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Abstract—Heterogeneous integration of voltage regulators in
power delivery networks is a growing trend that employs em-
bedded inductor as a key component in significantly improving
the power distribution. In this work, we propose a neural network
framework called the hierarchical invertible neural transport for
the inverse design of an embedded inductor. With this invertible
method, we obtain the probability distributions of the parameters
of the embedded inductor design space that most likely satisfy
the desired specifications. We also learn the impedance response
for free in the forward design. In the forward design, our results
show a 2.14%2.14%2.14% normalized mean square error when compared
with the output response of a fullwave EM simulator.

Index Terms—power delivery, inverse design, emdedded induc-
tor, neural networks, transport maps

I. INTRODUCTION

Early-stage prototyping in electronic design automation
(EDA) is often an herculean task due to a large amount
of variables that are explored in the design space. The de-
sign cycle is often plagued with iterating through series of
designs in an attempt to find the optimal parameters that
satisfy the target specifications. These sorts of evaluations are
usually compute- and time-intensive. Optimization methods
and surrogate modeling have been proposed to tackle this task
effectively [1]. However, the best solution may still not be
obtained, or several possibilities may be ignored.

In recent times, machine learning (ML) methods have been
employed to model the forward and inverse mappings for a
set of inputs and outputs. Consider a design space X of a
parameterized system, as illustrated in Fig. 1, that forms the
input of the ML model, with corresponding output response
Y . This mapping relationship can be represented as:

F : X → Y, (1)

where F is the forward mapping. The forward model learns
the input-output relationship and predicts the output response
given the input parameters. To estimate the best set of input
parameters that satisfies the desired target, we find the inverse
mapping:

F−1 : Y → X. (2)

Inverse problems are often ill-posed and intractable because
they fail the existence and uniqueness tests. Existence verifies
if the inverse exists, and uniqueness determines the ambiguity
brought by the one-to-many mapping in the inverse direction.
The problem of invertibility is not novel, and several methods
have been proposed to address it. In the domain of artificial
neural networks, state-of-the-art generative models such as the

Fig. 1. Model-based invertible framework that offers a custom solution.

generative adversarial network (GAN) [2], variational auto-
encoder (VAE) [3], and invertible neural network (INN) [4]
address this issue by generating conditional posterior distri-
butions rather than point-estimates. In particular, the INN has
some merits which include efficient computation of forward
and inverse mappings, and direct modeling of its likelihood
function [4].

In this paper, we propose an inverse system modeling,
design and identification using hierarchical invertible neural
transport net for embedded inductor in integrated voltage
regulator. With inverse design, the design parameters can
be straightforwardly obtained from the output objectives. It
reduces design cycle time and related costs by increasing the
overall efficiency of the design process. We investigate both
the inverse mapping to learn the probability distributions that
satisfy a desired specification, and the forward mapping to
verify the solution.

II. HIERARCHICAL INVERTIBLE NEURAL TRANSPORT
NETWORK (HINT)

A. Theory of Transport Maps

The theory of transport maps is based on the concept
of constructing a coupling, i.e., a transport map, between a
complex target probability measure ν and a simpler source
probability measure µ [5]. We seek a transport map T (x) such
that µ is supported on X and ν is supported on Y , i.e.,

T : X → Y (3)

We can generate samples of ν by pushing forward the µ
through the map. In order to conserve mass, we require [5]:

µ(T−1(A)) = ν(A) ∀A ⊂ Y. (4)
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µ(T−1(A)) is called the push forward of µ through T , denoted
T#µ. Therefore, a compact form for (4) is given as [5]:

T#µ = ν. (5)

Choosing such a transport map involves minimizing the cost
c of moving a unit of mass from x to T (x). This leads to the
Monge formulation of optimal transport, given as [5]:

min
{∫

X

c(x, T (x)) dµ(x)
∣∣∣T#µ = ν

}
. (6)

The solution to this constrained optimization problem is the
optimal transport map. To address this problem, we pose the
following questions: (1) Does the minimizer T ∗ exist? (2) If
it exists, is it unique? (3) Is it feasible?

B. The Recursive Coupling Block

HINT uses normalizing flow based on the change-of-
variables law of probabilities to model complex distributions
from a simple one. The normalizing flow pipeline T is a
composition of recursive coupling blocks fi that are invertible,
given as [6]:

T = fC1 ◦ fQ1 ◦ · · · fCN ◦ fQN , (7)

where each pair fCi◦fQi in T is a composition of a triangular
map and an orthogonal transformation, respectively, where
the former is known as a Knothe-Rosenblatt rearrangement
in transport maps [5]. Fig. 2 shows one such composition of
a recursive affine coupling block and an orthogonal transfor-
mation. A parameterized flow model fθi = fCi ◦ fQi splits
the input vector x into [x1, x2] and transforms them by an
affine function with coefficients es and t with element-wise
operations as [4]:

x′
1 = x1, x′

2 = x2 ◦ es(x1) + t(x1). (8)

It is easy to see that (8) is trivially invertible. This way, the
inverse flow composition is easily computed as

T−1 = f−1
QN ◦ f−1

CN · · · ◦ f−1
Q1 ◦ f−1

C1 . (9)

T in (7) is used to transport the data distribution pX(x) to a
standard normal latent distribution pZ = N (0, I), while T−1

in (9) can then be used to draw a sample z ∼ pZ in the latent
space to obtain pX .

To infer the inverse solution, we can turn any z sampled
from the latent space into a corresponding x conditioned on
y as [6]:

pX(x|y) = pZ(f(x, y)|y) · |∇f(x)| . (10)

This invertible model has the benefits of efficient computation
of the conditional posterior probabilities because of the dense
Jacobian determinant ∇f using the recursive design, and a
simpler training objective where the parameters of the flow fθ
can be learned from (10) via a maximum likelihood loss [6]:

L =
1

2
∥f(x, y|θ)∥22 − log |∇f(x|θ)| . (11)

Fig. 2. A recursive affine coupling block. The inner functions fR perform
the same sequence of operations as the outer gray block, repeated until the
maximum hierarchy depth is reached [6].

Fig. 3. Stack-up of the considered 2.5D integrated system [7].

Fig. 4. Solenoid inductor [7]. (a) Top view. (b) Side view.

III. APPLICATION: INVERSE DESIGN OF EMBEDDED
INDUCTOR

For a demonstration of the proposed method, we apply
the HINT method for the inverse design of an embedded
solenoidal inductor. The inductor is made up of a Nickel-Zinc
(NiZn) ferrite magnetic core and it is integrated on the top
metal layer of a silicon-interposer-based 2.5D heterogeneously
integrated system as in Fig. 3 [7]. The output response of the
solenoidal inductor is the impedance Z = ESR+jωL, where L
is its inductance and and ESR is its equivalent series resistance.
The objective here is to (1) obtain the solenoidal inductor
design parameters that correspond to a given specification of
impedance response Z, and (2) validate the design parameters
through a forward evaluation.

A. Model Setup

The design parameters of the solenoidal inductor and their
range of values are shown in Fig. 4. The target characteristic
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Fig. 5. Proposed Hierarchical Invertible Neural Transport (HINT) model setup
for embedded inductor.

investigated is the impedance response Z with the frequency
being swept from 15−98 MHz for 34 frequency points. Using
Latin Hypercube Sampling, we determine 949 samples and
extract their inductance and ESR with Ansys HFSS. We split
the data into train and test sets.

The objective here is to determine an invertible mapping
between the design space X and output response Y . The
proposed model setup is shown in Fig. 5. The HINT model is
constructed using 2 recursive coupling blocks with 3 recursion
levels. Each recursive block contains the scale s and shift t
networks which are constructed with fully connected neural
networks with one hidden layer of 256 neurons, Rectified
Linear Unit (ReLU) activation functions, and batch normal-
ization layers. On the input side of the model setup, there
are 8 inductor design parameters. The output variable is the
impedance response Z. The HINT model is trained for 500
epochs.

B. Results

During the inference process, we choose a random re-
sponse ytarget from the test set and we obtain the inverse
solution using (10). The HINT model generates rich condi-
tional posterior distributions of the embedded inductor de-
sign parameters as shown in Fig. 6. Next, we obtain an
inverse tuple from these distributions by sampling the points
with the highest densities in the embedded inductor design
space. The tuple obtained is {128.7 µm, 499 µm, 109.8 µm,
145.2 µm, 303 µm, 10.7 mil, 8.2 mil, 9}. We take this tuple
and perform a forward evaluation with the HINT model to
obtain the impedance response shown in Fig. 7. In the forward
design, we achieve a 2.14% normalized mean square error,
averaged over 10 inference runs.

IV. CONCLUSION

We present the HINT method for the inverse design of
embedded inductor for integrated voltage regulator. We applied
this method to obtain the probability distributions of the
inverse solutions that satisfy target specifications.
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Fig. 6. Predicted conditional posterior distributions p(x|ytarget) of embedded
inductor design parameters. Black vertical dashed lines indicate the points
with the highest densities. When the points corresponding to the highest
densities are sampled for the design parameters, the tuple obtained is
{128.7 µm, 499 µm, 109.8 µm, 145.2 µm, 303 µm, 10.7 mil, 8.2 mil, 9}.

Fig. 7. Forward evaluation, showing impedance response for the embedded
inductor, with HFSS and the trained HINT model for generated tuple x̂ ∼
p(x|ytarget).
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