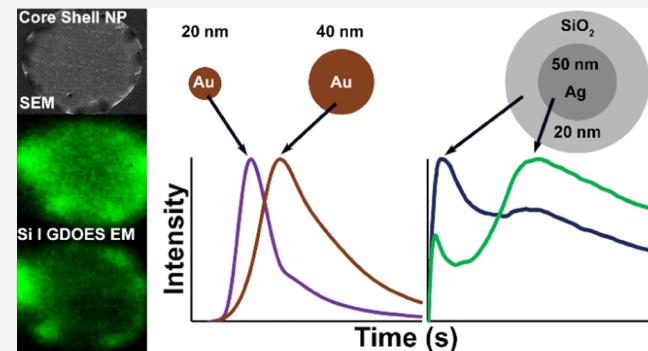


1 High-Throughput Nanoparticle Characterization via Glow Discharge 2 Optical Emission Spectroscopy Elemental Mapping

3 Kevin Finch, Aldo Hernandez, and Gerardo Gamez*

Cite This: <https://doi.org/10.1021/acs.analchem.2c03940>

Read Online


ACCESS |

Metrics & More

Article Recommendations

Supporting Information

4 **ABSTRACT:** Nanoparticle (NP) characterization is critical in
5 many fields due to its use in numerous applications. Traditional NP
6 characterization techniques, however, are limited by low sample
7 throughput, and few can measure the size and elemental
8 composition. Furthermore, sample throughput limitations are
9 compounded in elemental mapping (EM) techniques for obtaining
10 NP spatial distribution. Glow discharge optical emission spectroscopy
11 (GDOES) EM can provide large area maps directly and cost-
12 effectively from solid samples within tens of seconds. Here,
13 GDOES EM is demonstrated for the first time for NP
14 characterization in terms of mass, elemental composition, and
15 size/structure dimensions. The effects of GD pulsed power,
16 pressure, and sample substrate were studied, and optimized
17 conditions resulted in limits of detection at single pg levels. While this is not at the level of single nanoparticle sensitivity, size
18 differentiation of Ag and Au nanoparticles was successfully demonstrated between 5 and 100 nm, while the internal dimensions of
19 complex core–shell NPs were also identified through the optical emission changes as a function of time.

20 **N**anoparticles (NPs) have been gaining increased interest
21 in the last few decades^{1,2} due to their unique properties
22 compared to their bulk material counterparts, which has
23 resulted in their use for a wide variety of applications. The
24 chemical composition, size, shape, charge, and surface
25 functionalization have all been known to change their unique
26 physical and chemical properties.¹ Due to the intensified use of
27 NPs in many different industries, they are being found with
28 greater prevalence in many environmental systems. Ag NPs are
29 one of the greatest contributors to this increasing prevalence,³
30 as they are one of the most marketable nanomaterials currently
31 in use with applications ranging from textile production,⁴
32 agriculture,⁵ and improved food storage⁶ to the biomedical⁷
33 and pharmaceutical⁸ fields because of their well-known
34 antimicrobial properties.⁹

35 Nevertheless, the toxicity of these NPs in the environment is
36 not currently well-understood, part of which can be attributed
37 to the lack of high throughput, widely available, and cost-
38 effective characterization techniques for monitoring their
39 characteristic properties from the production stage to their
40 integration with the environment. There are currently a variety
41 of techniques available for the chemical identification or
42 characterization of NPs.² Few techniques can yield both
43 elemental composition and size characteristics, but while they
44 all have their own unique advantages and disadvantages, typical
45 methods of choice are limited in sample throughput. Some
46 techniques allow elemental mapping (EM), e.g., electron
47 microscopy^{10–12} and X-ray techniques^{10,11,13} to study NP

48 distribution in systems of interest, but this in turn brings more
49 sample throughput limitations and may require hours to tens
50 of hours for mapping large surface areas ($\geq 100 \text{ cm}^2$). Some
51 EM X-ray techniques for NP characterization are able to
52 circumvent the long acquisition-time requirements through the
53 use of synchrotron radiation, but these sources are not widely
54 available, which also results in limited sample throughput.

55 Thus, alternative higher-throughput techniques are becoming
56 available that can provide NP composition and size
57 information. One such technique is single particle inductively
58 coupled plasma mass spectrometry (sp-ICP-MS), which has
59 the capability to measure particle size and particle number
60 concentrations (PNCs) with high throughput for simple liquid
61 matrices.^{14–16} It should be noted that size determinations are
62 constrained by single particle mass detection limits. Moreover,
63 it has several disadvantages, as highlighted in recent efforts to
64 minimize them,^{17–19} including significantly more involved
65 sample preparation for complex matrices, requirements for
66 PNC below a certain threshold, operating conditions only
67 optimum to certain NP type/solution matrix combination,²⁰

Received: September 7, 2022

Accepted: December 21, 2022

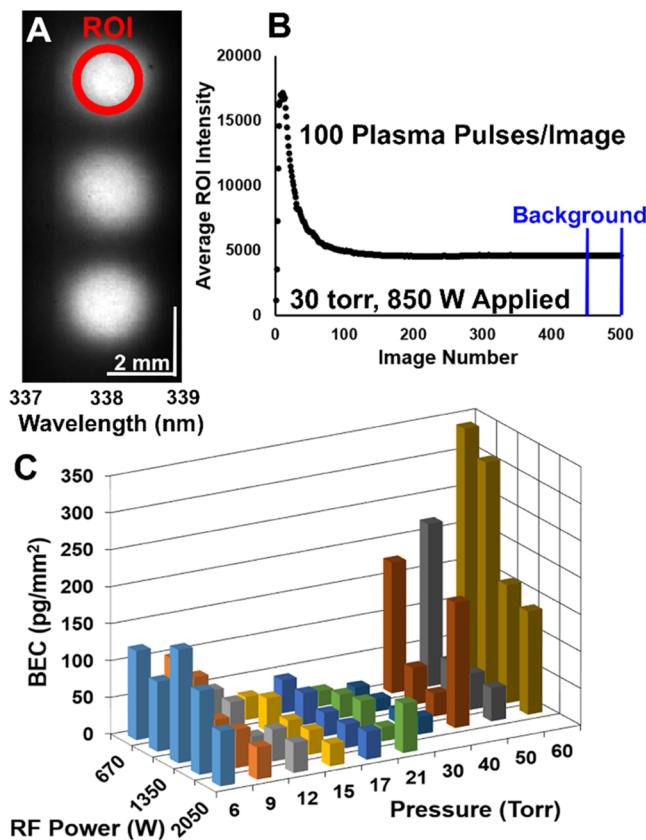
68 assumptions on particle shape, and difficulty analyzing
69 elements with higher background (e.g., O, H, C). Furthermore,
70 EM is not inherent to sp-ICP-MS but is only available when
71 coupled with laser ablation sampling, with its corresponding
72 low sample throughput for large-scale maps.^{21,22} More
73 recently, a graphite furnace atomic absorption spectroscopy
74 method was also demonstrated for the composition and sizing
75 of Au NPs between 2 and 100 nm from suspensions,²³ but
76 without EM capabilities.

77 Glow discharge optical emission spectroscopy (GDOES) is a
78 high-throughput solid-sampling simultaneous multielemental
79 analysis technique that requires little-to-no sample preparation
80 and offers multimatrix calibration schemes.²⁴ GDOES also
81 allows the analysis of light elements (O, H, C, N), where most
82 other techniques fail.²⁴ Furthermore, GDOES EM has been
83 realized through the implementation of pulsed-power schemes
84 while maintaining the discharge at higher-than-typical
85 pressures.^{25,26} Under these conditions, the sputtered atom
86 mixing in the discharge before emission can occur is
87 minimized, thus preserving the lateral information with a
88 resolution of ~100 μm .²⁴ GDOES EM is cost-effective and
89 several orders-of-magnitude faster than the EM techniques
90 based on ion- or photon-beam rastering. Moreover, inherent
91 access to depth resolution coupled to the fast sputtering rates
92 permits three-dimensional (3D) (spatial) elemental informa-
93 tion in rapid time frames while having the ability to measure
94 analytes in relatively complex matrices.

95 Herein, GDOES EM is demonstrated for the first time for
96 the high-throughput detection and characterization of metallic
97 NPs from dried-droplet residue arrays. The effect of the
98 GDOES EM operating conditions and sample preparation
99 were studied, and optimized conditions were used for the
100 determination of the elemental composition limit-of-detection
101 (LOD). Furthermore, the shape of the intensity time profiles is
102 used to show the novel ability to perform NP composition and
103 size, as well as core–shell dimensions characterization via
104 GDOES EM.

105 ■ EXPERIMENTAL SECTION

106 **Glow Discharge.** The Grimm-type GD²⁷ chamber used in
107 this study was modified from a version described previously.²⁸
108 Briefly, the Ar plasma gas is not evacuated through the
109 cathode–anode gap, and the entire sample (cathode) is under
110 vacuum, in contrast to the typical Grimm design.²⁷ The
111 chamber was further adapted to permit mounting and
112 characterization of petrographic microscope slide-type sub-
113 strates (27 mm \times 46 mm, 1.2 mm thickness), and the
114 schematic is shown in Figure S1. A brass-restricting anode
115 assembly was designed to reduce the 40 mm i.d. to 19 mm i.d.,
116 (20 mm o.d.) and extend its length toward the cathode to
117 maintain a gap of ~100 μm . A MACOR slide interface
118 electrically isolated the anode from the cathode and was
119 designed to accept the microscope slides. A brass backing
120 electrode was used directly for conductive substrates. In the
121 case of nonconductive substrates, a Cu plate (12.2 mm \times 40.2
122 mm) embedded in a PTFE plate was used to minimize arcing
123 to the backing electrode, which is observed in this particular
124 GD cell design. The pressure was maintained with a gauge
125 (MKS, Series 910), vacuum pump (Leybold, TRIVAC D-25-
126 B), and a mass flow controller (MKS, Type 1197A Mass-Flo)
127 at an Ar flow rate of 0.05 slpm. A 13.56 MHz RF generator
128 (Dressler, Cesar 1350) was used to deliver RF pulses at 1 kHz
129 and 5% or 12.5% duty cycle. The RF power was tuned via


130 impedance matching (Dressler, VM-5000-W) prior to each
131 measurement and kept constant.
131

132 **Imaging System.** The push-broom hyperspectral imaging
133 (PbHSI) system, described previously,^{29–32} was adapted here
134 to perform as an imaging spectrograph. Briefly, the light from
135 the GD is demagnified ~1.9 \times by a triplet ultraviolet–visible
136 (UV–vis) achromat lens. An iris (field stop) was added at the
137 focal point of the collection lens for blocking stray light
138 originating outside the region-of-interest, resulting in an
139 effective f-number of 14.3 for the imaging system. Then, a
140 pair of triplet UV–vis achromat lenses collimate and refocus
141 the image with a 90° turning mirror placed in between to steer
142 the light into the entrance slit of the spectrograph. The
143 entrance slit width was set to 1.5 mm to obtain (x , y , and λ)
144 information simultaneously while preventing the need to scan
145 in any dimension. This allows the highest imaging duty cycle
146 without detrimental loss of the rapidly transient signal. An
147 1800 lines/mm grating was selected for most studies to give a
148 spectral window of ~16 nm (linear dispersion of 1.2 nm/mm),
149 except the Ag core–silica shell characterizations (see below). A
150 series of images was collected until the analyte was completely
151 sputtered, and no emission was observed. Each image
152 integrated 100 GD pulses or 10 GD pulses for select
153 experiments together on-chip (IOC) at a frame readout of
154 4.78 Hz. The iCCD camera (Andor, iSTAR 334T) gate was
155 delayed 17 μs , with either 45 or 120 μs gate width, to acquire
156 data after 5 μs from the onset of RF pulse, at 2 \times 2 pixel
157 binning. GDOES EM time profiles are representative of the
158 time necessary to collect each image without readout time.
158

159 **Sample Preparation.** All dilutions were performed with
160 DI water. Standard NP solutions were obtained from
161 nanoComposix, where \bar{x} = average d. and σ = 1 standard
162 deviation; poly(vinylpyrrolidone) (PVP) Ag NPs: (\bar{x} = 9.7 nm,
163 σ = 2.1 nm), (\bar{x} = 51 nm, σ = 9 nm), (\bar{x} = 74.1 nm, σ = 8.2 nm);
164 Ag core–silica shell NPs: (\bar{x} = 82, σ = 5 nm), (\bar{x} = 126, σ = 12 nm); and citrate Ag NPs: (\bar{x} = 5.4, σ = 0.8 nm). The
165 citrate Ag NPs: (\bar{x} = 10, σ = 4 nm), (\bar{x} = 20, σ = 4 nm), (\bar{x} =
166 40, σ = 4 nm), (\bar{x} = 100, σ = 8) and citrate Au NPs: (\bar{x} = 20, σ =
167 3 nm), (\bar{x} = 40, σ = 4 nm), (\bar{x} = 100, σ = 8) were all obtained
168 from Sigma-Aldrich. Core–shell NP stock solutions came
169 suspended in ethanol, while all others were in DI water.
170 Suspensions were shaken for ~30 s when removed from the
171 refrigerator and for ~15 s prior to being drop-cast manually
172 with a volumetric pipette into three dried deposits (~2 mm d.,
173 separated by ~1.5 mm edge-to-edge) distributed along a
174 vertical line, which was aligned along the spectrograph's
175 mm slit height to permit simultaneous imaging without
176 scanning.
177

178 **Pressure, Power, and Substrate Studies.** Deposits of 20
179 μL 40 nm Ag NPs in citrate buffer at a concentration of 20 ng/
180 μL were drop-cast in 1 μL intervals (20 \times) and allowed to dry
181 between depositions. Excessive spreading was observed on
182 glass slides due to wetting and was restricted through the use
183 of home-made vinyl sticker “masks.” These masks had an array
184 of holes to provide wells where the NP suspension droplets
185 were confined into 2 mm d. deposits during the drying step
186 and were removed prior to analysis. This protocol was also
187 used for the Cu substrates to facilitate BEC comparisons with
188 the glass (Figures S2A and 1C).
188 fl

189 A dichroic filter (Andover Corp, 337FS03-25, transmission
190 of 24.4% at 338.3 nm) was placed after the collimation lens to
191 enable use of the iCCDs full dynamic range by minimizing the
192 stronger wavelength bands. The iCCD gate width was 45 μs
192

Figure 1. (A) GDOES EM at 338.28 nm (Ag I) of 3-replicate 400 ng deposits of 40 nm citrate-functionalized Ag NPs on a Cu plate. (B) Temporal profile of the signal intensity averaged within the region-of-interest (ROI) in panel A. The last 50 images were taken as background for BEC calculations. (C) BEC, normalized to deposit area, as a function of the plasma gas pressure and applied RF power.

193 with a plasma pulse width of 50 μ s at 1 kHz pulse frequency.
 194 The RF power was tuned into the Cu substrates via impedance
 195 matching at each pressure and had a high coupling efficiency to
 196 the Ag NPs at the 400 ng deposited mass without using longer
 197 plasma pulse widths. 1 image = 100 plasma pulse IOC.
 198 Averaged time traces were created using ImageJ and defining a
 199 circular ROI with an edge threshold equal to 50% of the
 200 spectrally subtracted peak height. The ROI was then averaged
 201 over all pixels within this area to give an average intensity value
 202 as a function of time. The intensity values of 3-replicate a
 203 deposits on one substrate were then averaged together to
 204 provide an averaged time trace. BECs were calculated using the
 205 peak height as the signal, and the last 50 images (where no Ag
 206 signal was observed) of each averaged time trace were used to
 207 obtain the mean and standard deviation of the background.
 208 LODs were calculated using 3 \times the standard deviation of the
 209 y-intercept divided by the slope.

210 **Limit-of-Detection Determination.** The vinyl mask
 211 protocol was not implemented to prevent any potential loss
 212 of NPs that may be deposited on the edges of the vinyl. The
 213 dichroic filter was also removed to provide higher signal-to-
 214 noise (S/N) ratios since the filter rejects about 75% of light at
 215 the Ag I wavelength. The 40 nm citrate-functionalized Ag NPs
 216 were used with 5 replicate volume deposits of 0.25 μ L each
 217 (1.25 μ L total) at decreasing concentrations, 20 – 0.16 ng/ μ L,
 218 resulting in a mass of 25 ng – 200 pg for each final dried
 219 sample. The 50 nm PVP-functionalized Ag NPs were prepared

220 the same way as the citrate, with the addition of a 0.04 ng/ μ L 220
 221 suspension, which resulted in a 50 pg dried sample for the 221
 222 lowest mass. The iCCD gate width was 120 μ s, with a 222
 223 corresponding plasma pulse width of 125 μ s at 1 kHz pulse 223
 224 frequency. The RF power was tuned via impedance matching 224
 225 at every mass and was necessary due to lower coupling 225
 226 efficiency at lower masses. 1 image = 100 plasma pulses IOC. 226
 227 Nine deposits (3 slides) were averaged together for statistics. 227

228 The images were binned 5 \times 5 in software, resulting in an 228
 229 image with 10 \times 10 binning total. The four highest intensity 229
 230 pixels were then chosen as the ROI for averaging the signal, 230
 231 which corresponded to an actual deposit area of 494 \times 494 μ m 231
 232 after the image magnification was taken into account. The 232
 233 PNC (per unit area) at various masses for both citrate and 233
 234 PVP-functionalized Ag NPs were then counted manually in 234
 235 each SEM image (Center and Edge of ROI) and averaged 235
 236 together to extrapolate the mass of NPs in the ROI (Table S1). 236
 237 A linear calibration curve was created between the total 237
 238 deposited mass and ROI mass, with the SEM mass corrected 238
 239 values used for the calibration curves. LODs were calculated 239
 240 using 3 \times the standard deviation of the y-intercept divided by 240
 241 the slope. The LOD error reported was propagated from the 241
 242 standard deviation of the slope. 242

243 **Nanoparticle Size Characterization.** The size determi- 243
 244 nation experiments for both PVP- and citrate-functionalized Ag 244
 245 or Au NPs used five replicate volume deposits at 0.25 μ L each 245
 246 (20 ng/ μ L concentration) to result in a total mass of 25 ng 246
 247 (1.25 μ L) deposited for all of the d. (5–100 nm). The iCCD/ 247
 248 plasma conditions and the data analysis procedure were the 248
 249 same as for the LOD determination studies. For the PVP Ag 249
 250 NP sizing studies, the larger masses of the citrate Ag NPs (20– 250
 100 nm), and the Au NPs 100 plasma pulses were integrated 251
 252 on-chip for a single image. In the case of the smaller-sized 252
 253 citrate Ag NPs (5–20 nm), 10 plasma pulses integrated on- 253
 254 chip for a single image. An intensity time trace was created 254
 255 from nine replicate measurements (three substrates with three 255
 256 deposits each) and was used to obtain the FWHM/FW75%M 256
 257 and peak time statistics. Time traces were filtered in time using 257
 258 MATLAB with the function “sgolayfilt” using a third-order 258
 259 polynomial with an 11-pixel (image) window. 259

260 **Silver Core/Silica Shell Nanoparticle Characteriza- 260
 261 tion.** The characterization of the Ag core–silica shell NPs used 261
 262 five replicate volume deposits at 5 μ L each (20 ng/ μ L 262
 263 concentration) to result in a total mass of 50 ng (2.5 μ L) for 263
 264 both sizes. The Ag I (328 nm) and Si I (251.6 nm) emissions 264
 265 were monitored simultaneously using the 300 lines/mm 265
 266 grating, resulting in a spectral window of ~130 nm at a linear 266
 267 dispersion of 9.8 nm/mm. The iCCD gate width was 120 μ s 267
 268 with a corresponding plasma pulse width of 125 μ s (12.5% 268
 269 duty cycle@1 kHz pulse frequency). The silica shells of both 269
 270 the 90 and 140 nm d. NPs had 20 nm thick shells, and the core 270
 271 sizes were 50 and 100 nm, respectively. 271

272 The ROI for each core–shell image was selected at the 272
 273 edges of each deposit, and the high spatial resolution provided 273
 274 by the GDOES EM images allows discrimination of emission 274
 275 signals, where emission time profiles align temporally and have 275
 276 similar peak intensities. These characteristics are indicative of 276
 277 regions where the particle density and sputtering rate are 277
 278 similar. Nine of these time traces (three substrates with three 278
 279 deposits each) are then chosen to average together. Time 279
 280 traces were filtered in time using MATLAB with the function 280
 281 “sgolayfilt” using a third-order polynomial with an 11-pixel 281
 282 (image) window. 282

283 The SEM images (pristine vs sputtered 15 s) were analyzed
284 in ImageJ using the “analyze particles” function. Parameters
285 used were: “Auto Local Threshold” with method “Niblack” and
286 a 15-pixel radius, size “100–750 pixels,” a circularity of “0.35–
287 1,” and “include holes.” The data obtained was then used in
288 Matlab with the function “histogram” and “normalization” was
289 set to “probability” to plot size distributions. The “histfit”
290 function was then used to fit Poisson distributions to the
291 individual histograms and obtain lambda and standard
292 deviation values.

293 ■ RESULTS AND DISCUSSION

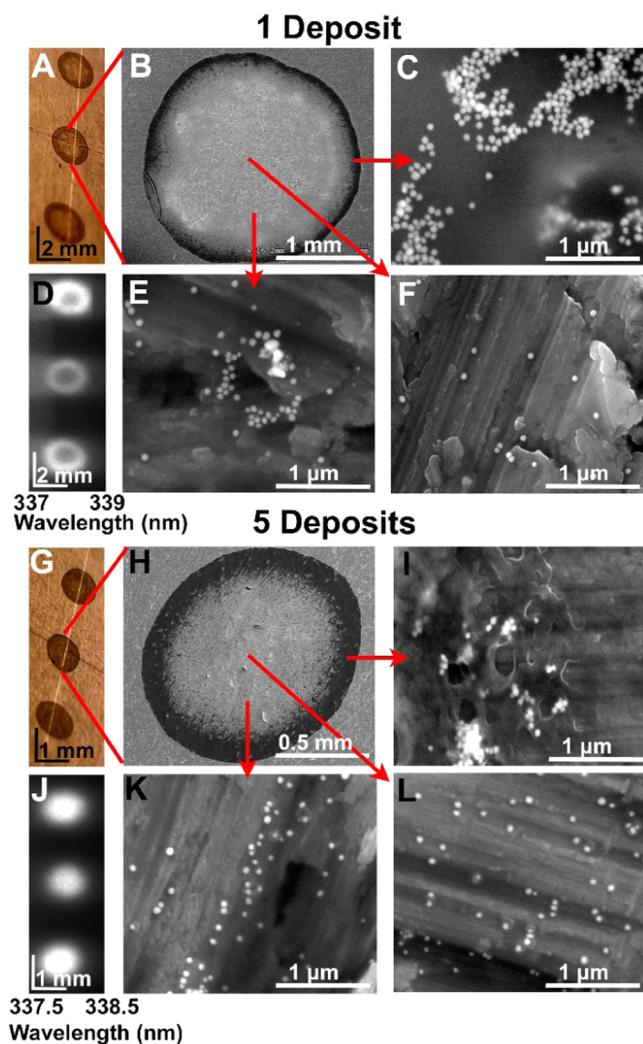
294 **Effect of GD Pressure and Power.** The GDOES spectral
295 image at 338.28 nm under EM conditions (Figure 1A) shows
296 the discrete emission from each Ag NP deposit. The average
297 pixel intensity from the region-of-interest (ROI) changes from
298 image-to-image, as a function of time, showing a peak at image
299 ~ 8 and decreases to a plateau as the sample is consumed by
300 sputtering (Figure 1B). The effect of the GD applied power
301 and gas pressure on the Ag I emission was assessed by
302 calculating the background equivalent concentration (BEC =
303 $(0.01 \times k \times \text{RSDB} \times C_0) \times \text{SBR-1}$),³³ which serves as an
304 indicator of the LOD, where $k=3$, RSDB is the relative
305 standard deviation of the background, C_0 is the deposit total
306 mass of silver, and SBR is the peak signal-to-background ratio.
307 The BEC here is also normalized to the deposit area to account
308 for the signal intensities spread over the iCCD pixels. It is
309 evident that the BEC considerably improves (decreases) from
310 6 Torr up to 30 Torr. The lateral resolution in GDOES EM is
311 known to improve at higher pressures,³⁴ but signal intensities
312 typically decrease. Thus, the unexpected BEC improvement
313 trend observed here, resulting from comparable corresponding
314 improvements in peak S/B and RSDB (Figure S3), is
315 significantly advantageous. The trend is hypothesized to be
316 caused by a lateral plasma confinement effect (PCE) on the
317 NP deposit due to the higher sputtering rate of NPs^{35,36} vs the
318 bulk substrate material on which they are deposited. The PCE
319 will become more significant at higher pressures due to the
320 plasma constriction that takes place from an increasingly lower
321 mean free path.²⁴ The PCE will lead to higher power density
322 not only at the NP deposit but also at higher lateral resolution,
323 which will result in higher analyte signal and lower background
324 from the bulk substrate, thus yielding lower LODs.
325 Furthermore, the BEC becomes worse (increases) as the
326 pressure is further increased from 30 to 60 Torr (Figure 1C)
327 due to the instability of the plasma. It is worth noting that this
328 is the first time GDOES EM is demonstrated above 12 Torr for
329 quantitative purposes.^{34,37} In addition, the BEC generally
330 improves as the RF power is increased. The optimum
331 conditions at 30 Torr and 850 W applied power (WA) were
332 subsequently used for the rest of this study.

333 **Effect of the Substrate Material.** The effect of the bulk
334 substrate composition on the figures-of-merit was also studied.
335 Particular attention was paid to the substrate’s relative
336 sputtering rate (RSR), since it would potentially affect the
337 hypothesized PCE.

338 As such, glass petrographic slides, characterized by a low
339 RSR as a thick nonconductive substrate, were tested. While the
340 BEC here (Figure S2A) followed a similar pressure trend as the
341 Cu plate substrate, the pressure could not be raised ≥ 15 Torr
342 due to arcing issues arising from the whole nonconductive
343 substrate being entirely in vacuum. Lateral resolution is much
344 better at 30 vs 12 Torr, so only conductive substrates were

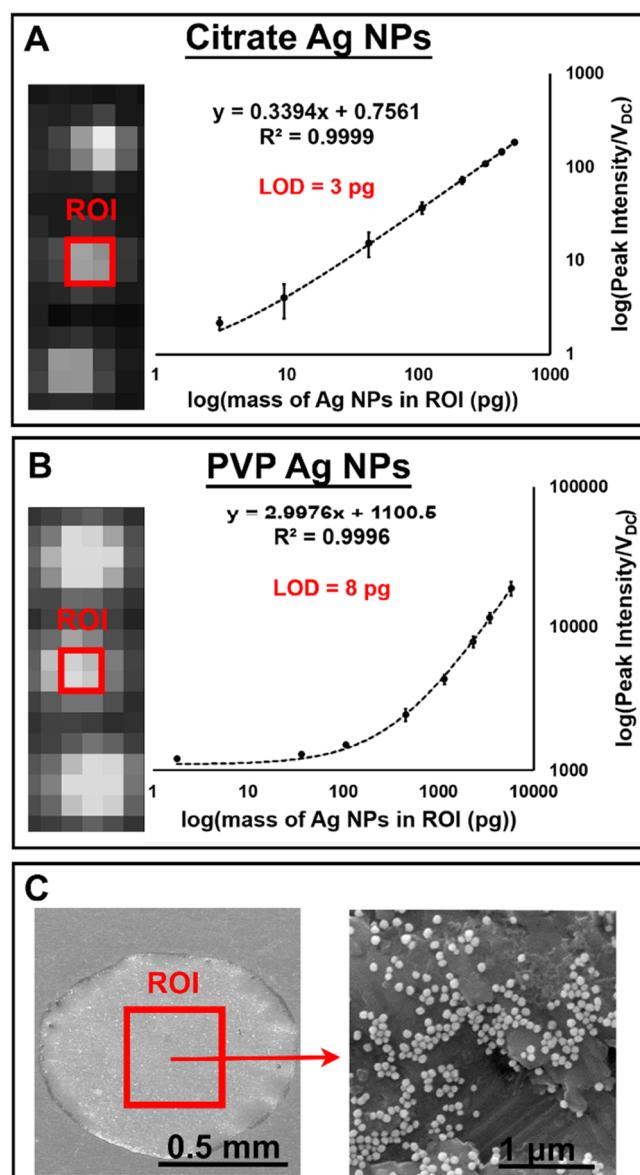
further investigated. However, the typical Grimm²⁷ GDOES sample mount should prevent such issues and will be tested in the future.

The effect of conductive substrate RSR on the LOD of Ag NPs was evaluated via mass-calibration curves (Figure S2B). Evidently, as the substrate RSR decreases, so does the corresponding LOD (Table 1). These results support the


Table 1. Relative Sputtering Rates of Metallic Substrates and Corresponding LODs from Mass-Calibration Curves

	Cu	Ni	Ti
RSR mean	3.5	1.5	0.43
full deposit LOD (pg)	674	412	134

proposed PCE because the higher NP/substrate RSR contrast would enhance plasma confinement. The simple drop-casting NP deposition method was also optimized. Drop-casting is known to produce a distinct “coffee-ring” stain of higher particle density at the perimeter,³⁸ which is clearly observed here for the single-drop deposition protocol ($1 \times 1.25 \mu\text{L}$) images under the optical (Figure 2A) and electron microscopes (Figure 2B). The spatial resolution of GDOES EM (Figure 2D) also allows us to clearly observe this effect. In addition, SEM shows how the PNC significantly increases from the center of the deposit outward (Figure 2C,E,F). The “coffee-ring” effect was minimized here by implementing a drop-casting technique with five replicate deposit volumes ($5 \times 0.25 \mu\text{L}$). The five-drop technique allowed not only a more homogeneous NP distribution over the deposit but also depositing the same mass onto a significantly smaller area, $\sim 4\times$ (c.f. Figure 2A,B, and 1D vs 2G,H,J, note different scales). The SEM identified a much thicker ring (c.f. Figure 2B,H) and increased PNC toward the center of the deposit in comparison to the single-drop deposit (c.f. Figure 2E,F,K,L). The higher mass/area in the five-drop method, which was used for the rest of this study, will also result in better SNR.


Limit-of-Detection. Quantitative figures-of-merit with the optimized conditions were obtained for Ag NPs with different surface functionalization, citrate vs PVP, from calibration curves (Figure 3A,B). In this case, the ROI was restricted to the center of deposit (~ 0.5 radius), enabled by the high GDOES EM spatial resolution achieved in our study by operating at 30 Torr. The spatial resolution at 30 Torr was calculated using the line-spread function³⁹ from the vertical edges of three deposits (six edges) and was found to be between ~ 130 and $\sim 160 \mu\text{m}$. SEM of the ROI confirmed that no NP stacking was taking place, such that the sub-monolayer thickness is limited by the NP diameter. In addition, the PNC distribution obtained by SEM in the ROI allowed to use only the corresponding NP mass, instead of the NP mass of the whole deposit. Variations in the measured V_{DC} between replicates were observed and were subsequently used to normalize the peak intensities of each image, which led to a significantly better linearity and reproducibility. It is worth noting that the GD power pulse duration was set to $50 \mu\text{s}$ for citrate Ag NPs, while it was $125 \mu\text{s}$ for PVP Ag NPs.

The longer pulse duration improved reproducibility but resulted in higher background intensity, which is reflected as a curvature in the linear function toward the lower masses (Figure 3) due to displaying the data on a log scale and having a nonzero y -intercept. Nevertheless, comparable LODs were obtained for 40 nm citrate Ag NPs ($3 \pm 0.01 \text{ pg}$ or $2.4 \text{ pg}/\mu\text{L}$,

Figure 2. Single 1.25 μL sample, 25 ng total of 40 nm citrate Ag NPs, drop-cast per deposit on Cu substrate, as observed by optical microscopy (A), SEM at different magnifications (B, C, E, F), and measured by GDOES EM using MIS mode at 338 nm wavelength (D, Ag I). Five 0.25 μL replicate samples, 25 ng total of 40 nm citrate-functionalized Ag NPs, drop-cast per deposit on Cu substrate, as observed by optical microscopy (G), SEM at different magnifications (H, I, K, L), and measured by GDOES EM using MIS mode at 338 nm wavelength (J, Ag I). Note the differences in the scale bars between A, B, D vs G, H, J.

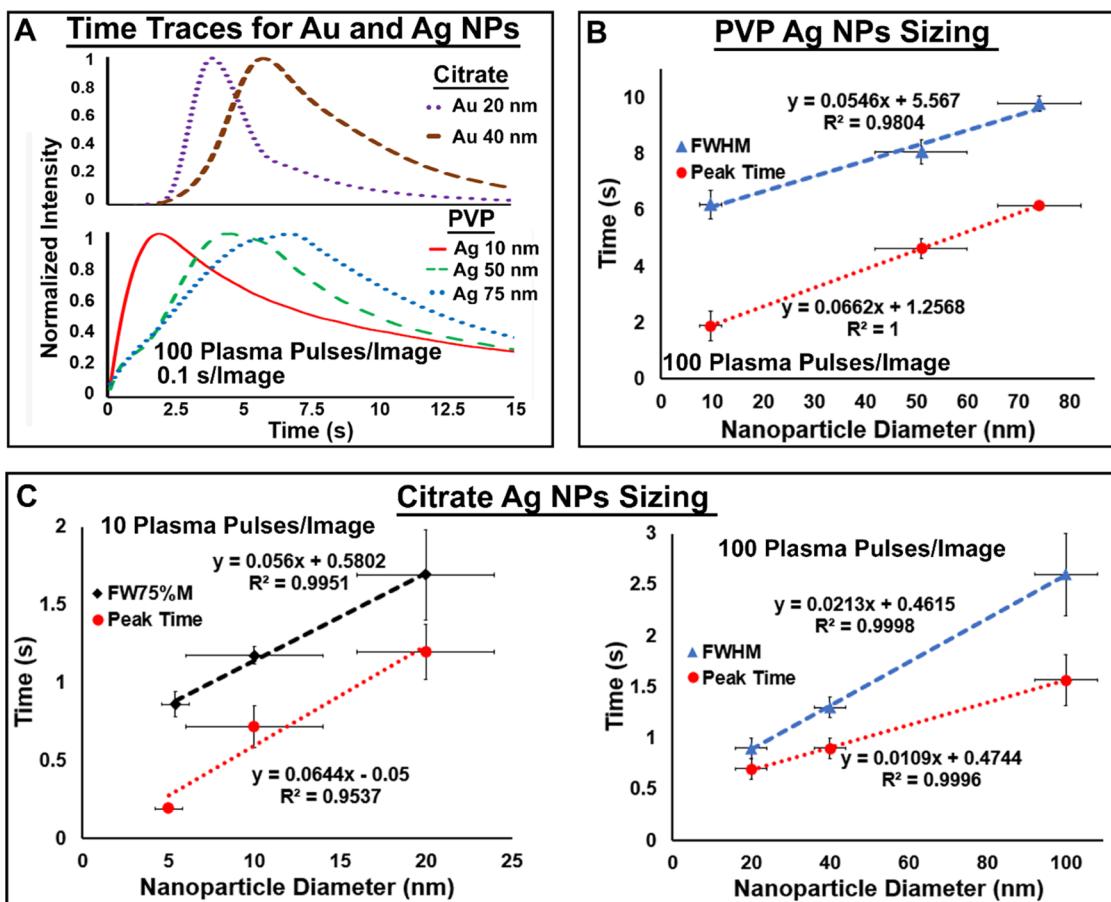
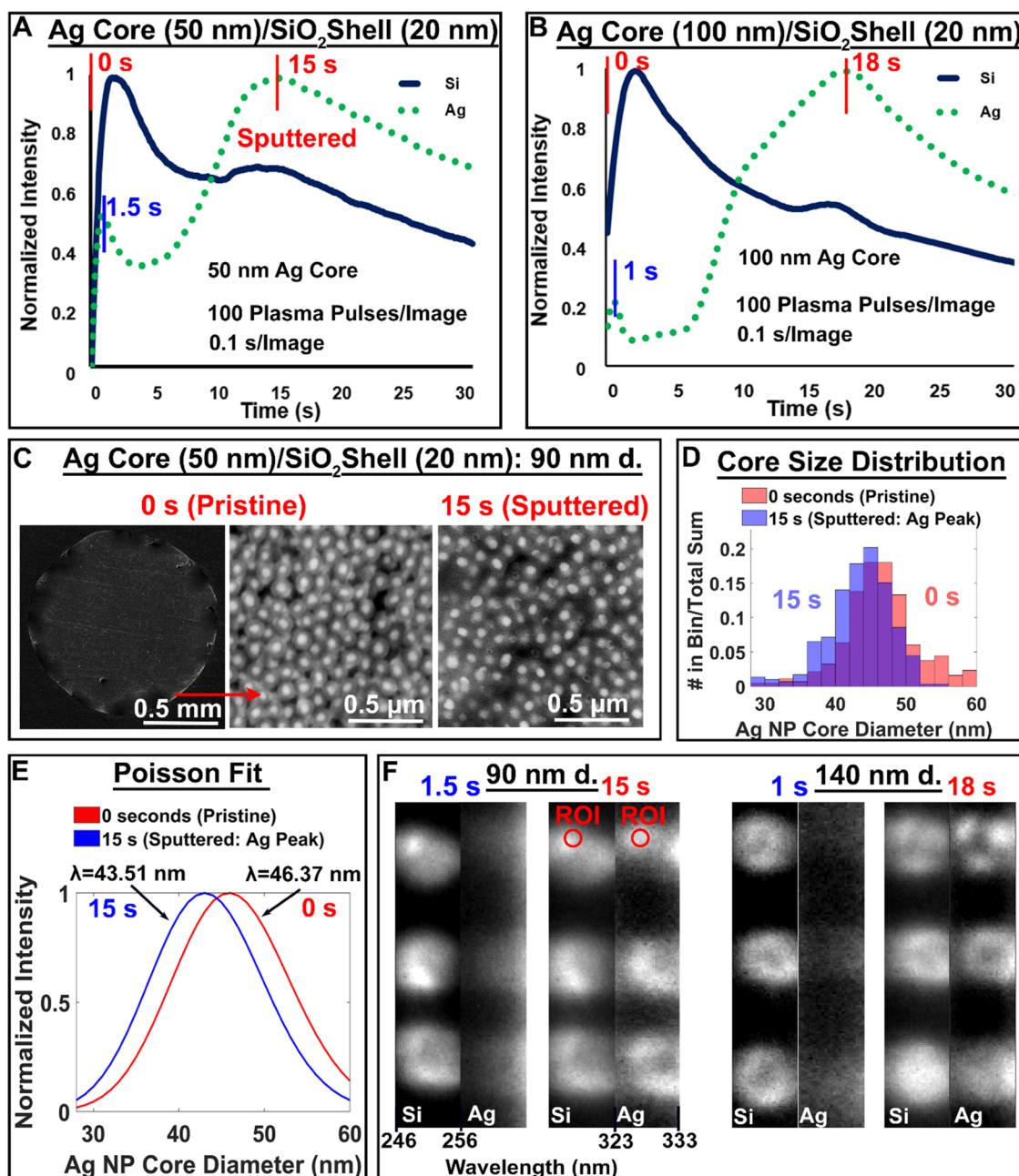

Figure 3A) and 50 nm PVP Ag NPs ($8 \pm 0.04 \text{ pg}$ or $6.4 \text{ pg}/\mu\text{L}$, Figure 3B). This is due in great part to using the measured ROI mass for calibration, which allows us to account for differences in PNC distribution between citrate and PVP (cf. Figures 2L and 3C), which was significantly higher for PVP in the ROI. The mass LODs can be put into perspective by considering a study monitoring the uptake of 50 nm citrate Ag NPs into mouse neuroblastoma single-cells by laser ablation ICP-MS, which reported an average mass uptake of $81 \pm 67 \text{ pg}/\text{cell}$ ⁴⁰ and LODs of $157 \text{ pg}/\mu\text{L}$.⁴⁰ Thus, the GDOES EM Ag NP LODs shown here are appropriate for single-cell uptake studies, with the caveat that these LODs were demonstrated on standard Ag NP solutions, and single-cell matrix effects are yet to be investigated. Future work by the authors will include studying the effects from cellular matrices to assess GDOES EM applicability. It is also important to assess the effect of having ionic species present in the matrix with NPs, as is

Figure 3. Calibration curves of the GDOES EM NP deposit ROI average peak intensity (20 \times 20 pixel binning, showed for three replicate 25 ng deposits) normalized to the V_{DC} vs NP mass for Citrate 40 nm Ag NPs (A) and PVP 50 nm Ag NPs (B). Error bars: standard deviation of nine replicate measurements. (C) SEM of the full 25 ng PVP deposit (left) and the center (right).

common with real-world samples. When 25 ng of AgNO_3 ($5 \times 0.25 \mu\text{L}$ at $20 \text{ ng}/\mu\text{L}$) was analyzed using the same method as the PVP Ag NPs, no Ag signal was observed. However, when 25 ng of AgNO_3 was added to 25 ng of Ag NPs, the signal was seen to increase by $\sim 21\%$ in comparison to the NP suspension by itself. This can be explained by the NPs allowing more efficient plasma coupling into the sample through the previously mentioned PCE. Nevertheless, concentrations of ionic Ag found in environmental water systems (rivers, lakes, and estuaries) are on the order of $\sim 10\text{--}100 \text{ ng/L}$, which are 5–6 orders-of-magnitude lower than what was measured in this study;⁴¹ thus, ion contributions to the total signal will not be significant.

Nanoparticle Size Characterization. Next, the ability to perform NP size characterization via GDOES EM was also


Figure 4. (A) Optical emission intensity time profiles of 25 ng deposits of PVP Ag NPs and citrate Au NPs. Calibration plots of time profiles FWHM (or FW75%M) and peak time vs PVP Ag NP d. (B), as well as 25 ng deposits of citrate Ag NPs at a small NP d. range (C left) and large NP d. range (C right). X-error bars: standard deviations from manufacturers' certificate of analysis. Y-error bars: standard deviation for nine replicate measurements. Note the difference in the plasma pulses/image between the citrate Ag NPs sizing plots.

432 studied. The emission time profiles show that the peak
 433 intensity occurs at a later time and the full width at half-
 434 maximum (FWHM) becomes wider as the NP d. in the
 435 deposit is increased in the range of 10–100 nm (Figure 4).
 436 Both effects show a linear relationship, even with different NP
 437 surface functionalization, which is greatly due to the sub-
 438 monolayer thickness corresponding to the NP d. Decreasing
 439 $\times 10$ the number of plasma pulses accumulated per image
 440 allowed the time resolution necessary to lower the NP d. range
 441 to 5–20 nm (Figure 4C). In this case, the full width at 75% of
 442 the maximum (FW75%M) had to be used because of the
 443 emission time profile tailing. The FWHM/FW75%M and peak
 444 time NP d. analytical sensitivities generally improve for larger
 445 d. (Table S2). To the authors' knowledge, this is the first time
 446 GDOES, in any operation mode, is demonstrated for the
 447 characterization of NP size. Differentiation of Au NPs with d.
 448 of ~ 20 vs ~ 40 nm, with sharper time profile peaks and
 449 minimal tailing, demonstrates that this technique is also
 450 applicable to various NP compositions (Figure 4A).

451 It is noteworthy that the FWHM/peak times are different for
 452 the citrate vs PVP-coated Ag NPs (cf. Figure 4B,C). Thus, it
 453 would indicate that these calibration curves are specific to an
 454 NPs surface coating, such that prior separation based on their
 455 functionalities^{42–45} would need to be implemented to use this
 456 method as is. Alternatively, a universal calibration curve could
 457 be achieved by removing the capping agents by simple
 458 washing/centrifugation, other chemical methods,^{46–48} or "soft"

plasma cleaning,⁴⁹ which is a unique possibility with GD, as demonstrated for the removal of organic surface contaminants.⁴⁶⁰

Ag Core/Silica Shell Nanoparticle Characterization.⁴⁶¹ Finally, the capability of GDOES EM to characterize internal dimensions of complex NPs was also studied with Ag core/⁴⁶² silica shell NPs. The emission time profiles for ~ 90 nm total d.⁴⁶³ ($\bar{x} = 47$ nm, $\sigma = 5$ nm core) and 140 nm total d.⁴⁶⁴ ($\bar{x} = 92$ nm, $\sigma = 12$ nm core) show clear discrimination in peak times⁴⁶⁵ between the Si and Ag signals (Figure 5A,B). It can be seen⁴⁶⁶ that the Si I signal peaks first at ~ 2 –3 s for both NP sizes,⁴⁶⁸ while the Ag I peaks later at 15 s for the 90 nm NPs or 18 s for the 140 nm particles. This shows that the silica shell is⁴⁶⁹ sputtered first before exposing the Ag core, which is consistent⁴⁷¹ with a layer-by-layer sputtering process. This allows the ROI to⁴⁷² be located at the edge of the deposit despite NP agglomerating⁴⁷³ on top of each other. The SEM images of the core/shell NP⁴⁷⁴ sample sputtered to the Ag I peak show smaller core sizes⁴⁷⁵ compared to the ones in the pristine sample. Some NPs in the⁴⁷⁶ sputtered sample SEM also appear hollow, which is believed to⁴⁷⁷ be due to the high sputtering rate differences between SiO_2 ⁴⁷⁸ and Ag; once the core has been exposed to the plasma, the Ag⁴⁷⁹ may be sputtered away more rapidly, while the silica shell⁴⁸⁰ remains and acts to block core edges from incoming sputtering⁴⁸¹ species. The core size distribution histogram (Figure 5D)⁴⁸² shows the overall core size shifts to smaller d., as confirmed by⁴⁸³ Poisson fits (Figure 5E), giving a $\lambda = 46.37$ nm/standard⁴⁸⁴ deviation = 6.8 for the pristine sample, and $\lambda = 43.51$ nm/⁴⁸⁵

Figure 5. Optical emission intensity time profiles of 50 ng Ag core/SiO₂ shell NPs: (A) 90 nm total d., Ag core ($\bar{x} = 47 \text{ nm}$, $\sigma = 5 \text{ nm}$). (B) 140 nm total d., Ag core ($\bar{x} = 92 \text{ nm}$, $\sigma = 12 \text{ nm}$). (C) SEM images of the 90 nm total d. deposit before sputtering/pristine and after sputtering to the Ag I peak time. (D) Histogram of NP core size distribution from SEM images (overlap is shown in purple) and corresponding (E) Poisson fits. (F) GDOES EM images at various times along the time profile for both Si I (251 nm) and Ag I (328.1 nm).

standard deviation = 6.6 for the sputtered sample. The pristine sample SEM measured core d. are in good agreement with the manufacturers' specifications of $47 \pm 5 \text{ nm}$, which was measured via TEM.

Furthermore, it should be noted that, in this case, the larger spectral window used to measure Si I and Ag I simultaneously has a lower spectral resolution. Thus, background subtraction is less efficient, particularly for the Ag I lines with N₂ bands in the vicinity, and results in artifacts on its time profile shape, such as the residual initial peak at $\sim 1 \text{ s}$ (Figure 5A,B). The GDOES EM images (Figure 5F) at the corresponding background residual peak in Figure 5A (1.5 s) and 5B (1 s) show only molecular interferences at adjacent wavelengths

overlapping the Ag wavelength. In addition, there are no characteristic spatial features indicative of emission from the NPs deposit, such as in the GDOES EM images at the Ag I peak time for 90 nm (15 s) and 140 nm (18 s) core–shell particle sizes. On the other hand, sputtering rates and plasma impedance matching vary between material “layers,” and here, the impedance matching settings were kept constant throughout the measurement (see the Experimental Section). Thus, the second peak in the Si I time profile, which coincides with Ag I, may be a result of improved impedance matching/sputtering rate as the Ag core is exposed. Current work in the authors’ laboratory is underway to develop faster hyperspectral imaging approaches with the higher spectral resolution, such as

512 coded aperture snapshot spectral imaging (CASSI) coupled
513 with GDOES EM to allow significantly better simultaneous
514 multielemental capabilities with improved background sub-
515 tration (NSF: CHE-2108359).

516 ■ CONCLUSIONS

517 In conclusion, this is the first time GDOES, in any operation
518 mode, has been demonstrated for the successful discrimination
519 of NP sizes and their elemental composition. GDOES EM
520 enables significantly faster (data collection within seconds) NP
521 characterization, with information about their spatial distribu-
522 tion over relatively large area samples, in comparison to
523 traditional techniques. Furthermore, GDOES EM is also
524 shown to give access to core/shell NP composition and
525 structure dimensions. It is worth noting that size determi-
526 nations are not constrained by single particle mass detection
527 limits. Moreover, this technique requires very fast and simple
528 sample preparation without specialized equipment. Nonethe-
529 less, better deposition methods that can deposit more NPs, up
530 to a full monolayer, in a smaller area could provide better mass
531 LODs from the correspondingly higher signal density and
532 improved SBR. Future work will include analysis of mixtures
533 containing various NP sizes to assess the possibility of
534 differentiation based on their temporal profiles. In addition,
535 the technique presented opens the door for developing many
536 different applications in several fields currently underway in the
537 authors' laboratory, such as cell NP uptake studies down to the
538 single cell, analysis of NPs in microarray platforms for even
539 orders-of-magnitude higher-throughput analysis, and coupling
540 with relevant NP separation techniques (e.g., gel electro-
541 phoresis^{42,45}/thin layer chromatography^{43,44,50}) for more
542 comprehensive characterization.

543 Current work is also underway to adapt this method to
544 typical GDOES operating conditions, or GDMS, which may
545 lack EM capabilities but are widely accessible in commercially
546 available instruments and would allow access to composition
547 analysis and even size characterization with other sample
548 deposition methods that yield more homogeneous monolayer
549 NP distribution. Nonetheless, core–shell dimensions charac-
550 terization is not subject to the requirement of a monolayer and
551 thus could be directly applied.

552 ■ ASSOCIATED CONTENT

553 ■ Supporting Information

554 The Supporting Information is available free of charge at
555 <https://pubs.acs.org/doi/10.1021/acs.analchem.2c03940>.

556 Schematic of GD chamber; plot of Peak S/B trends,
557 substrate optimization curves; mass calculation in
558 analyzed ROI; and analytical sensitivities for sizing
559 (PDF)

560 ■ AUTHOR INFORMATION

561 Corresponding Author

562 **Gerardo Gamez** — Department of Chemistry and
563 Biochemistry, Texas Tech University, Lubbock, Texas 79409-
564 1061, United States; orcid.org/0000-0002-8827-6647;
565 Email: gerardo.gamez@ttu.edu

566 Authors

567 **Kevin Finch** — Department of Chemistry and Biochemistry,
568 Texas Tech University, Lubbock, Texas 79409-1061, United
569 States

Aldo Hernandez — Department of Chemistry and
Biochemistry, Texas Tech University, Lubbock, Texas
79409-1061, United States

Complete contact information is available at:
<https://pubs.acs.org/10.1021/acs.analchem.2c03940>

575 Notes

The authors declare no competing financial interest.

577 ■ ACKNOWLEDGMENTS

The authors acknowledge support by the National Science
578 Foundation: CHE-2108359. The authors thank S. Hiemstra
579 and C. Pfeiffer at the TTU Department of Chemistry and
580 Biochemistry Machine Shop for technical support, along with
581 Dr. B. Zhao from the CASM facility for the SEM images. K.F. 582
acknowledges the ACS DAC graduate fellowship sponsored by
583 the SACP. A.H. acknowledges the Undergraduate STEM 584
Scholars program: CISER at TTU. 585

586 ■ REFERENCES

- (1) Hosokawa, M. *Nanoparticle Technology Handbook*, 2nd ed.; Elsevier: Amsterdam Boston, 2012.
- (2) Ing, V. D. H.; Wolfgang, U.; Alex, S. *Characterization of Nanoparticles: Measurement Processes for Nanoparticles*; Elsevier: Amsterdam, 2020.
- (3) Yu, S.-j.; Yin, Y.-g.; Liu, J.-f. *Environ. Sci.: Processes Impacts* **2013**, *15*, 78–92.
- (4) Chen, C.-Y.; Chiang, C.-L. *Mater. Lett.* **2008**, *62*, 3607–3609.
- (5) Nair, R.; Varghese, S. H.; Nair, B. G.; Maekawa, T.; Yoshida, Y.; Kumar, D. S. *Plant Sci.* **2010**, *179*, 154–163.
- (6) Rhim, J.-W.; Park, H.-M.; Ha, C.-S. *Prog. Polym. Sci.* **2013**, *38*, 1629–1652.
- (7) Shenava, A.; Sharma, S.; Shetty, V.; Shenoy, S. *J. Oral Res. Rev.* **2015**, *7*, 35–38.
- (8) Neupane, N. P.; Kushwaha, A. K.; Karn, A. K.; Khalilullah, H.; Khan, M. M. U.; Kaushik, A.; Verma, A. *Biocatal. Agric. Biotechnol.* **2022**, *39*, No. 102229.
- (9) León-Silva, S.; Fernández-Luqueño, F.; López-Valdez, F. *Water, Air, Soil Pollut.* **2016**, *227*, No. 306.
- (10) Hodooroaba, V. D.; Rades, S.; Salge, T.; Mielke, J.; Ortel, E.; Schmidt, R. *IOP Conf. Ser.: Mater. Sci. Eng.* **2016**, *109*, No. 012006.
- (11) Rades, S.; Hodooroaba, V.-D.; Salge, T.; Wirth, T.; Lobera, M. P.; Labrador, R. H.; Natte, K.; Behnke, T.; Gross, T.; Unger, W. E. S. *RSC Adv.* **2014**, *4*, 49577–49587.
- (12) Crouzier, L.; Delvallée, A.; Ducourtieux, S.; Devoille, L.; Tromas, C.; Feltin, N. *Ultramicroscopy* **2019**, *207*, No. 112847.
- (13) Holder, C. F.; Schaak, R. E. *ACS Nano* **2019**, *13*, 7359–7365.
- (14) Mitrano, D. M.; Lesher, E. K.; Bednar, A.; Monserud, J.; Higgins, C. P.; Ranville, J. F. *Environ. Toxicol. Chem.* **2012**, *31*, 115–121.
- (15) Degueldre, C.; Favarger, P. Y. *Colloids Surf, A* **2003**, *217*, 137–142.
- (16) Laborda, F.; Bolea, E.; Jiménez-Lamana, J. *Anal. Chem.* **2014**, *86*, 2270–2278.
- (17) Hendriks, L.; Ramkorun-Schmidt, B.; Gundlach-Graham, A.; Koch, J.; Grass, R. N.; Jakubowski, N.; Günther, D. *J. Anal. At. Spectrom.* **2019**, *34*, 716–728.
- (18) Gundlach-Graham, A.; Mehrabi, K. *J. Anal. At. Spectrom.* **2020**, *35*, 1727–1739.
- (19) Tanner, S. D. *J. Anal. At. Spectrom.* **1995**, *10*, 905–921.
- (20) Tan, S. H.; Horlick, G. *J. Anal. At. Spectrom.* **1987**, *2*, 745–763.
- (21) Li, Q.; Wang, Z.; Mo, J.; Zhang, G.; Chen, Y.; Huang, C. *Sci. Rep.* **2017**, *7*, No. 2965.
- (22) Metarapi, D.; van Elteren, J. T.; Šala, M.; Vogel-Mikuš, K.; Arčon, I.; Šelih, V. S.; Kolar, M.; Hočevar, S. B. *Environ. Sci.: Nano* **2021**, *8*, 647–656.

633 (23) Leopold, K.; Brandt, A.; Tarren, H. *J. Anal. At. Spectrom.* **2017**,
634 *32*, 723–730.

635 (24) Gamez, G.; Finch, K. *Spectrochim. Acta, Part B* **2018**, *148*, 129–
636 136.

637 (25) Gamez, G.; Voronov, M.; Ray, S.; Hoffmann, V.; Hieftje, G.;
638 Michler, J. *Spectrochim. Acta, Part B* **2012**, *70*, 1–9.

639 (26) Webb, M. R.; Hoffmann, V.; Hieftje, G. M. *Spectrochim. Acta, Part B* **2006**, *61*, 1279–1284.

641 (27) Grimm, W. *Naturwissenschaften* **1967**, *54*, 586.

642 (28) Voronov, M.; Hoffmann, V.; Steingrobe, T.; Buscher, W.;
643 Engelhard, C.; Storey, A. P.; Ray, S. J.; Hieftje, G. M. *Plasma Sources Sci Technol.* **2014**, *23*, No. 054009.

645 (29) Shi, S.; Gong, X.; Mu, Y.; Finch, K.; Gamez, G. *J. Anal. At. Spectrom.* **2018**, *33*, 1745–1752.

647 (30) Kroschk, M.; Usala, J.; Addesso, T.; Gamez, G. *J. Anal. At. Spectrom.* **2016**, *31*, 163–170.

649 (31) Shi, S.; Finch, K.; She, Y.; Gamez, G. *J. Anal. At. Spectrom.* **2020**, *35*, 117–125.

651 (32) Shi, S.; Finch, K.; Gamez, G. *J. Anal. At. Spectrom.* **2021**, *36*, 1055–1073.

653 (33) Boumans, P. W. J. M.; Ivaldi, J. C.; Slavin, W. *Spectrochim. Acta, Part B* **1991**, *46*, 641–665.

655 (34) Gamez, G.; Ray, S. J.; Andrade, F. J.; Webb, M. R.; Hieftje, G. M. *Anal. Chem.* **2007**, *79*, 1317–1326.

657 (35) Sigmund, P. Sputtering by Ion Bombardment Theoretical Concepts. In *Sputtering by Particle Bombardment I: Physical Sputtering of Single-Element Solids*; Behrisch, R., Ed.; Springer: Berlin Heidelberg: Berlin, Heidelberg, 1981; pp 9–71.

661 (36) Jiménez-Sáez, J. C.; Pérez-Martín, A. M. C.; Jiménez-Rodríguez, J. J. *Nucl. Instrum. Methods Phys. Res., Sect. B* **2013**, *316*, 210–214.

663 (37) Gamez, G.; Mohanty, G.; Michler, J. *J. Anal. At. Spectrom.* **2013**, *28*, 1016–1023.

665 (38) Mampallil, D.; Eral, H. B. *Adv. Colloid Interface Sci.* **2018**, *252*, 38–54.

667 (39) Finch, K.; Hernandez, A.; She, Y.; Shi, S.; Gamez, G. *J. Anal. At. Spectrom.* **2020**, *35*, 1932–1946.

669 (40) Hsiao, I. L.; Bierkandt, F. S.; Reichardt, P.; Luch, A.; Huang, Y.-J.; Jakubowski, N.; Tentschert, J.; Haase, A. *J. Nanobiotechnol.* **2016**, *14*, No. 50.

672 (41) Ratte, H. T. *Environ. Toxicol. Chem.* **1999**, *18*, 89–108.

673 (42) Hanauer, M.; Pierrat, S.; Zins, I.; Lotz, A.; Sönnichsen, C. *Nano Lett.* **2007**, *7*, 2881–2885.

675 (43) Yan, N.; Zhu, Z.; He, D.; Jin, L.; Zheng, H.; Hu, S. *Sci. Rep.* **2016**, *6*, No. 24577.

677 (44) Wang, Y.; Olesik, S. V. *Anal. Chem.* **2018**, *90*, 2662–2670.

678 (45) Jimenez, M. S.; Luque-Alled, J. M.; Gomez, T.; Castillo, J. R. *Electrophoresis* **2016**, *37*, 1376–1383.

680 (46) La Spina, R.; Spampinato, V.; Gilliland, D.; Ojea-Jimenez, I.; Ceccone, G. *Biointerphases* **2017**, *12*, No. 031003.

682 (47) Niu, Z.; Li, Y. *Chem. Mater.* **2014**, *26*, 72–83.

683 (48) Koczkur, K. M.; Moudrikoudis, S.; Polavarapu, L.; Skrabalak, S. E. *Dalton Trans.* **2015**, *44*, 17883–17905.

685 (49) Molchan, I. S.; Thompson, G. E.; Skeldon, P.; Trigoulet, N.; Chapon, P.; Tempez, A.; Malherbe, J.; Lobo Revilla, L.; Bordel, N.; Belenguer, P.; Nelis, T.; Zahri, A.; Therese, L.; Guillot, P.; Ganciu, M.; Michler, J.; Hohl, M. *J. Anal. At. Spectrom.* **2009**, *24*, 734–741.

689 (50) Yan, N.; Zhu, Z.; Jin, L.; Guo, W.; Gan, Y.; Hu, S. *Anal. Chem.* **2015**, *87*, 6079–6087.