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Abstract—We present a machine learning based tool to
quantify uncertainty for prediction problems regarding signal
integrity. Harnessing invertible neural networks, we convert the
inverse posterior distribution given by the network to address
uncertainty in frequency responses as a function of design space
parameters. As an example, we consider a differential plated-
through-hole via in package core and predict S-parameters from
its geometrical properties. Results show 3.3% normalized mean
squared error when compared with responses from a fullwave
EM simulator.

Index Terms—Invertible neural networks, jacobian, uncer-
tainty quantification, differential via-pair, signal integrity

I. INTRODUCTION

Modern electronic systems comprise high dimensional de-
sign space parameters that have to be tuned in order to obtain
desired circuit response. Before fabrication, these systems
undergo iterative design cycles using simulation software.
Traditional EM solvers, while accurate, solve complex partial
differential equations iteratively to obtain frequency response
from the geometrical properties of the electromagnetic struc-
ture. Such design schemes consume time and computational
resources. Recently, machine learning (ML) techniques have
proved quite promising for design optimization and uncer-
tainty quantification for signal and power integrity prob-
lems [1]. Generally, the design space of an electromagnetic
structure is parameterized and fed as an input to the ML
framework which outputs the frequency response. Given a
dataset D = {X,Y } where X is the design space parameter
set and Y is the response space, we can write:

Y = T (X) + ϵ (1)

where T (·) is the forward transformation and and ϵ is standard
Gaussian noise inherently present in the system. However,
current ML schemes have deterministic outputs that have
no information about the reliability of their predictions in
the frequency space. One way to quantify uncertainty is by
using probablistic modeling. We assume that X and Y are
random variables sampled from their prior distributions p(X)
and p(Y ) respectively. To achieve confidence bounds, we
need to determine the conditional distribution p(Y |X) and
p(X|Y ). The latter distribution is the goal of inverse design.
The problem of inverse design is to determine the set of input
combinations that lead to the desired response, that is, to find
the inverse surrogate model G(·) = T−1(·). Such a problem
is inherently ill-posed, the reasons for which are twofold: (1)

Fig. 1. Flow of inverse design and its uncertainty quantification.

Does the inverse transformation G(·) exist? (2) If the inverse
exists, is it unique?

Several architectures have been proposed to address the
problem of invertibility. In recent years, artificial neural
networks (ANNs) have been deployed as an effective tool for
microwave design and modeling problems [2]. State-of-the-
art generative models like the generative adversarial network
(GAN) [3], variational auto-encoder (VAE) [4] and invertible
neural network (INN) have been developed to output posterior
conditional distributions instead of a deterministic design
solution. Not only does this enable the designer to have
multiple candidate choices but also give an evaluation of
the reliability of the model [5]. In contrast to other inverse
methods, the INN used in our proposed approach provides
mode stability and tractability.

In this paper, we propose to utilize INNs to achieve inverse
posterior distribution p(X|Y ). We then pick the most proba-
ble sample points from this distribution and undergo a forward
pass through the INN. This gives us the uncertainty bounds
for the frequency response Y . This approach is illustrated in
Fig. 1. As an example, we consider a differential via pair
and parameterize its design space. The S-parameters of the
resultant structure are the output response.

2022 IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and 
Optimization (NEMO)

978-1-6654-8633-0/22/$31.00 ©2022 IEEE

20
22

 IE
EE

 M
TT

-S
 In

te
rn

at
io

na
l C

on
fe

re
nc

e 
on

 N
um

er
ic

al
 E

le
ct

ro
m

ag
ne

tic
 a

nd
 M

ul
tip

hy
sic

s M
od

el
in

g 
an

d 
O

pt
im

iza
tio

n 
(N

EM
O

) |
 9

78
-1

-6
65

4-
86

33
-0

/2
2/

$3
1.

00
 ©

20
22

 IE
EE

 |
 D

O
I: 

10
.1

10
9/

N
EM

O
51

45
2.

20
22

.1
00

38
95

9

Authorized licensed use limited to: University of Illinois. Downloaded on March 15,2023 at 22:11:01 UTC from IEEE Xplore.  Restrictions apply. 



II. INVERTIBLE NEURAL NETWORKS

INNs are neural networks comprising stacked invertible
blocks that can learn bijective transformations between func-
tion spaces.

A. Invertibility by Construction

The architecture of the INN addresses the existence,
uniqueness and stability of inverse solutions. Given a sample
x from design space X and the corresponding y from the
response space Y that are related through the transformation
y = f(x), we can form a relationship between their proba-
bility densities through the change-of-variables technique [6],
[7]:

pY (y|θ) = pX(f−1
θ (y)) ·

∣∣∣∣( df−1
θ

dx

)∣∣∣∣ , (2)

where we define all the composition of the INN architecture
in a single function fθ, and θ is the set of all network
parameters. The INNs are made of stacks of reversible blocks
with inputs x and outputs y, and they can be trained in both
directions simultaneously, as shown in Fig. 2. In addition to
the outputs y of the system, a set of latent variables z can
be defined which encode the lost information in the forward
direction. Variables z can be sampled from a standard normal
distribution, which, when passed through the trained network
in the reverse direction, conditioned on an output y, result in
the conditional posterior distributions p(x|y). Each reversible
block is shown in Fig. 3. It is called affine coupling block
and it ensures easy invertibility and a tractable Jacobian. The
block’s input vector is halved into [x1, x2], and they are
transformed by an affine function with coefficients es and
t [7] [6]:

y1 = x1, y2 = x2 ◦ es(x1) + t(x1). (3)

Given the block’s output [y1, y2], these expressions are invert-
ible through:

x1 = y1, x2 = (y2 − t(y1)) ◦ e−s(y1). (4)

(3) represents the forward mapping while (4) represents the
inverse mapping (see Fig. 3 for a graphical illustration).
The use of element-wise additive (+) and multiplicative (◦)
operations allows the inverse of the transformation to be
easily computed without requiring the scale s(·) and shift t(·)
networks to be inverted, which could be arbitrarily complex.
The bijectivity of the INN model allows for bi-directional
operation and training, and therefore both forward and inverse
processes can be well learned [8]. We accumulate losses when
the network is trained in the forward and reverse directions
which are backpropagated to the network and the weights
are automatically adjusted as part of the learning process.
The losses include the mean square error (MSE) and the

maximum mean discrepancy (MMD). The INN is trained in
both forward and reverse directions.

Fig. 2. Architecture of INN (x: input, y: output, z: latent variable)[9].

Fig. 3. RealNVP block enabling forward and backward propagations [7].

B. Addressing Uncertainty

After training the INN, inference is performed. We sample
z coming from a known distribution p(z), generally assumed
to be a standard Gaussian. We append the sampled z with the
target ytarget and go through backward pass of the network
to obtain the inverse posterior distribution p(x|ytarget). The
expected value of this distribution gives us the mean, and
the variance of the distribution shows the sharpness of the
input design tuple. The goal, here, is to obtain the variance
and mean of the forward posterior distribution p(y|x). To
achieve this, we consider a range of the most probable input
design tuples provided by INN and undergo a forward pass to
obtain upper and lower confidence bounds for our frequency
responses.

Algorithm 1: INN training
Input: training data: {X,Y }, #epochs, learning rate:

α, p(z) = N (0, IDz
)

Output: training losses: L, trained model
1 while i ≤ #epochs do
2 for xbatch, ybatch ∈ {X,Y } , do
3 [ypred, zpred] = fθ(xbatch)
4 Ly = MSE(ypred, ybatch)
5 Lz = MMD(q(y, z), p(y)p(z))
6 sample z ∼ p(z)
7 xpred = f−1

θ ([ybatch, z])
8 Lx = MMD(g(x), p(x))
9 Ltotal = wxLx + wyLy + wzLz

10 p← p− α∇(Ltotal)
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TABLE I
CONTROL PARAMETERS OF THE PTH STRUCTURE

Parameter Unit Min Max

µ-via Diameter dµ-via µm 30 70
µ-via Pad Diameter dpad,µ-via µm 31 140
BU Layer Thickness hBU µm 20 35

µ-via Top Antipad Radius ra,BU,TOP µm 100 500
µ-via Bot. Antipad Radius ra,BU,BOT µm 100 500

PTH Pitch vP µm 300 1200
Core Thickness hcore µm 100 1200

BU Cu Thickness tc,BU µm 10 20
Core Cu Thickness tc,Core µm 11 40

PTH Diameter dPTH µm 100 250
PTH Pad Diameter dpad,PTH µm 110 500

PTH Top Antipad Radius ra,PTH,TOP µm 50 500
PTH Bot. Antipad Radius ra,PTH,BOT µm 50 500

Fig. 4. Parameters of the differential PTH in package core [10].

III. EXAMPLE: DIFFERENTIAL PTH PAIR IN PACKAGE
CORE

We consider an application of modeling a differential
plated-through-hole (PTH) pair in package core along with
the microvias that connect to build-up layers. Such structures
are common since they enable vertical interconnection for
signals. As such, the signal integrity of such differential vias
is crucial for high-speed interfaces. We achieve an inverse
surrogate model for the structure shown in Fig. 4. Obtaining
the inverse posterior enables us to quantify uncertainty in the
S-parameters of the shown structure.

A. Model Setup

The design space is parameterized as a 13-D input design
tuple. The minimum and maximum values are shown in
Table I. Each input combination in the design space has a
corresponding four-port scattering (S) parameter matrix from
0.1-100 GHz with steps of 100 MHz. The objective is to
determine an invertible mapping from the design space X and
frequency response Y . Since the structure is partially recipro-
cal and symmetric, we only consider S11, S12, S13, S14, S33

and S34. We take the magnitude of the S-parameters, resulting
in an output dimension of 6000. We draw 682 samples using
Latin Hypercube Sampling (LHS) and obtain S-parameters
using Ansys HFSS. The data is split into train and test sets

for the INN model. We use 500 samples for training and the
remaining for evaluation of the model.

B. Results

We train the INN for 50 epochs with 100 iterations per
epoch optimizing the model with an intial learning rate of
α = 0.01 using Adam optimizer. We train with an adaptive
exponentially decreasing learning rate until the model con-
verges. On random, we choose a desired response ytarget
from the test set. Next, we sample z ∼ p(z) for 5,000
times to obtain x = f−1

θ (y, z). For this application, we
choose the dimensionality of z to be 1000. The inverse
distributions for each dimension of x is shown in Fig. 5. We
also plot the prior distributions before conditioning on ytarget.
Starting with a uniform prior, we see that the posterior inverse
distribution becomes dense around a certain range of design
tuples that the model suggests are most likely to produce
the target distribution. For each dimension, we choose the
design tuple for which the model is most confident. These
input combinations are fed back into the INN to obtain a set
of frequency responses. This range determines the lower and
upper bounds for the target frequency responses.

We simulate the chosen input ranges into a forward simula-
tor to obtain confidence intervals. In Fig. 6, we plot the ytarget
from the test set coming from the 3D EM solver. We compare
it with the output from the INN. We find that the mean of the
predicted frequency responses from the INN closely matches
the test set values. Specifically, we use the normalized mean-
squared error as loss metric over each frequency response in
the test set:

NMSE =
1

NdDy
×

Dy∑
d=1

Nd∑
n=1

×( ∑N
m=1(Sn,d[m]− ˆSn,d[m])2∑N

m=1(Sn,d[m]− 1
N

∑N
m=1 Ŝn,d[m])2

)
(5)

where Nd are the number of evaluation designs for the model
and Dy = 6 represents the magnitude of the learnt S-
parameters. The NMSE value for the proposed approach is
3.3%.

IV. CONCLUSION

We propose a method to perform uncertainty quantification
of frequency response as a function of design space pa-
rameters using invertible neural networks for signal integrity
applications. Specifically, we illustrate a differential plated-
through-hole pair in package core as an example. We provide
lower and upper confidence bounds for output 4-port S-
parameters. We achieve a normalized mean-squared error of
3.3% on the test set.
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