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Abstract. The efforts in solar flare prediction have been engendered by
the advancements in machine learning and deep learning methods. We
present a new approach to flare prediction using full-disk compressed
magnetogram images with Convolutional Neural Networks. We selected
three prediction modes, among which two are binary for predicting the
occurrence of ≥M1.0 and ≥C4.0 class flares and one is a multi-class
mode for predicting the occurrence of <C4.0, [≥C4.0, <M1.0] and ≥M1.0
within the next 24 h. We perform our experiments in all three modes
using three well-known pretrained CNN models—AlexNet, VGG16 and
ResNet34. For this, we collect compressed 8-bit images derived from full-
disk line-of-sight magnetograms provided by the Helioseismic and Mag-
netic Imager (HMI) instrument onboard Solar Dynamics Observatory
(SDO). We trained our models using data-augmented oversampling to
address the existing class-imbalance issue by following a time-segmented
cross-validation strategy to effectively understand the accuracy perfor-
mance of our models and used true skill statistics (TSS) and Heidke
skill score (HSS) as metrics to compare and evaluate. The major results
of this study are (1) we successfully implemented an efficient and effec-
tive full-disk flare predictor for operational forecasting using compressed
images of solar magnetograms; (2) Our candidate model for multi-class
flare prediction achieves an average TSS of 0.36 and average HSS of 0.31.
Similarly, for binary prediction in (i) ≥C4.0 mode: we achieve an average
TSS score of 0.47 and HSS score of 0.46, (ii) ≥M1.0 mode: we achieve
an average TSS score of 0.55 and HSS score of 0.43.
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1 Introduction

Solar flares are the large eruptions of electromagnetic radiation originating from
the inner solar atmosphere and extending out to the outermost atmosphere of the
Sun, which can last minutes to hours, and they often transpire as a sudden flash
of increased brightness on the Sun observed near its surface [1]. Although there
exists observational precursors, the actual physical cause of this phenomenon is
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still unsolved, which hinders the validation process of statistical or data-driven
flare forecasts. Recent studies [2,3] shows promising results when solar flare pre-
diction is posed as a computer vision/image classification task and deep archi-
tectures are employed.

Solar flares are categorized into five major classes according to their peak
X-ray flux level : X (> 10−4Wm−2), M (> 10−5Wm−2), C (> 10−6Wm−2), B
(> 10−7Wm−2), and A (> 10−8Wm−2) [4]. These flare classes are measured in
logarithmic scales (i.e., M3.2 is 10 times stronger than C3.2 flare). Although,
the explosive heat of a solar flare cannot reach all the way to the Earth, the
electromagnetic radiation and energetic particles certainly can induce the intense
variation in near-Earth magnetic field, causing potential disruptions to many
stakeholders such as the electricity supply chain, airlines industry, astronauts
in space and communication systems including satellites and radio. The X-class
and M-class flares are rare events and hence the scarcity of data give rise to the
class-imbalance issue which further complicates the learning process for deep
learning models, where the large amount of data is considered to be crucial for
achieving meaningful generalization.

Most of the current flare prediction models are active region-based, that is,
predictions are issued for a certain region on the Sun. Active regions are the
temporary areas on the Sun characterized by especially strong and complex
magnetic fields. These regions frequently produce various types of solar activity
and are well-suited for predicting the occurrence of flares. For an operational
system—system which is ready to use with the near real-time data for making
real-time predictions—individual predictions from active regions are aggregated
to provide a final prediction result. However, due to the strong projection effects
near the limbs of the Sun, such predictions are limited to the active regions in
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Fig. 1. (a) A pictorial representation of the compressed 8-bit image derived from the
line-of-sight magnetogram as observed by SDO/HMI on 2011–01-01 12:00:00 UT. (b)
The total number magnetograms for each target class label we use in this study; i.e.,
<C4.0 class, ≥C4.0 to <M1.0 and ≥M1.0 class flares.



382 C. Pandey et al.

central locations, which is not ideal for operational systems. Full-disk predictions
are therefore more appropriate to complement the active region-based counter-
parts and provide a crucial, often overlooked, element to these near real-time
operational systems.

Convolutional Neural Networks (CNN) [5] based deep learning architectures
have been very popular for over a decade now for computer vision problems
where data are labeled images. In this experiment, we use 8-bit compressed
magnetogram images where the pixel value ranges from 0 to 255 derived from
full-disk line-of sight solar magnetograms which contains 4096 × 4096 raster
map of the one dimensional magnetic field strength values on the sun typically
ranging from ∼ ±4500G. Using compressed images instead of high depth solar
magnetograms do not show any reliable magnetic field information however, they
represent the shape parameters of active-regions which includes the projected
shape of sunspot at an angle. Considering the limited scope of active region-based
flare prediction counterparts, where the prediction is limited to central location
(up to ±70◦) of a full-disk magnetogram due to severe projection effect on the
limbs of the Sun, with compressed full-disk magnetograms we incorporate the
entire information including the active-regions present on the limbs. Although
the 8-bit compressed magnetograms may induce information loss to some extent;
however, considering the depth and complexity of deep learning models, it may
be a more suitable choice to use images as it elevates the model’s computational
efficiency while training and predicting the flaring events in real-time.

In this paper, we address the task of training robust full-disk flare prediction
models and explore different prediction modes (i.e., predicting the occurrence
of ≥C4.0 and ≥M1.0 class flares in binary mode, and <C4.0, ≥C4.0 to <M1.0
and ≥M1.0 in multi-class mode with a prediction window of 24 h) and assess
the impact of such formulation of the prediction problem with three different
CNN architectures. As mentioned earlier, we use compressed images of full-disk
line-of-sight magnetograms obtained from Helioseismic and Magnetic Imager
(HMI) onboard Solar Dynamics Observatory (SDO). These images do not require
further preprocessing and are available in near real-time (often <30 min). An
example compressed solar magnetogram image is demonstrated in Fig. 1.(a).
These compressed images contain 4096 × 4096 pixels which we resize to 512×512
pixels for our experiments. We use a transfer learning based approach with three
landmark CNN models, AlexNet [6], VGG16 [7] and ResNet34 [8]. We customize
these models as per our requirement of two classes in binary mode and three
classes in multi-class mode with single-channel input image and analyze the
performance of each model.

In the long run, we intend to employ these models to create more reliable and
robust flare prediction ensembles in an operational setting. Robust prediction of
solar flares is a central problem in space weather forecasting and has many
practical implications. Many of the severe solar storms are associated with a
strong-flare and deep learning-based prediction models have the potential to
help understand intrinsic magnetic field configurations that lead to a flare. We
also note that the models trained in our work are not active region-based and
they only use data derived from line-of-sight magnetograms.
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The remainder of this paper is organized as follows. In Sect. 2, we present
the related work on solar flare predictions using machine and deep learning
models. In Sect. 3, the data collection and preparation strategies are presented.
In Sect. 4, we present the overview of the model architectures we use for solar
flare prediction. In Sect. 5, we present our detailed experimental evaluation,
and, lastly, in Sect. 6, we present our final remarks on this work including its
limitations and discuss future work.

2 Related Work

The convolutional neural network (CNN) [5] is a class of deep neural network
architecture with sparse neuron connections inspired by biological processes [9]
to imitate the animal visual cortex. Recently, there have been several attempts
to predict solar flares using deep learning models. Nishizuka et al. presented a
Deep learning model based on a multi-layer perceptron for solar flare forecasts
for ≥C1.0 and ≥M1.0 class [10]. In this study, they used 79 manually selected fea-
tures (well-known physical precursors) extracted from multi-modal solar obser-
vations, which are vector magnetograms, 131 Å AIA images, and 1600 Å UV
continuum images. Their models require a preliminary feature extraction pro-
cess to prepare the data to feed the deep learning model.

Similarly, Huang et al. [11] presented a CNN-based flare forecasting model
with two convolutional layers with 64 11×11 kernels where they used solar active
regions patches extracted from line-of-sight solar magnetograms within ±30◦ of
the central meridian. In this work, their models are trained to predict ≥C1.0-,
≥M1.0-, and ≥X1.0-class flares from active regions in central locations. While
they show significantly high accuracy (>0.66 true skill statistic) for ≥M1.0 class,
the models are limited only to certain areas of the observable disk, overlooking
the significant portion that has information on other active-regions, and thus
have limited operational prediction ability. In [2], Park et al. applied a CNN-
based hybrid model which combines GoogleLeNet [12] and DenseNet [13]. Their
model is trained to predict the occurrence of a ≥C1.0 class within the next 24 h.
They use data from both HMI magnetograms, as well as magnetograms from
Michelson Doppler Imager (MDI) onboard Solar and Heliospheric Observatory
(SOHO), the predecessor of HMI/SDO. This allowed them to use a substantially
higher number of images for training (entire MDI dataset, one image per day,
for training and HMI dataset for testing); however, it should be noted that these
two instruments are currently not cross-calibrated for use in forecasting and may
lead to spurious or deficient patterns being discovered.

Li et al., in [3], also use a CNN-based model to issue binary class predictions
for both ≥C1.0 class and ≥M1.0 class flares within 24 h using Space-Weather
Helioseismic and Magnetic Imager Active Region Patches (SHARP) data [14]
extracted from solar magnetograms located within ±45◦ of the central meridian
excluding the magnetograms samples that has multiple sunspot groupings (or
NOAA-defined active regions). This again limits the scope of the prediction to
easier-to-predict active regions. They use undersampling and data augmentation
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to remedy the class-imbalance issue and create a non-chronological dataset by
randomizing the process of data splitting for a 10-fold cross validation. While
such data splitting leads to higher experimental accuracy scores, it often fails to
deliver similar real-time performance as discussed in [15].

In this work, we build a set of models using compressed full-disk line-of-sight
magnetograms with pretrained deep learning models to predict the occurrence
of flaring events (for ≥C4.0 and ≥M1.0 class in binary modes and <C4.0, ≥C4.0
to <M1.0, and ≥M1.0 class in multi-class mode) with a prediction window of
24 h. We will use bi-daily full-disk images sampled at 00:00 UT and 12:00 UT,
and labeled based on the existence of a flaring event within the next 24 h. For
this, we create a dataset by using a non-chronological splitting of data into four
time segmented partitions for both binary and multi-class flare predictions. We
use 8-bit compressed images of full-disk line-of-sight solar magnetograms with a
modified version of the pretrained AlexNet, VGG16 and ResNet34 models for all
of our experiments. To remedy the existing class-imbalance issue in the dataset
we use data-augmented oversampling.

3 Data Preparation

We use an image dataset derived from full-disk line-of-sight HMI solar mag-
netograms. HMI provides various magnetic field products at high spatial and
temporal resolution. We select two images derived from magnetograms at 00:00
UT and 12:00 UT each day from December 2010 to December 2018. These images
are not the original full-depth magnetic field rasters but rather are compressed
JP2 images created from magnetograms (i.e., pixel values ranging from 0–255).
We retrieve our images from a public data API, Helioviewer [16], which pro-
vides 4096 × 4096 compressed images of magnetograms closest to the requested
timestamp. While preparing our final dataset, we skip the timestamp if the
observation time of the available image and requested image timestamp is more
than six hours.

We use a prediction window (i.e., forecast horizon) of 24 h. The bi-daily
observations of magnetograms are labeled based on the maximum of peak X-ray
flux within the next 24 h, converted to GOES flare classes; e.g., if the maximum
intensity flare for the next 24 h (starting from the image’s observation time) is
an M1.2 flare, then we tentatively label the image as ‘M’.

We collect a total of 5,711 solar magnetograms where there are 81 X-class
flares, 728 M-class flares, 2,324 C-class flares, and 2,578 are <C1.01. To perform
the task of multi-class flare prediction we choose a threshold of C4.0 where flare
<C4.0 are considered to be flare-quiet instances and ≥C4.0 class are further
subdivided into two flaring classes. The main motivation to choose this thresh-
old is that in most cases, the flares above C4.0 are observed to be associated
1 While there may be A-, B- and lower C-class flares in our < C4.0 category, they are

often referred to as flare-quiet (or no-flare) category, because these flares are weak
and may not be detected properly during solar maxima due to high background
X-ray flux.
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with Coronal Mass Ejection (CME) events with notably higher speed that can
make impact on the near-Earth space. Furthermore, using C4.0 as the threshold
ensures approximately equal number of instances i.e. 770 and 809 images for two
flaring classes (≥C4.0 to <M1.0 and ≥M1.0) and we refer to them as mild-flares
and strong-flares respectively in the scope of this paper as shown in Fig. 1.(b).

When preparing the dataset for ≥C4.0 class in binary prediction mode, if
the maximum X-ray intensity of flare is weaker than C4.0 (<C4.0), the observa-
tions are labeled as “no-flare” and greater than or equal to (≥C4.0) are labeled
as “flare”. In doing so, we collect 4,132 “no-flare” instances and 1579 “flare”
instances. Similarly for ≥M1.0 class flares prediction in binary prediction mode,
we do not include mild-flares (≥C4.0 to <M1.0) to train our models. The objec-
tive for excluding those instances is to make the decision boundary for ≥M1.0
class wider so that the model could generalize better. For this, we collect 4,132
“no-Flare” instances and 809 “flare” instances for ≥M1.0 class binary prediction
mode.

As we will describe later in the experimental evaluation, we create our cross-
validation (CV) dataset partitions based on the tri-monthly partitioning of total
images. The average class-imbalance ratio in our entire dataset for binary pre-
diction in ≥C4.0 class mode is ∼1:2.6 (flare:no-flare). On the other hand, due to
scarcity of X- and M- class flares, for ≥M1.0 class flares, after excluding the mild-
flares from no-flare instances, the data distribution is highly imbalanced, ∼1:5
(flare:no-flare). Similarly for multi-class prediction, the two of the flaring classes
(mild and strong) are nearly balanced, but no-flare class is still the majority
class. The imbalance ratio is ∼1:1:5 (strong-flare:mild-flare:no-flare).

4 Model Architecture

A general architecture of a CNN model in a classification problem consists of
convolutional layers with ReLU activation function followed by a pooling layer
and finally one or more fully connected layers with a softmax function to give the
prediction probabilities of each class [17]. In CNNs, each convolutional layer has
a set of kernels (filters), which are trained to extract complex features from the
input data. After the convolutional layer, we use ReLU activation which adds
non-linearity to the model. To summarize the outputs from a convolutional layer
by reducing the size of the output map, a pooling layer is used. Pooling layers
maximize or average the spatial size of output from the convolutional layer and
reduce the number of computations. A fully connected layer is the traditional
neural network where nodes in one layer are densely connected with nodes in
another fully connected layer. To overcome the problem of overfitting in such
deep networks, usually a dropout layer [18] is added, which ensures the random
sparse connectivity between the nodes in two fully connected layers [19].

In this study, we implement three of the well-known CNN-architectures:
AlexNet, VGG16 and ResNet34 models to make binary and multi-class flare
predictions. In the first place, we use AlexNet model [6] because of it’s simplic-
ity in the architecture which consists of 5 convolutional layers, 3 maxpool layers,
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(a)

(b)

(c)

Fig. 2. An overview of three deep learning architectures we use (a) AlexNet-, (b)
VGG16-, (c) ResNet34-based models for both the binary and multi-class flare predic-
tion. Models produce a set of probabilities determined based on the prediction mode.

1 adaptive average pool layer, and three fully connected layers. Secondly, we
consider a deeper architecture, VGG16 [7], to study whether the performance
improves with more layers as it complements the AlexNet model by adding more
convolutional layers to the network and using same-sized smaller convolutional
kernels of 3 × 3 for all convolutional layers whereas AlexNet uses variably-
sized kernels of 11× 11, 5× 5 and 3× 3. VGG16 consists of 13 convolutional
layers, 5 maxpool layers, 1 adaptive average pool layer, and 3 fully connected
layers. Finally, we use another landmark CNN model, ResNet34 [8]. It further
complements the VGG16 architecture by allowing the network to train deeper
layers with less number of parameters. However, it is different from AlexNet
and VGG16 in the sense that it takes residuals from each layer and uses them
in the subsequent connected layers. ResNet34 has 34 convolutional layers where
the first layer has a kernel of 7 × 7 and the rest have 3 × 3 kernels with one
max pool layer, one adaptive average pool layer and one fully connected layer.
The main motivation for selecting these architectures is to understand how the
performance changes with different architectures with increasing number of lay-
ers and we use the simplest architectures giving consideration to the size of our
dataset which is relatively small for deep learning models.
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We use all these three models with the transfer learning based approach and
exploit the pretrained model weights to improve model training performance in
two modes: binary and multi-class where the final layer outputs two and three
softmax probabilities respectively. The above architectures trained on binary
modes outputs two softmax probabilities for two classes which are then inter-
preted as no-flare and flare. Similarly, for multi-class modes, the models output
three softmax probabilities interpreted as no-flare, mild-flare and strong-flare.

These models are pretrained on the ImageNet dataset [20] which requires a
3-channel image as input to the network. Since the data we use are compressed
images of solar magnetograms (which are greyscale), we add a convolutional
layer at the beginning of the network which accepts 1-channel input with a 3×3
kernel using size-1 stride, padding and dilation, and outputs a 3-channel image
as shown in Fig. 2. This added CNN layer is initialized using Kaiming Initializa-
tion in “fan-out” mode [21] for all three models in both binary and multi-class
modes. Furthermore, to efficiently exploit the pretrained weights regardless of
the architecture of these models, which expects input of different dimensions
with 3-channels, we use an adaptive average pooling layer in each models after
complete feature extraction using convolutional layer and just before the fully-
connected layer to match the dimension on our image input size of 512 × 512.

5 Experimental Evaluation

To train a deep learning model with higher predictive accuracy scores, it is essen-
tial to configure the hyperparameters, select an optimization algorithm, and a
proper loss function. In addition, it is equally important to prepare the dataset
that allows the models to generalize better while training and is sufficiently rep-
resentative to validate the models. In this section, we elaborate our dataset set-
tings, model implementation, and hyperparameter configurations we have used
in this work that directly influence the performance of our models. Furthermore,
we present the results of our experiments and the skill scores that characterize
the predictive performance of our models in a near-operational setting.

5.1 Experimental Settings

Dataset: In this work, we used compressed images of full-disk line-of-sight
magnetograms in bi-daily fashion sampled at 00:00 UT and 12:00 UT for each
day. These images are labeled based on maximum GOES peak X-ray flux from
00:00 UT to 24:00 and 12:00 UT to next day 12:00 UT. We ready our cross-
validation by dividing our entire data into four time-segmented partitions for
both ≥C4.0 and ≥M1.0 class predictions in binary prediction modes and <C4.0,
≥C4.0 to <M1.0, and ≥M1.0 in multi-class modes. Each of these partitions has
three months of data from all years included in the entire dataset. The data in
Partition-1 contains images from the months of January to March, Partition-2
from April to June, Partition-3 from July to September, and Partition-4 from
October to December.
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Fig. 3. (a)Time-segmented distribution of data in tri-monthly separated partitions
indicating the number of instances for each classes (no-flare, mild-flare and strong-
flare) (b) Distribution of 4-fold CV dataset into training and test set created from
time-segmented partitions.

Here, this partitioning of the dataset is created by dividing the data time-
line from Dec 2010 to Dec 2018 into four partitions on the basis of months
rather than chronological partitioning, to incorporate approximately equal dis-
tribution of flaring instances in every fold for training and testing the model.
As mentioned earlier, we perform two variations of binary predictions: (i) for
≥C4.0-class flares, we denote mild-flare and strong-flare as flaring instances and
(ii) for ≥M1.0 class flares, we exclude the mild-flares, i.e. ≥C4.0 to <M1.0 from
the dataset with a motive to increase the separability in two classes of flares and
no-flares. In doing so, all of the four partitions for both the binary prediction
modes includes approximately equal number of flare instances. For multi-class
prediction mode, we include our entire dataset and the respective partitions con-
tain almost equal number of instances for mild-flare and strong-flare across each
partitions as shown in Fig. 3.(a).

We then create the 4-fold CV dataset from the aforementioned partitions
where we use three partitions for training the model and the remaining one for
testing (validating) the model, ensuring that both the training and test set has
data from each year (i.e., Dec 2010 to Dec 2018). First fold (Fold-1) of our 4-
fold CV dataset contains data from January to March as the test set and the
rest 9 months as training set. Similarly, the second fold (Fold-2) contains the
data from April to June as the test set and the rest 9 months of the data as the
training set. We use data from July to September and October to December as
the test set in the third fold (Fold-3) and fourth fold (Fold-4) with the remaining
9 months of data as the training set respectively. Note that, each fold in 4-
fold CV dataset for three different prediction modes: (i) ≥C4.0-class binary
prediction mode considers mild-flare and strong-flare as flare class (ii) ≥M1.0
binary prediction mode do not include the mild-flare into the dataset and denote
strong-flares as flare class and (iii) multi-class mode includes the entire dataset
as shown in Fig. 3.(b).
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(a) Original (b) Horizontal Flip (c) Vertical Flip (d) +5◦ rotation (e) -5◦ rotation

Fig. 4. (a) An example compressed magnetogram observed by HMI on 2011–01-01
12:00:00 UT (b) Augmented data sample after applying horizontal flipping. (c) Aug-
mented data sample after applying vertical flipping. (d) Augmented data sample after
applying +5◦ rotation. (e) Augmented data sample after applying −5◦ rotation.

Implementation: In our experiments, we trained the AlexNet, VGG16 and
ResNet34 models with Stochastic Gradient Descent (SGD) as an optimizer and
Negative Log-Likelihood (NLL) as our loss function for both binary and multi-
class predictions. This implementation of loss function is the generalized version
of cross-entropy loss and is not limited to the binary classification problem,
hence we use logarithmic-softmax as an activation to the output layer to make
it compatible with NLL loss. The NLL loss we use to train our CNN model is:

L = − 1
N

N∑

i=0

J∑

j=0

yj · log(ŷj) + (1 − yj) · log(1 − ŷj) (1)

where yj represents the actual jth class label, ŷ represents the predicted class
label for the jth class and N is the batch-size. For binary predictions, j =
2 and for our multi-class prediction mode, j = 3. To track the performance
improvement of our model, we validate our model with test data in every epoch.
An important setting of these experiments is the use of dynamic learning rate
which is initialized at 0.01 and reduced by a factor of 10%, if the validation loss
do not improve for four consecutive epochs. We use the mini-batch strategy to
obtain a faster convergence where the weights are updated after each batch and
all of our models are trained up to 80 epochs until weights stability.

We perform four experiments using the 4-fold non-chronological CV dataset
and with each architecture in both binary and multi-class prediction modes.
Although all of our data partitions have approximately equal numbers of flaring
instances, there still exists a prevailing class-imbalance issue. To address the
class-imbalance issue, we use data-augmented oversampling; i.e., we oversample
the training data after data augmentation only for flaring instances in both
binary and multi-class prediction modes so that every batch includes balanced
flare and no-flare instances. We use three data-augmentation techniques: vertical
flipping, horizontal flipping, and +5◦ to −5◦ rotations only on flaring instances
included in the training set. Note that the rotations are limited to 5◦C as to not
impact the preferred locations of active regions (which are limited to activity
belts [22]). The Fig. 4 shows the augmented samples of compressed images of
magnetograms. These augmented images are then concatenated to the original



390 C. Pandey et al.

training set and then we oversample the flaring instances to create balanced
batches for training. Considering the limited amount of data, using oversampling
and data augmentation has an advantage that makes the use of entire acquired
data, when compared to undersampling [23].

To quantify the performance of our models, we create a classical contingency
matrix for both of our binary operating modes, which includes information on
True Positives (TP), True Negatives (TN), False Positives (FP) and False Neg-
atives (FN). Note that, in the context of our flare prediction task, flare class
in either of the modes is considered as the positive outcome while no-flare is
the negative. Using these four outcomes we use two widely used performance
metrics in space weather forecasting, True Skill Statistics (TSS, shown in Eq. 2)
and Heidke Skill Score (HSS, shown in Eq. 3) to evaluate our models.

TSS =
TP

TP + FN
− FP

FP + TN
(2)

HSS = 2 × TP × TN − FN × FP

((P × (FN + TN) + (TP + FP ) × N))
(3)

Here, N = TN + FP and P = TP + FN . Furthermore, for multi-class
prediction modes we employ multi-category TSS and HSS as shown in Eq. 4 and
5 respectively [24].

TSS =
1
N

∑K
i=1 n(Fi, Oi) − 1

N2

∑K
i=1 N(Fi)N(Oi)

1 − 1
N2

∑K
i=1(N(Oi))2

(4)

HSS =
1
N

∑K
i=1 n(Fi, Oi) − 1

N2

∑K
i=1 N(Fi)N(Oi)

1 − 1
N2

∑K
i=1 N(Fi)N(Oi)

(5)

where n(Fi, Oj) denotes the number of predictions in category i that had
actual observations (ground truth) in category j, N(Fi) denotes the total number
of predictions in category i, N(Oj) denotes the total number of observations in
category j, and N is the total number of instances in testing set.

TSS values range from −1 to 1, where 1 indicates all correct predictions, −1
represents all incorrect predictions, and 0 represents no-skill, often transpiring
as the random or one-sided (all positive/all negative) predictions. It is defined
as the difference between True Positive Rate (TPR) and False Positive Rate
(FPR). One important characteristic of TSS is that it does not account for
class-imbalance ratio in the dataset and hence treats false positives (FP) and
false negatives (FN) equally.

Similarly, HSS measures the forecast skill of the models over an imbalance-
aware random prediction and it ranges from −∞ to 1, where 1 represents the
perfect skill and 0 represents no-skill gain over a random prediction. It is common
practice to use HSS for the solar flare prediction models (similar to weather
predictions where forecast skill has more value than accuracy or single-class
precision), due to the high class-imbalance ratio present in the datasets.
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5.2 Evaluation

Our flare prediction model is trained as a CNN-based binary classifier where
we predict flares in two binary modes with ≥C4.0 and ≥M1.0 as thresholds
and a multi-class classifier where we predict flares <C4.0 as no-flares (NF),
≥C4.0 to <M1.0 as mild-flares (MF), and ≥M1.0 as strong-flares (SF). The
output of our model is binary (flare/no-flare) predictions and multi-class (no-
flare/mild-flare/strong-flare) within the next 24 h. We compare the predictions
of our models with maximum GOES peak X-ray flux at 00:00 UT and 12:00 UT
with a prediction window of 24 h. We use TSS and HSS metrics to measure the
predictive performance of our models.

We summarize the skill scores of all our models in Table 1. The table contains
the average skill scores for all three models in binary and multi-class prediction
modes with standard deviations across 4-folds computed with confidence level
of 95%. These are the stable final epoch cross-validated results obtained by
training the models for 80 epochs and validating in every epoch, however, since
the ResNet34 model doesn’t get fully stable until then, so we compute the average
of last five epochs in all prediction modes.

We employ 4-fold cross-validation using the tri-monthly partitioned dataset
for evaluating our models as discussed in Sect. 5.1. The TSS and HSS scores
obtained from our CV experiments for all three models in binary modes (i)
≥C4.0 class and (ii) ≥M1.0 class are shown in Fig. 5 and Fig. 6, respectively.
After training all of our models, we get our best results using the AlexNet model
for both binary as well multi-class modes. For binary predictions in ≥C4.0 class
modes, all three architectures have relatively low fluctuations with the highest
TSS and HSS scores obtained using the AlexNet model. When higher C-class
flares filtered from the dataset, we observe an overall increase in both TSS and
HSS scores with an exception at Fold-3 results. However, in doing so, the scores
have a greater fluctuations across the folds for all the models. While the skill score
fluctuations are common in flare prediction studies, Partition-2 includes the most
difficult instances to predict, which essentially perturb the overall trend.The
best results of our models are comparable to the state of the art deep learning-
based flare predictors in the combined performance and and hence provides the
evidence that applying a deep learning-based approaches has a high potential
for full-disk flare predictions.

Table 1. Average TSS and HSS skill scores with standard deviation measured at 95%
confidence level for all of our models

Binary (≥C4.0) Binary (≥M1.0) Multi-class

Models TSS HSS TSS HSS TSS HSS

AlexNet 0.47 ± .06 0.46 ± .03 0.55 ± .09 0.43 ± .11 0.36 ± .04 0.31 ± .02

VGG16 0.43 ± .05 0.42 ± .04 0.47 ± .08 0.43 ± .05 0.30 ± .04 0.29 ± .04

ResNet34 0.42 ± .06 0.41 ± .05 0.46 ± .08 0.46 ± .07 0.26 ± .05 0.28 ± .05
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Fig. 5. (a) Binary (≥C4.0) prediction performance of our models measured in TSS
for each fold in 4-fold CV. (b) Binary (≥C4.0) prediction performance of our models
measured in HSS for each fold in 4-fold CV.

Fig. 6. (a) Binary (≥M1.0) prediction performance of our models measured in TSS
for each fold in 4-fold CV. (b) Binary (≥C4.0) prediction performance of our models
measured in HSS for each fold in 4-fold CV.

In addition to binary modes, we also evaluated the performance of our trained
models in multi-class mode, using multi-class versions of TSS and HSS. Similar to
the earlier experiments, AlexNet-based models provided relatively better scores
compared to Resnet34 and VGG16 which is presented in Fig. 7 showing the
detailed results for each folds. The averaged scores in the last column of Table 1
show that both the skill scores have a relatively low fluctuation (∼ ±0.02) and
our model creates stable predictions for flare prediction. The better predictive
performance of AlexNet over other two reasonably advanced models in all of
our experiments can be attributed to it’s simplicity in the architecture (in terms
of number of layers) and the total number of instances in our dataset which is
relatively small for deep learning based models.

We also present a set of aggregated contingency tables to better explain
the performance of multi-class predictors in Fig. 8. Note that the individual cell
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Fig. 7. (a) Multi-class prediction performance of our models measured in TSS for each
fold in 4-fold CV. (b) Multi-class prediction performance of our models measured in
HSS for each fold in 4-fold CV

Fig. 8. 4-fold aggregated confusion matrices for multi-class predictions where NF,
MF, SF indicates no-flare, mild-flare, and strong-flare respectively for three models
(a) ResNet34 (b) VGG16 (c) AlexNet

values are found by summing the values from four contingency matrices obtained
in each fold. As expected, multi-class classification is a more difficult prediction
problem and the results often show greater shifts between neighboring class
label pairs (NF-MF and MF-SF). The aggregated confusion matrix show that,
for all three models, mild-flare class has a higher number of false-negatives,
which is anticipated, since it lies as the border class between the other two
and there is a resemblance of phenomena and therefore a strong likelihood of
misclassifying a C5.0-class flare as no-flare (> C4.0), or C9.0 flare as strong-flare
(> M1.0). This is more visible in the aggregated confusion matrix for AlexNet,
which is our best model for multi-class predictions, suggests that, the higher
number of false-negatives are in the neighboring classes (e.g., NF predicted as
MF). Finally, our results show that the predictive performance of AlexNet-based
models are satisfactory and can be used under operational settings, first, because
it gives more robust results, and second due to its simpler architecture allowing
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a computationally efficient platform for near real-time predictions even in the
case of large ensembles.

6 Conclusion and Discussion

In this work, we implement CNN-based binary flare prediction models for both
≥C4.0 and ≥M1.0 class prediction modes and one multi-class flare prediction
model with three classes: (i) <C4.0 as no-flare class , (ii) ≥C4.0 to <M1.0 as
mild-flare class, and (iii) ≥M1.0 as strong-flare class using transfer learning with
AlexNet, VGG16 and ResNet34 models. We built efficient flare prediction models
having predictive performance comparable to state-of-the-art models using full-
disk line-of-sight magnetograms which overcome the prediction ability of active
region-based models where the prediction is limited to central locations (within
±70◦). Furthermore, we select a specific threshold of C4.0 for flare prediction
since most of the eruptive flares (flares with associated CMEs) are observed
to have peak X-ray flux above C4.0 and has an ability to make an impact on
near-Earth space in most cases.

For our experiments to make binary predictions in ≥M1.0 class mode, we
exclude the data instances indicating the mild-flares to widen the decision bound-
ary for flare and no-flare instances. In order to mitigate the prevailing issue of
class-imbalance across our dataset, we use data-augmented oversampling. Based
on our experimental results, we observe that AlexNet based model outperforms
other two models in both the binary and multi-class prediction modes. This
result can be attributed to AlexNet’s simple architecture and the total num-
ber of images in our dataset which may not be sufficient for depeer models like
VGG16 and ResNet34. The results of all cross-validated experiments suggests
that the AlexNet model can be used in an operational setting to perform near-
real time flare predictions. To reproduce this work, the source code and detailed
experimental results can be accessed from our open source repository [25].

It is also important to mention that our models use point-in-time observa-
tions of magnetogram images and do not identify the active regions contributing
to the corresponding flaring event. Furthermore, the Eastern limb flares (whose
active regions only become visible after predictions are issued) limit the pre-
diction capabilities of our models due to unavailable active region information.
Subsequently, we intend to use other deeper variants of CNN-based architec-
tures along with integration of different dimensions of solar data products such
as vector magnetograms, intensitygrams, dopplergrams, and extreme ultraviolet
images. One important aspect of this work is the utilization of a more practical
threshold of C4.0 in flare forecasting which is discussed in literature but not con-
sidered in practical implementation, therefore, we will continue our experiments
by optimizing these thresholds for different architectures and modes to further
improve the flare prediction models. To improve the performance of our current
models we also aim to build hybrid models by combining active region-based
counterparts to obtain more robust ensemble flare prediction models.
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