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Abstract—This paper demonstrates the use of data post-
processing methods with stochastic collocation, an efficient
alternative to Monte Carlo sampling, for transient response
parametrization in electronic design. This method is applied
to find the statistics of the broadband voltage response of a
502 terminated stripline with uncertain width, length, and per-
mittivity. Collocation results with post-processing are compared
against that of Monte Carlo showing greater accuracy for a low
computational budget.

Index Terms—singular value decomposition, delay extraction,
stochastic collocation

I. INTRODUCTION

High-speed channel design is an accelerating field that
pushes forward the frontier of communications technology.
Electromagnetic simulations are employed to predict measures
of interest (Mol) for a given channel geometry and material
layout, and the parameters defining this layout are chosen
to produce results in Mol while obeying various constraints.
Upon physical realization of the designed channel, however,
parameter uncertainties arise due to manufacturing processes
and material properties. These parameter uncertainties can
result in significant variability in Mol. A procedure to sim-
ulate such variability during the design process would greatly
improve the reliability of physical realizations [1], [2]. Monte
Carlo sampling (MC) is a method commonly used to address
this. This process is reliable but suffers from slow convergence,
burdened by the cost of a deterministic simulation, becoming
prohibitive for sensitive systems whose simulation is costly.

Stochastic Collocation (SC) is another sampling-based
method where the parameter sets are chosen on a sparse subset
of the design parameter space, a sparse grid, constructed from
tensor products of one-dimensional interpolation grids. Mol
are gathered for each parameter set as in MC, but significantly
fewer samples are used. The sampled data is then interpolated
over the sparse grid to form a surrogate model with which MC
is performed, providing more efficient data acquisition.

This paper demonstrates the calculation of broadband volt-
age response statistics of a stripline with uncertain width W,
length L and permittivity €,. SC is used to efficiently replicate
MC-calculated statistics of the voltage response of a Gaussian
excitation under such uncertainties [3]. The contribution of
this paper is the application of delay extraction (DE) and basis
projection via singular value decomposition (SVD) to improve

accuracy and efficiency. Section II introduces SC, section III
discusses means of improving SC through data processing,
section IV discusses numerical results, and concluding remarks
are made in section V.

II. OVERVIEW OF STOCHASTIC COLLOCATION

Maxwell’s equations constitute a set of coupled partial dif-
ferential equations (PDE’s) that govern such distributed elec-
trical systems, and many simulation algorithms exist capable
of accurately solving them. Due to the parameter uncertainty,
modeled by letting each such parameter be represented by a
random variable, the governing system is a stochastic PDE
with a random solution. SC provides a means of solving such
a stochastic PDE by simulating its solution at a set of points
in the parameter space, called collocation points or nodes,
and creating a surrogate simulation model over the rest of the
space. This allows such a stochastic PDE to be approximately
solved using deterministic simulations.

The voltage response of a stripline, being a function of
its cross-section and material parameters, is a candidate for
SC. Such a channel can be described by a three-dimensional
parameter vector & = [W, L, e,]7 with voltage output v(t; &).
The statistics of v(t; 5) can be found with SC by first assem-
bling the set of N collocation points in a d = 3 dimensional
space, denoted @fl\’ . This can be done given the ranges of each
parameter by first calculating one-dimensional interpolation
grids over each parameter and selectively combining these
grids into ©'. Details on this process are given in [4]. Such
a grid suffers from the curse of dimensionality, as N trends
sharply with dimension d. This is mitigated by controlling the
sparsity of the grid with fill level [, trading speed for accuracy.

N full-wave simulations of the response v(t;fj) are then
run for each point E; € O where index j € {1,2.N}.
The generated data will form an accurate surrogate model
when interpolated over the sparse grid, which can be used
to efficiently calculate solution statistics. Such data gener-
ation has computational cost scaling with the expense of
a single simulation. Full wave simulations are often rather
expensive, lasting on the order of minutes. Properties of such
interpolations can be taken advantage of to accelerate this
process. Among such properties is the nesting property, which
is satisfied for a SC scheme if for any number of nodes 3 > a,
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This property allows for cheap grid refinement and is incentive
to use rules with such properties.

The Mol considered in this paper is the channel voltage
response waveform as a time series vector of length n,. SC
can be applied by treating each time sample as a scalar output
and forming individual interpolants for each time step.

III. DATA POST-PROCESSING
A. Delay extraction

Time delay is inherent to distributed electrical systems,
and is significantly impacted by variations in length and
permittivity. Such resulting delay variations cause irregularities
in the response waveform from line reflections that make
interpolation more difficult via Gibb’s phenomenon. A simple
delay extraction algorithm is employed to remedy this. For
each sampled waveform, the delay time is defined as the first
moment the voltage exceeds a preset threshold. Each response
is shifted back by its delay, lining up the reception time for
each waveform at zero in shifted time. The interpolation is
performed over the shifted data, and the extracted delay times
are interpolated as well. MC is performed with the surrogate
model and waveforms are reconstructed re-introducing the
modelled delay into data from the shifted interpolation. This
mitigates Gibb’s phenomenon in the primary response peak,
reducing error in Mol statistics.

B. Singular value decomposition

Creating the surrogate model requires interpolating over © i
ny times, one for each time step. The number of steps n; is
often tens of thousands, as transient reflections pass slowly in
low-loss systems. The formation of these numerous interpo-
lations is computationally expensive. A means of mitigating
this expense comes in performing a spectral projection on the
gathered timeseries data. With this process, the gathered data
can be represented as a set of basis coefficients rather than
values for n; time steps. The system response is consistent,
mainly characterized by delay and attenuation, implying that
the response can be represented in a small timeseries basis.
Such a basis expansion can be performed using SVD on the
generated data [5]. This process begins with assembling data
generated from the sparse grid into matrix Y € R™*N with
index i € {1,2..n4 }:

Yij = o(ti: ). )
SVD can be performed on this matrix to reveal
Y = USVT .= UA ~ UA, (3)

where coefficient matrix A := SV? € R™*N and the basis
can be read from the columns of U € R™*™. The rows
of A decrease significantly in magnitude due to the singular
nature of Y, implying a reduced basis U € R"**"mes with
coefficients A € R"me=*N can be formed, where n,,qs < 14
can be chosen such that the worst-case approximation error for
each waveform in Y, the reconstruction error, is minimized.
These basis coefficients can be interpolated over the sparse
grid rather than time data for a more cost effective interpola-
tion with controllable error.

IV. NUMERICAL RESULTS

The example studied in this paper is that of a stripline with
a 50%2 source and load. The cross-section, depicted in Fig. 1
and summarized in Table I, has five geometric parameters and
two material parameters. This example models the uncertain
parameters with uniform distributions. The channel is excited
with a voltage waveform v(t) and spectrum V (w) given by

2
v(t) = exp {@7277)
20 5 o (4)
0w
Viw) = 0\/ﬂexp{ —jwn}exp{ - }
with pulse width 7 = 0v/32 = 25ps. This excitation creates a
broadband response while respecting the band-limiting nature
of time-domain simulations. An expensive MC will be run to
calculate the statistics of this response that will act as a ground
truth. Various SC schemes will then be run and compared
against MC results of equal sample size to study error conver-
gence. The system will be simulated in a commercial CUDA-
enabled FDTD simulator, XFdtd [6], on an Intel® Core™ i7-
8700 processor and a NVIDIA GeForce GTX 1080Ti graphics
card. Interpolations and sparse grid formation are computed
with the MATLAB package TASMANIAN [7], [8].

The collocation schemes used were based on the one-
dimensional Clenshaw-Curtis grid [4]. Fill levels of | =
{5,7,9,11} were used yielding grids of size N =
{93,225,401,785}. Fig. 2 and 3 show the mean and standard
deviation of the response calculated by the level [ = 7
grid alongside DE and SVD post-processing. The raw data
clearly struggles to recreate the ground truth MC, burdened by
Gibb’s phenomena. DE provides a more accurate recreation,
mitigating the fluctuations. SVD compression was applied to
the DE data showing accurate reconstruction.

Fig. 4 and 5 display the RMS error of each scheme against
the ground truth MC. The DE error is lower than its raw
counterpart universally. Level 5 and 7 grids, after DE, provide
more accurate statistics than an equally expensive MC. Level
9 and 11 grids perform worse due to spurious fluctuations
from the DE process. This DE algorithm handles the delay
associated with the initial peak well, accurately interpolating
the first signal energy to pass. It does not align any subsequent
reflections, though the accumulated error is low due to their
low amplitudes. More sophisticated DE may be implemented
to provide a more suitable interpolation.

SVD compression was performed on each dataset, where
Nmaz Was chosen such that the maximum RMS recon-
struction error never exceeded 1mV, resulting in 7,4, =
{53,44,52,53} for the four levels. Fig. 4 and 5 show little
discrepancy between the DE SVD and DE data, implying
that collocation supports such compression. A more accurate
compression can be achieved in general by increasing the
basis size. Delay extraction improves the SVD projection by
increasing regularity in the data, thereby lowering the 7,4,
required for a particular error margin. This compression poses
benefit in cases where interpolation is expensive, such as if
higher bandwidth or finer resolution were desired.
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Fig. 1. Stripline cross section diagram and parameter definitions.

TABLE I
PARAMETER VALUES AND DISTRIBUTIONS
Parameter W (mm) L(mm) €r a(mm)
Value | U(1.0,1.4) | U(30,50) | U(2.0,2.4) 20
Parameter b1 (mm) bo(mm) te(pum) tan o
Value 0.78 0.78 20 3x1073

V. CONCLUSION

This paper has shown that SVD and DE post-processing can
accelerate the SC process and provide more accurate quantifi-
cation of system uncertainty than unprocessed collocation. It
was shown that SC supports SVD-based data compression.
A simple DE algorithm was introduced and provided more
accurate response statistics over a variety of grid sizes. Further
work on delay extraction may allow high level grids to outpace
MC and is under investigation.
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Fig. 2. Calculated mean of the response voltage time series with various
methods.
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Fig. 3. Calculated standard deviation of the response voltage time series with
various methods.
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Fig. 4. Comparison of error in mean against ground truth MC.

Z —=— Monte Carlo

5 —O— Unprocessed

. —/\—DE
—&—DE & SVD

w

T

()
T

RMS error in waveform st. dev. (mV)

0 100 200 300 400 500 600 700 800
Grid size N

Fig. 5. Comparison of error in standard deviation against ground truth MC.



