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Multi-photon bundle states are crucial for a broad range of applications such as quantum metrology, quantum lithography, quan-
tum communication, and quantum biology. Here we propose a scheme that generates multi-photon bundles via virtual excitations
in a quantum Rabi model. Our approach utilizes a Ξ-type three-level atom, where the upper two levels are coupled to a cav-
ity field to form a quantum Rabi model with ultrastrong coupling, and the transition between the lower two levels is driven by
two sequences of Gaussian pulses. We show that the driving pulses induce deterministic emission of multiple photons from the
eigenstates of the quantum Rabi model via the stimulated Raman adiabatic passage technique, and hence can create bundles of
multiple photons on-demand in the cavity output field. We calculate the generalized second-order correlation functions of the
output photons, which reveal that the emitted photons form antibunched multi-photon bundles.
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1 Introduction

Light-atom interaction plays a key role in quantum optics
and quantum information. The quantum Rabi model (QRM),
which describes the interaction of a bosonic mode with a two-
level atom, has been widely studied in quantum optics and
quantum science. With the progress in experimental technol-
ogy in the last few decades, the strength of the light-atom in-
teraction can now exceed 10% of the light frequency and the
atomic transition frequency [1-6], which is denoted as the
ultrastrong coupling regime, or can even be comparable to
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the light or atomic frequency, which is called the deep-
strong coupling regime [7-9]. The ultrastrong coupling
regime can be implemented with various systems includ-
ing the superconducting quantum devices [1, 2, 7, 9], inter-
subband polaritons [5], Landau polaritons [8, 10], organic
molecules [3, 6], and optomechanical systems [4]. Many in-
teresting phenomena resulted from the ultrastrong or deep-
strong coupling have been studied or demonstrated in these
systems, such as vacuum degeneracy [11], photon block-
ade [12], few-photon scattering [13, 14], quantum phase
transition [15-18], multi-photon Rabi oscillation [19, 20],
controllable counter-rotating interaction [21-24], and few-
photon emission [25-27]. With ultrastong coupling, the
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rotating-wave approximation (RWA) fails, and the ground
state of the QRM carries virtual photons that cannot be di-
rectly emitted or detected. Some schemes such as sponta-
neous emission [25], stimulated emission [26], and electrolu-
minescence [27] have been proposed to generate real photons
by converting the virtual photons in the ground state of the
QRM.

Recently, multi-quanta physics has attracted enormous in-
terest because of its potential applications in quantum infor-
mation sciences. In particular, the emission of multi-photon
bundles [28] has important applications in the generation
of new light source [29, 30], quantum metrology [31, 32],
quantum lithography [33], quantum communication [34],
quantum biology [35, 36], and medical applications [37, 38].
Multi-photon bundle describes the emission of multiple pho-
tons in an antibunched bundle. People have investigated
the generation of multi-photon bundles in various setups,
such as Rydberg atomic ensembles [39, 40], Kerr cavity sys-
tems [41, 42], multi-level atomic systems [43-46], cavity
quantum electrodynamics (QED) systems [28,47-50], super-
conducting circuits [51], and waveguide-QED systems [52-
54]. However, because the high-order processes of single-
photon transition are weak, multi-photon bundle emission is
challenging to achieve experimentally.

Here, we propose an efficient scheme to generate multi-
photon bundles via the stimulated Raman adiabatic passage
(STIRAP) technique deterministically [55-57], where mul-
tiple photons from the eigenstates of a QRM are created
as cavity photons, and subsequently released from the cav-
ity in a bundle. In this scheme, the multi-photon bundle
is emitted on demand, controlled by external STIRAP driv-
ing pulses. To be specific, we study a Ξ-type atom with
the upper two levels of the atom coupled to a cavity field
with ultrastrong coupling, while the transition between the
lower two levels of the atom is driven by two sequences
of external Gaussian pulses. By choosing appropriate res-
onance conditions, we can create a Λ-type three-level sys-
tem, where one of the lower levels contains even or odd
number of cavity photons. By applying the STIRAP tech-
nique, the system can be deterministically prepared to the
lower level with desired number of cavity photons, which
will be emitted as multi-photon bundle via cavity dissipation.
Using the quantum trajectory technique, we demonstrate the
dynamical emission of multi-photon bundles from the cav-
ity. We also calculate the standard and generalized second-
order correlation functions, which shows the antibunching
nature of the emitted multi-photon bundles. Our scheme
connects virtual photons in the QRM with on-demand, ef-
ficient multi-photon bundle emission, and provides a new
mechanism for the deterministic generation of multi-photon
source.

2 Model

We consider a Ξ-type three-level atom where the upper two
levels |e⟩ and |g⟩ are coupled to a cavity mode with ultra-
strong coupling, the transition between the lower two lev-
els |g⟩ and |b⟩ is driven by two external driving fields with
driving frequency ωl (l = 1, 2) and composed of consecutive
Gaussian wave packets. The frequency difference between
the lower levels |g⟩ − |b⟩ is much greater than both the cavity
frequency ωc and the transition frequency between the upper
levels |e⟩ − |g⟩ so that the bottom level |b⟩ is not coupled to
the cavity mode and the driving fields do not induce transi-
tion between the upper levels, as shown in Figure 1(a). The
system Hamiltonian can be written as (~ = 1):

H (t) =
∑

s=e,g,b

ωs |s⟩ ⟨s| + ωca†a + λ(a + a†) (|e⟩ ⟨g| + |g⟩ ⟨e|)

+

2∑
l=1

[Ωl (t) cos (ωlt)] (|b⟩ ⟨g| + |g⟩ ⟨b|) (1)

with the time-dependent driving amplitude

Ωl (t) = Ωl

∞∑
k=0

exp
[
− (t − tl − kT1)2

T 2

]
, (l = 1, 2). (2)

Here, a (a†) is the annihilation (creation) operator of the cav-
ity mode with resonance frequency ωc, ωs is the frequency
for the energy level |s⟩ (s = e, g, b), and λ is the atom-cavity
coupling strength. The parameters Ωl and T denote the max-
imum amplitude and the width of the Gaussian pulses, re-
spectively, tl (l = 1, 2) is the time of the maximum value of
the first Gaussian pulse in each pulse sequence, k is an inte-
ger labelling the pulses in the driving field, and T1 is the time
interval between consecutive Gaussian pulses.

The Hamiltonian of the upper two levels and the cavity
mode HR = ωe|e⟩⟨e|+ωg|g⟩⟨g|+ωca†a (|e⟩⟨e| + |g⟩⟨g|)+λ(a+
a†) (|e⟩⟨g| + |g⟩⟨e|) in the total Hamiltonian H(t) is the quan-
tum Rabi Hamiltonian [58]. The total Hamiltonian H(t) can
hence be written as H(t) = HR + ωb|b⟩⟨b| + ωca†a|b⟩⟨b| +∑2

l=1 [Ωl (t) cos (ωlt)] (|b⟩⟨g| + |g⟩⟨b|). In terms of the eigen-
state |εn⟩ (n = 0, 1, · · · ) of the QRM, the first three terms in
H(t) can be written in the diagonal form:

H0 =

∞∑
n=0

[εn |εn⟩ ⟨εn| + (ωb + nωc) |b, n⟩ ⟨b, n|] . (3)

The eigenstate |εn⟩ can be expressed as |εn⟩ =∑∞
m=0

(
Cn,m|g,m⟩ + Dn,m|e,m⟩

)
in terms of the uncoupled

atomic and cavity states with real probability amplitudes
Cn,m = ⟨εn|g,m⟩ and Dn,m = ⟨εn|e,m⟩, which can be numer-
ically obtained. Meanwhile, in terms of the eigenstate |εn⟩,
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the last term in H(t) can be written as:

HD (t) =
∞∑

n,m=0

2∑
l=1

[
Ωl (t) cos (ωlt)Cn,m |εn⟩ ⟨b,m| + H.c.

]
. (4)

In the rotating frame defined by the unitary operator
U(t) = exp (−iH0t), the system Hamiltonian becomes

HI (t) =
∞∑

n,m=0

2∑
l=1

∑
p=±1

[
Ωl,n,m (t) ei∆n,m,p,lt |εn⟩⟨b,m| + H.c.

]
, (5)

where the effective coupling strength Ωl,n,m (t) and the detun-
ing ∆n,m,p,l are

Ωl,n,m (t) =
Cn,m

2
Ωl (t) , (l = 1, 2),

∆n,m,p,l = εn − ωb − mωc + pωl. (6)

Here the effective coupling strength is modified by the prob-
ability amplitudes Cn,m (n,m ≥ 0 being integer) of the eigen-
states. It is worth noting that the total number of excita-
tions in the QRM is not a conserved quantity due to the
existence of the counter-rotating terms, but the QRM pos-
sesses a parity (or Z2) symmetry which shows that the sys-
tem is integrable [59]. It can be shown that the ground
(first excited) state of HR only contains states with even
(odd) number of excitations, and can be expanded as |εM⟩ =∑∞

m=0
(
CM,2m+M |g, 2m+M⟩ + DM,2m+1−M |e, 2m+1−M⟩) with

M = 0 (1). Hence in the ground (first excited) state, the
amplitudes of the states with odd (even) number of pho-
tons and the atom being in the state |g⟩ satisfy C0,2m+1 = 0
(C1,2m = 0) due to the parity symmetry [59]. The photons
in the state |ε0⟩ are bounded (or virtual), and cannot be de-
tected directly. To see the dependence of the virtual photon
amplitudes on the coupling strength λ, we plot the coeffi-
cient C0,2m (m = 0, 1, 2, 3) as a function of the ratio λ/ωc in
Figure 2(a). When the coupling strength λ/ωc is small, i.e.,
λ/ωc ≪ 0.1, the Hamiltonian HR is reduced to the Jaynes-
Cummings (JC) Hamiltonian under the RWA. In this regime,
the ground state |ε0⟩ is mainly composed of |g, 0⟩ with zero
excitation, and the population transfer from the state |b, 0⟩
to |b, 2m⟩ (m > 0) will not occur due to the small ampli-
tudes of the states |g, 2m⟩ (m > 0). However, with the in-
crease of the coupling strength λ, the virtual-photon coeffi-
cient C0,2m (m = 1, 2, · · · ) becomes significant which sup-
ports the population transfer from the state |b, 0⟩ to |b, 2m⟩.
It is worth noting that the population transfer from the state
|b, 1⟩ to |b, 2m+1⟩ through the first excited state |ε1⟩ can also
occur when the amplitude C1,2m+1 (m = 1, 2, · · · ) of the state
|g, 2m+1⟩ in the first excited state |ε1⟩ becomes significant for
λ/ωc & 1, as shown in Figure 2(b). Therefore, in order to
generate multiple photons, the atom-cavity coupling strength
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Figure 1 (Color online) (a) Schematic of the system with a Ξ-type three-
level atom coupled to a cavity mode through the upper two levels |e⟩ and |g⟩.
The transition between the lower two levels |g⟩ and |b⟩ is driven by two ex-
ternal driving fields with driving frequency ωl (l = 1, 2) and time-dependent
driving amplitude Ωl (t). (b) Energy structure of the effective Λ-type three-
level system. The initial state |b,M⟩ and the final state |b, 2m+M⟩ are cou-
pled by the driving fields with the effective coupling strengths Ω1,n,M (t) and
Ω2,n,2m+M (t) via the eigenstate |εn⟩ of the quantum Rabi model, where M=0
or 1. The detuning ∆ is the difference between the driving frequency ω1 (ω2)
and the transition frequency from |b,M⟩ (|b, 2m+M⟩) to |εn⟩.
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Figure 2 (Color online) Coefficients (a) of |g, 2m⟩ in the eigenstate |εn⟩
(n=0 and 2) and (b) of |g, 2m+1⟩ in the first excited state |ε1⟩ of HR as a
function of the ratio λ/ωc for the resonant case ωc = ωe − ωg.

is required to be in the ultrastrong or deep-strong coupling
regime, where CM,2m+M (m > 0) can be significant.

3 STIRAP generation of multiple photons

In this section, we derive an effective Hamiltonian of the
above system under the 2m-photon (m being positive integer)
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resonance condition [26]

ω1 − ω2 = 2mωc, (7)

and elucidate the physical mechanism of the coherent pop-
ulation transfer from the initial state |b,M⟩ to the final state
|b, 2m+M⟩ based on the STIRAP technique. We will then
discuss the generation of multiple photons in detail.

3.1 Effective Hamiltonian and photon generation

Assume that the system is in the initial state |b,M⟩ with the
cavity field in the Fock state |M⟩ and the atom in the lowest
state |b⟩. Let the driving frequencies be near resonance with
both the transition frequency εn −ωb −Mωc with M photons
and the (2m+M)-photon emission frequency εn −ωb − (2m+

M)ωc, respectively, i.e., ∆n,M,−1,1,∆n,2m+M,−1,2 ≪ 2mωc, and
the other eigenstates |εn′⟩ (n′ , n) are far detuned from the
driving frequencies so that they can be neglected from this
scheme. Under the 2m-photon resonance condition (7), the
Hamiltonian (5) can be reduced to

H̃I (t) =Ω1,n,M (t) ei∆n,M,−1,1t |εn⟩ ⟨b,M|
+ Ω2,n,2m+M (t) ei∆n,2m+M,−1,2t |εn⟩ ⟨b, 2m+M|
+ H.c., (8)

with M = n mod 2 (i.e., M = 0 or 1 corresponds to the
even-photon or odd-photon bundles case, respectively). We
find that eq. (8) connects the states |b, 2m+M⟩ with 2m+M
photons to the eigenstates |εn⟩ of the QRM. Here we have
ignored the fast oscillating terms under the RWA by the con-
dition |Ωl,n,m(t)/∆n,m,+1,l| ≪ 1 and |Ωl,n′,m(t)/∆n′,m,−1,l| ≪ 1
(n′ , n, l = 1, 2). The system can then be reduced to an
effective three-level system, as shown in Figure 1(b).

With the 2m-photon resonance condition (7), ∆n,M,−1,1 =

∆n,2m+M,−1,2 ≡ ∆. In a rotating frame with respect to H̃0 =

−∆|εn⟩⟨εn|, we obtain the effective Hamiltonian for this sys-
tem:

H(2m+M)
eff =∆ |εn⟩ ⟨εn| + [Ω1,n,M (t) |εn⟩ ⟨b,M|

+ Ω2,n,2m+M (t) |εn⟩ ⟨b, 2m + M| + H.c.]. (9)

This Hamiltonian describes a Λ-type three-level system,
where the effective coupling strengthΩ1,n,M (t) [Ω2,n,2m+M (t)]
depends on the coefficientCn,M (Cn,2m+M). The effective cou-
pling strengthΩ1,n,M (t) [Ω2,n,2m+M (t)] can be tuned by choos-
ing appropriate coupling strength λ, which can strongly affect
the coefficients Cn,M and Cn,2m+M according to Figure 2. The
transfer from the state |b,M⟩ with the cavity in the state |M⟩
to the state |b, 2m+M⟩ with 2m+M cavity photons can be
achieved through these two effective couplings, which is the
key mechanism for our scheme to generate multiple photons.

In our scheme, the coupling strengths Ω1,n,M (t) and
Ω2,n,2m+M (t) in eq. (9) are time dependent. We derive the
instantaneous eigenstates of the effective Hamiltonian (9) at
time t as follows:∣∣∣ψ(2m+M)

0 (t)
⟩
= cos [θ2m+M (t)] |b,M⟩
− sin [θ2m+M (t)] |b, 2m+M⟩ , (10a)∣∣∣ψ(2m+M)

+ (t)
⟩
= sin

[
φ2m+M (t)

] {sin [θ2m+M (t)] |b,M⟩
+ cos [θ2m+M (t)] |b, 2m+ M⟩}
+ cos

[
φ2m+M (t)

] |εn⟩ , (10b)∣∣∣ψ(2m+M)
− (t)

⟩
= cos

[
φ2m+M (t)

] {sin [θ2m+M (t)] |b,M⟩
+ cos [θ2m+M (t)] |b, 2m+M⟩}
− sin

[
φ2m+M (t)

] |εn⟩ , (10c)

and the corresponding instantaneous eigenvalues are
λ0 = 0, λ+ = Ω̃2m+M (t) cot[φ2m+M (t)], and λ− =

−Ω̃2m+M (t) tan[φ2m+M (t)], where

θ2m+M (t) = arctan
[
η2m+MΩ1 (t)

Ω2 (t)

]
, (11a)

φ2m+M (t) = arctan

 Ω̃2m+M (t)

∆
2 +

√
∆2

4 + Ω̃2
2m+M (t)

 , (11b)

with

Ω̃2m+M (t) =
|Cn,2m+M |

2

√
η22m+MΩ

2
1 (t) + Ω2

2 (t) (12)

and η2m+M = |Cn,M/Cn,2m+M |. The eigenstate |ψ(2m+M)
0 (t)⟩

in eq. (10a) with eigenvalue λ0 = 0 is a dark state, which
does not include the state |εn⟩ as its component. Instead,
the dark state is a coherent superposition of the M-photon
state and the (2m+M)-photon state of the cavity with the
atom in the lowest level |b⟩. With the system initially pre-
pared in the dark state |ψ(2m+M)

0 (t)⟩ and the effective coupling
strengths tuned adiabatically under the condition [55-57]:
|θ̇2m+M (t) | ≪ |λ± − λ0|, which leads to∣∣∣θ̇2m+M (t)

∣∣∣ ≪ ∣∣∣∣∣∣∣∆2 ±
√

∆2

4
+ Ω̃2

2m+M (t)

∣∣∣∣∣∣∣ , (13)

the system will remain in the dark state |ψ(2m+M)
0 (t)⟩ at an

arbitrary time t during the evolution. Thus, by adjusting
the driving amplitudes appropriately, the system state can be
converted from an initial dark state to a desired dark state at
the end of the evolution using the STIRAP technique. In our
approach, the initial state at t = 0 is prepared in the dark
state |ψ(2m+M)

0 (0)⟩ = |b,M⟩ for θ2m+M (0) = 0, and at the fi-
nal time t, θ2m+M (t) = π/2, which corresponds to the dark
state |b, 2m+M⟩. By increasing θ2m (t) adiabatically under
the condition (13), we can hence convert the state |b,M⟩ to
the multi-photon state |b, 2m+M⟩. The merit of the STIRAP
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technique is that it only involves the dark state (not the state
|εn⟩), which will not decay to the lowest atomic level |b⟩ via
spontaneous emission. Moreover, as |b⟩ is not coupled to
the cavity mode, the photons are emitted only through the
STIRAP process. The process is thus fully deterministic via
external control fields.

In the following, we will discuss the generation of multiple
photons in detail for the detuning ∆ = 0, and demonstrate the
physical mechanism of the generation of multi-photon state
via the STIRAP technique based on the dark state (10a).

3.2 Two-photon generation

We first choose n = 0, M = 0 and m=1 in the Hamilto-
nian (9) for the generation of two photons, which requires
ω1 − ω2 = 2ωc. At ∆ = 0, the effective Hamiltonian (9)
becomes

H(2)
eff (t) = Ω1,0,0 (t) |ε0⟩ ⟨b, 0|+Ω2,0,2 (t) |ε0⟩ ⟨b, 2|+H.c., (14)

and the corresponding dark state (10a) becomes∣∣∣ψ(2)
0 (t)

⟩
= cos[θ2 (t)] |b, 0⟩ − sin[θ2 (t)] |b, 2⟩ (15)

with θ2 (t) = arctan
[
η2Ω1 (t) /Ω2 (t)

]
.

To generate two photons with STIRAP, the system is re-
quired to adiabatically follow the dark state |ψ(2)

0 (t)⟩ during
the evolution [55, 56]. Let the initial state at time t = 0 be
the dark state |ψ(2)

0 (0)⟩ = |b, 0⟩ for θ2 (0) = 0, which requires
Ω1 (0) /Ω2 (0) → 0. We then adiabatically change θ2 (t) to
reach θ2 (t) = π/2, which corresponds to Ω1 (t) /Ω2 (t) → ∞.
At time t, the dark state is |ψ(2)

0 (t)⟩ = |b, 2⟩, which is the
atomic state |b⟩ plus two cavity photons. Note that the effi-
cient implementation of the STIRAP process requires that the
two pulses Ω1 (t) and Ω2 (t) have significant overlap in time,
as shown in Figure 3(a). The effective coupling strengths
Ω1,0,0 (t) and Ω2,0,2 (t) are plotted in Figure 3(b), where the
maximum values of the two couplings are equal to each other.
It is worth mentioning that the pulse Ω2 (t) is applied before
Ω1 (t), which is counter-intuitive but typical in STIRAP. To
demonstrate the photon generation in this process, we plot
the probabilities of the states |b, 0⟩, |b, 2⟩, and |ε0⟩ in Fig-
ure 3(c), from simulations of both the effective Hamiltonian
and the exact Hamiltonian. Our result shows that the popu-
lation in |b, 0⟩ can be almost completely transferred to |b, 2⟩
with its final probability reaching 1, and the probability of
|ε0⟩ being on the order of 10−4 at the end of the STIRAP
process. With the above driving parameters, the population
transfer from |b, 2⟩ to |b, 4⟩ is negligible with the probability
of |b, 4⟩ on the order of 10−4. This is due to the large detun-
ing between the driving frequencies and their corresponding
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|·⟩ ) from the effective three-level system
(dotted curves) agrees well with the result (Pexact

|·⟩ ) from the exact Hamilto-
nian (solid curves). The parameters are (a)-(c) Ω2/Ω1 = 6.8538, (d)-(f)
Ω2/Ω1 = 6.4641, (g)-(i) Ω1/ωc = 0.006, Ω2/Ω1 = 3.1814, ωct1 = 7960,
ωcT = 2200, and (j)-(l) Ω1/ωc = 0.004, Ω2/Ω1 = 12.6179, ωct1 = 8560,
ωcT = 2800. The common parameters are λ/ωc = 0.6, ωb/ωc = −6,
Ω1/ωc = 0.008, ωct1 = 7960, ωcT = 2200 in panels (a)-(f), and λ/ωc = 1.2,
ωb/ωc = −10 in panels (g)-(l). Other parameters are ωe − ωg = ωc, ∆ = 0,
ωct2 = 5760 and ωcT1 = 84000.

transition frequencies. We want to emphasize that the result
(Pexact

|·⟩ in Figure 3(c)) from simulating the exact total Hamil-
tonian (5) agrees well with the result (Peff

|·⟩ in Figure 3(c))
from simulating the effective three-level Hamiltonian (14),
which verifies that the three-level approximation is valid.

3.3 Four-photon and six-photon generation

For n = 0, M = 0, m = 2 and ∆ = 0, the effective Hamilto-
nian (9) becomes

H(4)
eff (t) = Ω1,0,0 (t) |ε0⟩ ⟨b, 0|+Ω2,0,4 (t) |ε0⟩ ⟨b, 4|+H.c., (16)

and the corresponding dark state (10a) has the form∣∣∣ψ(4)
0 (t)

⟩
= cos[θ4 (t)] |b, 0⟩ − sin[θ4 (t)] |b, 4⟩ , (17)
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with θ4 (t) = arctan
[
η4Ω1 (t) /Ω2 (t)

]
. The physical process

here is similar to the process of the two-photon generation,
and the efficient generation of four photons also requires an
appropriate overlap between Ω1 (t) and Ω2 (t), as shown in
Figure 3(g). The corresponding effective coupling strengths
Ω1,0,0 (t) and Ω2,0,4 (t) are plotted in Figure 3(h), which also
shows that the peak values of the couplings are equal to each
other. The probabilities of the states |b, 0⟩, |b, 4⟩ and |ε0⟩
are plotted in Figure 3(i), which shows that the population
in the state |b, 0⟩ can almost be completely transferred to the
state |b, 4⟩ with the probability of |b, 4⟩ approaching 1, and
the probability of |ε0⟩ being on the order of 10−4 at the end
of the STIRAP. The population transfer from the state |b, 4⟩
to the state |b, 8⟩ is negligible with the probability of |b, 8⟩
on the order of 10−6 due to the large detuning in the corre-
sponding transition. The simulation data based on the exact
Hamiltonian and the effective Hamiltonian match also well
in this case. This result shows that the generation of four
photons can be implemented in our scheme.

Similarly, the generation of six photons can be easily
achieved with the same mechanism due to the significant
amplitude coefficient C0,6, as shown in Figure 2(a). It
is worth noting that the second (λ/ωc < 0.43) or third
(λ/ωc > 0.43) excited state |ε2⟩ only include the even num-
ber of excitations due to its even parity with the current
parameter ωc = ωe −ωg, and can be expanded as |ε2⟩ =∑∞

m=0
(
C2,2m |g, 2m⟩ + D2,2m+1 |e, 2m+1⟩). In Figure 2(a), we

find that the coefficient C2,6 of |g, 6⟩ in the eigenstate |ε2⟩ of
the QRM is larger than C0,6. Thus the scheme of six-photon
generation via the second excited state |ε2⟩ is feasible. Here
we choose the ground state |ε0⟩ of the QRM to generate six
photons as an example, and the effective Hamiltonian can be
written as:

H(6)
eff (t) =Ω1,0,0 (t) |ε0⟩ ⟨b, 0| + Ω2,0,6 (t) |ε0⟩ ⟨b, 6|

+ H.c., (18)

and the corresponding dark state (10a) has the form∣∣∣ψ(6)
0 (t)

⟩
= cos[θ6 (t)] |b, 0⟩ − sin[θ6 (t)] |b, 6⟩ , (19)

with θ6 (t) = arctan
[
η6Ω1 (t) /Ω2 (t)

]
. The physical pro-

cess of six-photon generation is similar to the process of the
four-photon generation under the appropriate parameters, as
shown in Figure 3(j)-(l). The population in the state |b, 0⟩
can almost be completely transferred to the state |b, 6⟩ with
the probability approaching 1 after the STIRAP process, and
other population transfer processes are negligible due to large
detuning and tiny probabilities. It is worth noting that the
simulation data based on the exact Hamiltonian and the ef-
fective Hamiltonian match also well in this situation, which
shows that the generation of six photons can be implemented
in our scheme.

3.4 Three-photon generation

To generate three photons, we choose the first excited state
|ε1⟩ which only includes odd-photon component |g, 2m + 1⟩
(m = 0, 1, · · · ) for state |g⟩ and even-photon component
|e, 2m⟩ for state |e⟩ due to the parity symmetry. Similarly,
we choose n = 1, M = 1, m = 1 and ∆ = 0 under the two-
photon resonance condition, thus the effective Hamiltonian
(9) becomes

H(3)
eff (t) = Ω1,1,1 (t) |ε1⟩ ⟨b, 1|+Ω2,1,3 (t) |ε1⟩ ⟨b, 3|+H.c., (20)

and the corresponding dark state (10a) has the form∣∣∣ψ(3)
0 (t)

⟩
= cos[θ3 (t)] |b, 1⟩ − sin[θ3 (t)] |b, 3⟩ , (21)

with θ3 (t) = arctan
[
η3Ω1 (t) /Ω2 (t)

]
. The physical mech-

anism of three-photon generation is similar to two-photon
case. To generate three photons with STIRAP, we assume
that the initial system is in state |b, 1⟩, and the system is re-
quired to adiabatically follow the dark state ψ(3)

0 (t) during the
evolution [55, 56]. Similarly, a appropriate overlap between
Ω1 (t) and Ω2 (t) needs to be satisfied for the efficient gen-
eration of three photons, as shown in Figure 3(d), and the
effective coupling strengths Ω1,1,1 (t) and Ω2,1,3 (t) are plotted
in Figure 3(e), where the maximum values are equal to each
other. Note that the probabilities of the states |b, 1⟩, |b, 3⟩
and |ε1⟩ are plotted in Figure 3(f), which demonstrates that
the population in the state |b, 1⟩ is transferred adiabatically
to the state |b, 3⟩ with the probability of |b, 3⟩ approaching 1,
and the probability of |ε1⟩ being on the order of 10−4 at the
end of the STIRAP. Under the driving pulses given in Fig-
ure 3(d), the population transfer from the state |b, 3⟩ to the
state |b, 5⟩ is negligible with the probability of |b, 5⟩ on the
order of 10−3 due to the large detuning in the corresponding
transitions. The simulation data from the exact Hamiltonian
and from the effective Hamiltonian agree well in this case.
This result shows that the generation of three photons is fea-
sible by adjusting the driving frequencies of driving pulses to
aim at the first excited state |ε1⟩ of the QRM.

4 Emission of multi-photon bundles

Photons generated in the above STIRAP process will be
emitted to the cavity output via cavity dissipation. In this
section, we study the multi-photon bundle emission using the
following quantum master equation [12]:

ρ̇ (t) = − i
[
H (t) , ρ (t)

]
+

∑
u=a,ge,bg

∞∑
n,m>n

Γm,nu
{D [|ψn⟩ ⟨ψm|

]
ρ (t)

}
, (22)
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with the superoperator D[O]ρ(t) = Oρ(t)O† −O†Oρ(t)/2−
ρ (t)O†O/2. Here, we assume that the system-bath cou-
pling is weak with a zero-temperature Markovian bath [60],
and that the total Hamiltonian H(t) including the driving
fields is given by eq. (1). The state |ψn⟩ is an eigenstate
of the Hamitonian H0 with eigenenergy En, i.e., {|ψn⟩} =

{|b, 0⟩ , |b, 1⟩ , |b, 2⟩ , ..., |ε0⟩ , |ε1⟩ , ...}. The relaxation rate in
the superoperator D[O] is defined as:

Γm,nu = 2πdu
(
∆m,n

)
α2
u
(
∆m,n

) ∣∣∣Cn,m
u

∣∣∣2 , (u = a, ge, bg), (23)

which is determined by the spectral density du
(
∆m,n

)
of the

bath modes, the system-bath coupling strength αu
(
∆m,n

)
, and

the transition matrix elements

Cn,m
a = ⟨ψn| (a + a†) |ψm⟩ ,

Cn,m
ge = ⟨ψn| (|g⟩ ⟨e| + |e⟩ ⟨g|) |ψm⟩ , (24)

Cn,m
bg = ⟨ψn| (|b⟩ ⟨g| + |g⟩ ⟨b|) |ψm⟩ .

Here, u = a denotes the bath for cavity damping, u = ge, bg
denote the baths that induce the atomic decay from |e⟩ to |g⟩
and from |g⟩ to |b⟩, respectively, and ∆m,n = Em − En is the
transition frequency between the states |ψm⟩ and |ψn⟩. Note
that we have neglected the Lamb-shift terms in eq. (22). For
simplicity of discussion, we assume that the spectral density
du

(
∆m,n

)
and the system-bath coupling strength αu

(
∆m,n

)
be

constant with the decay rate

κu = 2πdu
(
∆m,n

)
α2
u
(
∆m,n

)
, (u = a, ge, bg). (25)

The relaxation coefficients are then Γ
m,n
u = κu|Cn,m

u |2.
To investigate how the cavity photons are emitted to the

cavity output, we numerically calculate the probabilities
P|b, j⟩ (t) ( j = 0, 1, · · · ) of the state |b, j⟩ and P|ε0⟩ (t) [P|ε1⟩ (t)]
of the state |ε0⟩ (|ε1⟩) as functions of the time t by solving
eq. (22). Furthermore, to study the statistical characteristics
of the emitted photons, we numerically calculate the gener-
alized second-order photon correlation functions of the N-
photon bundle [28, 49]

g(2)N (t, t + τ) =

⟨
X†N (t) X†N (t + τ) XN (t + τ) XN (t)

⟩
⟨
X†N (t) XN (t)

⟩ ⟨
X†N (t + τ) XN (t + τ)

⟩ , (26)

where the operator X is defined as:

X =

∞∑
n,m>n

⟨ψn| (a† + a) |ψm⟩ |ψn⟩ ⟨ψm| . (27)

Note that for N = 1, eq. (26) gives the standard second-order
correlation function, and at τ = 0, eq. (26) is the equal-time
second-order correlation function of N-photon bundle. In the
following, we will focus on even- (two, four and six-photon)
and odd-photon (three-photon) bundle emission separately to
illustrate our approach.

4.1 Two-photon bundle

We first consider the emission of two-photon bundle from the
dissipative cavity. In Figure 4(a), the Gaussian pulses of the
two driving fields are presented over three cycles of the STI-
RAP process. The cycles are separated by the duration T1. In
Figure 4(b)-(d), we plot the probabilities P|b,0⟩, P|b,1⟩, P|b,2⟩,
and P|ε0⟩ as functions of the normalized time 10−4ωct. After
applying the Gaussian pulse Ω2 (t) followed by the Gaussian
pulse Ω1 (t), as shown in Figure 4(a), we find that the ini-
tial state |b, 0⟩ is effectively transferred to |b, 2⟩ with a prob-
ability 0.713 under the parameters λ/ωc = 0.6, ωb/ωc = −6,
Ω1/ωc = 0.008, Ω2/Ω1 = 6.8538, ωct1 = 7960, ωcT = 2200
and κu/ωc = 0.0001 (u = a, ge, bg). Because of finite
cavity dissipation during the STIRAP, the state conversion
probability is smaller than 1. The generated photons are
then emitted to the cavity output by the decay processes
|b, 2⟩ → |b, 1⟩ → |b, 0⟩, and the system returns to the initial
state |b, 0⟩ after the emissions. The emission cycle repeats
itself after a duration T1, which needs to be sufficiently long
to ensure the system returns to the initial state |b, 0⟩ before
the start of the next emission cycle. Here the Gaussian pulses
Ωl (t) (l = 1, 2) satisfy the condition (13) in order to achieve
effective generation of the photon bundle.

To study the dynamical emission of the photons, we sim-
ulate an initial quantum system by using the quantum jump
approach [61, 62]. In Figure 5(a)-(c), we plot the quantum
trajectory of the probabilities of the states |b, j⟩ ( j=0,1,2) and
|ε0⟩ starting from the initial state |b, 0⟩. Our result shows that
after the STIRAP, the population in the state |b, 2⟩ is almost
one as can be seen in Figure 5(c). After the first photon is
emitted out of the cavity, the system state collapses to |b, 1⟩
with a probability almost equal to 1, as shown in Figure 5(b).
After the second photon is emitted, the system returns to the
initial state |b, 0⟩ as shown in Figure 5(a). This result hence il-
lustrates the two-photon bundle emission where the two pho-
tons are separated by a short temporal window determined by
the cavity decay rate.

To investigate the statistical properties of the emitted pho-
tons, we numerically calculate the standard and generalized
equal-time second-order correlation functions for N=1 and
N=2 given by eq. (26) at τ = 0. In Figure 6(a), we plot
the standard equal-time second-order correlation function
g(2)1 (t, t) within one emission cycle. We find that the maxi-
mum value of g(2)1 (t, t) at the time ts1 is larger than one. This
result implies that the photons are in a super-Poisson distri-
bution with more than one photons emitted in the system.
In Figure 6(b), we plot the generalized equal-time second-
order correlation function g(2)2 (t, t) within one emission cycle.
The minimum value of g(2)2 (t, t) at the time ts2 is smaller than
one,which corresponds to a sub-Poisson distribution of the
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Figure 4 (Color online) (a) The amplitudes Ωl (t) (l=1,2) of the Gaus-
sian pulses as a function of the scaled time 10−4ωct. (b)-(d) The probabili-
ties P|b, j⟩ (t) ( j=0,1,2) and P|ε0⟩ (t) vs. the scaled time. The decay rates are
κa/ωc = κge/ωc = κbg/ωc = 0.0001. Other parameters are the same as those
in Figure 3(a)-(c).
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Figure 5 (Color online) Quantum trajectories of the probabilities of the
states |b, j⟩ ( j = 0, 1, 2) and |ε0⟩ in the two-photon bundle emission. The
parameters are the same as those in Figure 4.

emitted photon bundles.
To analytically estimate the correlation of the emitted pho-

tons, we assume that the system has been prepared in state
|b, 2⟩ with the probability sin2[θ2(t)] during the process of
STIRAP, which is much slower than the cavity dissipation.
The two cavity photons are emitted to the cavity output only
through the dissipation of the cavity mode due to the de-
coupling of the atom from the cavity mode. In this case,
the angle θ2(t) can be treated as a constant during the cav-
ity dissipation. Thus the analytical solution of the equal-time
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Figure 6 (Color online) The equal-time and time-delayed second-order
correlation functions for two-photon emission. (a) g(2)1 (t, t) and (b) g(2)2 (t, t)
vs. time t. The ts1 (ts2) is the time corresponding to the maximum (mini-
mum) value of g(2)1 (t, t)

(
g(2)2 (t, t)

)
. (c) Analytical and exact solutions of the

standard equal-time second-order correlation functions as a function of the
scaled time 10−4ωct . (d) g(2)N (tsN , tsN + τ) for N=1 and N=2 vs. the time
delay τ. The parameters are the same as those in Figure 4.

second-order correlation function [26] can be estimated as:

g(2)1 (t, t) =
1

2 sin[θ2(t)]
. (28)

We find that the correlation function (28) is independent of
cavity dissipation. Note that the analytical solution given
in eq. (28) and the exact solution of the equal-time second or-
der correlation function match well when t > 4000, as shown
in Figure 6(c). Here t = 4000 corresponds to the beginning
of the generation of two-photon state. It is worth noting that
the value of g(2)1 (t, t) is equal to 1/2 at θ2(t) = π/2 at the end
of the STIRAP.

To further investigate the statistical properties of the emit-
ted photons, we also calculate the time-delayed second-order
correlation functions g(2)1 (ts1, ts1 + τ) and g(2)2 (ts2, ts2 + τ) as
defined in eq. (26). Our result is given in Figure 6(d). It can
be seen that g(2)1 (ts1, ts1)> g(2)1 (ts1, ts1 + τ) and g(2)2 (ts2, ts2)<
g(2)2 (ts2, ts2 + τ). This result further confirms that the emitted
photons are bunched while the two-photon bundles are anti-
bunched. Hence our scheme can lead to the construction of a
two-photon antibunched emitter.

4.2 Four-photon and six-photon bundle

Next we study the generation of four-photon bundle by us-
ing the STIRAP technique. In Figure 7(a), the external
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Gaussian pulses Ω1 (t) and Ω2 (t) are given, which satisfy
the condition (13). Similar to the studies for two-photon
bundle, we calculate the probabilities P|b, j⟩ (t) on the state
|b, j⟩ ( j = 0, 1, · · · , 4) and P|ε0⟩ (t) on the state |ε0⟩, which
are plotted in Figure 7(b)-(f). It can be shown that after
the applied Gaussian pulses, the initial state |b, 0⟩ is effec-
tively transferred to the four-photon state |b, 4⟩ with a prob-
ability 0.575. The parameters used here are λ/ωc = 1.2,
ωb/ωc = −10,Ω1/ωc = 0.006, Ω2/Ω1 = 3.1814, ωct1 = 7960,
ωcT = 2200 and κu/ωc = 0.0001 (u = a, ge, bg). The cavity
dissipation during the external pulses reduces the efficiency
of the population transfer to be less than one. The generated
photons will then decay to the cavity output one by one with
|b, 4⟩ → |b, 3⟩ → |b, 2⟩ → |b, 1⟩ → |b, 0⟩, and the system will
return to the initial state |b, 0⟩ after all photons are emitted.
The cycle will repeat when the next set of Gaussian pulses
are applied. We want to point out that the time interval T1 of
the cycles satisfies the condition: κaT1 ≫ 1, so that our pho-
tons will be released outside the cavity when the next cycle
begins.

We use the quantum jump approach to obtain the quantum
trajectory in this four-photon generation process. One quan-
tum trajectory of the probabilities P|b, j⟩(t) ( j = 0, 1, · · · , 4)
and P|ε0⟩(t) is presented in Figure 8(a)-(e). It can be seen that
four photons appear in the cavity after the applied Gaussian
pulses, then the photons are emitted to the cavity output one
by one with a short temporal window between adjacent out-
put photons with the final state returning to the initial state
|b, 0⟩. The result shows that the four photons are emitted in a
bundle before the next cycle begins.

To understand the statistical properties of the generated
photons, we calculate the equal-time second-order correla-
tion functions for single photon g(2)1 (t, t) and four photons
g(2)4 (t, t), respectively, as given in Figure 9(a) and (b). We
find that the maximum value of g(2)1 (t, t) at the time ts1 is
larger than one, which shows that the generated photons are
in a super-Poisson distribution at ts1. Meanwhile, the min-
imum value of g(2)4 (t, t) at the time ts4 is smaller than one,
which indicates that the four-photon bundles are in a sub-
Poisson distribution at ts4. To characterize the statistics of
the emitted four-photon bundle, we further study the time-
delayed second-order correlation functions g(2)1 (ts1, ts1 + τ)
and g(2)4 (ts4, ts4 + τ) following the definition in eq. (26). The
numerical result of the time-delayed correlation functions is
given in Figure 9(c). Similar to that of the two-photon bun-
dle, g(2)1 (ts1, ts1) > g(2)1 (ts1, ts1 + τ), indicates bunched single-
photon behavior, and g(2)4 (ts4, ts4) < g(2)4 (ts4, ts4 + τ), indi-
cates antibunched behavior for the four-photon bundles. This
result verifies that the scheme gives a method to implement
an antibunched four-photon bundle emitter.

In order to demonstrate the emission of multi-photon

bundle clearly, we also study the generation of the six-
photon bundle via the STIRAP technique. Under the driv-
ing pulses Ω1 (t) and Ω2 (t) given in Figure 10(a), the one-
period evolutions of the populations P|b, j⟩(t) on the state |b, j⟩
( j = 0, 1, · · · , 6) and P|ε0⟩(t) on the state |ε0⟩ are shown
in Figures 10(b)-(h). We can find that under the parame-
ters λ/ωc = 1.2, ωb/ωc = −10, Ω1/ωc = 0.004, Ω2/Ω1 =

12.6179, ωct1 = 8560, ωcT = 2800 and κu/ωc = 0.0001
(u = a, ge, bg), the initial state |b, 0⟩ is effectively transferred
to the six-photon state |b, 6⟩ with probability 0.421. The ef-
ficiency of the population transfer is smaller than one due to
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Figure 7 (Color online) (a) The amplitudes Ωl (t) (l =1, 2) of the Gaus-
sian pulses as a function of the scaled time 10−4ωct. (b)-(f) The probabilities
P|b, j⟩ (t) ( j = 0, 1, · · · , 4) and P|ε0⟩ (t) vs. the scaled time. The decay rates
are κa/ωc = κge/ωc = κbg/ωc = 0.0001. Other parameters are the same as
those in Figure 3(g)-(i).
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Figure 8 (Color online) Quantum trajectories of the probabilities of the
states |b, j⟩ ( j = 0, 1, · · · , 4) and |ε0⟩ in the four-photon bundle emission.
The parameters are the same as those in Figure 7.
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Figure 9 (Color online) The equal-time and time-delayed second-order
correlation functions for four-photon emission. (a) g(2)1 (t, t) and (b) g(2)4 (t, t)
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Figure 10 (Color online) (a) The amplitudes Ωl (t) (l =1,2) of the Gaussian
pulses in one period as a function of the scaled time 10−4ωct. (b)-(h) The
probabilities P|b, j⟩ (t) ( j = 0, 1, · · · , 6) and P|ε0⟩ (t) vs. the scaled time. The
decay rates in both cases are κa/ωc = κge/ωc = κbg/ωc = 0.0001. Other
parameters are the same as those in Figure 3(j)-(l).

the cavity dissipation during the STIRAP. The photons on
the state |b, 6⟩ will decay to the cavity output one by one with
|b, 6⟩ → |b, 5⟩ → |b, 4⟩ → |b, 3⟩ → |b, 2⟩ → |b, 1⟩ → |b, 0⟩,
and the system returns to the initial state |b, 0⟩ after emis-
sions. After applying the same Gaussian pulses again, an-
other set of six photons will be generated. The result shows
that the generation of six-photon bundle can be implemented
in our scheme.

4.3 Three-photon bundle

Next we study the generation of three-photon bundle as an
example of odd photon bundle. Its physical process is similar
to the case of even-photon bundles. We consider the excited
state |ε1⟩ of the QRM in the case of three-photon bundle,
and the system also is reduced to the three-level system by
adjusting the frequencies of the driving pulses. Under the
driving pulsesΩ1 (t) andΩ2 (t) given in Figure 11(a), we plot
the probabilities P|b, j⟩ ( j = 0, 1, 2, 3) and P|ε1⟩ within one pe-
riod as functions of the normalized time 10−4ωct, as shown
in Figure 11(b)-(e). Here, the initial state is chosen to the
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Figure 11 (Color online) (a) The amplitudes Ωl (t) (l =1,2) of the Gaussian
pulses in one period as a function of the scaled time 10−4ωct. (b)-(e) The
probabilities P|b, j⟩ (t) ( j = 0, 1, 2, 3) and P|ε1⟩ (t) vs. the scaled time. The
decay rates in both cases are κa/ωc = κge/ωc = κbg/ωc = 0.0001. Other
parameters are the same as those in Figure 3(d)-(f).
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state |b, 1⟩ with the cavity field in one-photon state |1⟩ and
the atom in the lowest state |b⟩. The population transfers
from initial state |b, 1⟩ to the three-photon state |b, 3⟩ with the
probability 0.326 after applying Gaussian pulses. The param-
eters used here are λ/ωc = 0.6, ωb/ωc = −6,Ω1/ωc = 0.008,
Ω2/Ω1=6.4641, ωct1=7960, ωcT =2200 and κu/ωc=0.0001
(u = a, ge, bg). It is worth noting that a little population
on the state |b, 1⟩ is initially dissipated into the state |b, 0⟩
through the process of dissipation |b, 1⟩ → |b, 0⟩, so that the
efficiency of the population transfer is smaller than one. With
dissipation involved, the generated photons will be emitted to
the cavity output one by one with |b, 3⟩ → |b, 2⟩ → |b, 1⟩ →
|b, 0⟩, and the system will be in the initial state after all dis-
sipations. Due to the disappearance of the component |g, 0⟩
in the first excited state, we prepare again the system in state
|b, 1⟩, then repeat the emission cycle. Thus, by choosing an
appropriate initial state, the generation of three-photon bun-
dles can be implemented in our scheme.

5 Conclusions and discussion

We proposed a deterministic approach to generate multi-
photon bundles via STIRAP for a Ξ-type atom coupled to
a cavity mode in the ultrastrong or deep-strong coupling
regime. By applying two appropriately designed Gaussian
pulses, the system state can be transferred on-demand to a
multi-photon state via the STIRAP technique. The photons
will then decay to the cavity output in a bundle. By studying
the quantum trajectory of the system and the standard and
generalized second-order correlation functions, we find that
the emitted single photons are in a super-Poisson distribution
and the emitted multi-photon bundles are antibunched in a
sub-Poisson distribution. This scheme provides a venue to
implement efficient, on-demand multi-photon emitters.

In this work, we discussed the generation of multiple pho-
tons based on the selection of the driving parameters in the
calculation. We showed that both even and odd numbers of
photon bundles can be emitted on-demand by adjusting the
frequencies of the driving pulses to aim at the ground state
or the first excited state of the QRM. Note that the success-
ful generation of desired multi-photon bundles requires that
the duration of the pulse cycle T1 is sufficiently long with
κaT1 ≫ 1, so that the system can return to the proper initial
state |b,M⟩ (M=0 or 1) before the next cycle starts.

The realization of our scheme is within reach of current
state-of-the-art experimental technology. The ultrastrong and
deep-strong coupling regimes have been realized in several
platforms, such as superconducting circuits [1, 2, 7, 9], inter-
subband polaritons [5], Landau polaritons [8, 10], organic
molecules [3, 6], and optomechanics [4]. Hence our method

is a practical approach that can lead to the construction of
on-demand multi-photon sources.
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