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ABSTRACT
Bayesian optimization (BO) samples points of interest to update

a surrogate model for a blackbox function. This makes it a powerful
technique to optimize electronic designs which have unknown ob-
jective functions and demand high computational cost of simulation.
Unfortunately, Bayesian optimization suffers from scalability issues,
e.g., it can performwell in problems up to 20 dimensions. This paper
addresses the curse of dimensionality and proposes an algorithm
entitled Inspection-based Combo Random Embedding Bayesian
Optimization (IC-REMBO). IC-REMBO improves the effectiveness
and efficiency of the Random EMbedding Bayesian Optimization
(REMBO) approach, which is a state-of-the-art high dimensional
optimization method. Generally, it inspects the space near local
optima to explore more points near local optima, so that it miti-
gates the over-exploration on boundaries and embedding distortion
in REMBO. Consequently, it helps escape from local optima and
provides a family of feasible solutions when inspecting near global
optimum within a limited number of iterations.

The effectiveness and efficiency of the proposed algorithm are
compared with the state-of-the-art REMBO when optimizing a
mmWave receiver with 38 calibration parameters to meet 4 objec-
tives. The optimization results are close to that of a human expert.
To the best of our knowledge, this is the first time applying REMBO
or inspection method to electronic design.

CCS CONCEPTS
• Hardware→ Electronic design automation; Integrated cir-
cuits; Wireless devices; Emerging tools and methodologies; • Soft-
ware and its engineering → Search-based software engineering;
• Computing methodologies → Bayesian network models;
Factorization methods; •Mathematics of computing→ Bayesian
computation; Solvers.
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1 INTRODUCTION
Bayesian optimization (BO) is a sample-efficient method for ex-

pensive unknown function optimization, which makes it a useful
method in many ubiquitous problems such as circuit design opti-
mization [9, 19, 21], machine learning[1, 17], computer graphics and
visual design[2]. Bayesian optimization consists of two parts: acqui-
sition function and a surrogate model (e.g., Gaussian process(GP)).
The framework of BO consists of three iterative phases: 1) Based
on beliefs about the behavior of the objective function, the acquisi-
tion function[17](e.g., maximum probability of improvement (MPI),
expected improvement (EI) and upper confidence bound (UCB))
samples the point of interest; 2) Send sample to evaluator (objective
function, f ) to get feedback; 3) The surrogate model augments the
[sample, feedback] and updates the model for sampling next sample
of interest iteratively until reaching maximum number of iterations.

Although BO is a powerful method, it suffers from scalabil-
ity issues[5, 8, 22], e.g., it performs well in problems up to 10-20
variables[12, 13]. As the number of optimization dimension in-
creases, the computational complexity of covariance matrix inver-
sion (the precision matrix) and the evaluation of the acquisition
function at different points increase exponentially[16].

The improvements in Bayesian optimization have been demon-
strated solving higher dimensional problems, including rerepre-
senting original dataset using low intrinsic dimensions (random
embedding BO (Fig. 1) [14, 22], Subspace Identification Bayesian
Optimization (SI-BO) [5], Sparse BO (or sparse Gaussian processes
(SGPs)[15]), Sliced Inverse Regression BayesianOptimization(SIRBO)
[23], Hashing enhanced Subspace BO (HeSBO)[13], Non linear em-
beddingmethod [11]), objective function decomposition[8], dropout
strategy[7]. Recently, BO has been applied to high dimensional ana-
log design optimization. In [20], authors use an ensemble/bagging
method for analog sizing. The proposed approach uses an ensemble
of GP models to approximate the objective and constraint functions
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locally in the search space. Unlike mainstream BO approaches, this
method is able to traverse high dimensional problems with ease
and provide multiple query points for parallel evaluation. However,
it may not be feasible for high-correlation/ nonconvex problems
and needs to query many points for a number of GP models, which
can be computationally expensive. Similar work has also been done
in [18]. Authors proposed Bayesian Optimization with Deep Par-
titioning Tree (DPT-BO) for high-frequency design optimization.
However, it needs additive process and components. Among these

Figure 1: Random EMbedding Bayesian Optimization
(REMBO): This 2-D function only has 1 important dimen-
sion. After embedding 2-D to 1-D space (the blue embedding
line), it would be more efficient to search for the optimum
along the 1-D embedding than in the original 2-D space[22].

methods, Random EMbedding Bayesian Optimization (REMBO)
does not need any sensitivity analysis steps or additive structures.
[22] demonstrates REMBO on non-circuit problems with up to
47 dimensions. The key idea in REMBO is that even large dimen-
sional problems can be remapped to fewer effective dimensions and
then solved directly (Fig.1)[22]. These effective dimensions can in-
clude combinations of the original dimensions. These reduced order
effective dimensions are discovered by trying multiple random em-
beddings (i.e. mappings of the higher dimensional space to the low
dimensional space). REMBO solves three problems. First, it elimi-
nates the need for humans to do a sensitivity analysis and eliminate
dimensions manually. Such human steps require detailed knowl-
edge of both the algorithm and circuit, a rare combination. Second,
REMBO is not restricted to cases where the final axes for the dimen-
sions are aligned with those in the original problem. For example,
there might be a problem where the objective function is not sensi-
tive to R1 and R2, as long as R1 and R2 track each other. REMBOwill
discover that, and eliminate one original dimension through dimen-
sional remapping, e.g., 𝑟𝑎𝑛𝑑𝑜𝑚𝑚𝑎𝑡𝑟𝑖𝑥 (2×1) ·𝑠𝑎𝑚𝑝𝑙𝑒 ( 𝑦1 ) =

(
𝑅1
𝑅2

)
,

so that the 2-D problem can be converted to a 1-D problem. REMBO,
therefor, has potential to discover dimensional remappings through
recombinations that human guided sensitivity analysis could not.
Third, REMBO has theoretical guarantees as to the probability of
success[22].

Fig. 2 shows the work flow of using optimizer, e.g., BO or REMBO
to find the best design (including transistor sizes, inductance, ca-
pacitance, etc.) for a given analog circuit topology. The optimizer
can also be applied to different IPs by switching the available sam-
pling strategies and surrogate models in optimizer, e.g., random
forest, Gaussian process model. First, the optimizer samples a sam-
ple vector, 𝑋𝑠𝑎𝑚𝑝𝑙𝑒 based on sampling strategies. Then, 𝑋𝑠𝑎𝑚𝑝𝑙𝑒

is multiplied by a random matrix 𝐴 to project 𝑋𝑠𝑎𝑚𝑝𝑙𝑒 to a high

dimension space that aligned with true dimensions, i.e., number
of tuning parameters of the circuit. After this random embedding
process, the embedded vector is used to modify a pre-generated
ocean file. The modified ocean file is sent to the simulator to get a
weighted value of multi-performance indicators for optimizer to
update the sampling function and sample the next interested sam-
ple, iteratively. After it reaches the maximum number of iterations
of optimization, optimizer provides the best solution.

Figure 2: The Process of Applying REMBO on a Circuit De-
sign.

Although REMBO is a simple method to optimize high dimen-
sional problems, its efficiency is low due to both embedding dis-
tortion and the over-exploration of boundary issues. Since in high
dimensions data points typically lie mostly on the boundary, and
anyways far away from each other, the predictive variance tends
to be higher in the regions near the boundary. This is a waste of
computation effort assuming the global minimum is not on the
boundary[10]. The global optimum may fall outside of the bound of
box. Sometimes REMBO needs to try different random embeddings.

2 THE PROPOSED INSPECTION-BASED
COMBO REMBO (IC-REMBO)

To mitigate the influence of over-exploration on boundaries and
random embedding distortion in REMBO, inspired by [3], we im-
prove on [22] by combining REMBO with a new local-inspection
method. The idea is that a separate optimizer inspects new opti-
mum (e.g., newminimizerwith lower value among existing samples)
around the local optimum when running REMBO (main optimizer).
If the inspection finds a new minimizer or reaches a maximum
number of inspection iterations, then stop the inspection, and the
inspection result, e.g., new minimizer is used to update the REMBO
to sample next point. This has two effects. First, instead of lowering
efficiency by asking and evaluating favored samples on boundaries,
the local inspection focuses more on local optimum/promissing
region that predefined sampling strategy may not cover, assuming
most local optima are not on boundaries. If the total number of
iterations for both inspection and REMBO is fixed, it would be
more efficient and/or effective by increasing exploration near local
optimum and reducing over-exploration near boundaries. Second,
it mitigates the random embedding distortion issue of REMBO.
Consequently, it helps escape from local optima in nonconvex opti-
mization problem in electronic design [6, 14]) and provides a family
of feasible solutions near global optimum. However, the inspection
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Algorithm 1 IC-REMBO
Input: 𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔_𝑠𝑖𝑧𝑒𝑠, 𝑅_𝑙𝑜𝑐𝑎𝑙, 𝑁 , 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑖𝑒𝑠, 𝑛𝑜𝑖𝑠𝑒
Output: model
for 𝑡 = 1, 2, . . . , 𝑁 do

Sample new point 𝑦𝑡+1 using acquisition function
Query the feedback = 𝑓 ( 𝑟𝑎𝑛𝑑𝑜𝑚𝑚𝑎𝑡𝑟𝑖𝑥 𝐴 × 𝑦𝑡+1) ⊲

integrated with simulator
Augment 𝐷𝑡+1 = {𝐷𝑡 , (𝑦𝑡+1, 𝑓 𝑒𝑒𝑑𝑏𝑎𝑐𝑘)}
Update the main kernel (Kl) hyper-parameters
while new local_opt & < 5 times do ⊲ start inspection

𝑛𝑒𝑤_𝑖𝑛𝑠𝑝𝑒𝑐𝑡_𝑟𝑎𝑑𝑖𝑢𝑠 = 𝑅_𝑙𝑜𝑐𝑎𝑙 + 𝑠𝑐𝑎𝑙𝑒
for 𝑖 = 1, 2, . . . , 15 do

Sample new 𝑠𝑖+1 using acquisition function
Query the feedback
Augment 𝐷

′
𝑖+1 = {𝐷 ′

𝑖
, (𝑠𝑖+1, 𝑓 𝑒𝑒𝑑𝑏𝑎𝑐𝑘)}

Update the inspection kernel (𝐾𝑙
′
)

Augment 𝐷 = {𝐷𝑡+1, 𝐷
′
𝑖+1}, and update 𝐾𝑙

end for
end while

end for

takes part of total search cost no matter grid search or random
search. How to reduce the inspection cost? To escape from a lo-
cal optimum, the inspection radius (R) on each dimensions in the
search space needs to exceed the threshold calculated from objec-
tive function decomposition[3]. When R is small, the inspection is
cheap but less likely to find the global optimum; close to the global
optimum, however it is not easy to escape from local optima so a
larger R is required. [3] uses a block-wise method to separate search
into small blocks to avoid high inspection complexity, however, this
is inefficient and/or ineffective for large intrinsic dimensions. For
example, if the inspection optimizer is BO using GP model, the
complexity of calculating covariance matrix inversion to update
acquisition function would be 𝑂 (𝑛3), where n is the dimension
size. If we reduce dimensions in inspection, the inspection complex-
ity would be exponentially reduced. Thus, we may use a second
REMBO within the inspection to reduce the inspection dimension
and complexity. (Alg. 1). Thus, we entitle the proposed method
Inspection-based Combo REMBO (IC-REMBO).

Fig. 3 shows how the IC-REMBO works using a 2-D example
problem: In main REMBO optimization (REMBO 1), the red line
represents the low dimension domain, y where implements the
REMBO optimization over; the blue line is the projection of 1-D em-
bedded in 2-D dimension through multiplying the acquired point in
low dimension with a random matrix A, i.e., 𝑟𝑎𝑛𝑑𝑜𝑚𝑚𝑎𝑡𝑟𝑖𝑥 (2×1) ·
𝑠𝑎𝑚𝑝𝑙𝑒 ( 𝑦1 ) =

(
𝑅1
𝑅2

)
, where (R1, R2) is the point in true 2-D space;

IC-REMBO samples point in one dimension, 𝑦1 then multiplies it
with a predefined random matrix. After converting low dimension
point, 𝑦1 to (𝑅1, 𝑅2), the point is rounded within boundaries and
sent to the simulator (e.g., Cadence Spectre simulation platform)
to get the feedback for prior model update and sequential points
acquisition. As long as the REMBO 1 finds a local optimum, the
REMBO 2 starts to inspect local minimizer within a defined inspec-
tion radius (a smaller y) and update the kernels in both REMBO 1

Figure 3: The Proposed Method in Circuits Design:
Inspection-based Combo REMBO (IC-REMBO). Note: The
minimizer inspection space, the smaller y (s space) is a ’sub-
space’ of y space. Smaller y (s space) is defined by: 1. A smaller
boundary on each dimension, 2. Reduced dimensions using
embedding (e.g., true dimension 𝜒 size is 38; optimizer is sam-
pling on a 10-dimension space, 𝑦; the inspection sampling
space, 𝑠 size is 4. I and A are the random matrices: 𝐴 · 𝑦 ∈ 𝜒 ,
𝑚𝑖𝑛(𝑙𝑜𝑐𝑎𝑙 ± 𝑟𝑎𝑑𝑖𝑢𝑠,𝐴 · (𝐼 · 𝑠)) ∈ 𝜒). The vector in 𝜒 is send to
objective function/simulator to get feedback. The samples in
inspection optimizer (REMBO 2) can be used to update main
optimizer (REMBO 1)’s surrogate model.

and REMBO 2. The true kernel is approximated by the REMBO 1
kernel kl.

3 EXPERIMENT RESULTS
We demonstrate the effectiveness and efficiency of the proposed

algorithm by comparing to state-of-the-art REMBO when optimiz-
ing a direct conversion mm-Wave receiver[4]. Fig. 4 shows the the
schematic of receiver core with 38 calibration parameters (such as
transistor sizes, inductor and capacitor values, feedback resistance,
bias and supply voltages, etc.), 32 components, and 2 constraints.
The 4 goals are high bandwidth, high conversion gain, high linear-
ity (IIP3), and low noise figure. In the REMBO, the GP model and
EI acquisition function are used empirically. We set the inspection
radius at local optimum in an adaptive way. If the inspection es-
capes from local optimum, the R increases from initial value until
reaching a pre-defined maximum number of inspection iterations,
e.g., 5 times. If the inspection cannot find new optimum, then stop
the inspection to save time. The optimization is integrated with the
Cadence Spectre Simulation Platform.

To demonstrate the effectiveness of this approach, Table 1 com-
pares optimization results guided by a human expert, REMBO, and
the proposed IC-REMBO, all at 30 GHz. The last two rows in Table
1 are results for the proposed method after 20 and 27 iterations of
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Table 1: The Comparisons of Optimization Results of a mm-Wave Receiver with 38 Parameters

Main
Embeded

Inspection
Embeded

Bandwidth
(MHz)

Gain
(dB)

IIP3
(dBm)

Noise Figure
(dB)

Total
(weighted) NO. Iterations

Simulation (Human) N/A N/A 650 22.77 -6.9 5.57 0.195 N/A
REMBO 38->38 N/A 970 27.50 -13.34 3.70 0.242 5

1 REMBO + Inspection 38->38 38->4 775 26.24 -6.87 5.38 0.248 76
2 REMBO + Inspection (Proposed) 38->10 10->4 695 23.52 -1.72 6.07 0.264 20
2 REMBO + Inspection (Proposed) 38->10 10->4 750 23.83 0.71 6.28 0.304 27

Figure 4: The Schematic of the Sample Problem: Optimize a
Direct Conversion mm-Wave Receiver [4].

Bandwidth Gain

IIP3
Noise

ICREMBO optimization results

Figure 5: The Simulation Results with Optimized 38 Parame-
ters.

optimization. IC-REMBO provides the best solution, a weighted re-
sult of 4 goals, 0.304. Compared with pre-tapeout simulation results
from a human designer, the bandwidth increased from 650 MHz to
750 MHz (15.38%), and the gain increased from 22.77 dB to 23.83 dB.
Note that IIP3 (with RF tones at 25 MHz and 35 MHz offset from
local oscillator) can be improved from -6.9 dBm to 0.71 dBm with
only a 0.5 dB increase noise figure (Fig. 5). The power consumption
is 82.5 mW, also lower than that of human designer, 90 mW. The
efficiency of the proposed IC-REMBO is compared with REMBO by
optimizing the same receiver design. We find that REMBO needs

to try many different embeddings and struggles to obtain a satis-
factory solution until we try a special case of embedding from 38
dimensions to 38 dimensions. Though this special case generates a
relatively good result after trying several different embeddings, the
weighted resultis low. The efficiency of sampling and possibility of
covering promising region is negative influenced by the boundary
over-exploration and embedding distortion issues. The proposed
IC-REMBO does not need to try as many embeddings and can get
a family of feasible solution after 27 optimization iterations.

Figure 6 demonstrates the effectiveness of inspection in IC-
REMBO by showing one try of optimizing the mmWave receiver.
Before inspection, the values of bandwidth remains at 0 MHz. As
inspection starts, it starts to generate feasible solutions. The band-
width increases gradually from 0 MHz at beginning of the optimiza-
tion to/above human optimization result, 650 MHz with balanced
other 3 objective goals (using weighting method). Assuming that
circuit performance nearby the optimum does not vary widely,
like human expert, IC-REMBO intelligently tunes selected dimen-
sions slightly during inspection. After the inspection is finished,
the optimization jumps out of local optimum (that is, it finds a new
optimum) and provides a number of feasible solutions that better
than human expert simulation results (see Table 1). In this way the
tool quickly finds a point approximating the global optimum point
(close to expert simulation results) by inspecting promising regions.

Figure 6: The Optimization Results vs Iterations
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4 CONCLUSIONS
Bayesian optimization is a powerful method in solving many

ubiquitous problems. However, it suffers from scaling to high di-
mensions. Expanding Bayesian optimization to high dimensions is
of great practical interest. In this paper, the IC-REMBO algorithm is
proposed. IC-REMBO improves the high dimensional optimization
method, REMBO by using a new local-inspection method. To the
best of our knowledge, it is the first time to apply REMBO or local
inspection to electronic design. The effectiveness and efficiency are
demonstrated by comparing with the state-of-the-art optimization
approach when optimizing a mm-Wave receiver with 38 calibration
dimensions to meet 4 goals successfully.
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