
Exposing Side-Channel Leakage of SEAL Homomorphic
Encryption Library

Furkan Aydin
Department of Electrical and Computer Engineering

North Carolina State University
Raleigh, NC, USA
faydn@ncsu.edu

Aydin Aysu
Department of Electrical and Computer Engineering

North Carolina State University
Raleigh, NC, USA
aaysu@ncsu.edu

ABSTRACT
This paper reveals a new side-channel leakage of Microsoft SEAL
homomorphic encryption library. The proposed attack exploits
the leakage of ternary value assignments made during the Num-
ber Theoretic Transform (NTT) sub-routine. Notably, the attack
can steal the secret key coefficients from a single power/electro-
magnetic measurement trace. To achieve high accuracy with a
single-trace, we build a novel machine-learning based side-channel
profiler. Moreover, we implement a defense based on random delay
insertion based defense mechanism to mitigate the shown leakage.
The results on an ARM Cortex-M4F processor show that our attack
extracts secret key coefficients with 98.3% accuracy and random
delay insertion defense does not reduce the success rate of our
attack.

CCS CONCEPTS
• Security and privacy → Side-channel analysis and counter-
measures .

KEYWORDS
Homomorphic encryption; SEAL; number theoretic transform; side-
channel attacks; machine learning
ACM Reference Format:
Furkan Aydin and Aydin Aysu. 2022. Exposing Side-Channel Leakage of
SEALHomomorphic Encryption Library. In Proceedings of the 2022Workshop
on Attacks and Solutions in Hardware Security (ASHES ’22), November 11,
2022, Los Angeles, CA, USA. ACM, New York, NY, USA, 6 pages. https:
//doi.org/10.1145/3560834.3563833

1 INTRODUCTION
Fully homomorphic encryption (FHE) allows arbitrary computa-
tions on encrypted message without the need for decryption [13].
FHE is useful, e.g., for cloud computing where the untrusted cloud
can compute on encrypted data and the user, who holds the se-
cret key, can decrypt the returned result. Therefore, HE preserves
the privacy and confidentiality of data while allowing computa-
tions in untrusted environments. Although FHE is an evolving

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ASHES ’22, November 11, 2022, Los Angeles, CA, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9884-8/22/11. . . $15.00
https://doi.org/10.1145/3560834.3563833

approach with mathematically provable security guarantees, their
physical implementations can have vulnerabilities. For example,
the first successful side-channel attack on FHE [2] has recently
been demonstrated, revealing the encrypted message by exploiting
the side-channel leakage of Gaussian sampling operations.

In this work, we reveal a new side-channel vulnerability of Mi-
crosoft SEAL—an FHE software library [28]. SEAL has recently
gained significant recognition in the literature and has been used
in many applications [3, 10, 20]. Our attack focuses on the Number
Theoretic Transform (NTT) function of SEAL executed during the
key generation. We first show that the NTT processes ternary val-
ues (-1, 0, or +1) that correspond to the secret key coefficients. Then,
we build a side-channel attack that can extract this information
from NTT operations. The challenge in attacking this stage is being
limited to a single-trace measurement. We address this challenge
by developing a multi-stage neural network based side-channel
classifier. Finally, we implement a defense based on random de-
lay insertion for the NTT and assess its effectiveness against our
single-trace attack.

Our work is different from earlier single-trace side-channel at-
tacks on the NTT [10, 18, 23, 25]. The timing leakage analysis
by Drucker et al. achieve a low success rate of 9% [10] because
the attack only focuses on branch executions of butterfly in NTT.
This attack is inapplicable to SEAL because its butterfly unit is
constant-time. Kim et al. propose an ML-based side-channel attack
on NTT [18]. The attack exploits Montgomery reduction opera-
tion that does not exist in SEAL’s NTT. Primas et al. abuse timing
side-channel leakage from DIV instruction used to perform modular
reduction—this vulnerability is also absent in SEAL [25]. Pessl et
al. improve the attack of Primas et al. [23]. This attack may target
constant-time NTT implementations as in SEAL but scales inef-
ficiently for large polynomials used in FHE. Our proposed attack
is simpler and more efficient compared to this attack because it
specifically targets ternary value assignments.

The proposed attack is also different from the earlier single-trace
analysis of FHE [2] because the earlier attack focuses on an op-
eration that is replaced in SEAL v3.6. By contrast, our target is
another operation and it is shown on the latest version of SEAL to
date (v4.0). Moreover, our single-trace attack is fundamentally dif-
ferent from multi-trace attacks, which can target FHE’s decryption
operations. We do not address such attacks on decryption in this
study since they are relatively straightforward extensions of the
recent multi-trace analysis of lattice-based cryptography [27, 29].
Single-trace attacks are known to break defenses such as masking
that are built for such multi-trace attacks [25].

A summary of our contributions is as follows.

 

95

https://doi.org/10.1145/3560834.3563833
https://doi.org/10.1145/3560834.3563833
https://doi.org/10.1145/3560834.3563833
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3560834.3563833&domain=pdf&date_stamp=2022-11-07


ASHES ’22, November 11, 2022, Los Angeles, CA, USA Furkan Aydin and Aydin Aysu

• We reveal a new single-trace side-channel leakage of SEAL.
We show the processing in NTT function leaks information
about the ternary values that can lead to recovering the
secret keys in FHE. This vulnerability exists in the latest
version (v4.0) of SEAL as of date.

• To effectively extract the side-channel information from a
single-trace measurement, we propose a two-stage neural
network based side-channel profiler. We use two distinct
ML classifiers and ensemble results by multiplying guessing
scores to improve the guessing success.

• We perform the proposed attack on the ARM Cortex-M4F
running SEAL software. The results show that our proposed
attack extracts each secret key coefficient with 98.3% accu-
racy.

• We evaluate random delay insertion countermeasure. We
show that random delay insertion defense is susceptible to
attacks.

The remainder of the paper is organized as follows. Section 2
provides the background information about FHE, NTT, and our
threat model. Section 3 then introduces the proposed ML-based
side-channel attack. Section 4 evaluates attack results and coun-
termeasures. Subsequently, Section 5 discusses drawbacks of our
attack. Finally, Section 6 concludes the work.

2 PRELIMINARIES
This section provides background information about the FHE, NTT,
and threat model.

2.1 Fully Homomorphic Encryption (FHE)
FHE schemes are characterized by four primary functions: key gen-
eration, encryption, evaluation, and decryption. The key generation
generates secret, public, and evaluation keys. The encryption uses
the public key to encrypt user’s message. The evaluation takes
the encrypted message and the evaluation key to perform homo-
morphic operations over the encrypted message. The encrypted
messages can be processed by others who do not know the se-
cret key. Decryption takes the secret key and evaluation output to
recover the message.

There are various software and hardware implementations of
FHE such as SEAL [28], SEAL-Embedded [22], HElib [14], HEAAN
[6], and PALISADE [24]. We specifically focus on SEAL which is
compatible with SEAL-Embedded—the first FHE library targeted for
embedded devices. While SEAL can support BFV [11] and CKKS [6]
schemes of FHE, SEAL-Embedded only supports the CKKS scheme.
In this work, our target scheme is CKKS since it is supported by
both SEAL and SEAL-Embedded libraries.

CKKS scheme of FHE is constructed based on the Ring Learning
with Errors (RLWE) problem [6]. An RLWE sample b = as+e is built
by sampling a from Rq (which is the residue ring of R modulo q),
noise e sampling over R, and secret key s is chosen from a key
distribution over R. In SEAL’s CKKS scheme, R3 is used as secret
key distribution. In other words, the secret key is produced from a
ternary distribution sampling over {−1, 0, 1}n where modulus n is
to be the power of two. This generated secret key is then converted
to the NTT domain before performing decryption operations.

Figure 1: The first few stages of the NTT. Each stage of NTT
consists of multiple butterfly operations. Twiddle factors
𝜔 are constant in each stage. NTT inputs of SEAL’s CKKS
scheme can be 0, 1, or q-1.

SEAL and SEAL-Embedded have several parameter settings [22,
28]. In this paper, we have targeted 128-bit security level and n =
4096 which is the default setting of SEAL-Embedded.

2.2 Number Theoretic Transform (NTT)
NTT is basically a form of Fast Fourier Transform (FFT) over finite
field. It is used to improve the performance of polynomial multi-
plication. Its representation is denoted as x̂ = NTT(x) ∈ Znq where
x = (x0,...,xn-1) ∈ R𝑞 denotes vectors of polynomials over Rq. Its
formulation is x̂𝑖 =

∑𝑛−1
𝑗=0 x 𝜔

𝑖 𝑗 where 𝜔 is fixed n’s primitive root
of unity. The powers of 𝜔 are called twiddle factors. In our target
library configuration, modulus degree n is 4096. SEAL has 4 prime
modulus using n = 4096 for key generation. Prime modulus (q) is
109 (30 + 30 + 30 + 19) bits and its coefficient values are 0x3ED00001,
0x3ED30001, 0x3ED60001, and 0x66001.

Although secret key coefficients can be equal to -1, 0, or 1, these
values are converted to {0, 1, q-1} form before NTT operations. SEAL
use primes at most 30-bits; therefore, NTT inputs can be equal to 0,
1, or 0x3ED00000.

Fig.1 illustrates the first few stages of NTT. NTT consists of log2 𝑛
stages. In each stage, there are butterfly operations that consist of
modular multiplication, addition, and subtraction. SEAL uses the
Harvey butterfly structure instead of Cooley-Tukey (CT) [7] and
Gentleman-Sande (GS) [12].

2.3 Threat Model
This work presents an attack on the NTT operation of SEAL CKKS
scheme’s key generation to extract secret key coefficients which
are invoked by NTT. Our threat model assumes that SEAL’s key
generation is performed by the victim’s device and the adversary
has access to this device. Therefore, the adversary can capture
multiple power traces for building a profile of the leakage. We
also assume that the adversary knows the executed SEAL code’s
version and its parameters. Therefore, the adversary can build ML
models offline by configuring the device with different keys. During
the attack, however, the adversary tries to extract the secret key

 

96



Exposing Side-Channel Leakage of SEAL Homomorphic Encryption Library ASHES ’22, November 11, 2022, Los Angeles, CA, USA

1 void transform_to_rev
2 (ValueType *values , int log_n ,
3 const RootType *roots ,
4 const ScalarType *scalar = nullptr) const{
5 size_t n = size_t (1) << log_n;
6 RootType r;
7 ValueType u, v;
8 ValueType *x = nullptr;
9 ValueType *y = nullptr;
10 std:: size_t gap = n >> 1;
11 std:: size_t m = 1;
12 ...
13 for (std:: size_t i = 0; i < m; i++){
14 r = *++ roots;
15 x = values + offset;
16 y = x + gap;
17 for (std:: size_t j = 0; j < gap; j+=4){
18 u = arithmetic_.guard(*x);
19 v = arithmetic_.mul_root (*y, r);
20 *x++ = arithmetic_.add(u,v);
21 *y++ = arithmetic_.sub(u,v);
22 ...
23 }
24 offset += gap << 1;
25 }
26 ...
27 }

Figure 2: SEAL’s NTT implementation. The highlighted code
lines show the lines we target.

using only a single-trace that is captured from the victim’s device.
Since the key generation will occur only once for each session, the
adversary is limited to a single power measurement.

3 THE PROPOSED ATTACK
This section presents the proposed attack and related challenges.
We discuss target operations and demonstrate vulnerabilities within
the implementation of the target operations.

3.1 Target Operations and Vulnerabilities
Our proposed attack focuses on the NTT which takes SEAL’s secret
key as input and converts them to the NTT domain during the key
generation of FHE. Fig.2 shows the related code scripts of SEAL’s
NTT implementation. x and y pointers correspond to secret key
coefficients and r value corresponds to the twiddle factors. The inner
loop performs the butterfly operations of NTT. In each iteration of
the inner loop, 4 butterfly operations are executed. The gap value
is initially equal to 2048 for SEAL’s NTT with n = 4096. Therefore,
there are 2048 butterfly operations in each stage of NTT. The first
arithmetic operation of NTT is modular reduction operation—guard
which is shown in line 18 of Fig.2. x input coefficients first go
through the guard function in line 18 of Fig.2. It contains a simple
conditional statement that checks whether x input is greater than
two times modulus (2q) or not. If the x coefficient is greater than 2q,
it performs a reduction. However, NTT inputs are always in {0, 1, q -
1}< 2q in the first stage of NTT. Therefore, this guard operation does
not change the input values. After the guard operation, y coefficient
and twiddle factor (r) go through mul_root function in line 19 of
Fig.2. The twiddle factors are public values and pre-calculated before

Figure 3: (a) An example of averaged power trace corresponds
to an addition operation in the butterfly operation, (b) prin-
cipal component analysis (PCA) scores for power traces with
the samples from 200 to 350 corresponds to addition opera-
tions, (c) PCA scores for power traces with samples from 200
to 350 corresponds to subtraction operations.

the NTT operations. Also, they are smaller numbers in the first few
stages of the NTT. Since the twiddle factor is updated outside of the
inner loop, it is constant in the inner loop. After the multiplication
of the twiddle factor and y coefficient, the outputs (u and v) of guard
and multiplication operations go through addition and subtraction
operations in line 20 and 21 of the Fig.2, respectively.

Since NTT’s input coefficients can be 0, 1, or q-1, there are only
9 possible input pairs (i.e., cases). For both addition and subtraction
operations, their inputs (u and v) in lines 18 and 19 of the Fig.2
depend on NTT’s inputs (x and y). Hence, there are 9 distinct inputs
for both addition and subtraction operations. However, the inputs
of multiplication operation do not depend on x coefficient. There-
fore, the identification of NTT’s input pairs by analyzing power
measurement corresponding to multiplication operation is not pos-
sible. Our proposed attack targets only addition and subtraction
operations which are highlighted in red color in the Fig.2.

3.2 Determining Point of Interest (POI) Regions
A major challenge in performing our proposed attack is finding the
points of interest (POI) region of addition and subtraction opera-
tions of each butterfly of NTT. To identify POI regions, we use ML
and pre-processing techniques.

Our attack first divides traces into small sampling windows. Each
window contains a fixed portion of trace samples and they are la-
beled as 0 or 1 depending on whether it includes sample points
corresponding to the power samples of addition and subtraction
operation or not. Power samples in each window and their cor-
responding labels are fed to the ML for the training. During the
test, power samples in each window are fed to our ML classifier
in their natural sequence to identify POI regions corresponding to
sequential arithmetic operations of NTT. Then, Pearson correlation
coefficient [4] is used to validate POI regions.

The number of power samples in each window affects ML re-
sults. When the window size is smaller than the power samples

 

97



ASHES ’22, November 11, 2022, Los Angeles, CA, USA Furkan Aydin and Aydin Aysu

Figure 4: ML pipeline. Two distinct ML classifiers take the
power measurements corresponding to the addition and sub-
traction operations in the NTT. The estimated results are
then ensembled to predict the NTT’s secret key coefficients.

corresponding to the target arithmetic operations, at least one cor-
rect guess for the guess of target trace samples can be determined.
Therefore, we select the window size as 1000 for both addition and
subtraction operations.

3.3 Exploiting Side-Channel Leakages
The power consumption of the processed data depends on the inputs
and operations. To perform a side-channel attack, the adversary
needs to model the power consumption of the device. Themost well-
known power models are Hamming weight, Hamming distance,
and identity. According to the used model type, labels of power
consumption data can be different. Since there are only 9 possible
input pairs of the NTT, we used the identity model and labeled data
from 1 to 9.

Fig.3-(a) shows an example of averaged power traces for all 9
input cases of the addition operation. The red dashed rectangle—
power samples from 200 to 350 in the Fig.3-(a) indicates the highest
leakage points—in other words, the power consumption difference
for different cases in this region is highest. We use PCA [16] to see
the variation of 9 different input pairs. Fig.3-(b) and (c) show the
principal component analysis (PCA) scores for power traces with
samples from 200 to 350 corresponding to addition operations and
subtraction operations, respectively. Different colors indicate that
data for each pair are grouped in a specific region which means it
is not impossible to identify all input pairs statistically.

Our ML-based attack takes the whole power consumption trace
corresponding to the target addition and subtraction operations
rather than a specific portion of trace, automatically analyzes all
samples of traces and distinguishes the power traces for all 9 cases.

3.4 Ensembled ML-based Side-Channel Attack
Our proposed attack uses two distinct ML classifiers to estimate
input pairs of NTT separately for the addition and subtraction oper-
ations. Fig.4 shows our ML pipeline. Each ML classifier takes power
traces corresponding to addition and subtraction operations and
generates guessing scores. Table 2 shows an example of guessing
scores. There are 9 possible guess scores for both addition and sub-
traction operations. The sum of the scores is 1 for both addition
and subtraction operations. The correct pair is 5 in this example.

Table 1: Network Model Structure and Parameters for Addi-
tion and Subtraction Operations in NTT’s Butterfly

Model for Addition Model for Subtraction
Layer Type Output Shape Params. # Output Shape Params. #

Input (None, 2625, 1) 0 (None, 3230, 1) 0
Conv1D-1 (None, 1314, 64) 320 (None, 1614, 64) 320

MaxPooling1D-1 (None, 657, 64) 0 (None, 807, 64) 32896
Conv1D-2 (None, 654, 128) 32896 (None, 804, 128) 32896

MaxPooling1D-2 (None, 327, 128) 0 (None, 402, 128) 0
Conv1D-3 (None, 162, 128) 65664 (None, 399, 128) 65664

MaxPooling1D-3 (None, 162, 128) 0 (None, 199, 128) 0
BatchNorm. (None, 162, 128) 512 (None, 199, 128) 512

Flatten (None, 20736) 0 (None, 25472) 0
Dropout (None, 20736) 0 (None, 25472) 0
Dense (None, 512) 10617344 (None, 512) 13042176
Output (None, 9) 4617 (None, 9) 4617

Total parameters for addition: 10,721,353
Total parameters for subtraction: 13,146,185

The highlighted line shows that ML classifiers for addition oper-
ations guess case-2 with 0.5236 accuracy and ML classifiers for
subtraction operations guess case-5 with 0.8339 accuracy. To de-
cide which guessing is correct, our proposed attack ensembles the
results by multiplying both guessing scores in each row in Table 2.
The highest guessing score in the ensembled result column shows
the correct guess which is case-5 in Table 2.

In our proposed attack, feeding the power samples to ML clas-
sifiers in the correct order is crucial. If ML classifiers are fed with
random train and test data sets, the guessing scores of ML classifiers
can correspond to different input pairs of NTT. To solve this issue,
we first randomize power traces corresponding to both addition
and subtraction operations at the same time. Then, we split traces
for training and testing. Finally, ML classifiers are fed the power
traces sequentially. In this way, each guessing score for both addi-
tion and subtraction operations matches with their corresponding
input pair.

As ML model, we used a convolutional neural network (CNN)
architecture which is similar to the work in [17, 19]. Table 1 shows
the details of network structures and parameters. There are 3 con-
volutional and 3 max-pooling layers in total, sequentially as a max-
pooling layer after each convolutional layer. After third convolu-
tional and max-pooling layer, there is a batch normalization layer
to prevent overfitting on the training. Also, there is a dropout layer
that drops connections between neurons with a probability of 0.5
following the batch normalization. The model uses a flatten layer
to convert data into a fully layer. There are 2 fully connected layers,
including the output layer which has 9 neurons. Output layer uses
Softmax activation function [5] whereas the remaining layers use
RELU activation functions [21].

4 EXPERIMENTAL RESULTS
This section describes the measurement setup for our experiments
and evaluates the proposed attack and a well-known countermea-
sure for NTT.

 

98



Exposing Side-Channel Leakage of SEAL Homomorphic Encryption Library ASHES ’22, November 11, 2022, Los Angeles, CA, USA

Table 2: An Example of Guessing Scores

case score for addition score for subtraction ensembled result

1 1.3448𝑒−09 1.1463𝑒−06 1.5415𝑒−15

2 0.5236 0.1470 0.0769
3 4.1054𝑒−04 8.3409𝑒−04 3.4242𝑒−07

4 5.1324𝑒−09 4.3093𝑒−07 2.2117𝑒−15

5 0.4755 0.8339 0.3965
6 2.9400𝑒−05 0.0066 1.9546𝑒−07

7 5.7768𝑒−08 3.6251𝑒−06 2.0942𝑒−13

8 4.9694𝑒−04 0.0109 5.4059𝑒−06

9 7.1847𝑒−06 7.7821𝑒−04 5.5912𝑒−09

Correct pair: 5

Figure 5: (a) Training and (b) validation accuracy vs number
of epochs for ML models of addition and subtraction opera-
tions, respectively.

4.1 Evaluation Setup
Our evaluation setup uses a development board which contains a
32-bit ARM Cortex-M4F STM32F417IG microcontroller operating
at 12 MHz. Due to our proposed attack focusing on the NTT, we
only compile the SEAL’s NTT code rather than the SEAL’s entire
code. We compile the code using gcc-arm-none-eabi compiler
with -O0 flag. The total memory requirement of the implemented
NTT codes is around 75KB RAM and 315KB flash data storage. Since
our device supports up to 196KB RAM and 1024KB flash memory,
we do not use any external storage. We collect power measurements
with a LeCroy WaveRunner 8104 model oscilloscope (with a 1 GS/s
sampling rate) using a Riscure current probe 1.

Our ML setup is a workstation with 64 GB of random access
memory (RAM), an NVIDIA 1080Ti graphics card, and an Intel i7
9700K processor. We use tensorFlow-gpu 2.8.0 as the backend, with
a keras-gpu 2.8.0 front end to train and evaluate ML models.

4.2 Evaluation of ML-based Side-Channel
Attack on the NTT

To evaluate our proposed ML-based side-channel attack, we use a
total of 90000 power traces. We used 63000, 13500, and 13500 power
traces for training, validation, and testing, respectively.

Fig.5 shows the results of the classification of the models trained
with the power traces corresponding to addition and subtraction
operations. When the number of epochs increases, training accu-
racy converges slowly and reaches around 93% and 95% for ML
models of addition and subtraction operations, respectively.

1https://www.riscure.com/product/current-probe

Figure 6: Confusion matrix of ensembled ML-based side-
channel attack with 25 epochs.

1 for(std:: size_t j = 0; j < gap; j+=4) {
2 delay_function ();
3 u = arithmetic_guard (*x);
4 delay_function ();
5 v = arithmetic.mul_root (*y, r);
6 delay_function ();
7 *x++ = arithmetic_.add(u, v);
8 delay_function ();
9 *y++ = arithmetic_.sub(u, v);
10 ...
11 }

Figure 7: Random delay insertion between arithmetic opera-
tions in NTT.

Fig.6 shows the confusion matrix of our proposed ensembled ML-
based side-channel attack with 25 epochs. When we individually
perform ML-based side-channel attack for addition and subtraction
operations, the correct guess ratios are 92% and 94%, respectively.
With our ensebled ML-based side-channel attack, the total correct
guess ratio increases to 98.3%.

4.3 Evaluation of Random Delay Insertion
Countermeasure

Random delay insertion method which generates random de-
lays in embedded software increases the attacker’s uncertainty
about the location of the target operation [8, 9]. To implement this
countermeasure into NTT, we write a delay function that selects a
random number between 0 and pre-selected threshold value and
generates a delay depending on the selected random number. We
add the delay function between each arithmetic operation of NTT
shown in Fig.7.

To evaluate the random delay insertion countermeasure, we find
the position of target operations with ML and then perform the
side-channel attack to extract the NTT’s secret key. Our attack first
divides the power traces into equal trace windows, and then labels
the power traces in binary format like in Section 3.2. For example,
power trace window corresponding to the addition operation are
labeled as 1 and the remaining trace windows are labeled as 0. ML
takes power traces and labels to build ML models. Since ML can

 

99



ASHES ’22, November 11, 2022, Los Angeles, CA, USA Furkan Aydin and Aydin Aysu

estimate wrong results and false positives, the selection of window
size by dividing power traces is very crucial. We select the size
of window as 1000 that is smaller than the size of power traces
corresponding to the target operations. Since the sample size is 2625
for addition and 3230 for subtraction operation, there are 3-4 and 4-
5 sequential windows labeled as 1 for each addition and subtraction
operations, respectively. ML estimates at least one correct guess for
each target point. Then, target POI regions are identified using this
ML guess results. Therefore, this countermeasure is not resistant
to side-channel attacks.

5 DISCUSSIONS
In this work, we set the operating frequency of the device to 12
MHz. If we increase the operating frequency, the noise of the plat-
form will increase. Hence, attacking may require a great number of
traces to build ML models. There are multiple prior works [1, 15]
which demonstrate single-trace side-channel attacks with lower
frequencies, including 8 MHZ to attack on NTT [23].

SEAL supports different configurations with different parame-
ters. Our attack focuses on its 128-bit security level with n = 4096.
However, depending on the selected configuration setting, there
will be a different number of NTT operations and prime modulus.
Therefore, we have to build new ML models to perform the attack.

Since the goal of our work is to expose side-channel vulnerabili-
ties of the SEAL and perform a single-trace attack on it, we did not
concentrate on implementing a resistant countermeasure to our at-
tack. Shuffling countermeasures can be considered a secure defense
mechanism to protect the NTT [26]. We intend to implement it in
the future.

6 CONCLUSIONS
In this work, we propose a new side-channel attack on an FHE
library—SEAL with real power measurements. Specifically, we
demonstrate a side-channel leakage coming from the NTT and
perform an ensembled ML-based side-channel attack on it. We
show that we are able to extract SEAL’s secret key coefficients with
a 98.3% accuracy. Moreover, we evaluate random delay insertion
countermeasure and show that the random delay insertion coun-
termeasure is not a suitable countermeasure to protect the NTT
against our attack.

7 ETHICAL DISCLOSURES
We contacted the Cryptography and Privacy Research Group at
Microsoft Research to report our preliminary findings and disclosed
this paper before publication.

8 ACKNOWLEDGMENTS
This research is based upon work supported by the National Science
Foundation under the Grants No. CNS 16-2137283 – Center for
Advanced Electronics through Machine Learning (CAEML) and its
industry members.

REFERENCES
[1] F. Aydin, A. Aysu, M. Tiwari, A. Gerstlauer, and M. Orshansky. 2021. Horizontal

Side-Channel Vulnerabilities of Post-Quantum Key Exchange and Encapsulation
Protocols. ACM Transactions on Embedded Computing Systems 20, 6 (2021), 1–22.
https://doi.org/10.1145/3476799

[2] F. Aydin, E. Karabulut, S. Potluri, E. Alkim, and A. Aysu. 2022. RevEAL: Single-
Trace Side-Channel Leakage of the SEAL Homomorphic Encryption Library. In
2022 Design, Automation & Test in Europe Conference Exhibition (DATE). 99–117.
https://doi.org/10.23919/DATE54114.2022.9774724

[3] F. Boemer, Y. Lao, R. Cammarota, and C. Wierzynski. 2019. nGraph-HE: a graph
compiler for deep learning on homomorphically encrypted data. In Proceedings
of the 16th ACM International Conference on Computing Frontiers. 3–13.

[4] E. Brier, C. Clavier, and F. Olivier. 2004. Correlation power analysis with a leakage
model. In International Workshop on Cryptographic Hardware and Embedded
Systems (CHES). 16–29.

[5] D. Campbell, R.A. Dunne, and N. A. Campbell. 1997. On The Pairing Of The
Softmax Activation And Cross–Entropy Penalty Functions And The Derivation
Of The Softmax Activation Function. InAustralian Conference on Neural Networks.
181–185.

[6] J.H. Cheon, A. Kim, M. Kim, and Y. Song. 2017. Homomorphic Encryption for
Arithmetic of Approximate Numbers. In International Conference on the Theory
and Application of Cryptology and Information Security (ASIACRYPT). 409–437.

[7] J.W. Cooley and J. W. Tukey. 1965. An algorithm for the machine calculation of
complex Fourier series. Mathematics of Computation 19(90). , 297–301 pages.

[8] J.-S. Coron and I. Kizhvatov. 2009. An efficient method for random delay genera-
tion in embedded software. In International Workshop on Cryptographic Hardware
and Embedded Systems (CHES). 156–170.

[9] J.-S. Coron and I. Kizhvatov. 2010. Analysis and Improvement of the Random
Delay Countermeasure of CHES 2009. In International Workshop on Cryptographic
Hardware and Embedded Systems (CHES). 95–109.

[10] N. Drucker and T. Pelleg. 2022. Timing Leakage Analysis of Non-constant-time
NTT Implementations with Harvey Butterflies. In International Symposium on
Cyber Security, Cryptology, and Machine Learning (CSCML). 99–117.

[11] J. Fan and F. Vercauteren. 2012. Somewhat Practical Fully Homomorphic Encryp-
tion. IACR Cryptology ePrint Archive, Report 2012/144.

[12] W.M. Gentleman, G. Sande, and P. Rohatgi. 1966. Fast fourier transforms: for fun
and profit. In In Fall Joint Computer Conference (AFIPS). 563–578.

[13] C. Gentry. 2009. Fully Homomorphic Encryption Using Ideal Lattices. In Proceed-
ings of the Forty-First Annual ACM Symposium on Theory of Computing. 169–178.

[14] S. Halevi and S. Shoup. 2014. Algorithms in HElib. In Advances in Cryptology -
CRYPTO 2014 - 34th Annual Cryptology Conference. 554–571.

[15] W.-L. Huang, J.-P. Chen, and B.-Y. Yang. 2019. Power analysis on NTRU Prime.
IACR Transactions on Cryptographic Hardware and Embedded Systems (TCHES)
2019, 1 (2019), 123–151. https://doi.org/10.13154/tches.v2020.i1.123-151

[16] I. T. Jolliffe. 2002. Principal Component Analysis. Springer New York, NY, 1–488.
[17] P. Kashyap, F. Aydin, S. Potluri, P. Franzon, and A. Aysu. 2020. 2Deep: Enhanc-

ing side-channel attacks on lattice-based key-exchange. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems (TCAD) 40, 6 (2020),
1217–1229. https://doi.org/10.1109/TCAD.2020.3038701

[18] I. Kim, T. Lee, J. Han, B. Sim, and D. Han. 2020. Novel single-trace ML profiling
attacks on NIST 3 round candidate Dilithium. IACR Cryptol. ePrint Arch., Report
2020/1383.

[19] J. Kim, S. Picek, A. Henuser, S. Bhasin, and A. Hanjalic. 2019. Make some noise.
Unleashing the power of convolutional neural networks for profiled side-channel
analysis. IACR Transactions on Cryptographic Hardware and Embedded Systems
(TCHES) 2019, 3 (2019), 148–178. https://doi.org/10.13154/tches.v2019.i3.148-179

[20] Q. Li, Z. Huang, W. Lu, C. Hong, H. Qu, H. He, and W. Zhang. 2020. HomoPAI: A
secure collaborative machine learning platform based on homomorphic encryp-
tion. In 2020 IEEE 36th International Conference on Data Engineering. 1713–1713.

[21] V. Nair and G.E. Hinton. 2010. Rectified linear units improve restricted Boltzmann
machines. In International Conference on Machine Learning (ICML). 807–814.

[22] D. Natarajan and W. Dai. 2021. SEAL-Embedded: A Homomorphic Encryption
Library for the Internet of Things. IACR Transactions on Cryptographic Hardware
and Embedded Systems 3 (July 2021), 756–779.

[23] P. Pessl and R. Primas. 2019. More practical single-trace attacks on the number
theoretic transform. In International Conference on Cryptology and Information
Security in Latin America (LATINCRYPT). 130–149.

[24] Y. Polyakov, K. Rohloff, G. W. Ryan, and D. Cousins. 2022. PALASIDE lattice
crypto library. https://gitlab.com/palisade/palisade-release/blob/master/doc/
palisade_manual.pdf.

[25] R. Primas, P. Pessl, and S. Mangard. 2017. Single-Trace Side-Channel Attacks on
Masked Lattice-Based Encryption. In International Workshop on Cryptographic
Hardware and Embedded Systems (CHES). 513–533.

[26] P. Ravi, R. Poussier, S. Bhasin, and A. Chattopadhyay. 2020. On configurable
SCA countermeasures against single trace attacks for the NTT. 123–146.

[27] P. Ravi, S. Roy, A. Chattopadhyay, and S. Bhasin. 2020. Generic side-channel
attacks on CCA-secure lattice-based PKE and KEMs. IACR Transactions on
Cryptographic Hardware and Embedded Systems (TCHES) 2020, 3 (2020), 307–335.
https://doi.org/10.13154/tches.v2020.i3.307-335

[28] SEAL 2022. Microsoft SEAL (release 4.0). https://github.com/Microsoft/SEAL.
Microsoft Research, Redmond, WA.

[29] W. Wei X. Zheng, A. Wang. 2013. First-order collision attack on protected NTRU
cryptosystem. Microprocessors & Microsystems 37, 6-7 (2013), 601–609.

 

100

https://doi.org/10.1145/3476799
https://doi.org/10.23919/DATE54114.2022.9774724
https://doi.org/10.13154/tches.v2020.i1.123-151
https://doi.org/10.1109/TCAD.2020.3038701
https://doi.org/10.13154/tches.v2019.i3.148-179
https://gitlab.com/palisade/palisade-release/blob/master/doc/palisade_manual.pdf
https://gitlab.com/palisade/palisade-release/blob/master/doc/palisade_manual.pdf
https://doi.org/10.13154/tches.v2020.i3.307-335
https://github.com/Microsoft/SEAL

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Fully Homomorphic Encryption (FHE)
	2.2 Number Theoretic Transform (NTT)
	2.3 Threat Model

	3 The Proposed Attack
	3.1 Target Operations and Vulnerabilities
	3.2 Determining Point of Interest (POI) Regions
	3.3 Exploiting Side-Channel Leakages
	3.4 Ensembled ML-based Side-Channel Attack

	4 Experimental Results
	4.1 Evaluation Setup
	4.2 Evaluation of ML-based Side-Channel Attack on the NTT
	4.3 Evaluation of Random Delay Insertion Countermeasure 

	5 Discussions
	6 Conclusions
	7 Ethical Disclosures
	8 Acknowledgments
	References



