
Isadora: Automated Information Flow Property Generation for
Hardware Designs

Calvin Deutschbein
University of North Carolina at

Chapel Hill

Andres Meza
UC San Diego

Francesco Restuccia
Scuola Superiore Santa-Anna Pisa

Ryan Kastner
UC San Diego

Cynthia Sturton
University of North Carolina at

Chapel Hill

ABSTRACT

Isadora is a methodology for creating information flow specifica-

tions of hardware designs. The methodology combines information

flow tracking and specification mining to produce a set of informa-

tion flow properties that are suitable for use during the security

validation process, and which support a better understanding of

the security posture of the design. Isadora is fully automated; the

user provides only the design under consideration and a testbench

and need not supply a threat model nor security specifications. We

evaluate Isadora on a RISC-V processor plus two designs related

to SoC access control. Isadora generates security properties that

align with those suggested by the Common Weakness Enumera-

tions (CWEs), and in the case of the SoC designs, align with the

properties written manually by security experts.

ACM Reference Format:

Calvin Deutschbein, Andres Meza, Francesco Restuccia, Ryan Kastner,

and Cynthia Sturton. 2021. Isadora: Automated Information Flow Prop-

erty Generation for Hardware Designs. In Proceedings of the 5th Workshop

on Attacks and Solutions in Hardware Security (ASHES ’21), November 19,

2021, Virtual Event, Republic of Korea. ACM, New York, NY, USA, 11 pages.

https://doi.org/10.1145/3474376.3487286

1 INTRODUCTION

Security validation is an important yet challenging part of the hard-

ware design process. A strong validation provides assurance that

the design is secure and trustworthy: it will not be vulnerable to

attack once deployed, and it will reliably provide software and

firmware with the advertised security features. A security valida-

tion engineer is tasked with defining the threat model, specifying

the relevant security properties, detecting any violations of those

properties, and assessing the consequences to system security.

Existing commercial design tools (e.g., Mentor Questa Secure

Check, Cadence JasperGold Security Path Verification, and Tortuga

Logic Radix) can verify security properties of a design, but the tools

are only as strong as the provided properties. Defining these hard-

ware security properties is a crucial part of the security validation

process that currently involves a significant manual undertaking. We

propose an automated methodology that combines information

ASHES ’21, November 19, 2021, Virtual Event, Republic of Korea

© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in Proceedings of the
5th Workshop on Attacks and Solutions in Hardware Security (ASHES ’21), November 19,
2021, Virtual Event, Republic of Korea, https://doi.org/10.1145/3474376.3487286.

flow tracking with specification mining to create a human-readable

information flow specification of a hardware design. The specifi-

cation can be used as a set of security properties suitable for use

with existing security validation tools, and it can also be studied

directly by the designers to support their understanding of how

information flows through the design.

Information Flow Tracking (IFT) is a powerful security verifi-

cation technique that monitors how information moves through

a hardware design. Recently, IFT has been demonstrated at the

RTL [6, 29] and gate level [7, 30, 41], and has been used to moni-

tor implicit flows through digital side channels [5, 8, 36]. Existing

verification engines that incorporate IFT capabilities can be used

to confirm whether a given information flow property holds. How-

ever, it is up to the designer to specify the full set of desired flow

behaviors.

The technique of specification mining offers an automatic alter-

native to manually writing properties. Specification mining can be

applied to software [4] and hardware [24] and has recently been

applied to system on a chip (SoC) designs [21, 37]. Security specifi-

cation mining focuses on developing the security goals of a design

and has been developed for processors [17, 18, 45]. However, many

important vulnerabilities violate security goals related to how infor-

mation flows, goals that are not expressible as the trace properties

that specification miners discover.

The insight that led to this research is that mining the traces

produced by an IFT-instrumented design will generate trace prop-

erties that correspond to information flow properties over the orig-

inal, uninstrumented design. The information flow tracking logic

transforms the information-flow properties from the space of hy-

perproperties [12] ś where trace-based mining does not apply ś to

the space of trace properties, where trace-based mining can apply.

A naive application of trace-basedmining to an IFT-instrumented

design quickly runs into issues of complexity: the instrumented

designs are large and overwhelm the miner. Additionally, the miner

will discover properties over tracking signals and original design

signals that are meaningless and cannot be transformed back to the

space of information flow properties in the original design. To han-

dle these issues we separate the process of identifying sourceśsink

flow pairs in the design from the process of mining for the condi-

tions that govern those flows. The first can be done by leveraging

existing information flow tracking tools and the second makes use

of existing trace miners. The key to making the approach work is

to synchronize the two parts using clock-cycle time.

ASHES ’21, November 19, 2021, Virtual Event, Republic of Korea Calvin Deutschbein, Andres Meza, Francesco Restuccia, Ryan Kastner, and Cynthia Sturton

The methodology we present here can inform an automated

analysis of a hardware design by identifying flow relations between

all design elements, including flow conditions and multi-source

and multi-sink cases. The methodology requires no input from the

designer beyond the design and testbench.

To evaluate our methodology, we developed Isadora, a fully au-

tomatic security specification miner for information flow prop-

erties. Isadora uses information flow tracking (IFT) technology

from Tortuga Logic’s Radix-S simulation based security verification

engine [3] and is implemented on top of Daikon [20], a popular

invariant miner.

To our knowledge, Isadora represents the first specificationminer

capable of extracting information flow security properties from

hardware designs. Our results demonstrate:

• Isadora characterizes the flow relations between all elements

of a design.

• Isadora identifies important information flow security prop-

erties of a design without guidance from the designer.

• Isadora can be used to find undesirable flows of information

in the design.

• Isadora is applicable to SoCs and CPUs.

To measure our methodology and the usefulness of Isadora’s

mined specification, we evaluated Isadora over an access control

module, a multi-controller and multi-peripheral system with a

known security policy, and a RISC-V design. We evaluated the

output of Isadora versus expected information flow policies of the

design and found information flow specifications that, if followed,

protect designs from known and potential future attack patterns.

2 PROPERTIES

Isadora generates two styles of information flow properties: no-flow

properties, in which there is no flow of information between two

design elements; and conditional-flow properties, in which there

exists some flow of information between two design elements, but

only when the design is in a certain state. Isadora can also generate

unconditional-flow properties, but these tend to be less interesting

for purposes of security validation.

2.1 Tracking Information Flow

IFT can precisely measure all digital information flows in the un-

derlying hardware, including, for example, implicit flows through

hardware-specific timing channels. Isadora uses IFT at the register

transfer level [6] to track data flow between registers rather than

considering individual bits, with ‘registers’ in this context refer-

ring to the Verilog notion of a register. Isadora may additionally be

configured to consider Verilog wires, though doing so provided no

observable improvements to generated specifications and consid-

erably increased trace generation costs. The Isadora methodology

can be applied to individual bits, as the underlying information

flow tracking used within Isadora does consider individual bits.

However, bit level analysis would result in extraordinarily high

trace generation costs for even small designs.

Tracking proceeds as follows: for each signal s in the design, a

new tracking signal s𝑇 is added along with the logic needed to track

how information propagates through a design. Once the tracking

signals and tracking logic are added to the design, one or more

signals may be set as the information source by initializing their

associated tracking signals to a nonzero value. All other tracking

signals are initialized to zero. As the design executes, and informa-

tion from a source signal propagates to a second signal, that second

signal’s tracking signal is updated from zero to nonzero.

2.2 Information Flow Restrictions

Using information flow tracking, we can express the property that

information from register r1 should never flow to register r2 as a

trace property: if r1 is the only signal whose tracking signal r𝑇1 is

initialized to nonzero, then for all possible executions of the design,

r2’s tracking signal r
𝑇
2 should remain at zero:

(∀r𝑖 , r
𝑇
𝑖 ≠ 0 ↔ 𝑖 = 1) → G(r𝑇2 = 0)

This style of no-flow property can be useful for ensuring un-

privileged users cannot influence sensitive state or for ensuring

that sensitive information cannot leak through, for example, debug

ports. However, it cannot capture conditional properties, for ex-

ample that register updates are allowed only under certain power

states.

2.3 Information Flow Conditions

Using information flow tracking, we can express the property that

information from a register r1 may flow to another register r2
under some condition 𝑃 : if r1 is the only signal whose tracking

signal r𝑇1 is initialized to nonzero then for all possible executions

of the design, r2’s tracking signal r𝑇2 will only become non-zero if

some predicate 𝑃 holds:

(∀r𝑖 , r
𝑇
𝑖 ≠ 0 ↔ 𝑖 = 1) → G(¬𝑃 → (r𝑇2 = 0 → X(r𝑇2 = 0)))

This style of a conditional flow property can be used to express,

for example, that register updates are allowable only under certain

power states, or that memory accesses are allowable only when

specific access control checks have succeeded.

2.4 Grammar of Properties

In order to produce properties that use only the signals in the

original design, without including the tracking signals, we need

an operator that expresses some notion of information flow. Both

no-flow and conditional flow properties can be expressed using a

no-flow operator, for which we use the notation =/=>. The grammar

of Isadora properties is as follows.

𝜙 � r1=/=> r2 | 𝑒 → r1 =/=> r2

𝑒 � 𝑏 ∧ 𝑒 | 𝑏

𝑏 � r ∈ {𝑥,𝑦, 𝑧} | r1 = r2 | r1 ≠ r2 | r = prev(r)

The property r1 =/=> r2 states that no information flows from

r1 to r2. The property 𝑒 → r1 =/=> r2 states that information

may flow from r1 to r2 only when ¬𝑒 . The symbol r is a register

in the design, r ∈ {𝑥,𝑦, 𝑧} means that r may take on any one of

the values in a set of cardinality less than or equal to three, and

prev(r) refers to the value of r in the previous clock cycle.

ASHES ’21, November 19, 2021, Virtual Event, Republic of Korea Calvin Deutschbein, Andres Meza, Francesco Restuccia, Ryan Kastner, and Cynthia Sturton

information flows from src to s during execution of the testbench.

The corresponding trace(es) are then decomposed to produce a

set of trace slices that are two clock cycles in length, one for

each time 𝑖 . Consider time-of-flow tuple (src, s, [𝑖, 𝑗, 𝑘, . . .]), which

as a notational convenience here uses distinct letters to denote

time points rather than subscripts for clarity in the following ex-

pression. Given this tuple, Isadora will produce the trace slices

⟨𝜎𝑖−1, 𝜎𝑖 ⟩, ⟨𝜎 𝑗−1, 𝜎 𝑗 ⟩, ⟨𝜎𝑘−1, 𝜎𝑘 ⟩. These trace slices include only the

signals of the original design, all tracking logic and shadow sig-

nals are pruned. Using trace slices, or trace windows of length

two, allows dynamic invariant detection to generation predicates

specifying design state both immediately prior to and concurrent

with the occurence of some flow. Predicates match one of the four

patterns for expressions given in the grammar of Isadora properties

in Section 2.

3.4 Postprocessing

Finally, Isadora performs additional analysis to find invariants that

may hold over the entire trace set by running the miner on the

unsliced trace. Isadora eliminates any predicate that is also found

to be a trace-set invariant. One such trivial example is the invariant

clk = {0, 1}.

The final output properties from postprocessing are the con-

ditional flow properties. To ease readability, Isadora can express

the conditional flow properties as multi-source to multi-sink flows,

where all flows within the same property occur at the same time

and under the same conditions. This produces comparatively few

properties, which in practice were approximately as many as the

number of unique source signals, and avoids redundant information.

The conditional flow properties and the no-flow properties discov-

ered in phase 2 (Section 3.2) make up the set of information flow

properties produced by Isadora. Two examples of postprocessed

properties are shown in Appendix A.

4 IMPLEMENTATION

Isadora uses the Tortuga Radix-S simulation-based security verifi-

cation technology [3] to generate IFT logic for a hardware design,

the Questa Advanced Simulator [2] to simulate the instrumented

design and generate traces, and the Daikon [20] invariant miner

to find flow conditions. A Python script manages the complete

workflow and implements flow analysis and postprocessing.

Traces are generated for all signals within a design. An auto-

mated utility identifies every signal within a design and configures

Tortuga Radix-S to build the IFT logic separately for each of these

registers. We run Tortuga in exploration mode, which omits cone

of influence analysis, and track flows to all design state using the

$all_outputs variable. The resulting instrumented designs are

simulated in QuestaSim over a testbench (see Evaluation, Sec. 5) to

produce a trace of execution.

Phase two is implemented as a Python tool that reads in the

traces generated by QuestaSim and produces the set of no-flow

properties and the time-of-flow tuples. This phase combines the

bit-level taint tracking by Radix-S into signal-level tracking. Each

𝑛-bit signal in the original design is then tracked by a 1-bit shadow

signal, which will be set to 1 at the first point in the trace that any

of the component 𝑛 shadow bits where set.

The mining phase is built on top of the Daikon invariant genera-

tion tool [20], which was developed for use with software programs.

Daikon generates invariants over state variables for each point in a

program. We built a Daikon front-end in Python (411 LoC, includ-

ing comments) that converts the trace data to be Daikon readable,

treating the state of the design at each clock cycle as a point in

a program. The front-end also removes any unused or redundant

signals and outputs relevant two-clock-cycle slices as described in

Sec. 3.3.

5 EVALUATION

We assess the following questions to evaluate Isadora:

(1) Can Isadora independently mine security properties manu-

ally developed by hardware designers?

(2) Can Isadora automatically generate properties describing

CommonWeakness Enumerations (CWEs) [1] over a design?

(3) Does Isadora scale well for larger designs, such as CPUs or

SoCs?

5.1 Designs

We assessed Isadora on two designs, the Access Control Wrap-

per (ACW) proposed within the AKER framework [39] and the

PicoRV32 RISC-V CPU. An ACW wraps an AXI controller and

enforces on it a local access control policy, which is setup and main-

tained by a trusted entity (e.g., a Hardware Root of Trust or a trusted

processor). The ACW checks the validity of read and write requests

issued by the wrapped AXI controller and rejects those that violate

the configuration of the local access control policy.

We used the AKER framework in two configurations: first im-

plementing a single-controller AKER-based access control system;

second, implementing a system with two traffic generators, each

wrapped by an ACW, connected to three AXI peripherals though

an AXI interconnect. This setup simulates the use of the ACWs in

an SoC environment. In both cases, the input signals of the ACWs

are dictated by the testbench, which initializes them with the access

control policies and acts as the trusted entity. We refer to these

two designs as the łSingle ACWž and łMulti ACWž cases. They are

shown in Figures 2 and 3, respectively.

PicoRV32 is a CPU core that implements the RISC-V RV32IMC

Instruction Set, an open standard instruction set architecture based

on established reduced instruction set computer principles.

The secure operation of the ACW and AKER-based access con-

trol systems has been verified through a property-based security

validation process by the designers. We study the AKER framework

to evaluate how Isadora’s properties compare to a manually devel-

oped security specification. We use the PicoRV32 to evaluate how

well Isadora automatically generates properties describing CWEs

and to evaluate how well Isadora scales on a CPU design.

5.2 Time Cost

Isadora ran on a systemwith an Intel Core i5-6600k (3.5GHz) proces-

sor with 8 GB of RAM. Traces were generated on a Intel Xeon CPU

E5-2640 v3 @ 2.60GHz server. Trace generation dominated time

costs, and scaled slightly worse than linear with number of unique

signals in a design. Trace generation was suitable for parallelization

though parallelization was not considered in the evaluation.

ASHES ’21, November 19, 2021, Virtual Event, Republic of Korea Calvin Deutschbein, Andres Meza, Francesco Restuccia, Ryan Kastner, and Cynthia Sturton

Design Unique Unique LoC Trace Trace Daikon Isadora Miner Time

Signals Sources Cycles GBs Traces Properties In Minutes

Single ACW 229 229 1940 598 .7 252 303 29:51

Multi ACW 984 85 4447 848 4.3 378 160 8:31

PicoRV32 181 181 3140 1099 .6 955 153 15:09

Table 1: Various size measures of studied designs

Source Sink Invariant Provided Result Isadora CWEs

Assert’s Properties

M PORT M INT GLOB 19 ✓ 2, 40, 1258, 1266, 1270,

M INT M PORT 19 ✓ 43, 53, 1271, 1272, 1280

M PORT M INT C PORT 19 ✓ 54, 204, 1258, 1270,

M INT M PORT 19 ✓ 214 1272, 1280

S PORT CNFG - 4 ✗ 2, 6 1269, 1272, 1280

Table 2: Isadora performance versus manual specification, on the Single ACW

flows and their conditions with hundreds of properties. To assess

whether these properties are security properties, for each design

we randomly selected 10 of the 303 or 153 total properties (using

Python random.randint) and assessed their relevance to security.

We use CWEs as a metric to evaluate the security relevance

of Isadora output properties. To do so, for each design, we first

determine which CWEs apply to the design. For both the ACW

and PicoRV32, we used the Radix Coverage for Hardware Com-

mon Weakness Enumeration (CWE) Guide [3] to provide a list of

CWEs that specifically apply to hardware. We considered each doc-

umented CWE for both designs. CWEs, while design agnostic, may

refer to design features not present in the Single ACW or PicoRV32

or may not refer to information flows. High level descriptions in

multiple CWEs may correspond to the same low level behavior for

a design and we consider these CWEs together.

Information flow hardware CWEs describe source signals, sink

signals, and possibly conditions. CWEs provide high level descrip-

tions, but Isadora targets an RTL definition. To apply these high

level descriptions to RTL, we first group signals for a design by

inspecting Verilog files and, if available, designer notes. With the

groups established, we label every property by which group-to-

group flows they contain. We also determine which sourceśsink

flows could be described in CWEs, which often correspond to, or

even match exactly, a signal group. We use these groups to find

CWE-relevant, low-level signals as sources, sinks, and conditions

in an Isadora property. We also use these groups to characterize the

relative frequency of conditional flows between different groups,

which we present as heatmaps in the following subsections.

5.4.1 ACWConditional Information Flow. Over the ACWwe assess

fourteen CWEs which we map to five plain-language descriptions

of the design features, as shown in Table 3.

For the ACW signal groups, all registers were helpfully placed

into groups by the designer and labeled within the design. The

design contained seven distinct labeled groups:

• ‘GLOB’ - Global ports

• ‘S PORT’ - AXI secondary (S) interface ports of the ACW

CWE(s) Description

1220 Read/write channel separation

1221-1259-1271 Correct initialization, reset, defaults

1258-1266-1270-1272 Access controls use operating modes

1274-1283 Anomaly registers log transactions

1280 Control checks precede access

1267-1269-1282 Configuration/user port separation

Table 3: The 14 CWEs considered for ACW

• ‘C PORT’ - Connections to non-AXI ports of the controller

• ‘M PORT’ - AXI main (M) interface ports of the ACW

• ‘CNFG’ - Configuration signals

• ‘M INT’ - AXI M interface ports of the controller

• ‘CTRL’ - Control logic signals

GLOB signals are clock, reset, and interrupt lines. S PORT rep-

resents the signals that the trusted entity T uses to configure the

ACW. C PORT represents the signals which are used to configure

the controller C to generate traffic for testing. M PORT carries

traffic between the peripheral P and the ACW’s control mechanism.

CNFG represents the design elements which manage and store the

configuration of the ACW. M INT carries the traffic between the

ACW’s control mechanism and the controller. If it is legal according

to the ACW’s configuration, the control mechanism will send M

INT traffic to M PORT and vice versa. CTRL represents the design

elements of the aforementioned control mechanism.

First consider the heatmap view of the Single ACW in Figure 4.

In this view, all of the designer-provided assertions fall into just

3 of the 49 categories; these are outlined in red. Further, all of the

violations were found with S PORT to CNFG flows, while all satis-

fied assertions were flows between M INT and M PORT. Another

interesting result visible in the heatmap is the infrequent flows

into S PORT, which is used by the trusted entity to program the

ACW. Most of the design features should not be able to reprogram

ASHES ’21, November 19, 2021, Virtual Event, Republic of Korea Calvin Deutschbein, Andres Meza, Francesco Restuccia, Ryan Kastner, and Cynthia Sturton

Description 1220 1221+ 1258+ 1274+ 1280

3 Control check for first read request after reset ✓ ✓ ✓

10 Secure power-on ✓

37 Anomalies and memory control set after reset ✓ ✓ ✓ ✓

96 T via S PORT configures ACW ✓ ✓ ✓

106 Interrupts respect channel separation ✓

154 Base address not visible to P during reset ✓

163 Write transaction legality flows to P ✓

227 Write channel anomaly register updates ✓ ✓

239 Write validity respects channel separation, reset ✓ ✓

252 Read validity respects channel separation, reset ✓ ✓

Table 4: Sampled Isadora properties on Single ACW

CWE(s) Description

276-1221-1271 Correct initialization, reset, defaults

440-1234-1280-1299 Memory accesses pass validity checks

1190 Memory isolated before reset

1191-1243-1244... Debug signals do not interfer with

-1258-1295-1313 ...any other signals

1245 Hardware state machine correctness

1252-1254-1264 Data and control separation

Table 5: The 18 CWEs considered for PicoRV32

of false negatives with respect to CWEs. Unknown false negatives

can arise from limitations in trace coverage or in logical specificity.

6.1 Trace Reliance

As with any specification mining technique, Isadora relies on traces.

The second stage of Isadora relies on generating instrumented traces

with sufficient case coverage to drive information flow through all

channels present in the design. The third stage of Isadora relies

on traces to infer flow predicates. Over buggy hardware, these

predicates may form a specification describing buggy behavior.

Traces may not cover all cases that can be reached by a design or

even occur during normal design operation.

Traces may not precisely describe some design features. For

example, when considering property number 154 on the Single

ACW, one of the sampled properties, Isadora found predicates that

ARLEN_wire and AWLEN_wire are both set to be exactly 8 for any

flow to occur. This property is shown in full in Appendix A.1.

The AxLEN_wire registers set transaction burst size for reads and

writes. For transactions in write channels, the ARLEN_wire value

should be irrelevant, and this clause within the broader property

constitutes a likely false positive.

The AWLEN_wire is a different case. In a properly configured

write channel supporting transcations, this register would neces-

sarily be non-zero, and for wrapping bursts must be a power of two,

but manual inspection of the code provides no indication the value

must be precisely 8. During development we manipulated this and

other values for which similar reasoning applied, but ultimately it

was difficult to tightly define possible values for which the design

could operate but were distinct from the default test bench for this

and other signals.

While Isadora is testbench reliant, andmay be useful in testbench

generation, testbench generation is an active area of research, and

is more fully explored in related works such as Meng et al. [33],

which studies concolic testing for RTL.

6.2 Functional Properties

When using CWE-relevance as the metric, Isadora does include

functional properties in its output, as shown in Table 6. Sampling

output properties found a 10% false positivity rate with respect to

misclassification for the sampled properties from both designs, with

0 of 10 properties found to be false positives over the Single ACW

version of AKER, and 2 of 10 properties found to be false positives

over the PicoRV32 RISC-V CPU.

We attribute finding functional properties solely on RISC-V pri-

marily to differences in design and testbench. The ACW studied was

the target of validation efforts related to information flow, and the

testbench we used was developed as part of those efforts. Further,

as an access control module, by nature much of its functionality

was relevant to secure access control.

With RISC-V, a minimal test bench was used that was intended

only to run the design in an environment without access to the

full RISC-V toolchain (such as our simulation environment for

instrumented trace generation), andmuch of the designwas devoted

to behavior for which CWEs did not apply, such as logical updates

during instruction decoding. One example of an Isadora property

classified as functional is shown in Appendix A.2.

6.3 Measuring Interference

Isadora assumes the correctness of the information flow tracking

used in trace generation. Information flow tracking is an active

area of research, and is more fully explored in related works such

as Ardeshiricham et al. [6], which studies IFT for RTL.

6.4 Specification Logic

Isadora does not define temporal properties beyond a single delay

slot incorporated in the trace slices of length two. However, manual

examination of output properties suggests information flow pat-

terns during initialization, which is the first 4 cycles for AKER and

Isadora: Automated Information Flow Property Generation for Hardware Designs ASHES ’21, November 19, 2021, Virtual Event, Republic of Korea

Description 276+ 440+ 1190 1191+ 1245 1252+

1 No decoder leakage via debug ✓

16 Instructions update state machine ✓ ✓

30 Decoder updates state machine ✓

47 No state machine leakage via debug ✓

52 SLT updates state machine ✓

66 Handling of jump and load ✓ ✓ ✓

79 Loads update state machine ✓

113 Decoder internal update

130 Write validity respects reset ✓

144 Decoder internal update

Table 6: Sampled Isadora properties on PicoRV32

first 80 for RISC-V, are highly dissimilar to later flows. During ini-

tialization, Isadora discovers flow conditions referencing registers

with unknown states. Isadora also finds concurrent flows between

elements for which no concurrent flows occur after reset. Because

conditions are inferred from comingled trace slices from during

and after initialization, the output properties may be insufficiently

precise to capture secure behavior related to this boundary.

7 RELATED WORK

7.1 Properties of Hardware Designs

Automatic extraction of security critical assertions from hardware

designs enables assertion based verification without first manually

defining properties [28]. The Iodine tool looks for possible instances

of known design patterns, such as one-hot encoding or mutual ex-

clusion between signals, and creates assertions that encode the

discovered patterns [25]. More recent papers use data mining of

simulation traces to extract more detailed assertions [11, 26] or

temporal properties [31]. Recent work has focused on mining tem-

poral properties from execution traces [13ś15, 31]. A combination

of static and dynamic analysis extracts word-level properties [32].

The first security properties developed for hardware designs

weremanually crafted [9, 10, 27]. SCIFinder semi-automatically gen-

erates security-critical properties for a RISC processor design [45]

and Astarte generates security-critical properties for x86 [19]. Re-

cent hackathons have revealed the types of properties needed to find

exploitable bugs in the design of a RISC-based system-on-chip [16].

7.2 Mining Specifications for Software

The seminal work in specification mining comes from the software

domain [4] in which execution traces are examined to infer tem-

poral specifications in the form of regular expressions. Subsequent

work used both static and dynamic traces to filter out less useful

candidate specifications [42]. More recent work has tackled the

challenges posed by having imperfect execution traces [44], and by

the complexity of the search space [22, 23, 38]. Daikon, which pro-

duces invariants rather than temporal properties, learns properties

that express desired semantics of a program [20].

In the software domain a number of papers have developed

security specific specification mining tools. These tools use human

specified rules [40], observe instances of deviant behavior [20, 34,

35], or identify instances of known bugs [43].

8 CONCLUSION

We presented and implemented a methodology for creating in-

formation flow specifications of hardware designs. By combining

information flow tracking and specification mining, we are able

to produce information flow properties of a design without prior

knowledge of security agreements or specifications. We show our

implementation, Isadora, characterizes the flow relations between

all elements of a design and identifies important information flow

security properties of an SoC and a CPU according to Common

Weakness Enumerations.

9 ACKNOWLEDGMENTS

We thank our reviewers for their insightful comments and sugges-

tions. This material is based upon work supported by the National

Science Foundation under Grant No. CNS-1816637, by the Semicon-

ductor Research Corporation, and by Intel. Any opinions, findings,

conclusions, and recommendations expressed in this paper are

solely those of the authors.

REFERENCES
[1] [n.d.]. The Common Weakness Enumeration Official Webpage. https://cwe.

mitre.org/
[2] [n.d.]. Questa Advanced Simulator. https://eda.sw.siemens.com/en-US/ic/questa/

simulation/advanced-simulator/
[3] [n.d.]. Radix Coverage for Hardware Common Weakness Enumeration (CWE)

Guide. https://tortugalogic.com/wp-content/uploads/2020/03/RadixCWEGuide_
20210126.pdf.

[4] Glenn Ammons, Rastislav Bodík, and James R. Larus. 2002. Mining Specifications.
In 29th Symposium on Principles of Programming Languages (POPL) (Portland,
Oregon). ACM, 4ś16. https://doi.org/10.1145/503272.503275 http://doi.acm.org/
10.1145/503272.503275.

[5] Armaiti Ardeshiricham, Wei Hu, and Ryan Kastner. 2017. Clepsydra: Modeling
timing flows in hardware designs. In IEEE/ACM International Conference on
Computer-Aided Design (ICCAD). 147ś154. https://doi.org/10.1109/ICCAD.2017.
8203772

[6] Armaiti Ardeshiricham,Wei Hu, JoshuaMarxen, and Ryan Kastner. 2017. Register
transfer level information flow tracking for provably secure hardware design. In
Design, Automation Test in Europe Conference Exhibition (DATE), 2017. 1691ś1696.
https://doi.org/10.23919/DATE.2017.7927266

[7] Andrew Becker, Wei Hu, Yu Tai, Philip Brisk, Ryan Kastner, and Paolo Ienne.
2017. Arbitrary precision and complexity tradeoffs for gate-level information
flow tracking. In 2017 54th ACM/EDAC/IEEE Design Automation Conference (DAC).
1ś6. https://doi.org/10.1145/3061639.3062203

ASHES ’21, November 19, 2021, Virtual Event, Republic of Korea Calvin Deutschbein, Andres Meza, Francesco Restuccia, Ryan Kastner, and Cynthia Sturton

[8] Mohammad-Mahdi Bidmeshki and Yiorgos Makris. 2015. Toward automatic
proof generation for information flow policies in third-party hardware IP. In 2015
IEEE International Symposium on Hardware Oriented Security and Trust (HOST).
IEEE, 163ś168.

[9] M. Bilzor, T. Huffmire, C. Irvine, and T. Levin. 2011. Security Checkers: Detect-
ing processor malicious inclusions at runtime. In International Symposium on
Hardware-Oriented Security and Trust (HOST). IEEE, 34ś39. https://doi.org/10.
1109/HST.2011.5954992

[10] Michael Brown. 2017. Cross-validation Processor Specifications. Master’s Thesis.
University of North Carolina at Chapel Hill.

[11] Po-Hsien Chang and Li C Wang. 2010. Automatic assertion extraction via se-
quential data mining of simulation traces. In 15th Asia and South Pacific Design
Automation Conference (ASP-DAC). IEEE, 607ś612.

[12] Michael R. Clarkson and Fred B. Schneider. 2010. Hyperproperties. J. Comput.
Secur. 18, 6 (Sept. 2010), 1157ś1210. http://dl.acm.org/citation.cfm?id=1891823.
1891830.

[13] A. Danese, T. Ghasempouri, and G. Pravadelli. 2015. Automatic extraction of
assertions from execution traces of behavioural models. In Design, Automation
Test in Europe Conference Exhibition (DATE). 67ś72. https://doi.org/10.7873/
DATE.2015.0110

[14] A. Danese, G. Pravadelli, and I. Zandonà. 2016. Automatic generation of power
state machines through dynamic mining of temporal assertions. In Design, Au-
tomation Test in Europe Conference Exhibition (DATE). 606ś611.

[15] A. Danese, N. D. Riva, and G. Pravadelli. 2017. A-TEAM: Automatic
template-based assertion miner. In 54th Design Automation Conference (DAC).
ACM/EDAC/IEEE, 1ś6. https://doi.org/10.1145/3061639.3062206

[16] Ghada Dessouky, David Gens, Patrick Haney, Garrett Persyn, Arun Kanuparthi,
Hareesh Khattri, Jason M Fung, Ahmad-Reza Sadeghi, and Jeyavijayan Rajendran.
2019. Hardfails: Insights into Software-Exploitable Hardware Bugs. In 28th
USENIX Security Symposium. USENIX Association, 213ś230. https://www.usenix.
org/conference/usenixsecurity19/presentation/dessouky

[17] Calvin Deutschbein and Cynthia Sturton. 2018. Mining Security Critical Lin-
ear Temporal Logic Specifications for Processors. In International Workshop
on Microprocessor and SoC Test, Security, and Verification (MTV). IEEE. https:
//ieeexplore.ieee.org/document/8746060

[18] C. Deutschbein and C. Sturton. 2020. Evaluating Security SpecificationMining for
a CISC Architecture. In 2020 IEEE International Symposium on Hardware Oriented
Security and Trust (HOST). 164ś175. https://doi.org/10.1109/HOST45689.2020.
9300291

[19] Calvin Deutschbein and Cynthia Sturton. 2020. Evaluating Security Specification
Mining for a CISC Architecture. In Symposium on Hardware Oriented Security
and Trust (HOST). IEEE.

[20] Michael D. Ernst, Jeff H. Perkins, Philip J. Guo, Stephen McCamant, Carlos
Pacheco, Matthew S. Tschantz, and Chen Xiao. 2007. The Daikon System for
Dynamic Detection of Likely Invariants. Science of Computer Programming 69,
1-3 (Dec. 2007), 35ś45. https://doi.org/10.1016/j.scico.2007.01.015 http://dx.doi.
org/10.1016/j.scico.2007.01.015.

[21] Nusrat Farzana, Fahim Rahman, Mark Tehranipoor, and Farimah Farahmandi.
2019. SoC Security Verification using Property Checking. In 2019 IEEE Interna-
tional Test Conference (ITC). 1ś10. https://doi.org/10.1109/ITC44170.2019.9000170

[22] Mark Gabel and Zhendong Su. 2008. Javert: Fully Automatic Mining of Gen-
eral Temporal Properties from Dynamic Traces. In 16th International Sympo-
sium on Foundations of Software Engineering (FSE) (Atlanta, Georgia). ACM,
339ś349. https://doi.org/10.1145/1453101.1453150 http://doi.acm.org/10.1145/
1453101.1453150.

[23] Mark Gabel and Zhendong Su. 2008. Symbolic Mining of Temporal Specifica-
tions. In 30th International Conference on Software Engineering (ICSE) (Leipzig,
Germany). ACM, 51ś60. https://doi.org/10.1145/1368088.1368096 http://doi.acm.
org/10.1145/1368088.1368096.

[24] Sudheendra Hangal, Naveen Chandra, Sridhar Narayanan, and Sandeep Chakra-
vorty. 2005. IODINE: a tool to automatically infer dynamic invariants for hard-
ware designs. In 42nd annual Design Automation Conference. ACM, 775ś778.
http://xenon.stanford.edu/~hangal/iodine.html

[25] Sudheendra Hangal, Sridhar Narayanan, Naveen Chandra, and Sandeep Chakra-
vorty. 2005. IODINE: A tool to automatically infer dynamic invariants for hard-
ware designs. In 42nd Design Automation Conference (DAC). IEEE.

[26] Stav Hertz, David Sheridan, and Shobha Vasudevan. 2013. Mining hardware
assertions with guidance from static analysis. Transactions on Computer-Aided
Design of Integrated Circuits and Systems 32, 6 (2013), 952ś965.

[27] Matthew Hicks, Cynthia Sturton, Samuel T. King, and Jonathan M. Smith. 2015.
SPECS: A Lightweight RuntimeMechanism for Protecting Software from Security-
Critical Processor Bugs. In Twentieth International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS) (Istanbul,
Turkey). ACM, 517ś529. https://doi.org/10.1145/2694344.2694366 http://doi.acm.
org/10.1145/2694344.2694366.

[28] Wei Hu, Alric Althoff, Armaiti Ardeshiricham, and Ryan Kastner. 2016. To-
wards property driven hardware security. In 2016 17th International Workshop on
Microprocessor and SOC Test and Verification (MTV). IEEE, 51ś56.

[29] Wei Hu, Armaiti Ardeshiricham, Mustafa S Gobulukoglu, Xinmu Wang, and
Ryan Kastner. 2018. Property Specific Information Flow Analysis for Hardware
Security Verification (ICCAD ’18). ACM. https://doi.org/10.1145/3240765.3240839

[30] Wei Hu, Dejun Mu, Jason Oberg, Baolei Mao, Mohit Tiwari, Timothy Sherwood,
and Ryan Kastner. 2014. Gate-Level Information Flow Tracking for Security
Lattices. ACM Trans. Des. Autom. Electron. Syst. 20, 1, Article 2 (Nov. 2014),
25 pages. https://doi.org/10.1145/2676548 https://doi.org/10.1145/2676548.

[31] Wenchao Li, Alessandro Forin, and Sanjit A. Seshia. 2010. Scalable Specification
Mining for Verification and Diagnosis. In 47th Design Automation Conference
(DAC) (Anaheim, California). ACM, 755ś760. http://doi.acm.org/10.1145/1837274.
1837466.

[32] L. Liu, C. Lin, and S. Vasudevan. 2012. Word level feature discovery to enhance
quality of assertion mining. In International Conference on Computer-Aided Design
(ICCAD). IEEE/ACM, 210ś217.

[33] Xingyu Meng, Shamik Kundu, Arun K. Kanuparthi, and Kanad Basu. 2021. RTL-
ConTest: Concolic Testing on RTL for Detecting Security Vulnerabilities. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems (2021),
1ś1. https://doi.org/10.1109/TCAD.2021.3066560

[34] Changwoo Min, Sanidhya Kashyap, Byoungyoung Lee, Chengyu Song, and Tae-
soo Kim. 2015. Cross-checking Semantic Correctness: The Case of Finding
File System Bugs. In 25th Symposium on Operating Systems Principles (SOSP)
(Monterey, California). ACM, 361ś377. https://doi.org/10.1145/2815400.2815422
http://doi.acm.org/10.1145/2815400.2815422.

[35] Jeff H. Perkins, Sunghun Kim, Sam Larsen, Saman Amarasinghe, Jonathan
Bachrach, Michael Carbin, Carlos Pacheco, Frank Sherwood, Stelios Sidiroglou,
Greg Sullivan, Weng-Fai Wong, Yoav Zibin, Michael D. Ernst, and Martin Rinard.
2009. Automatically Patching Errors in Deployed Software. In 22nd Sympo-
sium on Operating Systems Principles (SOSP) (Big Sky, Montana, USA). ACM,
87ś102. https://doi.org/10.1145/1629575.1629585 http://doi.acm.org/10.1145/
1629575.1629585.

[36] Christian Pilato, Kaijie Wu, Siddharth Garg, Ramesh Karri, and Francesco Regaz-
zoni. 2019. TaintHLS: High-Level Synthesis for Dynamic Information Flow
Tracking. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems 38, 5 (2019), 798ś808. https://doi.org/10.1109/TCAD.2018.2834421

[37] Mayank Rawat, Sujit Kumar Muduli, and Pramod Subramanyan. 2020. Mining
Hyperproperties from Behavioral Traces. In 2020 IFIP/IEEE 28th International
Conference on Very Large Scale Integration (VLSI-SOC). 88ś93. https://doi.org/10.
1109/VLSI-SOC46417.2020.9344106

[38] G. Reger, H. Barringer, and D. Rydeheard. 2013. A pattern-based approach to
parametric specification mining. In 28th International Conference on Automated
Software Engineering (ASE). IEEE/ACM, 658ś663. https://doi.org/10.1109/ASE.
2013.6693129

[39] Francesco Restuccia, Andres Meza, and Ryan Kastner. 2021. AKER: A Design
and Verification Framework for Safe and Secure SoC Access Control. CoRR
abs/2106.13263 (2021). arXiv:2106.13263 https://arxiv.org/abs/2106.13263

[40] Lin Tan, Xiaolan Zhang, Xiao Ma, Weiwei Xiong, and Yuanyuan Zhou. 2008.
AutoISES: Automatically Inferring Security Specifications and Detecting Viola-
tions. In 17th USENIX Security Symposium (San Jose, CA). USENIX Association,
379ś394. http://dl.acm.org/citation.cfm?id=1496711.1496737.

[41] Wei Hu, A. Becker, A. Ardeshiricham, Yu Tai, P. Ienne, D. Mu, and R. Kastner. 2016.
Imprecise security: Quality and complexity tradeoffs for hardware information
flow tracking. In 2016 IEEE/ACM International Conference on Computer-Aided
Design (ICCAD). 1ś8. https://doi.org/10.1145/2966986.2967046

[42] Westley Weimer and George C. Necula. 2005. Mining Temporal Specifications for
Error Detection. In 11th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS) (Edinburgh, UK). Springer-Verlag,
461ś476. https://doi.org/10.1007/978-3-540-31980-1_30 http://dx.doi.org/10.
1007/978-3-540-31980-1_30.

[43] Fabian Yamaguchi, Felix Lindner, and Konrad Rieck. 2011. Vulnerability Ex-
trapolation: Assisted Discovery of Vulnerabilities Using Machine Learning. In
5th USENIX Conference on Offensive Technologies (WOOT) (San Francisco, CA).
USENIX Association, 13ś13. http://dl.acm.org/citation.cfm?id=2028052.2028065.

[44] Jinlin Yang, David Evans, Deepali Bhardwaj, Thirumalesh Bhat, and Manuvir
Das. 2006. Perracotta: Mining Temporal API Rules from Imperfect Traces. In 28th
International Conference on Software Engineering (ICSE) (Shanghai, China). ACM,
282ś291. https://doi.org/10.1145/1134285.1134325 http://doi.acm.org/10.1145/
1134285.1134325.

[45] Rui Zhang, Natalie Stanley, Chris Griggs, Andrew Chi, and Cynthia Sturton.
2017. Identifying Security Critical Properties for the Dynamic Verification of a
Processor. In Architectural Support for Prog. Lang. and Operating Sys. (ASPLOS).
ACM.

A SAMPLE PROPERTIES

In this section we show examples of Isadora output.

Isadora: Automated Information Flow Property Generation for Hardware Designs ASHES ’21, November 19, 2021, Virtual Event, Republic of Korea

A.1 Case 154: ACW Security Property

case 154: 2_121_250_379_543

src in {w_base_addr_wire, M_AXI_AWREADY_wire,

AW_CH_DIS, w_max_outs_wire, AW_ILLEGAL_REQ,

w_num_trans_wire, AW_STATE, AW_CH_EN}

=/=>

snk in {M_AXI_WDATA}

unless

0 != _inv_ in {ADDR_LSB, ARESETN, M_AXI_ARBURST_wire,

M_AXI_ARCACHE_wire, M_AXI_ARLEN_wire, M_AXI_ARREADY,

M_AXI_ARSIZE_wire, M_AXI_AWBURST_wire,

M_AXI_AWCACHE_wire, M_AXI_AWLEN_wire, M_AXI_AWREADY,

M_AXI_AWSIZE_wire, M_AXI_BREADY, M_AXI_BREADY_wire,

M_AXI_WREADY, M_AXI_WREADY_wire, M_AXI_WSTRB_wire,

OPT_MEM_ADDR_BITS, S_AXI_CTRL_BREADY,

S_AXI_CTRL_RREADY, data_val_wire, r_burst_len_wire,

r_displ_wire, r_max_outs_wire, r_num_trans_wire,

r_phase_wire, w_burst_len_wire, w_displ_wire,

w_max_outs_wire, w_num_trans_wire, w_phase_wire}

Figure 6: An example of an Isadora property, Case 154, over

the Single ACW

To consider the output properties of Isadora, Figures 6 shows

an example of Isadora output, Case 154 of the 303 output proper-

ties over the ACW module. This a case that was sampled during

evaluation. Here the condition predicates shown are register equal-

ity testing versus zero. Other predicates are captured within the

workflow but not propagated to individual properties formatted for

output.

A visible difference between an Isadora output property and

the property grammar of Section 2 is that at output stage Isadora

properties may specify multiple source registers, may consider

multiple sink registers though do not do so in this case, and may

contain multiple invariants as conditions.

Case 154 includes an example of a flow condition between inter-

nal and peripheral visible signals in addition to specifying other

aspects of design behavior. This is similar to the example of write

readiness from Section 2, but in Case 154, the flow is from the in-

ternal signal to the peripheral, though the power state predicate is

identical. Of note, as in the case of write readiness, this flow occurs

exclusively within the write channel, as denoted by the łWž present

in ready wire and the data register.

AWREADY_int =/=> WDATA unless (ARESETN ≠ 0)

A.1.1 Security Relevance. Under the working definition of security

properties for Isadora, where internal signals and peripheral signals

should not flow to one another unless ACW is not undergoing a

reset, this single source, single sink, single invariant description of

behavior composed from an Isadora output property establishes

Case 154 as a security property under the working definition. Case

154 describes signals marked as sensitive by designers, both labeled

as such within the design using comments and present within secu-

rity properties they specified, and differs from a designer provided

property only in the specific pairing of registers.

A.2 Case 144: ACW Functional Property

One example of an Isadora property classified as functional, with

truncated flow conditions, is presented in Figure 7, and captures a

logical update to an internal decoder signal. This additional shows

an example of a property overmultiple sinks, a single source, and for

which there are predicates capturing both equality and inequality

to zero.

case 144: 128

src in {instr_lw}

=/=>

snk in {is_slti_blt_slt, is_sltiu_bltu_sltu}

unless

0 == _r_ in {alu_eq, alu_shl, alu_shr, ... }

0 != _r_ in {alu_add_sub, alu_lts, alu_ltu, ... }

Figure 7: An example of an Isadora property, Case 144, over

RISC-V.

	Abstract
	1 Introduction
	2 Properties
	2.1 Tracking Information Flow
	2.2 Information Flow Restrictions
	2.3 Information Flow Conditions
	2.4 Grammar of Properties

	3 Methodology
	3.1 Generating Traces with Information Flow Tracking
	3.2 Identifying All Flows
	3.3 Mining for Flow Conditions
	3.4 Postprocessing

	4 Implementation
	5 Evaluation
	5.1 Designs
	5.2 Time Cost
	5.3 Designer Specified Security Properties
	5.4 Automatic Property Generation

	6 Discussion
	6.1 Trace Reliance
	6.2 Functional Properties
	6.3 Measuring Interference
	6.4 Specification Logic

	7 Related Work
	7.1 Properties of Hardware Designs
	7.2 Mining Specifications for Software

	8 Conclusion
	9 Acknowledgments
	References
	A Sample Properties
	A.1 Case 154: ACW Security Property
	A.2 Case 144: ACW Functional Property

