Solar Flare Forecasting with Deep Learning-based
Time Series Classifiers

Anli Ji*, Junzhi Wen', Rafal Angryk?, Berkay Aydin®

Department of Computer Science, Georgia State University, Atlanta, GA*T18
Email: ajil @student.gsu.edu®, jwen6@student.gsu.eduT, rangryk@cs.gsu.edui, baydin2@cs.gsu.edu§

Abstract—Over the past two decades, machine learning and
deep learning techniques for forecasting solar flares have gen-
erated great impact due to their ability to learn from a high
dimensional data space. However, lack of high quality data from
flaring phenomena becomes a constraining factor for such tasks.
One of the methods to tackle this complex problem is utilizing
trained classifiers with multivariate time series of magnetic
field parameters. In this work, we compare the exceedingly
popular multivariate time series classifiers applying deep learning
techniques with commonly used machine learning classifiers (i.e.,
SVM). We intend to explore the role of data augmentation
on time series oriented flare prediction techniques, specifically
the deep learning-based ones. We utilize four time series data
augmentation techniques and couple them with selected multi-
variate time series classifiers to understand how each of them
affects the outcome. In the end, we show that the deep learning
algorithms as well as augmentation techniques improve our
classifiers performance. The resulting classifiers’ performance
after augmentation outplayed the traditional flare forecasting
techniques.

Index Terms—solar flare prediction, deep neural networks,
data augmentation

I. INTRODUCTION

Solar flares are one of the solar magnetic phenomena that
suddenly bursts out large amounts of electromagnetic energy
from the solar atmosphere. When they combine with other
solar activities like coronal mass ejections (CMEs), they may
potentially provoke devastating geomagnetic storms, which
can cause a massive scale of electrical blackouts, disrupt power
grids and radio communications, and even damage sensitive
electronic devices in space. Flare phenomena usually occur
when the intense magnetic fields of the Sun tangle up and
become unstable. The relationship between the photospheric
magnetic field and flaring (or eruptive) phenomena still re-
mains questioned. Therefore, researchers have put efforts on
predicting the flare event prior to its occurrence to avoid
crucial costs and destruction.

Over the past two decades, many machine learning-based
algorithms attempted to remedy the problem [1] by issuing bi-
nary predictions on major flares (i.e., M- and X-class) instead
of considering where the relationship could be derived from.
However, most of the predictions are generated by applying
point-in-time values within the maps of magnetic field strength
(i.e., magnetograms) meaning that only one individual value in
multiple physical parameters observations is representative for
each solar flare event [2] [3]. Such approaches could be limited

in predicting power because it does not take the temporal
evolution aspect of these parameters into account. Within
the recent proposed classification algorithms, Deep Neural
Networks (DNNs) have achieved remarkable performance in
the field of computer vision [4], image recognition [5], and
natural language processing (NLP) [6] [7] [8]. As one of the
modern machine learning architectures, this approach has the
ability to automatically transform input data into a relatively
more abstract representation and use the composite represen-
tation to perform feature extraction or classification during
the learning process. This benefits especially for prediction in
high dimensional space since it requires less human cognitive
process.

Many researchers focus on improving the deep learning
model by improving its generalization ability, which is the per-
formance difference of a model between training and testing
phase. This means that models with poor generalization ability
are easier to cause overfitting than others. To understand or
predict solar flares better and issue accurate predictions, there
is a need for more data since the high performance of deep
learning architecture relies heavily on data volume. However,
one major issue for data-driven solar flare forecasting is the
limited amounts of high quality data, especially with the
flaring instances. Within the most recent records, less than
20% of the active regions produce large flaring (e.g., >M)
instances [9], which lead to insufficient features derived from
these instances for training and validating complex prediction
models.

Data augmentation is a way to synthetically modify the raw
data for the models to recognize generalizable features and
hidden patterns and therefore improve the overall performance.
The techniques implemented for data augmentation aim to
improve the quantity of the datasets so that better models can
be trained. With augmented data, models can cover those unex-
plored input spaces, and therefore improve the generalization
ability. Inspired by this idea, our work is further extended to
seek the feasibility of applying data augmentation techniques
to optimize the performance of different deep learning models.
Four most common time series data augmentation techniques
are selected and five deep learning architectures are refined to
monitor the performance compared to the baseline model that
is trained without applying any augmentation techniques. By
this, we conducted a multivariate time series classification by
utilizing the time series data from a well-known solar flare

prediction dataset [10] and synthetically modified the time
series instances with various data augmentation techniques.

The rest of the paper is organized as follows. In Sec-
tion II, we discuss some related work on well-known flare
prediction with a focus on deep learning and utilization of
data augmentation. In Section III, we explain our research
methodology on data collection and preparation as well as our
training and evaluation processes. In Section IV, we present
our experimental evaluation results for our models. In Section
V and VI, we provide a summary of our findings and discuss
some future work avenues.

II. RELATED WORK

In the field of solar flare forecasting, there are various
studies on training deep learning models on magnetic field
data products, either the original magnetic field rasters or
the derived metadata products. One major source for such
prediction is the Michelson Doppler Imager (MDI) observation
program from Solar and Heliospheric Observatory (SOHO)
[11], which has been superseded in 2011 for the Helioseisemic
and Magnetic Imager (HMI) onboard the Solar Dynamics
Observatory (SDO) [12]. As for working with the magnetic
field rasters, the study proposed by [13] transformed the X-
ray flux time series data from GOES at one-minute cadence
into 64x64 Markov Transition Field images and provided
the Convolutional Neural Network (CNNs) with these image
data to predict flare occurrences. FlareNet [14], a framework
designed for experimentation with solar flare prediction, uti-
lizes high dynamic image data directly from SDO where
each pixel contains a high dynamic range of flux that can
potentially affect gradient updates and encourage overfitting.
The problem is addressed by treating each timestamp of tem-
porally adjacent images captured in the same spatial locations
as additional image channels and appending side channel
information vectors to the fully connected layers to avoid
memorization. Sumi et al. [15] also uses soft X-ray data with
longer wavelength at one-minute cadences from Geostationary
Operational Environmental Satellite (GOES) to predict X-
ray flux in continuous target space and evaluates with three
DNN architectures. In their research, the hierarchical dense
residual network has clearly better performance compared to
the baselines and other DNN architectures.

Deep Flare Net-Reliable (DeFN-R) [16], a probabilistic
flare forecasting model composed of multilayer perceptrons,
uses 79 extracted features from each active region (i.e, AR)
observed by the multiwavelength emissions and annotated
with flare occurrence labels (i.e, X-, M-, and C-classes). This
model forecasts the maximum flare classes of the next 24
hours as well as the occurrence probability of each event.
LSTM_DNN Flare Net (LDFN), in [17], also uses a derived
dataset where its experimental dataset contains multivariate
time series (MVTS) of magnetic field metadata. This approach
combines Long Short-Term Memory (LSTM) [18] architecture
with multi-scale skip connections. The overall interpretability
of this architecture is improved by introducing human cogni-
tive processes based on physical definitions that were extracted

and combined with similar ones using deep learning models.
Hui et al. [2] proposed an ordinal logistic regression model
by using three predictive parameters derived from the MDI
magnetograms, with categories of the maximum magnitude
of flares, to predict the probability of a given AR in the
next twenty-fours hours. As in [19], Huang et al. generates
a meta dataset that obtained multiple instruments (SDO/HMI
and SOHO/MDI) magnetic field measurements and evaluates
with a four layered DNN.

As solar flares are relatively less frequent events, the scarcity
of the major solar flares often result in an extreme class-
imbalance ratio where the number of flaring samples contained
(usually the intensity levels above M-class in NOAA/GOES
flare classification) are much higher than the number of non-
flaring samples contained (with intensity levels of C, B, and
flare-quiet regions). Even with the available data, there still
exists the problem of limited high quality data instances for
models like deep neural networks, which relies heavily on
large scale data. To alleviate these two problems, oversampling
and undersampling are the typical approaches to remedy the
class imbalance issue [9] [20] [21]. However, a big portion of
data is left out when performing undersampling, and a large
amount of data is replicated when oversampling is applied
[21]. Data augmentation, on the other hand, tackles this class-
imbalance issue by modifying existing instances to generate
potentially more generalizable features. In this way, more data
is introduced to the models and the generalization capabilities
of these classifiers can be improved by expanding the model’s
decision boundaries [22]. Many original proposals of the CNN
architectures take advantage of data augmentation. AlexNet
[23], for example, archived a benchmark record on the Ima-
geNet Large Scale Visual Recognition Challenge (ILSVRC)
dataset by using cropping, mirroring, and color augmentation.
Other network architectures such as DenseNet [24], Visual
Geometry Group network [25], or Residual Networks [26] also
uses augmentation.

Our work implements various data augmentation techniques
for solar flare prediction via five deep learning models. This
not only provide a multivariate schema for such deep learning
models but also intend to improve their performance using
augmented data instances. We hope this work affords re-
searchers and practitioners in related fields more exposure to
multivariate time series analysis for space weather forecasting.

III. METHODOLOGY

As solar flares are mainly electromagnetic phenomena, they
are usually predicted by employing the adequate magnetic field
parameters. Inspired by Bobra and Couvidat that applied a
large set of SDO/HMI Vector magnetic field data for predicting
M- and X-class flares [27], Space Weather Analytics for Solar
Flares (SWAN-SF) [10] is a comprehensive multivariate time
series dataset consists of physical parameters derived from
solar photospheric magnetic fields in the Space weather HMI
Active Region Patches (SHARPs) data series.

There are five partitions from the SWAN-SF dataset, where
every partition contains a similar number of instances labeled

with X- and M-class flares. All data in the partitions are time
segmented, which means that all data points are temporally
non-overlapping time series slices and none of the active
regions cross in time or space. In this study, we used Partition
1, 2, 3, and 5 for training purposes and excluded Partition
4 for evaluating the model performance since this partition
has a relatively more representative class imbalance ratio
compared to the overall dataset. Every reported flare in each
partition is associated with a designated active region identifier
and related time series data of the magnetic field parameters
extracted from this active region. As flare intensity can be
classified logarithmically by their peak X-ray flux, we assigned
level X and M flare as the flaring classes while level C,
B, and flare-quiet regions (labeled as N) as the non-flaring
classes. Additionally, five parameters employed in this study
are USFLUX (Total unsigned flux), TOTUSJH (Total unsigned
current helicity), ABSNJZH (Absolute value of the net current
helicity), SAVNCPP (Sum of the modulus of the net current
per polarity) and TOTBSQ (Total magnitude of Lorentz force),
which are shown to be most representative of the solar activity
in [27].

This dataset will be utilized as our benchmark dataset
throughout this study for consistency between our results.

A. Models Selection

In order to be compatible with the five selected physical
parameters, we choose the commonly used machine learning
classifiers — Support Vector Machine (i.e., SVM) [28] and
five well-known deep learning classifiers that are able to
classify multivariate time series instances.

Baseline: SVM with Summary Statistics

We adopt a SVM classifier, which makes use of summary
statistical parameter values derived from our benchmark
SWAN-SF dataset. From each original physical parameter
employed above, a total of 43 summary statistics data is
generated based on every individual time series. This results
in a frame of data with the same amount of flaring versus
non-flaring instances in each partition.

One Direction CNN (ODCNN) is designed as one of the
most common CNNs where convolutional layers are applied
on a layer-by-layer architecture to the given time series
[29]. In this framework, we create the model based on a
sequential classifier meaning that the layers in this classifier
are linearly stacked and do not communicate with layers
other than the previous and next one. Therefore, the model
flexibility is limited as it only focuses from the outputs of
previous layer. Each layer contains weights that passed to
the posterior layer and is followed by an activation function
that allows the model to take nonlinear relationships into
account. We set up most standard 5 filters with length of 3 and
a Rectified Linear Unit (ReLLU) as the activation function [30].

Encoder for time series classification, originally proposed
in [31], is a Fully Connected Convolutional Neural Networks

(FCNs) that uses dense connections between layers.
We generate 128, 256, and 512 filters in the first three
convolutional layers with respective lengths of 5, 11, and 21.
Each of the convolution layers is operated by an instance
normalization [32] and the result from such normalization is
then fed into the Parametric Rectified Linear Unit (PReLU)
[33] activation function. Furthermore, a dropout operation is
applied after each activation function as well as a max pooling
with length of 2. The main difference of such architecture
from a traditional FCN is replacing the last pooling layer
with an attention mechanism that allows the network to
learn which parts of the time series are more important for
the classification task. This mechanism is implemented by
multiplying the input time series with another time series (that
has gone through a softmax function). It is worth mentioning
that both of the two time series multiplied have the same
length, where only the second time series is acting as the
weight for the first one. In this way, the network can learn the
importance of each timestamp in its corresponding weights.

Residual Network (ResNet) is another architecture
originally proposed by [34], which builds shortcut residual
connection between consecutive convolutional layers. This
architecture reduces the vanishing gradient effect [35] by
infusing a linear shortcut between the input and output of
each residual block so that the gradient can flow through
these shortcuts and make the training smoother. In our case,
three residual blocks are used where each residual block
contains three convolutions followed by a ReLU activation
function. Each of our convolutions consists of 64 filters and
the filter lengths are set to 8, 5, and 3, respectively. The
output from all three convolutions will be added back to the
input of each block and combined as a whole for the final
fully-connected layer.

Multi Channel Deep Convolutional Neural Network
(MCCNN) was proposed by [36] where the convolutions
of the model are parallelized and applied individually to
each channel (i.e., dimension) of the input time series. Each
channel of the input series will pass two convolutional stages
of 8 filters. Each filter’s length is 5 and followed by a
ReLU activation function as well as a max pooling operation
with length of 2. The output from these channels will be
concatenated together and fed into a fully-connected layer of
732 neurons. At last, a softmax classifier is generated where
the number of neurons matches the number of classes.

Inception [37] is designed to tackle the problem of stack-
ing large numbers of convolutional layers by implementing
multiple kernels with different sizes that operate on the same
stage. In our case, we set the kernel sizes to 3, 5, 8, 11,
17 and generate a module for saving these kernels. Each
of these different convolution layers works differently. For
example, convolution size of 1x1 allows the network to learn
the patterns across the input series while convolution size of
3x3 (and 5x5) allows the network to learn spatial patterns

across all dimensions of the input including height, width, and
depth. Similar to the MCCNN mentioned above, this network
also ends with a max pooling operation as well as a ReLU
activation function.

B. Data Augmentation Techniques

In the second part of this research, we explore the feasibility
of using time series augmentation techniques to improve
the performance of deep learning-based multivariate time
series classifiers. We will use four well-known augmentation
techniques [38] described as follows.

Jittering is a type of noise injection, in which a matrix
of random values are drawn from a Gaussian distribution and
added onto the original data. A general form for using this
technique is provided below:

’
r =21 +€1,..,Tt + €,..., TT + €T (1)

where € is the Gaussian noise added to the time series with
length of T. In this case, the standard deviation « of the
selected Gaussian distribution is a hyperparameter that needs
to be determined before training the model. This method
increases the generalization of the networks [39] [40] by
assuming that the testing data are similar to the training
data but only with a difference of a factor of noise. It has
been mostly used for testing the robustness of a given model
against noise and ideally improve model performance.

On the other end of the spectrum, we also used smoothing,
which works by applying a weighted average to the original
data. This method often reduces noise and can benefit more
for models that are strongly impacted by noisy data points.

Scaling is a method based on enlarging (or shortening) the
global magnitude with a random scalar. The equation of this
method is defined as:

' = azxy,...,axy, ...,z 2)

where « is the random value drawn from the Gaussian
distribution. Similar to jittering, scaling also introduces noise
to the data. However, instead of adding individual noise
directly on each data point, scaling multiplies the entire time
series with a scaling parameter o (which is also drawn from
a Gaussian distribution). In such cases, the scaling parameter
« is the hyperparameter of the model.

Magnitude Warping is another method that aims at chang-
ing the magnitude of each time series. The formulation of this
method is defined as:

/
T = Q1T1, ey ALy oeny QT IT 3)

where « to ap is a series interpolated by a cubic spline S'(u).
The only difference of such method is that each time series
magnitude is warped by a smooth curve in range of 0 to 1.
This is based on the idea that increasing or decreasing random
regions in the time series can add small fluctuations into

the dataset. Moreover, instead of many other transformation-
based methods that use only one hyperparameter, this method
assumes random transformation is practical and uses two pre-
defined hyperparameters instead.

IV. EXPERIMENTAL EVALUATION

As for the model evaluation, we implemented multiple
metrics as well as some essential skill score measurements. In
these measurements, TP (true positives), TN (true negatives),
FP (false positives), and FN (false negatives) are used in
standard settings. Positive stands for occurrence of a large flare
(i.e., X- and M-class) while negative stands for comparatively
smaller flare and flare-quite region (i.e., C-, B-class, and
flare-quite regions). Note here TP represents when the model
predicts correctly with the positive class while TN is where
the model predicts correctly with the negative class. In space
weather forecasting, some classical measures like accuracy
and precision should not be considered as a key score to be
relied upon because such measure scores can be significantly
impacted by the imbalanced class distribution. In the case
of substantially larger amount of non-flaring classes than the
flaring classes, a classifier can always predict a flare will
not occur and still reach a high accuracy score. Similarly,
by introducing more negative samples to the dataset while
maintaining the same amount of positive samples, the number
of FP (false positives) may potentially increase, which will
result in a lower precision score.

Two main skill score measurements we used for model
evaluation in the experiments are True Skill Statistic score
(TSS) and Heidke Skill Score (HSS). True Skill Statistic
score (shown in Eq. 4) compares the difference between
the probability of detection (Recall) and the probability of
false detection (the ratio of inaccurate predictions of non-
flaring/negative class over all the actual negative class).

TP FP 4
~ TP+FN FP+TN @
Heidke Skill Score (shown in Eq. 5) measures the improve-
ment of the forecast over a class-imbalance-aware random
forecast where P = TP+ FN and N = FP+TN. HSS
values range from -1 to +1 where the value of 1 indicates the
ideal forecasting and the value of -1 indicates an all incorrect
forecasting. The closer the value to 0, the model has less power
to distinguish between labels, meaning it has no skill over a
class-imbalance-aware random prediction.

2-((TP-TN)— (FN-FP))
P- (FN+TN)+N-(TP+FP)

Three experiments are designed in this study discovering
the performance of time series classifiers as well as how such

deep learning models are affected after applying standard and
synthetic augmented data instances.

T5S

HSS =

®)

A. Experiment 1: Comparison of selected DNNs with baseline
SVM

In the first experiment, we evaluated our baseline SVM
model (trained with the summary statistical data) and the other

1.0

TSS
HSS
0.8 0.82 0.79 0.81
0.61
06
14 0.51
S
O
w
0.4
0.26 0.25
0.22 .
0.2 0.2L 0.19 0.17
0.12
0.0 "
BaseSVM ODCNN Encoder ResNet MCCNN Inception

Fig. 1. TSS and HSS results for baseline SVM classifier and the five selected
deep learning classifiers.

five selected time series deep learning models (trained with
time series data).

From the results shown in Fig 1, models that are trained
with deep neural networks have better performance than the
baseline SVM model. It demonstrates that TSS increased
from 12% to an average of 80% for ODCNN, Encoder, and
MCCNN. Although we do not see a significant improvements
in HSS, there is still a up to 5% improvement in Encoder,
MCCNN, and Inception models. This strongly suggests that
the overall performance of the baseline can be improved using
deep learning techniques.

B. Experiment 2: Augmentation

As for the second experiment, we modified the training
samples with each augmentation techniques and trained the
five aforementioned deep learning models with these gener-
ated samples. This is designed to evaluate the augmentation
techniques itself with the original data instances. The total
amount of instances are obtained the same as original. Then,
we compared these results within our previous models, which
are trained without infusing any augmentation instances.

As presented in Fig 2, models that are trained with
augmented data perform generally better than the original.
However, Inception, ResNet, and Encoder do not have a
strong ability to distinguish between flaring and non-flaring
classes when they are exposed to additional noise (in the case
of jittering experiments) in the dataset. As for comparison,
smoothing works the opposite way by reducing potentially
noisy data points and achieve a 4% improvement in TSS.
It shows a slightly better performance than the baseline as
regards to these models. On the other hand, for models that
are not affected much by noise (e.g., MCCNN and ODCNN),
the augmentation method of jittering actually helps to improve
the model performance more than smoothing. Besides jittering,
the other two methods of scaling and magnitude warping have
similar performance in the results for Encoder and MCCNN
as both of these methods scale the range of the data.

C. Experiment 3: Oversampled synthetic augmentation

In the third experiment, we generated synthetic augmented
instances by stacking our original data with our modified data.

1.0
mmm Original
. jittering
0.8 B Scaling
MagWarping
Smoothing
0.6
0
Ul
2
0.4
0.2
0.0 -
ODCNN Encoder ResNet MCCNN Inception
1.0
I Original
I ittering
0.8 mm Scaling
MagWarping
Smoothing
0.6
(2]
)
T
0.4
0.2
0.0 -
ODCNN Encoder ResNet MCCNN Inception

Fig. 2. TSS and HSS results for five selected deep learning classifiers on
augmented samples.

The oversampled instances will be fed as training samples
into models for training and then evaluated based on the
measurements.

As the results shown in Fig. 3, the oversampled synthetic
data has the ability to improve certain performance of the
model (like ResNet). Both TSS and HSS scores for ResNet
have a steady increase especially by using smoothing and
scaling. However, the augmentation techniques also do not
show much effect for models like Encoder, ODCNN, and
MCCNN. The average improvement for these three models
are less than 5% compared to our baseline model. It is worth
noticing that the performance of Inception is not consistent.
The model was boosted around 10% in both measuring scores
with scaling and magnitude warping, but decreased about 5%
with the use of smoothing.

V. REMARKS

From the experiments conducted above, we can observe that
the overall performance of our deep learning classifiers have
achieved better than the commonly used machine learning
classifier. Even with the least improvement from ResNet
model, there is still around a 40% increase in TSS. Such
improvement might be due to the improvement on True
Negative Rate where the deep learning models has better
ability to specify the True Negatives correctly.

From the experiment of comparing original and synthetic
modified data, we can observe that only applying jittering on
the original data does not improve the performance for models
that are strongly influenced by the noise. On the other hand,
applying smoothing raises up the performance for these noise

1.0
mmm Original
. ittering
0.8 B Scaling
MagWarping
Smoothing
0.6
)
0
=
0.4
0.2
0.0 -
ODCNN Encoder ResNet MCCNN Inception
1.0
Bl Original
B ittering
0.8 B Scaling
MagWarping
Smoothing
0.6
(%]
]
T
0.4
. . I ' . l
0.0 -
ODCNN Encoder ResNet MCCNN Inception

Fig. 3. TSS and HSS results for five selected deep learning classifiers on
synthetic oversampling samples.

sensitive models. It can also be obeserved that by training
these noise sensitive models (i.e., Encoder, ResNet, Inception)
with synthetic oversampled dataset, jittering actually provides
comparable results as the baseline models especially in HSS
measurements.

VI. CONCLUSION

In this work, we have observed the performance of utilizing
deep learning models onto multivariate time series data for
solar flare forecasting. We also explored the feasibility of ap-
plying various data augmentation techniques on these models.
Our results revealed that the model performance slightly im-
proves when applying with augmentation. However, individual
augmentation technique coupled with deep learning models
showed fluctuations, making some baseline models perform
better than their data augmented counterparts. There is still a
high number of false positives exists in our evaluation phase,
which highly impacts our results of TSS and HSS scores. This
is a common problem in flare forecasting, which poses itself
as a tradeoff between false positives and false negatives [20].
The possibility of combining different techniques to improve
the performances also remains. Our work can be extended
by adding more parameters to the classifiers or implementing
different models that are more robust.

ACKNOWLEDGMENTS

This project is supported in part under two NSF awards
#2104004 and #1931555 jointly by the Office of Advanced
Cyberinfrastructure within the Directorate for Computer and
Information Science and Engineering, the Division of Astro-
nomical Sciences within the Directorate for Mathematical and

Physical Sciences, and the Solar Terrestrial Physics Program
and the Division of Integrative and Collaborative Education
and Research within the NSF Directorate for Geosciences.

REFERENCES

[1] K. D. Leka and G. Barnes, “Photospheric magnetic field properties of
flaring versus flare-quiet active regions. IV. a statistically significant
sample,” The Astrophysical Journal, vol. 656, no. 2, pp. 1173-1186,
Feb. 2007. [Online]. Available: https://doi.org/10.1086/510282

[2] H. Song, C. Tan, J. Jing, H. Wang, V. Yurchyshyn, and V. Abramenko,
“Statistical assessment of photospheric magnetic features in imminent
solar flare predictions,” Solar Physics, vol. 254, no. 1, pp. 101-125, Nov.
2008. [Online]. Available: https://doi.org/10.1007/s11207-008-9288-3

[3] D. Yu, X. Huang, H. Wang, and Y. Cui, “Short-term solar flare
prediction using a sequential supervised learning method,” Solar
Physics, vol. 255, no. 1, pp. 91-105, Feb. 2009. [Online]. Available:
https://doi.org/10.1007/s11207-009-9318-9

[4] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in Neural Infor-
mation Processing Systems, F. Pereira, C. J. C. Burges, L. Bottou, and
K. Q. Weinberger, Eds., vol. 25. Curran Associates, Inc., 2012.

[5] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,”
in 2015 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2015, pp. 1-9.

[6] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning
with neural networks,” in Advances in Neural Information Processing
Systems, Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, and K. Q.
Weinberger, Eds., vol. 27. Curran Associates, Inc., 2014.

[7] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by
jointly learning to align and translate,” Jan. 2015, 3rd International
Conference on Learning Representations, ICLR 2015 ; Conference date:
07-05-2015 Through 09-05-2015.

[8] T. Mikolov, 1. Sutskever, K. Chen, G. S. Corrado, and J. Dean,

“Distributed representations of words and phrases and their composition-

ality,” in Advances in Neural Information Processing Systems, C. J. C.

Burges, L. Bottou, M. Welling, Z. Ghahramani, and K. Q. Weinberger,

Eds., vol. 26. Curran Associates, Inc., 2013.

A. Ahmadzadeh, B. Aydin, D. J. Kempton, M. Hostetter, R. A. Angryk,

M. K. Georgoulis, and S. S. Mahajan, “Rare-event time series prediction:

A case study of solar flare forecasting,” in 2019 18th IEEE International

Conference On Machine Learning And Applications (ICMLA). 1EEE,

Dec. 2019.

R. A. Angryk, P. C. Martens, B. Aydin, D. Kempton, S. S. Mahajan,

S. Basodi, A. Ahmadzadeh, X. Cai, S. F. Boubrahimi, S. M. Hamdi,

M. A. Schuh, and M. K. Georgoulis, “Multivariate time series dataset

for space weather data analytics,” Scientific Data, vol. 7, no. 1, Jul.

2020. [Online]. Available: https://doi.org/10.1038/s41597-020-0548-x

P. H. Scherrer, R. S. Bogart, R. 1. Bush, J. T. Hoeksema, A. G.

Kosovichev, J. Schou, W. Rosenberg, L. Springer, T. D. Tarbell, A. Title,

C. J. Wolfson, and I. Z. and, “The solar oscillations investigation -

michelson doppler imager,” Solar Physics, vol. 162, no. 1-2, pp. 129—

188, Dec. 1995. [Online]. Available: https://doi.org/10.1007/bf00733429

O. W. Ahmed, R. Qahwaji, T. Colak, P. A. Higgins, P. T. Gallagher,

and D. S. Bloomfield, “Solar flare prediction using advanced feature

extraction, machine learning, and feature selection,” Solar Physics,
vol. 283, no. 1, pp. 157-175, Nov. 2011. [Online]. Available:
https://doi.org/10.1007/s11207-011-9896-1

T. A. M. H. Nagem, R. Qahwaji, S. Ipson, Z. Wang, and A. S. Al-Waisy,

“Deep learning technology for predicting solar flares from (geostationary

operational environmental satellite) data,” International Journal of

Advanced Computer Science and Applications, vol. 9, no. 1, 2018.

[Online]. Available: http://dx.doi.org/10.14569/1IJACSA.2018.090168

S. McGregor, D. B. Dhuri, A. Berea, and A. Mufioz-Jaramillo, “Flarenet:

A deep learning framework for solar phenomena prediction,” 2017.

S. Dey and O. Fuentes, “Predicting solar x-ray flux using deep learning

techniques,” in 2020 International Joint Conference on Neural Networks

(IJCNN), 2020, pp. 1-7.

N. Nishizuka, K. Sugiura, Y. Kubo, M. Den, and M. Ishii, “Deep

flare net (DeFN) model for solar flare prediction,” The Astrophysical

Journal, vol. 858, no. 2, p. 113, May 2018. [Online]. Available:

https://doi.org/10.3847/1538-4357/aab9a7

[9

—

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

(32]

[33]

[34]

[35]

[36]

[37]

[38]

T. Han, Q. Peng, Y. Shen, H. Li, and Y. Gu, “A deep leaming model
with multi-scale skip connections for solar flare prediction combined
with prior information,” in 2019 IEEE International Conference
on Big Data (Big Data). 1EEE, Dec. 2019. [Online]. Available:
https://doi.org/10.1109/bigdata47090.2019.9005508

S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Computation, vol. 9, no. 8, pp. 1735-1780, 1997.

X. Huang, H. Wang, L. Xu, J. Liu, R. Li, and X. Dai, “Deep learning
based solar flare forecasting model. i. results for line-of-sight magne-
tograms,” The Astrophysical Journal, vol. 856, no. 1, p. 7, Mar. 2018.
A. Ahmadzadeh, B. Aydin, M. K. Georgoulis, D. J. Kempton, S. S.
Mabhajan, and R. A. Angryk, “How to train your flare prediction model:
Revisiting robust sampling of rare events,” The Astrophysical Journal
Supplement Series, vol. 254, no. 2, p. 23, May 2021.

A. Ahmadzadeh, M. Hostetter, B. Aydin, M. K. Georgoulis, D. J.
Kempton, S. S. Mahajan, and R. Angryk, “Challenges with extreme
class-imbalance and temporal coherence: A study on solar flare data,”
in 2019 IEEE International Conference on Big Data (Big Data). IEEE,
Dec. 2019.

C. Shorten and T. M. Khoshgoftaar, “A survey on image data
augmentation for deep learning,” Journal of Big Data, vol. 6, no. 1, Jul.
2019. [Online]. Available: https://doi.org/10.1186/s40537-019-0197-0
A. Krizhevsky, “Learning multiple layers of features
from tiny images,” pp. 32-33, 2009. [Online]. Available:
https://www.cs.toronto.edu/ kriz/learning-features-2009-TR.pdf

G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely
connected convolutional networks,” in 2017 IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2017, pp. 2261-2269.
K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.
K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” CoRR, vol. abs/1512.03385, 2015. [Online]. Available:
http://arxiv.org/abs/1512.03385

M. G. Bobra and S. Couvidat, “Solar flare prediction using sdo/hmi
vector magnetic field data with a machine-learning algorithm,” The
Astrophysical Journal, vol. 798, no. 2, p. 135, Jan. 2015. [Online].
Available: https://doi.org/10.1088/0004-637x/798/2/135

C. Cortes and V. Vapnik, “Support-vector networks,” Machine learning,
vol. 20, no. 3, pp. 273-297, 1995.

G. E. Hinton, S. Osindero, and Y.-W. Teh, “A Fast
Learning Algorithm for Deep Belief Nets,” Neural Computation,
vol. 18, no. 7, pp. 1527-1554, 07 2006. [Online]. Available:
https://doi.org/10.1162/neco0.2006.18.7.1527

A. F. Agarap, “Deep learning using rectified linear units (relu),” arXiv
preprint arXiv:1803.08375, 2018.

J. Serra, S. Pascual, and A. Karatzoglou, “Towards a universal neural
network encoder for time series,” CoRR, vol. abs/1805.03908, 2018.
[Online]. Available: http://arxiv.org/abs/1805.03908

D. Ulyanov, A. Vedaldi, and V. S. Lempitsky, “Instance normalization:
The missing ingredient for fast stylization,” CoRR, vol. abs/1607.08022,
2016. [Online]. Available: http://arxiv.org/abs/1607.08022

K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification,” 2015
IEEE International Conference on Computer Vision (ICCV), pp. 1026—
1034, 2015.

Z. Wang, W. Yan, and T. Oates, “Time series classification from scratch
with deep neural networks: A strong baseline,” 2017 International Joint
Conference on Neural Networks (IJCNN), pp. 1578-1585, 2017.

S. Hochreiter, “The vanishing gradient problem during learning recurrent
neural nets and problem solutions,” International Journal of Uncertainty,
Fuzziness and Knowledge-Based Systems, vol. 06, no. 02, pp. 107-116,
Apr. 1998.

Y. Zheng, Q. Liu, E. Chen, Y. Ge, and J. L. Zhao,
“Time series classification using multi-channels deep convolutional

neural networks,” in Web-Age Information Management. Springer
International Publishing, 2014, pp. 298-310. [Online]. Available:
https://doi.org/10.1007/978-3-319-08010-9_33

C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and
Z. Wojna, “Rethinking the inception architecture for computer
vision,” CoRR, vol. abs/1512.00567, 2015. [Online]. Available:
http://arxiv.org/abs/1512.00567

B. K. Iwana and S. Uchida, “An empirical survey of
data augmentation for time series classification with neural

[39]

[40]

networks,” CoRR, vol. abs/2007.15951, 2020. [Online]. Available:
https://arxiv.org/abs/2007.15951

C. M. Bishop, “Training with noise is equivalent to tikhonov
regularization,” Neural Computation, vol. 7, no. 1, pp. 108-116, Jan.
1995. [Online]. Available: https://doi.org/10.1162/neco.1995.7.1.108

G. An, “The effects of adding noise during backpropagation
training on a generalization performance,” Neural Computation,
vol. 8, no. 3, pp. 643-674, Apr. 1996. [Online]. Available:
https://doi.org/10.1162/neco0.1996.8.3.643

