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Abstract—This paper demonstrates the use of data post-
processing methods with stochastic collocation, an efficient
alternative to Monte Carlo sampling, for transient response
parametrization in electronic design. This method is applied
to find the statistics of the broadband voltage response of a
50Ω terminated stripline with uncertain width, length, and per-
mittivity. Collocation results with post-processing are compared
against that of Monte Carlo showing greater accuracy for a low
computational budget.

Index Terms—singular value decomposition, delay extraction,
stochastic collocation

I. INTRODUCTION

High-speed channel design is an accelerating field that

pushes forward the frontier of communications technology.

Electromagnetic simulations are employed to predict measures

of interest (MoI) for a given channel geometry and material

layout, and the parameters defining this layout are chosen

to produce results in MoI while obeying various constraints.

Upon physical realization of the designed channel, however,

parameter uncertainties arise due to manufacturing processes

and material properties. These parameter uncertainties can

result in significant variability in MoI. A procedure to sim-

ulate such variability during the design process would greatly

improve the reliability of physical realizations [1], [2]. Monte

Carlo sampling (MC) is a method commonly used to address

this. This process is reliable but suffers from slow convergence,

burdened by the cost of a deterministic simulation, becoming

prohibitive for sensitive systems whose simulation is costly.

Stochastic Collocation (SC) is another sampling-based

method where the parameter sets are chosen on a sparse subset

of the design parameter space, a sparse grid, constructed from

tensor products of one-dimensional interpolation grids. MoI

are gathered for each parameter set as in MC, but significantly

fewer samples are used. The sampled data is then interpolated

over the sparse grid to form a surrogate model with which MC

is performed, providing more efficient data acquisition.

This paper demonstrates the calculation of broadband volt-

age response statistics of a stripline with uncertain width W ,

length L and permittivity εr. SC is used to efficiently replicate

MC-calculated statistics of the voltage response of a Gaussian

excitation under such uncertainties [3]. The contribution of

this paper is the application of delay extraction (DE) and basis

projection via singular value decomposition (SVD) to improve

accuracy and efficiency. Section II introduces SC, section III

discusses means of improving SC through data processing,

section IV discusses numerical results, and concluding remarks

are made in section V.

II. OVERVIEW OF STOCHASTIC COLLOCATION

Maxwell’s equations constitute a set of coupled partial dif-

ferential equations (PDE’s) that govern such distributed elec-

trical systems, and many simulation algorithms exist capable

of accurately solving them. Due to the parameter uncertainty,

modeled by letting each such parameter be represented by a

random variable, the governing system is a stochastic PDE

with a random solution. SC provides a means of solving such

a stochastic PDE by simulating its solution at a set of points

in the parameter space, called collocation points or nodes,

and creating a surrogate simulation model over the rest of the

space. This allows such a stochastic PDE to be approximately

solved using deterministic simulations.
The voltage response of a stripline, being a function of

its cross-section and material parameters, is a candidate for

SC. Such a channel can be described by a three-dimensional

parameter vector �ξ = [W,L, εr]
T with voltage output v(t; �ξ).

The statistics of v(t; �ξ) can be found with SC by first assem-

bling the set of N collocation points in a d = 3 dimensional

space, denoted ΘN
d . This can be done given the ranges of each

parameter by first calculating one-dimensional interpolation

grids over each parameter and selectively combining these

grids into ΘN
d . Details on this process are given in [4]. Such

a grid suffers from the curse of dimensionality, as N trends

sharply with dimension d. This is mitigated by controlling the

sparsity of the grid with fill level l, trading speed for accuracy.
N full-wave simulations of the response v(t; �ξj) are then

run for each point �ξj ∈ ΘN
d where index j ∈ {1, 2...N}.

The generated data will form an accurate surrogate model

when interpolated over the sparse grid, which can be used

to efficiently calculate solution statistics. Such data gener-

ation has computational cost scaling with the expense of

a single simulation. Full wave simulations are often rather

expensive, lasting on the order of minutes. Properties of such

interpolations can be taken advantage of to accelerate this

process. Among such properties is the nesting property, which

is satisfied for a SC scheme if for any number of nodes β > α,

Θα
d ⊂ Θβ

d . (1)



This property allows for cheap grid refinement and is incentive

to use rules with such properties.
The MoI considered in this paper is the channel voltage

response waveform as a time series vector of length nt. SC

can be applied by treating each time sample as a scalar output

and forming individual interpolants for each time step.

III. DATA POST-PROCESSING

A. Delay extraction
Time delay is inherent to distributed electrical systems,

and is significantly impacted by variations in length and

permittivity. Such resulting delay variations cause irregularities

in the response waveform from line reflections that make

interpolation more difficult via Gibb’s phenomenon. A simple

delay extraction algorithm is employed to remedy this. For

each sampled waveform, the delay time is defined as the first

moment the voltage exceeds a preset threshold. Each response

is shifted back by its delay, lining up the reception time for

each waveform at zero in shifted time. The interpolation is

performed over the shifted data, and the extracted delay times

are interpolated as well. MC is performed with the surrogate

model and waveforms are reconstructed re-introducing the

modelled delay into data from the shifted interpolation. This

mitigates Gibb’s phenomenon in the primary response peak,

reducing error in MoI statistics.

B. Singular value decomposition
Creating the surrogate model requires interpolating over ΘN

nt times, one for each time step. The number of steps nt is

often tens of thousands, as transient reflections pass slowly in

low-loss systems. The formation of these numerous interpo-

lations is computationally expensive. A means of mitigating

this expense comes in performing a spectral projection on the

gathered timeseries data. With this process, the gathered data

can be represented as a set of basis coefficients rather than

values for nt time steps. The system response is consistent,

mainly characterized by delay and attenuation, implying that

the response can be represented in a small timeseries basis.

Such a basis expansion can be performed using SVD on the

generated data [5]. This process begins with assembling data

generated from the sparse grid into matrix Y ∈ R
nt×N with

index i ∈ {1, 2...nt}:

Yij = v(ti; �ξj). (2)

SVD can be performed on this matrix to reveal

Y = USVT := UA ≈ ŨÃ, (3)

where coefficient matrix A := SVT ∈ R
nt×N and the basis

can be read from the columns of U ∈ R
nt×nt . The rows

of A decrease significantly in magnitude due to the singular

nature of Y, implying a reduced basis Ũ ∈ R
nt×nmax with

coefficients Ã ∈ R
nmax×N can be formed, where nmax � nt

can be chosen such that the worst-case approximation error for

each waveform in Y, the reconstruction error, is minimized.

These basis coefficients can be interpolated over the sparse

grid rather than time data for a more cost effective interpola-

tion with controllable error.

IV. NUMERICAL RESULTS

The example studied in this paper is that of a stripline with

a 50Ω source and load. The cross-section, depicted in Fig. 1

and summarized in Table I, has five geometric parameters and

two material parameters. This example models the uncertain

parameters with uniform distributions. The channel is excited

with a voltage waveform v(t) and spectrum V (ω) given by

v(t) = exp
{−(t− η)2

2σ2

}
⇐⇒

V (ω) = σ
√
2π exp

{− jωη
}
exp

{
− σ2ω2

2

} (4)

with pulse width η = σ
√
32 = 25ps. This excitation creates a

broadband response while respecting the band-limiting nature

of time-domain simulations. An expensive MC will be run to

calculate the statistics of this response that will act as a ground

truth. Various SC schemes will then be run and compared

against MC results of equal sample size to study error conver-

gence. The system will be simulated in a commercial CUDA-

enabled FDTD simulator, XFdtd [6], on an Intel® Core™ i7-

8700 processor and a NVIDIA GeForce GTX 1080Ti graphics

card. Interpolations and sparse grid formation are computed

with the MATLAB package TASMANIAN [7], [8].

The collocation schemes used were based on the one-

dimensional Clenshaw-Curtis grid [4]. Fill levels of l =
{5, 7, 9, 11} were used yielding grids of size N =
{93, 225, 401, 785}. Fig. 2 and 3 show the mean and standard

deviation of the response calculated by the level l = 7
grid alongside DE and SVD post-processing. The raw data

clearly struggles to recreate the ground truth MC, burdened by

Gibb’s phenomena. DE provides a more accurate recreation,

mitigating the fluctuations. SVD compression was applied to

the DE data showing accurate reconstruction.

Fig. 4 and 5 display the RMS error of each scheme against

the ground truth MC. The DE error is lower than its raw

counterpart universally. Level 5 and 7 grids, after DE, provide

more accurate statistics than an equally expensive MC. Level

9 and 11 grids perform worse due to spurious fluctuations

from the DE process. This DE algorithm handles the delay

associated with the initial peak well, accurately interpolating

the first signal energy to pass. It does not align any subsequent

reflections, though the accumulated error is low due to their

low amplitudes. More sophisticated DE may be implemented

to provide a more suitable interpolation.

SVD compression was performed on each dataset, where

nmax was chosen such that the maximum RMS recon-

struction error never exceeded 1mV, resulting in nmax =
{53, 44, 52, 53} for the four levels. Fig. 4 and 5 show little

discrepancy between the DE SVD and DE data, implying

that collocation supports such compression. A more accurate

compression can be achieved in general by increasing the

basis size. Delay extraction improves the SVD projection by

increasing regularity in the data, thereby lowering the nmax

required for a particular error margin. This compression poses

benefit in cases where interpolation is expensive, such as if

higher bandwidth or finer resolution were desired.
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Fig. 1. Stripline cross section diagram and parameter definitions.

TABLE I
PARAMETER VALUES AND DISTRIBUTIONS

Parameter W (mm) L(mm) εr a(mm)
Value U(1.0, 1.4) U(30, 50) U(2.0, 2.4) 20

Parameter b1(mm) b2(mm) tc(μm) tan δ
Value 0.78 0.78 20 3× 10−3

V. CONCLUSION

This paper has shown that SVD and DE post-processing can

accelerate the SC process and provide more accurate quantifi-

cation of system uncertainty than unprocessed collocation. It

was shown that SC supports SVD-based data compression.

A simple DE algorithm was introduced and provided more

accurate response statistics over a variety of grid sizes. Further

work on delay extraction may allow high level grids to outpace

MC and is under investigation.
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Fig. 2. Calculated mean of the response voltage time series with various
methods.
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Fig. 3. Calculated standard deviation of the response voltage time series with
various methods.
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Fig. 4. Comparison of error in mean against ground truth MC.
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Fig. 5. Comparison of error in standard deviation against ground truth MC.


