the
GASF input, middle representing the ground-truth and right
representing the cGAN-generated BER contour plot. The
consistency between plots reveals that the cGAN is capable of
handling different channel conditions, bitstreams and taps
conditions.

column in Figure 4 shows the first windowed receiver input rep-
resented as a GASF, the second column shows the ground-truth
BER plots and the final column shows the GAN generated contour
plot. Simply looking at the ground truth and generated plot, it is
difficult to tell the images apart. On closer inspection, though, the
regions around the eye-opening differ due to the image resizing to
the desired resolution. However, despite the difference, the overall
features for the images are present in the correct locations.

For the same cases, Figure 5 shows the corresponding bathtub
curves. The bathtub curves of the generated plot and the ground
truth curve show a high correlation, as the PCC of the two curves
is 0.993 across the test set. Additionally, the RMSE between the two
curves over the entire testing dataset is 0.032, indicating a good fit
for the generated plots.

As mentioned previously, we use a neural network, the metric
network, to evaluate specific eye characteristics, namely, eye height
and width. Table 1 show the NN’s ability to predict the charac-
teristics mentioned above on the ground truth BER plots and the
generated ones. The first row shows the metric network’s predic-
tion on the ground truth as the mean percent error and indicates a
good fit for the model. The subsequent row shows the metric net-
work’s prediction on the generated plots. We observe that the eye
characteristics of the generated plots using the metric network are
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(a) High Loss Channel

(b) Low Loss Channel

Figure 5: Horizontal and vertical bathtub curves from the
BER contour plots shown in Figure 4. The accurately pre-
dicted bathtub curves demonstrate that the cGAN recovers
BER plots where the underlying data is significant.

close to the ground truth and do not significantly increase errors.
Furthermore, using the metric discussed in Section 5.1, we find the
combined RMSE score on the test set to be 0.039, which indicates a
good fit over the eye-opening as well as the bathtub curves along
the center.

6 CONCLUSION
This paper presents a data-driven approach to modeling a high-
speed SerDes receiver with the help of a cGAN.We demonstrate the
model’s ability to handle different bitstreams, channel conditions,
and DFE and CTLE tap configurations. We show that the generated
BER contour plots match the ground-truth BER plots visually, and
both the vertical and horizontal bathtub curves at the center of
each axis show a high correlation. Moreover, we analyze the eye
characteristics with respect to the ground-truth BER plots and show
that they are within 1.59% and 1.12% of the ground-truth eye height
and width, respectively. The impact of signaling issues such as
crosstalk and jitter can be explored in future work. Another avenue
of exploration is related to whether an existing model can handle
cases for different modulation schemes, namely, PAM-4 and NRZ.
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