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Abstract—Cloud computing has become a major approach to help reproduce computational experiments. Yet there are still two main
difficulties in reproducing batch based big data analytics (including descriptive and predictive analytics) in the cloud. The first is how to
automate end-to-end scalable execution of analytics including distributed environment provisioning, analytics pipeline description,
parallel execution, and resource termination. The second is that an application developed for one cloud is difficult to be reproduced in
another cloud, a.k.a. vendor lock-in problem. To tackle these problems, we leverage serverless computing and containerization
techniques for automated scalable execution and reproducibility, and utilize the adapter design pattern to enable application portability
and reproducibility across different clouds. We propose and develop an open-source toolkit that supports 1) fully automated end-to-end
execution and reproduction via a single command, 2) automated data and configuration storage for each execution, 3) flexible client
modes based on user preferences, 4) execution history query, and 5) simple reproduction of existing executions in the same
environment or a different environment. We did extensive experiments on both AWS and Azure using four big data analytics
applications that run on virtual CPU/GPU clusters. The experiments show our toolkit can achieve good execution performance,
scalability, and efficient reproducibility for cloud-based big data analytics.

Index Terms—Reproducibility, Cloud computing, Portability, Serverless, Big data analytics.

1 INTRODUCTION

REproducibility is increasingly required by the research
community, funding agencies, and publishers [1]. By
reproducing an existing computational experiment and ob-
taining consistent results, we can have more confidence in
the research. Further, besides reproducing the exact process,
it is also valuable to explore how the experiment behaves
with different input datasets, execution arguments, and
environments. Cloud computing has been a major approach
for reproducibility [2] because cloud services can be lever-
aged to provision data, software, or hardware needed in
reproduction. For instance, paper [3] summarized 13 aspects
that cloud computing can help with reproducibility.

In this paper, we mainly address the following chal-
lenges in cloud-based reproducibility. First, it is still difficult
to achieve end-to-end automated big data analytics execu-
tion and reproduction in the cloud. The end-to-end automa-
tion should support scale-up and scale-out of distributed
hardware environment, software environment provisioning,
data and configuration storage for each execution, resource
termination after execution, execution history query and
reproducibility of existing executions in the same environ-
ment or a different cloud environment. Second, because the
services provided by each service provider such as AWS
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and Azure are proprietary, an application developed for
one cloud cannot run in another cloud, which is a well-
known vendor lock-in challenge. Two scientific problems to
be studied by tackling challenges are: 1) what is a proper
abstraction and design for better reproducibility support
from both user and toolkit perspectives, 2) what is a more
efficient way to achieve cloud-based reproducibility for big
data analytics. We note our work only supports batch based
processing big data analytics jobs, including descriptive
and predictive analytics, not interactive jobs like database
queries.

Based on the above challenges and scientific problems,
we propose an approach and corresponding open-source
toolkit [4] for Reproducible and Portable big data Analytics
in the Cloud (RPAC). Our contributions are summarized as
follows.

e Our proposed approach and toolkit integrate server-
less computing techniques to automate end-to-end
batch based big data analytics execution. Tasks of
big data analytics execution (resource provisioning,
application execution, data storage and resource ter-
mination) are encapsulated as cloud functions and
automatically triggered by proper events. With the
full automation support, users can re-run the exact
execution or run the application with different con-
figurations, including different scale-out and scale-
up factors, via only one command. Our RPAC toolkit
supports both AWS and Azure cloud environments.

o For easy reproducibility, we make proper data mod-
eling and abstraction. It first separates essential in-
formation required for reproducibility and detailed
information required by each cloud provider. Fol-



lowing the separation of concerns principle, it fur-
ther separates the essential information into three
categories (resources, application, personal) for easy
reconfiguration. The essential information will also
be automatically stored in the cloud by our toolkit
as authentic recording of the execution. Later, the
storage URL can be published and shared as the
single source to reproduce the historical execution.

e To deal with the vendor lock-in challenge, on top of
the above abstractions, we propose a Cloud Agnostic
Application Model (CAAM) to support execution
and reproducibility portability with different cloud
providers. CAAM abstracts the application out of its
cloud specific logic, and allows reproducing execu-
tions in another cloud via only minimal configura-
tion changes from the user.

o We benchmark both CPU-based and GPU-based big
data analytics applications using our RPAC toolkit.
We measure the overhead of data storing for re-
producibility. We also did extensive experiments
to benchmark three applications on different cloud
providers in terms of execution performance, scala-
bility and reproducibility efficiency.

The rest of the paper is organized as follows. In Section 2,
we briefly introduce related techniques our work is built on.
Section 3 provides an overview of our proposed approach.
Three main parts of our approach, namely data modeling,
automated execution and reproduction of big data analytics
in the cloud are explained in Section 4, Section 5 and Section
6, respectively. Experiments and benchmarking results are
discussed in Section 7. We compare our work with related
studies in 8 and conclude in Section 9.

2 BACKGROUND
2.1 Big Data Analytics

To deal with increasing data volumes in data analytics,
many platforms have been proposed to achieve paralleliza-
tion of the analytics in a distributed environment. We
explain three such platforms that our work is built on
for reproducibility. As one of the most popular big data
platform, Spark [5] follows and extends the MapReduce
paradigm [6] and achieve parallelism by distributing input
data among many parallel tasks of the same function. To
run an application, Spark employs a master process on one
node and a worker process on each of other nodes so the
worker processes can take tasks from the master process
and run them in parallel. Similar to Spark, a Dask [7] appli-
cation is composed as a task graph that can be distributed
within one computer or a distributed computing environ-
ment. Dask employs a similar master-worker framework
for task scheduling. Horovod [8], as a popular software
framework for distributed learning, provides data parallel
deep learning optimized for GPU-based data analytics. For
coordinating execution between distributed processes on
GPU, Horovod can use Message Passing Interface (MPI) for
communicating data with high performance. The CUDA-
aware MPI is commonly used in HPC to build applications
that can scale to multi-node computer clusters [9].

2.2 Reproducibility

There have been many definitions of reproducibility and
similar terms like replicability and repeatability [10, 11].
Unfortunately, these definitions are not very consistent,
some even contradict with each other [1]. Here, we simply
define reproducibility as a capability that obtains consistent
results using the same computational steps, methods, and
code. As paper [12] said, containerization is one of the
valid and common solutions for the reproducible software
deployment problem of scientific pipelines. For cloud-based
reproducibility, it studies how to re-execute an existing
application in the cloud [3]. We categorize reproducibility
support into four ways: 1) rerun exactly the same appli-
cation with the same hardware and software environment,
2) reproduce with a different application configuration to
know how the application performs with different datasets
or arguments, 3) reproduce with different cloud provider
hardware environment (virtual machine type and number,
etc.) within the same cloud provider to test scale-up and
scale-out; and 4) reproduce with a different cloud provider
to avoid vendor lock-in problem. Our toolkit is built to
support all four types of reproduction.

2.3 Serverless Computing

As a recent cloud-based execution model, serverless com-
puting provides a few advantages. First, it responds to user
service requests without maintaining back-end servers in
the cloud. Second, it employs Function as a Service (FaaS)
architecture that allows customers to develop separate func-
tions directly rather than standalone cloud applications. As
explained in [13], each application logic/pipeline is split
into functions and application execution is based on internal
or external events. All major cloud providers offer server-
less services, including AWS Lambda, Azure Functions and
Google Cloud Functions.

3 OVERVIEW OF REPRODUCIBLE AND PORTABLE
DATA ANALYTICS IN THE CLOUD

In this section, we provide an overview of how our pro-
posed approach achieves reproducible and portable data
analytics in the cloud. With the approach and corresponding
open-source toolkit RPAC for reproducible and portable
data analytics in the cloud, users can easily re-run previous
experiments with the same or different setups including
environments, application arguments, input data and cloud
providers. Our approach is built on top of serverless com-
puting and we adopt a new way of utilizing serverless
computing for large scale computations. So we will explain
first how to use serverless large scale computations, then
how to use serverless for big data analytics reproducibility.

3.1 Serverless based Reproducibility

As shown in Fig. 1, our proposed approach has two parts: 1)
first execution of an application, and 2) reproduction of the
existing execution from historical configurations. Both first
execution and reproduction are automated via serverless-
based approach shown on the right.
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Fig. 1: The overview of our proposed approach for reproducible and portable data analytics in the cloud.

In the beginning, there is no execution history for query-
ing and reproducing. Clients need to prepare configura-
tions to generate the pipeline file for the whole execution.
The configuration includes all configurable setups, for ex-
ample, the application-based information like application
programs, arguments, input data, and the cloud-based in-
formation like virtual cluster type, size, network setting,
memory, with personal credentials. Our toolkit will take
this information to create an executable pipeline for a target
cloud. With this pipeline, the data analytics application will
execute in the cloud environment, output its results to the
storage, and automatically terminate resources once the ex-
ecution finishes. We will explain in detail how we leverage
serverless techniques for automated big data analytics in
Section 5.

After an application is executed, clients can reproduce
it based on its execution history. Our RPAC toolkit will
generate a pipeline file based on the execution history and
reproduction configurations. If the client wants to repro-
duce an existing execution with the exact environment and
configuration, the pipeline file within the execution history
can be used directly by our toolkit for reproducibility. If
the client chooses to reproduce existing execution within
the same cloud, but with a different environment or ap-
plication, our toolkit will combine changed configurations
of cloud resources or applications with the historical exe-
cution information to generate a new pipeline file. If the
client prefers reproducing existing execution on a different
cloud, our toolkit will provide cloud service mapping and
implementations of functions in the target cloud. With user-
provided personal information and historical execution, a
new pipeline will be generated for the target cloud. Finally,
with the pipeline file executable by cloud serverless services,
the data analytics will be reproduced in cloud automatically.
Details of how our approach achieves reproducibility will be
explained in Section 6.

We would like to note the serverless pipeline used
here is different from most other workflow or pipeline
definitions such as [12][14][15][16]. These definitions only

include the processing steps and their dependencies. They
do not describe how to provision hardware and software
environments because they assume these environments are
ready before pipeline execution. Our serverless pipeline
includes the full execution life cycle including hardware and
software provisioning, big data analytics, execution export
and resource release. Our pipeline does not describe internal
processing steps, but could be integrated with traditional
pipelines as internal logic description in its Function 2:
conduct big data analytics.

3.2 Serverless based Large Scale Application in the
Cloud

Traditionally, serverless computing is used to execute
serverless pipelines and the functions defined in each
pipeline directly via cloud services like AWS CloudForma-
tion. In this case, the computation is executed following the
pipeline without using any additional cloud resources. Be-
cause of the memory and CPU limit for serverless functions,
this approach can only handle computations whose resource
requirements are light. For instance, OpenWhisk [17] is an
event-based serverless computing cloud platform, which
allows users to implement their own OpenWhisk APIs for
the connections between the event source and trigger, the
trigger rule, and the computation actions.

Different from the above way to use serverless, we
leverage serverless computing and its FaaS to achieve re-
producibility for big data analytics in the cloud. The main
difference is that we use the serverless pipeline as a way
to orchestrate and manage additional cloud resources for
heavy workloads while each step is wrapped as a function.
In this way, both the serverless pipeline and its functions do
not execute heavy commands directly. Instead, each func-
tion’s execution only submits commands from serverless
to the additional cloud resources. Then when the func-
tion is triggered, the commands will be transferred to the
additional cloud services and be executed as background
processes so they can return without waiting for the finish
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of the commands. As shown in Fig. 2, the serverless pipeline
listens to events sent by our toolkit or other cloud services.
By mapping the triggers mentioned in the event with the
trigger rule associated with each serverless function, it
knows which serverless function will be involved based on
the received event. For instance, Function 2 will be triggered
when the pipeline receives an event as SoftwareEnvReady.
For each function’s execution, it only submits commands
from serverless to additional cloud services such as AWS
EC2, so the resource and time limits for serverless functions
will not be violated. Also, all major cloud providers includ-
ing AWS and Azure, only enforce time limits for serverless
functions, not serverless pipelines. So serverless pipelines
are capable of large-scale computations that might take a
long time. Serverless pipeline is also a reasonable choice
from a budgetary cost perspective because serverless service
is charged by the number of function invocations and the
duration it takes to execute, not the deployment time of the
pipeline.

4 DATA MODELING AND STORAGE FOR REPRO-
DUCIBILITY

To achieve easy configurability by users and future re-
producibility across cloud providers, we categorize data
based on their usage and employ different levels of data
abstraction. Specifically, the data model contains three parts:

4

abstract request information, executable request information
and execution history information. We believe the data
model can serve as a reference model for different repro-
ducibility toolkits.

4.1 Abstract Request Information

To avoid learning specific specifications and templates for
specific clouds, we extract minimal information a user
has to provide for application execution or reproduction.
Further, as shown in the upper part of Fig. 3, we catego-
rize the information into three separate key-value based
configuration files where ini is used as file extension to
distinguish them from other file types used by our toolkit.
Specifically, resources.ini stores hardware and software
resources information such as virtual machine type, virtual
instance number, docker image URL and big data engine;
application.ini records the program URI of the ap-
plication, program arguments, and input dataset URIs of
the program; personal.ini contains the cloud credential
information such as SSH key location and cloud credential
info (which can also be provided at runtime for security
concerns). We use three different files so only a subset of files
needs to be edited for each type of reproducibility shown
in Fig. 1. A complete and formal listing of the information
can be found at Fig. 4 using syntax of Backus-naur form
(BNF) [18].

4.2 Executable Request Information

We separate information that is required for actual cloud-
based application execution into four files and use json as
the file extension. Such files have to follow specifications set
by each cloud. For such files, our RPAC toolkit generates
them automatically based on corresponding abstract ini
file(s) mentioned above. The first file is resources. json
which describes hardware and software environment info.
This file has to be changed if the cloud provider is switched.
The resources. json will be generated based on the above
resources. ini file, the cloud type and the type of big data
analytics. Another file is application.json which con-
tains application specific information and will be generated
by our toolkit based on the above application.ini file
and the cloud type. Similarly, personal. json can be gener-
ated from personal.ini. As shown in Fig. 3, by combining
resources. json, application.json, personal.json
and four cloud-specific serverless functions shown in Fig. 1,
we get pipeline. json that describes the execution logic
of the serverless application. Our RPAC toolkit contains
template json files and serverless function implementa-
tions so they can be reused for different data analytics
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17 Y
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Fig. 3: Data modeling and abstraction for reproducibility.



< bigdata_engine >::= "none

//|rr

<abstract_req_4_big_data_analytics> ::= < resources >, < personal >, < application >

< resources > = < bigdata_engine >, < cloud.aws >|< cloud.azure >, < reproduce >

spark”|”horovod”|"dask”

< cloud.aws >::=< region >, < instance_number >, < subnet_id >, < instance_type >, < vpc_id >

< cloud.azure >::=< region >, < instance_number >, < resource_group_name >, < instance_type >

< reproduce >::=< reproduce_storage >, < reproduce_database >

< personal >::=< cloud_provider >, < key_path >, < key_name >, < python_runtime >, < cloud_credentials >
< application >::=< docker_image >, < data_uri >, < command >, < bootstrap >

Fig. 4: Normative form for abstract request information.

applications. We illustrate how to map from abstract re-
quirements in Section 4.1 to an executable cloud specific
serverless pipeline and its implemented functions in Fig. 5.
The pipeline file is generated by the three abstract request
information provided by users, which transfers the stateless
configurations to executable cloud-specific information. The
abstract request information is first transferred to the exe-
cutable request information while missing parameters can
be filled with their default values. All parameters in the
executable request information are also sorted out based
on the cloud-specific schema. By combining with corre-
sponding serverless functions, the cloud-specific executable
request information, like pipeline_aws. json, will be gen-
erated and executed in our RPAC toolkit. Each serverless
function listens to the upcoming events. If a received event
(e.g.,HardwareEnvReady in Fig. 5) matches, the associated
function (e.g., SoftwareEnvSetup() in Fig. 5) will be triggered.
At the end of the function execution, a new event (e.g.,
SoftwareEnvReady in Fig. 5) will be returned to trigger the
downstream functions.

The differences between the two types of request infor-
mation are summarized below. Abstract request informa-
tion, as a user-friendly abstraction, contains the minimal
information a user has to provide for application execu-
tion or reproduction. In comparison, the executable request
information describes the execution logic of the serverless
application, which is required for actual cloud-based ap-
plication execution. Our RPAC toolkit will generate the
executable request information based on the corresponding
abstract information during the execution.

Next, we will explain how the files are used for auto-

Abstract Request Information

Personal.ini Application.ini Resources.ini
« CloudProvider = aws « Dockerlmage = cloud/retrieval « InstanceType = c5d.4xlarge
. 1d=123 « DataUrl = s3://Data.zip « InstanceNum = 1
« Auth = ABC « Command = docker run * Subnetld = 12345
. cloud/retrieval .o
; « Bootstrap = unzip Data.zip

v

Executable Request Information

Personal.json Application.json Resources.json

+ {CloudProvider:aws} « {Dockerlmage:cloud/retrieval} « {InstanceType:c5d.4xlarge}

« {PythonRuntime:{Value:None, « {Data:"s3://Data.zip"} « {InstanceNum:1,Default:1}
Default:Python3.7}} « {Comman cker run « {Subnetld:12345}

« {CloudCredentials:{Id:123, cloud/retrieval"} + {Terminate:

Auth:ABC}} + {Bootstrap:"unzip Data zip"} {Value:None Default:false}}

mated execution in detail in Section 5.1 and how they are
reused or transformed for reproduction in Section 6.

4.3 Execution History Information

Execution history information is critical to share each exe-
cution for later analysis and reproduction. As illustrated in
Fig. 6, we classify execution history related data into three
categories and store them separately. The first category is
execution log metadata, such as timestamps, duration, cost,
and status, which are stored in the database for query. Key-
value based execution parameters including analytics com-
mand line and arguments are also stored for easy compari-
son among executions. This metadata information is unique
for each execution, not required for reproducibility, but
useful for later analysis such as finding the fastest execution
time of the same application on different clouds or cloud
resources. For information that can be referred from external
resources, such as input datasets, output files and configura-
tion files used for the execution, only their URLs are stored
in the database. The second category is object based storage
of each execution information for reproducibility. Two items
are stored for each execution: 1) abstract request information
(resources.ini, personal.ini and application.ini
in Config.zip), 2) execution output datasets in Result.zip.
Only abstract request information, not cloud specific infor-
mation, is stored by our RPAC toolkit in order to minimize
storage overhead. These data are compressed, categorized
and stored in cloud object storage services such as AWS
S3 and Azure Blob storage so a unique URL could be ob-
tained for each execution. Because the data has the complete

Cloud-specific
Executable Request Information

Pipeline_aws.json

« {Description: AWS pipeline file for cloud retrieval}
« Parameters

o {InstanceType:c5d.4xlarge}

o {InstanceNum:1}

o {Dockerlmage:clould/retrieval}

o {PythonRuntime:Python3.7}

o

Serverless Function 1

=>

 Resources
o AutoScalingGroup
= {Type:AutoScaling.AutoScalingGroup}
= Properties
= {DesiredCapacity:InstanceNum}
= {VPCZoneldentifier:Subnetld}

o EC2LaunchTemplate

o ServerlessFunc1
= {Type: Serverless.Function}
= Properties -
= {Trigger: App.SoftwareEnvSetup}
= {CodeUri:path/to/App.py
= {Event:HardwareEnvReady}
= {Timeout:300s}

o ServerlessFunc2

App.py in RPAC toolkit for AWS

def SoftwareEnvSetup(event1):
o AddtionalCloudResource.Connect
o AddtionalCloudResource.Initial
o AddtionalCloudResource.DockerPull
3
o

Return.SoftwareEnvReady
def ApplicationExecution(event2):
o ..
def ExecutionExport(event3):
o ..
def ResourceRelease(event4):
o ..

Fig. 5: Mapping from abstract requirement to executable cloud specific serverless pipeline and functions.
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Fig. 6: Data modeling of execution history information.

information to achieve reproducibility, the URL could be
easily published as public records following the Research
Object framework [19] so it can be referred to via a DOI
identifier later as the single source for reproducibility. The
third category is shared object storage of input datasets.
It is stored separately so that multiple executions with the
same input data only need one object storage. Also, cloud
storage services like AWS S3 and Azure Blob storage allow
automatic versioning so minor changes of input datasets do
not require a fully separate storage.

5 AUTOMATED BIG DATA ANALYTICS
CLOUD TOWARDS REPRODUCIBILITY

To achieve easy reproducibility, the execution should be
as automated as possible to minimize manual operations
during reproduction phase. Also, an execution should be
easily configurable for different scalability factors, applica-
tion parameters, even cloud providers. In this section, we
discuss our techniques to achieve fully automated big data
analytics in the cloud so an application can be executed and
later reproduced using only one command.

IN THE

5.1 Serverless and Docker-based Execution Automa-
tion

We leverage serverless computing to achieve overall ana-
lytics pipeline description and execution, and docker for
software environment setup. Serverless computing offers a
few advantages for reproducibility: 1) it saves costs because
we do not need to maintain a server in the cloud especially
for cases reproduction does not happen frequently; 2) its
FaaS model allows us to design and implement separate
functions required for automated execution/reproduction;
3) its event-based function composition and execution elim-
inates the requirement of a separate workflow/pipeline
software which is needed for many traditional workflow-
based reproducibility [1].

As explained in Section 2.3, serverless computing of-
fers templates to describe cloud service resources required
by the application, structured application pipeline, and
event-based execution. Each component in the application
pipeline is implemented as a serverless function and trig-
gered by the events it listens to. So the pipeline binds
cloud services with the specific event in order to trigger
the corresponding serverless function. In addition, we can

package complicated software dependencies required for an
application via docker. The details of the automation are
illustrated in Fig. 7.

After receiving the user request, RPAC execution au-
tomation starts with pipeline generation and submission.
Based on configurations, RPAC generates corresponding
pipeline files, deploys its serverless functions, and uploads
these configurations to the storage except client personal
information. RPAC then submits this pipeline to the cloud
and starts serverless execution. The serverless pipeline starts
with the on-demand hardware environment provisioning
(step a in Fig. 7) via cloud manager services (such as Cloud-
Formation for AWS and Deployment Manager for Azure).
The hardware provisioning is more like an on-demand
resource request service that is a prerequirement for all
serverless functions. So we put the hardware provisioning
at the beginning of the serverless pipeline. To conduct big
data analytics, we also need to create a virtual cluster by
specifying the type and sub-type of virtual machines, the
number of virtual machines, network security groups, etc.
Cloud manager services allow the information to be sub-
mitted based on their semi-structured specification such as
JSON and YAML. RPAC will send a reply once the pipeline
file is submitted.

The remaining steps of the automated pipeline execution
are done via four cloud functions. On top of the virtual
hardware environment provisioned, the next automation
step is to deploy the required software to run the appli-
cation (step b in Fig. 7). It is achieved by the first serverless
function, which pulls required docker file and starts it. After
the hardware and software environments are provisioned,
it is ready to execute applications. The second serverless
function in Fig. 7 executes the application by deploying user
application (e.g., download application codes and unzip
them) and running its commands with proper parame-
ters (input data, application specific arguments, etc.). The
third function exports all addresses of stored files to cloud
database and object storage for future query and reproduc-
tion. After the storage completes, a termination event is sent
to the last function, which terminates all cloud resources.
At this time, the whole pipeline is fully executed, and the
client is able to check and query information stored in the
database and object storage.

All these functions are triggered automatically when
they receive corresponding events. The cloud manager ser-
vices mentioned before can help the client manually send
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Fig. 7: The system sequence diagram for automated execution of big data analytics in serverless framework.

events to the serverless function from cloud console. In
order to achieve full automation, these events can also be
delivered to the target function by cloud event handling
services (such as EventBridge for AWS and Event Grid
for Azure) using a pre-defined event rule. Each serverless
function needs to set up an event rule which specifies what
type/property of event can trigger this function. For exam-
ple, the rule of execution export function (step d in Fig. 7)
requires the event source from object storage with a rule-
defined prefix, like export.

Besides serverless-based execution, our RPAC toolkit
also supports cloud SDK-based execution to allow flex-
ible client modes. Their differences are summarized in
TABLE 1. The cloud SDK mode is designed based on the
cloud-specific software development toolkit (SDK). SDK
facilitates the creation of applications by having a com-
piler, debugger and a software framework based on its
functionality. The implementation of this SDK-based mode
contains cloud application programming interfaces (APIs)
for pipeline management. For example, AWS Boto python
SDK can be invoked to describe the status of EC2 using
ec2.describe_instances (). The execution can be auto-
mated by a periodical status pulling loop. This SDK-based
mode requires programming knowledge and a complete
understanding of the data analytics pipeline, so that devel-
opers become preferred users since they can either run the
application in a fully automated way or step-wise execution
for debugging purposes. By supporting different execution
modes, users can make flexible choices. In comparison,
serverless based approach is fully automated and more
efficient because only the execution is managed via internal
event triggering. No communications between client and
cloud are needed once the pipeline is submitted.

5.2 Scalable Execution for Three Parallel Frameworks

In this section, we discuss how our approach supports
scalable execution via the three parallel frameworks in
Section 2.1, namely Spark-based, Dask-based, and Horovod-
based analytics. The first two utilize virtual CPU clusters

and the third utilizes virtual GPU clusters. By specifying
the virtual machine type and number, cloud services can
provision a cluster hardware environment. However, soft-
ware dependencies, process coordination, and even access
permission may differ for different big data analytics. Be-
cause of these differences, each framework requires its own
resources. json and implementation of the first serverless
function shown in Fig. 7. To reproduce big data analytics,
one important part is to record and reuse original big
data engine configurations. Paper [20] uses separate files
to record Spark memory configuration for reproducibility.
Similar to this approach, we set these configurations by
recording the information via command line arguments
or original big data engine configuration files. Big data
engine’s configurations can be modified in application re-
production by users in application.ini file, such as
changing —driver-memory 60g —executor-memory 60g for Spark
engine. Additional big data engine configurations are set
up via separate files like spark-env.sh in the $SPARK/conf
folder. Our toolkit supports storing such files in the cloud
so they can be reused in reproduction.

Beyond the listed frameworks, the additional parallel
frameworks can also be deployed by updating the docker
images’ address in application.ini. RPAC will setup
this parallel framework in the second serverless function
of Fig. 7 and execute analytics within the new environment.

Spark-based big data analytics on virtual CPU nodes.
We provide Spark-based parallel framework via the docker-
based Spark engine virtual cluster provisioned by direct
cloud services like AWS EMR with additional cloud re-
sources like virtual network, container service and file sys-
tem. By default setting, the resource manager like YARN
NodeManager initiates the environment from a pulled
docker image, and allocates one virtual instance as the mas-
ter while others as workers. With serverless based pipeline
execution, our toolkit enables automated execution man-
agement on master and execution computation on workers
defined by serverless function handlers/implementations.



TABLE 1: Comparison of two execution modes of RPAC toolkit for execution and reproducibility.

Execution mode Techniques Automation Preferred
users

Cloud SDK Use the local machine terminal for data analytics. Full automation by Developer
Implementation for the whole execution with cloud SDK. periodical status pulling from client P

Serverless Use the cloud specific serverless service for data analytics. Full automation by End user /

Managed by binding trigger with serverless function. serverless event triggering within cloud | Developer

Since big data analytics utilizes many compute nodes
with complex computation proprieties, it is important to
make sure availability and reliability during cloud execu-
tion. To achieve a secure and stable scalable execution, we
control the access permission of master and workers by
using the network security group. During big data analytics,
our pipeline assigns one group for the master and another
group for workers, and only enables TCP/UDP inbound
and outbound rules within them. Also, for computation
reliability, the big data analytics pipeline only allows client
SSH permission for the master security group.

Dask-based big data analytics on virtual CPU nodes.
Besides Spark, our RPAC toolkit also supports CPU-based
parallel analytics by using Dask as the resource manager in
the virtual cluster. Different from Spark which has dedicated
cloud services (such as EMR in AWS), Dask environment
can only be provisioned by regular virtual machine services
(such as EC2 in AWS).

Each virtual instance in the cluster initiates one docker
container and our pipeline assigns one of the containers to
be the Dask scheduler and others to be workers. Same with
the security group setup with Spark-based analytics, we
divide the client access between scheduler and workers for
execution reliability. During execution, different from AWS
EMR service which automatically initiates Spark processes
after hardware provisioning, our RPAC toolkit needs to start
Dask processes on both scheduler and worker containers
during software provisioning before executing big data
analytics on virtual CPU nodes. Besides, same as Spark-
based cloud services, the client can also produce interactive
visualizations based on Dask diagnostic dashboard in our
framework, by using the public DNS name (public IP) of
the scheduler instance with its dashboard port.

Horovod-based big data analytics on virtual GPU nodes.
To provide a GPU-based parallel framework, we leverage
Horovod and regular virtual machine services for analytics.
The RPAC toolkit executes multi-instance GPU-based data
analytics within our pre-built Docker containers, involving
a shared file system and a customized port number for the
SSH daemon. In order to categorize functionality between
different instances, we set one of them as the primary
worker and others as secondary workers. Within the con-
tainer, the primary worker runs the MPI paralle] command
for data analytics execution while secondary workers listen
to that specific port.

6 REPRODUCE BIG DATA ANALYTICS
CLouD

In this section, we discuss how to achieve different levels of
reproducibility within the same cloud and across different

cloud providers. To achieve reproducibility, the user only
needs to provide the URL of a historical execution stored
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in cloud storage (more in Section 4) and her own configura-
tions. We will explain how our framework and RPAC toolkit
support different ways of reproducibility summarized in
Section 2.2.

6.1 Reproducibility in the Same Cloud

Reproduction with the same environment and configu-
ration. This type of reproducibility is simplest because it
is the same with the first execution as long as we can
retrieve the information used from execution history. As
illustrated by the first item in reproducibility phase of Fig. 1,
by retrieving resources.ini and application.ini from
execution history and providing proper personal.ini, our
RPAC toolkit can rerun the experiment the same way it was
executed for the first time.

Reproduction in a different environment. Reproduction in
a different environment means the virtual environment con-
figuration needs to be changed from a historical execution,
which is often useful for scale-up and scale-out experiments.
As illustrated by the second reproducibility item in Fig. 1, a
new resources.ini needs to be provided explaining the
new environment setup (mostly virtual machine type and
number). Then our RPAC toolkit can use it to generate a
new executable resources. json and run the experiment
in the same cloud.

Reproduction with a different application configuration.
Reproduction with a different application configuration is
often useful to run the application with a different dataset
and/or application argument. As illustrated by the third
reproducibility item in Fig.1, a new application.ini
needs to be provided explaining the new application setup.
Then our toolkit can use it to generate a new executable
application.json and run the experiment in the same
cloud.

We note that the last two reproductions can be eas-
ily combined for the requirements of running an applica-
tion with different configurations and a different environ-
ment. To support it, a new resources.ini and a new
application.ini should be provided.

6.2 Cross-cloud Reproducibility

We discuss how the client achieves reproducibility with a
different cloud provider. As illustrated in the fourth way of
reproduction in Fig. 1, by providing cloud service mapping
and corresponding serverless function implementation, our
toolkit can transform the general-purpose configurations in
execution history into a new executable pipeline file for
another cloud.

To extend the reproducibility to another cloud, by lever-
aging the adapter pattern [21], we propose a portable
Cloud Agnostic Application Model (CAAM) in order to



TABLE 2: Cloud service used by reproducible and portable data analytics.

[ Service category | Service description | Amazon AWS | Microsoft Azure | Google Cloud
Virtual cluster Virtual machine cluster that enables to host distributed data EC2 Auto Scaling Virtual Machine Scale Set Autoscaling Groups
analytics engines. /EMR /HDInsight /Dataproc
Virtual network Manage and monitor networking functionality for cloud resources. VPN Virtual Network Virtual Private Cloud
Container service Store, manage, and secure container images in private or public. ECR Azure Container Registry Artifact Registry
Object storage Store, manage, and secure any amount of data in storage. S3 Blob storage Firebase
Database Scalable and secure NoSQL cloud database. DynamoDB CosmosDB Firebase Realtime Database

Serverless

Run and manage the application with zero server management.

CloudFormation
& Lambda Functions

Deployment Manager
& Azure Functions

Cloud Deployment Manager
& Cloud Functions

Cloud Python SDK

Easy-to-use interface to access cloud services.

Boto/Boto3

NET Core

Cloud SDK

Authentication

Provide fine-grained access control for cloud resources.

AWS IAM

Azure IAM

Cloud IAM

Algorithm 1: Cloud Agnostic Application Model (CAAM)

Input: resources.ini, application.ini, personal.ini
Output: pipeline.json

class AWS:
method _ Init__ (config):
res <

[config.res,config.para_frame, ServMapping|
resources.json < GetAwsRes(res)
application.json < Get AwsApp(config.app)
personal.json <

Get AwsPersonal(con fig.personal)
method generate():
pipeline <+

[resources.json, application.json, personal.json|
return Get AwsPipeline(pipeline)

class Azure:
method ___Init__ (config):
res <—

[config.res, config.para_frame, ServMapping]
resources.json < GetAzureRes(res)
application.json < GetAzureApp(con fig.app)
personal.json <

GetAzurePersonal(con fig.personal)
method generate():
pipeline <

[resources.json, application.json, personal.json|
return Get AzurePipeline(pipeline)

class CloudAdapter:
method _ Init_ (AdaptedMethods):
| this.__dict__.update(AdaptedMethods)

function CAAM():
Adaptee Mapping < [aws : AWS, azure : Azure)]
config < read(Input)
if arg.reproduce then
| config.update(arg.reproduce)
end
cloud_provider < config.cloud_provider
if cloud_provider in Adaptee M apping.keys then
Adaptee + Adaptee M apping|cloud_provider]
element <
(execute : Adaptee(config).generate)
Pipeline + CloudAdapter(dict.add(element))
else
| raise NotImplementedError()
end
return Pipeline.execute() to Output

solve the vendor lock-in and interoperability problem for
big data analytics, which is shown in Algorithm 1. When
CAAM receives resources.ini, application.ini and
proper personal.ini, CloudAdapter () invokes each ven-
dor specific method of different cloud. It means as long as
there is an adaptee class written for the cloud provider,

by calling the CloudAdapter () with this cloud provider,
the provided general-purpose configurations will be trans-
formed to the executable request information of the tar-
get cloud based on its specification sets and execution
requirements. By combining the compatible information of
resources, application and personal, CAAM generates the
overall executable pipeline. json and starts to execute the
data analytics.

As shown in Algorithm 1, each cloud adaptee needs
to implement how to get its resources. json based on
resources.ini from execution history, parallel framework
and service mapping shown in TABLE 2. After all json files
are ready, AWS uses GetAwsPipeline (AwsConfig) to gen-
erate pipeline file, while Azure uses GetAzurePipeline
(AzureConfig) for generation. With CAAM, client directly
calls CloudAdapter () with a specific adaptee method to
execute data analytics with one general-purpose configura-
tion. By calling Pipeline.execution (), the generate ()
method in corresponding cloud adaptee will generate the
pipeline file and execute the big data analytics in cloud.
Particularly, adaptee is in a modular design that can be
injected into, removed from, or replaced within CAAM at
any time.

Extensibility on cross-cloud reproduction. Our repro-
ducible and portable big data analytics can be easily ex-
tended to additional clouds because most services from
different cloud providers can be mapped to each other.
TABLE 2 lists all cloud services provided by Amazon AWS,
Microsoft Azure and Google Cloud for data analytics. Our
toolkit currently only implements cross-cloud reproducibil-
ity between AWS and Azure. Extension to Google Cloud can
be done by adding an additional cloud specific adaptee and
providing corresponding service mapping with function
implementation.

7 EVALUATION

We implement the reproducible and portable cloud com-
puting and open-source it on GitHub at [4]. Two CPU-
based analytics applications (cloud retrieval and causality
discovery) and one GPU-based analytics application (do-
main adaptation) are tested in our experiments. All bench-
mark evaluations are developed on two cloud providers,
Amazon AWS and Microsoft Azure. Seven metrics are used
to evaluate our work which include data analytics metrics
like execution time, budgetary cost, cost-performance ratio,
and cloud reproducibility metrics like overhead.

TABLE 3 lists the exact cloud resources we use for each
data analytics. For executing the application with a larger
dataset, additional storage like AWS Elastic Block Store
(EBS) is also been attached during the resource initialization.



TABLE 3: Comparison of cloud resources.

[ Framework | Metrics | Cloud | Type | vCPU | Memory (GiB) |

scale-up AWS | c5d.4xlarge 16 32

CPU-based Azure Flé6s_v2 16 32
scale-out AWS | cbd.(x)large | 2 (4) 4(8)

Azure Fs_v2 2 4

scale-up AWS | p3.8xlarge 4 16

GPU-based Azure | NC24s_v3 4 16
le-out AWS p3.2xlarge 1 16

scaleout MRzure | NC6s_v3 1 16

One variation is in scale-out of AWS CPU-based evalua-
tion. We use c5d.large cluster for Dask-based analytics, but
c5d.xlarge cluster for Spark-based analytics because AWS
EMR requires more computational capability.

7.1 Benchmark Analytics and Datasets

To benchmark our toolkit’s functionality comprehensively,
we employ four applications and each uses a separate big
data framework in Section 2.1.

Cloud retrieval. Cloud property retrieval is an important
task in remote sensing and Atmospheric science. We used
the implementation of paper [22] for our first application.
It trains a Random Forest machine learning model for
cloud mask and cloud thermodynamic-phase retrieval from
satellite observations. Dask framework is used for execution
parallelization. The Docker image we built is hosted on
DockerHub public repository, with Python 3.6 and sklearn
0.24.2. Total datasets are around 0.5 GB.

Causality discovery. In order to discover the cause-effect
relationships in a system with the increasing volume and
dimensionality of available data, the two-phase scalable and
hybrid causality discovery is proposed by Guo et al. [23].
As a big data analytics, we use the Spark application with
Hadoop in the cloud virtual cluster. The Docker image we
built is hosted on DockerHub public repository, with Python
3.7 and R 3.4. The data in our execution is 200,000 rows of
simulated five variable time-series records, which is around
10 MB.

Domain adaptation. Unsupervised Domain Adaptation
(UDA) aims to transfer the knowledge learned from a
labeled source domain to an unlabeled target domain. We
use the UDA implementation designed by Sun et al. [24]
that solves the problem of the unlabeled target domain. To
move this data analytics to the cloud, we use the virtual
cluster with Pytorch GPU acceleration and Horovod with
MPI. The Docker image we built is hosted on DockerHub
public repository, with Python 3.6, CUDA 10.1 and cuDNN
7. The data we used is the public Office dataset containing
31 object categories in two domains: Amazon and Webcam,
which is around 50 MB in total.

Satellite collocation. Because there are many satellites or-
biting the Earth, it is valuable to integrate and/or compare
their measurements. Satellite collocation provides a way to
pair measurements from two satellite sensors that observe
the same location quasi-simultaneously. We implemented
and parallelized the method in [25] to generate collocated
data from two satellites. Like the cloud retrieval application,
we use Dask framework for execution parallelization. The
Docker image we built is hosted on DockerHub public
repository, with Python 3.8, Pandas 1.5.0 and H5py 3.7.0.
The two satellites we used in the experiment include the ABI
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passive sensing data product from NOAA Geostationary
Operational Environmental Satellites (GOES-16+) [26] and
the CALIOP active sensing data product from NASA Cloud-
Aerosol Lidar and Infrared Pathfinder Satellite Observations
(CALIPSO) satellite [27]. The total input data volume is 1.1
TB.

7.2 Evaluation Metrics

Even though there have been many studies on reproducibil-
ity, as stated in this recent survey paper [28], there are still
no agreed metrics that can quantitatively measure repro-
ducibility and compare different reproducible toolkits. The
survey paper thinks performance, scalability and efficiency
are possible metrics, but no concrete metric definition was
provided. In this work, to promote fair comparison, we
provide our own definition of performance, scalability and
efficiency for cloud based reproducibility, which results in
seven metrics (namely m1 to m7 listed below).

7.2.1 Execution Performance Metrics

Following paper [29], we measure execution performance
of our cloud based application via m1: execution time, m2:
budgetary cost and m3: performance-price ratio (PPR). We first
record execution time for each data analytics benchmark.
The execution time is the wall-clock time of analytics
pipeline (as shown in Fig. 7), which includes pipeline file
preparation, cloud resources deployment and initialization,
data analytics execution, execution history upload, and ter-
mination.

Budgetary cost contains bill usages for all resources used
in each data analytics benchmark, which mainly includes
the virtual cluster, container, network, database, and object
storage with read and write request usage.

Regarding the performance-price ratio (PPR), it eval-
uates the performance of each analytics considering the
execution time with cost. We use the same formula used
in [30] for PPR by calculating the product of execution time
and budgetary cost. Lower PPR is more desirable excluding
other factors.

7.2.2 Cloud Scalability Metrics

We evaluate the scalability of our work for both m4: scale-up
(vertical scaling) and mb: scale-out (horizontal scaling).

Cloud scale-up is achieved by utilizing more resources
within an existing computation system to reach a desired
state of performance. In our evaluation, scale-up is set in
a single virtual machine by having more threads in Dask-
based analytics, more executor cores in Spark-based ana-
lytics, or more GPUs in Horovod-based analytics. For cloud
retrieval, we fix the number of threads for each Dask worker,
and utilize the number of workers from 1 to 8 during
evaluation. It is the same in domain adaptation, except by
increasing more threads for GPUs rather than CPUs. For
causality discovery, because of the EMR setup, we launch
only one worker in each virtual instance and allocate only
one executor in this worker. To scale up, we use one executor
with increasing the numbers of vCPUs of this executor for
parallel execution.

In real world scale-up, it is undesired to launch a power-
ful instance but only use its partial computational capability.



In order to have a fair comparison, we additionally measure
scale-up cost by usage, which times the budgetary cost
of one instance by the percentage of CPU that is actually
used. It simulates scale-up scenarios that use more and more
powerful machines.

Cloud scale-out is usually associated with a distributed
architecture, which is achieved by adding additional com-
putational capacity to a cluster. In our evaluation, scale-out
is set by increasing more virtual machines in an existing
cluster. For cloud retrieval and domain adaptation, we
deploy only one worker process per instance, and increase
the number of instances from 1 to 8 during evaluation. For
causality discovery, we instead use one CPU core in each
executor, and increase the number of workers by adding
virtual instances.

7.2.3 Reproducibility Efficiency Metrics

For reproducibility, a metric m6: reproducibility_overhead is
used to understand how much overhead it brings by
supporting reproducibility during execution. Since repro-
ducibility support is achieved by storing application con-
figuration and execution history, we calculate the ratio be-
tween additional execution time caused by reproducibility
data storage and the execution time of execution without
reproducibility support. The lower the overhead ratio is, the
better.

As we mentioned in Section 5.1, an SDK-based pipeline
execution mode has also been proposed for big data analyt-
ics. Since both SDK-based and serverless-based approaches
can be achieved automatically, we also measure m7: re-
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producibility_efficiency to compare their execution time with
reproducibility.

7.3 Benchmarking for Execution Performance and
Scalability

In this section, we first assess the cloud scalability of our
RPAC toolkit based on three metrics: ml: execution time,
m2: budgetary cost, and m3: performance-price ratio. In m4:
scale-up evaluation, the execution is analyzed by gradually
utilizing more resources in one instance. In mb: scale-out,
the evaluation is achieved by gradually adding additional
instances of the same type in one cluster. Next, we will
explain our benchmarking results of the four applications.

7.3.1 Scalability Evaluation for the Cloud Retrieval Applica-
tion

The cloud retrieval m4: scale-up and mb: scale-out evalu-
ations are shown in Fig. 8. As illustrated in Fig. 8a, the
ml: execution time decreases when the number of executors
increases in both AWS and Azure with similar trends. The
m2: budgetary cost as shown in Fig. 8b, however, decreases in
m4: scale-up and increases in mb: scale-out when the number
of executors increase. The reason is that in cluster scale-up,
the same resources were used while their execution time
was decreasing; and in cluster scale-out, the costs saved by
less execution time costs were less than the costs increased
with additional resources. If only calculating the cost by
usage for m4: scale-up case, its trends become similar to those
of mb5: scale-out. Combining cost and time, as illustrated in
Fig. 8c, the m3: PPR in m4: scale-up and scale-up by usage
decrease when the numbers of executors increase. However,
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Fig. 8: Scalability evaluation of RPAC toolkit for the cloud retrieval application: scale-up (circle and square

mark) and

scale-out (triangle and diamond mark) for AWS and Azure. Dashed line: cost value calculated by its usage.

T T T T T T T
1 —e— AWS c5d.4xlarge 1 —e— AWS c5d.4xlarge || 1F —e— AWS c5d.4xlarge ||
—— AWS c5d.xlarge - &~ cbd.4xlarge_by_usage - &~ cbd.4xlarge_by_usage
——  AWS c5d.xlarge 8 08l ——  AWS c5d.xlarge
- ~ s 0.
< 0.8 B ® =
= = 038 1 o
L 3 2
£ S 2 06] —
0.6 B > ]
g g 06 R qé
g a0 g 04 R
9
|2 £
0.4 1 8 o2} y
0.2 B
— ‘ ‘ ‘ 02l ‘ ‘ L oL, ‘ ‘ L]
1 2 4 6 8 1 2 4 6 8 1 2 4 6 8
Parallelism Parallelism Parallelism

(a) Execution time.

(b) Budgetary cost.

(c) Performance-price ratio.

Fig. 9: Scalability evaluation of RPAC toolkit for the causality discovery application: scale-up (circle mark) and scale-out
(triangle mark) for AWS. Dashed line: cost value calculated by its usage.



12

T T T T T T T T T T T
1.2 | —e— AWS_p3.8xlarge —m— Azure_NC24s_v3 —e— AWS_p3.8xlarge —e—  AWS,3.8xlarge
—a— AWS_p3.2.xlarge —— Azure_NC6s_v3 - - p3.8xlarge_by_usage - - p3.8xlarge_by_usage
11 B 20 —=—  Azure_NC24s_v3 [| g —=—  Azure_NC24s_v3
=) > - - NC24s_v3_by_usage s ol - £~ NC24s_v3_by_usage ||
QE) 0.8 B g 150 —— AWS_p3.2.xlarge || g ——  AWS;3.2.xlarge
B : —+—  Azure_NC6s_v3 09; —+—  Azure_NC6s_v3
& 06| 1k g
5 10+ 4 g
3 ., ] £ i
& 041} 132 \g
5| | &
0.2 -
Il Il Il Il Il Il Il Il Il Il Il Il Il Il Il
0 1 2 4 6 8 0 1 2 4 6 8 0 1 2 4 6 8
Parallelism Parallelism Parallelism
(a) Execution time. (b) Budgetary cost. (c) Performance-price ratio.

Fig. 10: Scalability evaluation of RPAC toolkit for the domain adaptation application: scale-up (circle and square mark)
and scale-out (triangle and diamond mark) for AWS and Azure. Dashed line: cost value calculated by its usage.

T 20

500

T T T T T T
2 —e— AWS_c5d.4xlarge —e— AWS_c5d.4xlarge —e— AWS_c5d.4xlarge
° —— AWS_c5d.xlarge - - cbd.4xlarge_by_usage - - cbd.4xlarge_by_usage
—a—  AWS_c5d.xlarge £ 400 ——  AWS_c5d.xlarge ||
< 9 g 15 g
= 1 :.:/ I
g 8 2 300| N
= © Q.
e ]
g 15 1 £ w0} 1 g
£ S § 200 8
3] 20 g
g o 2
x L‘g L
® 10 1 & 100| .
51 4
5 L L L L [ L L L L L (V) S L L L -
1 2 4 6 8 1 2 4 6 8 1 2 4 6 8
Parallelism Parallelism Parallelism

(a) Execution time.

(b) Budgetary cost.

(c) Performance-price ratio.

Fig. 11: Scalability evaluation of RPAC toolkit for the satellite collocation application: scale-up (circle mark) and scale-out
(triangle mark) for AWS. Dashed line: cost value calculated by its usage.

the m3: PPR first decreases but later increases a little bit
in mb: scale-out cases. The figure also shows AWS achieves
better m3: PPR than Azure, and m4: scale-up achieves better
m3: PPR than mb: scale-out. So the best m3: PPR for the
Dask-based big data application with virtual CPU nodes is
achieved by m4: scale-up of application with more executors
in AWS.

7.3.2 Scalability Evaluation for the Causality Discovery Ap-
plication

Because Azure HD-Insight cluster does not support Docker-
based Spark computation, we only focus on the evaluation
of causality discovery for AWS, which is shown in Fig. 9.
The trends for this application are very similar to those for
the previous application since they both are CPU-based. As
illustrated in Fig. 9a, the m1: execution time for both m4: scale-
up and mb: scale-out decreases dramatically by at most 80%
when the parallelism increases. This change of time appears
more significant in causality discovery compared with what
is in cloud retrieval. For the m2: budgetary cost in Fig. 9b,
when the parallelism increases, the m4: scale-up decreases,
while both mb: scale-out and scale-up by usage increase with
similar trends. For all three metrics in Fig. 9c, The m3: PPR
decreases when the numbers of executors increase. As a
result, it is better to use a larger number of executors in
the Spark-based big data analytics with virtual CPU nodes.

7.3.3 Scalability Evaluation for the Domain Adaptation Ap-
plication

For domain adaptation, the evaluations are shown in Fig. 10.
Because the maximal number of GPUs in one instance is 4

for Azure, we compare m4: scale-up only from 1 GPU to
4 GPUs. As illustrated in Fig. 10a, same with the findings
from other data analytics, the m1: execution time decreases
when the numbers of GPUs increase in both AWS and
Azure. The m2: budgetary cost in Fig. 10b, also have the
same regularity compared with CPU-based analytics. For
m3: PPR, as illustrated in Fig. 10c, more GPUs lead to better
ratios for m4: scale-up and worse ratios for scale-up by usage.
For mb: scale-out, m3: PPR first gets worse and then improves
a little bit. But still launching with only 1 instance can have
the best m3: PPR for both AWS and Azure execution.

7.3.4 Scalability Evaluation for the Satellite Collocation Ap-
plication

The above three applications already show the effectiveness
of RPAC for parallel frameworks in different clouds. We
further evaluate the satellite collection application with over
1 TB input data on AWS, and its longest total execution time
is over 25 hours. As shown in Fig. 11, the m1: execution time
in Fig. 11a of all m4: scale-up experiments decrease around
1 to 2 hours compared with all mb: scale-out experiments
in the same parallelism setting. Thus, parallel execution in
one VM with scale-up deployment is preferred, since mb:
scale-out generates more communication overheads between
different nodes. For the m2: budgetary cost as illustrated in
Fig. 11b, when the number of executors increases, the m4:
scale-up gets a more reasonable price while the mb5: scale-out
becomes more expensive. Different with previous findings,
m2: budgetary cost of mb: scale-out, m4: scale-up and scale-up
by usage change very dramatically by at most 75% when the
parallelism changes. The reason is that the execution time of



the big data application is much longer than others. Com-
bining cost and time, as illustrated in Fig. 11c, the m3: PPR
of m4: scale-up is decrease when the numbers of executors
increase. The m3: PPR of scale-up by usage and mb: scale-out
are first decrease but later increase a little bit. As a result,
the better parallelism strategy for the big data application is
using more executors in m4: scale-up deployment.

7.4 Benchmarking for Reproducibility Efficiency

In this section, we assess the efficiency of reproducibility for
RPAC toolkit in the first three applications. We first evaluate
the overhead caused by serverless-based reproducibility,
then we compared the efficiency between serverless-based
and SDK-based approaches.

7.4.1 Efficiency Comparison for Reproducibility Support

We first measure the m6: reproducibility_overhead of our ap-
plications with and without reproducibility support. For
each application, we measure the AWS scale-up with 4
parallelisms, run each experiment 10 times and collect all
results in a box-plot shown in Fig. 12. From the figure, we
can see having reproducibility support did not cause much
overhead, which is less than 0.01 hours, for all applications.
The overhead percentage caused by reproducibility for
cloud retrieval (CR), causality discovery (CD), and domain
adaptation (DA), are 1.28%, 3.58%, and 2.17%, respectively.
Besides, the time range of GPU-based analytics is larger
than both CPU-based analytics, which means the execution
time of GPU-based computation is more unstable than CPU-
based one.

We utilize a statistical hypothesis test approach, called
T-test [31], to determine whether the execution time with
and without reproducibility support differ statistically. T-
test determines a possible conclusion from two different
hypotheses. By calculating the corresponding p-value [32],
we can measure the probability that an observed difference
has occurred just by random chance. Hypothesizing that
the reproduce execution provides some overhead over the
execution without reproducibility, we calculate the p-value
for the two sample t-test with equal variance. The p-values
of CR, CD and DA, turn out to be 0.4968, 0.3193 and 0.3634.
Since these are not less than p = 0.05, we fail to reject the
null hypothesis of the tests. As the result, we do not have
sufficient evidence to say that the average execution time
between the two species (with and without reproducibility
support) is different for all three applications.
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7.4.2 Comparison with SDK-based Reproduction

Besides the serverless-based approach, as shown in
TABLE 1, we also implemented an SDK-based automatic
execution mode which is achieved by periodical status
pulling. In order to explore their difference, we evaluate the
m?7: reproducibility_efficiency of these two approaches with the
same applications. Same with the previous measurement
setting, we run each experiment 10 times and collect all
results in a box-plot as illustrated in Fig. 13. For SDK-
based approach, the time window for each status pulling
is set to 10 second. The figure shows that serverless-based
approach is more efficient than SDK-based approach, and
the percentage of overhead reduction for CR, CD and DA,
are 25.92%, 28.24% and 29.41%, respectively. The time range
of serverless-based approach is larger than SDK-based one
especially in GPU-based analytics. The reason is that, in
SDK-based approach, the execution status monitoring could
be delayed with periodical pulling. With the serverless func-
tion and event trigger, serverless-based approach enables
big data analytics to be measured more efficiently and with
less noise.

We also use T-test to determine whether the execution
time using serverless approach and SDK-based approach
differs statistically. Hypothesize that the serverless-based
approach provides some efficient benefit over SDK-based
approach. The p-values of CR, CD and DA, turn out to
be 9.31e—15, 6.00e—14 and 2.19e—06. Since these p-values
are less than 0.05, we can reject the null hypothesis of the
tests. The serverless-based approach is indeed providing
statistically significant efficient benefit compared with SDK-
based approach.

8 RELATED WORK

There have been many studies on cloud-based reproducibil-
ity. Some of them [35, 40-43] only study its conceptual
frameworks. In this section, we only discuss those having
actual systems/toolkits. As shown in TABLE 4, we catego-
rize related work into four groups based on their systems’
capabilities. Besides, we also selected two most related
works to compare in detail. The comparison is shown in
TABLE 5 where the first one also leverages serverless com-
puting and the second is one of the most recent work on
cloud based reproducibility.
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Fig. 12: The box-plots and its relative difference for ap-
plication execution time with and without reproducibility
support.

Fig. 13: The box-plots and its relative difference for appli-
cation execution time with serverless-based and SDK-based
approach
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TABLE 4: Comparison of related work for cloud-based reproducibility.

A h Scalable Automated execution History retrieval Cross-cloud
pproac environment provision and reproducibility based reproducibility | reproducibility

ReproZip [33], CARE [34], DevOps-based [35], © o o o
Skyport [36], Hyperflow [37], TOSCA [38, 39]

AMOS [40], WSSE [41], PDIFF [42], ReCAP [43], Tapis [16] ° o ° o

OpenWhisk [14, 17], NeuroCAAS [44]
PRECIPE [45], Chef [46], Apt [47], Semantic Driven [48, 49] o O O Y
RPAC (this work) [ [ [ ] [ ]

8.1 General Comparison with Related Work

Among the related studies in TABLE 4, nearly all related
approaches achieve the software environment provision for
reproducibility. However, approaches in group 1 mainly
use the archived or containerized software environment,
which limits the scope of applicability and lacks support for
maintaining hardware configurations within cloud. Addi-
tionally, they monitor execution status by system commands
or cloud APIs based periodical pulling which is less effi-
cient than event-based execution in our work. For example,
ReproZip [33] tracks system commands and zips collected
information along with all the used system files together
for reproducibility. CARE [34] reproduces a job execution
by monitoring and archiving all the material required to re-
execute operations. For related work in group 2, their pro-
posed approaches encapsulate the code dependencies and
software in virtual machine images or graphs, and enable
history retrieval for reproduction. For instance, WSSE [41]
proposes to generate digital data and source code snapshots
to be reproduced and distributed within a cloud-computing
provider. The Tapis [16] open-source API platform was
proposed for accomplishing distributed computational ex-
periments in a secure, scalable, and reproducible way. With
the implemented pipeline with the Python API, the con-
tainerized applications can be submitted, scheduled and
executed as tasks using a traditional HPC batch scheduler
such as SLURM. AMOS [40] uses a VM containing a set
of tools previously installed to implement a mechanism
that initializes and configures VMs on demand. However,
this reproduction is more like a history repetition, which is
designed for verification and validation of history execution.
They also provide configurable environment variables for
automatic resource deployment in a single cloud, but do not
support cross-cloud reproducibility. Instead, our proposed
RPAC uses a data abstraction for information needed for
reproducibility and transforms resource configurations used
in one cloud into those in another cloud.

For related studies in TABLE 4, group 3’s capabilities are
closest to ours. These approaches rely on annotated infor-
mation provided by a user to assign workflow, and soft-
ware/hardware environment. For example, PRECIPE [45]
provides APIs to access both AWS and private cloud. How-

ever, users need to call the functions in order and have to
manually terminate resources after the experiment is done,
so it does not support automated end-to-end execution and
reproducibility. The whole execution has to wait at the client
side before the next function can be called. On the contrary,
RPAC serverless event triggering enables fewer commu-
nications between client and cloud, which improves the
efficiency for cloud analytics. Chef [46] achieves virtual exe-
cution environment launching and termination via designed
knife commands. Chef client is installed in virtual machines
to run the pipeline within the virtual machines. So some
internal steps of the application can be executed within the
virtual machines via its pipeline. However, Chef does not
support full automation since its user has to wait at client
side to manually terminate resources after the experiment
is done. Apt [47] uses user-provided profiles, which consists
of a cluster with a control system to instantiate encapsulated
experiment environments, for repeating historical research.
From this information, they deduce the required execution
resources in cloud and then re-provision or configure them
through their own APIs. In comparison, we use a serverless-
based pipeline and follow cloud function APIs provided
by cloud providers so the execution/reproduction process
can be managed by the cloud without communications with
toolkit. Also, their fully created annotations, even in cross-
cloud reproduction, rely heavily on the users instead of
execution history. Our work abstracts information required
by users from information in execution history, users only
need to provide minimal information to reproduce. Our
toolkit will transform user-provided information into exe-
cutable pipeline. For automated execution and reproducibil-
ity, none of these approaches can achieve full automation
including resources and software provisioning, analytics
execution and termination. RPAC’s event-based automation
is the one-command execution that achieves a more effi-
cient cloud computation and reproduction. For cross-cloud
reproducibility, we further use the adapter pattern model to
achieve the configuration mapping without taking all inputs
from the user.

8.2 Detailed Comparison with Most Related Work

As shown in TABLE 5, Apache OpenWhisk [17][14] is an
open-source, distributed Serverless cloud platform. In their

TABLE 5: Detailed comparison among serverless computing related work.

Pipeline description

Automated deployment,
execution and reproduction

Parallel execution
on cloud

Capability of cross-cloud
deployment/reproducibility

OpenWhisk [14, 17]

Consists of events, triggers and
action functions, which are
implemented by themselves.

User needs to initiate the cloud cluster,
then provides the address of Kubernetes
to Openwhisk. No resource termination.

No explicit parallel framework support.
Users have to provide environment and
implement the pipeline by themselves.

Not supported directly.
Users have to rewrite the pipeline
by themselves.

NeuroCAAS [44]

Consists of the specification of analysis
and infrastructure stack. Toolkit provides
formatted pipelines in a public repository.

Pull pipeline from public repository and
select listed configurations. The options
are limited. No resource termination.

No explicit parallel framework support.
Could be scripted and implemented
by users in the pipeline.

Not supported directly.
Users have to rewrite the pipeline
by themselves.

RPAC

Consists three aspects of abstraction
and the serverless functions. Users can
update configurations from templates.

Full automated Cloud SDK mode and
serverless mode. Include hardware
provisioning and resource termination.

Provide three parallel frameworks for Spark
-based and Dask-based analytics on CPUs,
and Horovod-based analytics on GPUs.

By modifying three aspects
of abstraction, RPAC enables
different levels of reproduction.




serverless design, functions are explicitly defined in terms
of the event, trigger, and action, which are implemented
by users. Events are generated from event sources, which
often indicate changes in data or carry data themselves.
The trigger is defined by specifying its name and param-
eters (key-value pairs). It is associated with an action. The
action is defined as functions (code snippets), which en-
capsulate application logic to be executed in response to
events. Before deployment, users need to initiate the cluster
in the cloud and provide the hostname and port of the
Kubernetes cluster to the toolkit. No resource termination
option when deployment finishes. Openwhisk has three
deployment options. 1) OpenWhisk can be deployed using
Helm charts on any Kubernetes provisioned from a public
cloud provider. 2) The deployment can be achieved by
OpenWhisk REST API or OpenWhisk CLI. 3) Use the cloud-
defined CLI on a cloud provider that already provisions
Apache OpenWhisk as a service, which is only supported
by IBM cloud as of now. For parallel execution, Openwhisk
does not provide direct parallel framework support. To
enable scalable execution, users need to initiate a cloud
cluster with the parallel software environment and prepare
docker images with a parallel framework. Then users need
to implement the parallel logic in the pipeline’s action.
OpenWhisk enables the deployment on different clouds
with Helm charts on any Kubernetes. However, an appli-
cation for one cloud cannot be redeployed in another cloud,
unless users 1) initiate instances on another cloud with
the Kubernetes cluster, 2) rewrite the events and triggers
in the pipeline, and 3) provide the new hostname and
port of Kubernetes cluster to the toolkit and redeploy the
pipeline. Another example is NeuroCAAS [44]. NeuroCAAS
provides formatted pipelines, called blueprints, in a public
code repository and defines a resource bank that can make
hardware available through pre-specified instances in one
specific cloud. The users are able to update the blueprint
with new configurations and upload its new version to the
public repository for deployment and reproduction. The
users need to provide the blueprint’s repository address
for automated deployment, execution and reproduction. By
default, NeuroCAAS fixes a single instance type per analysis
in order to facilitate reproducibility. With the blueprint,
datasets, and configuration files for one analysis, Neuro-
CAAS achieves reproducibility for corresponding analyses
with the same environment and configuration. For parallel
execution, NeuroCAAS does not provide direct parallel
framework support. The logic of parallel processing must
be explicitly scripted and implemented in the blueprint by
users.

9 CONCLUSIONS

Reproducibility is an important way to gain the confidence
of new research contributions. In this paper, we study
how to achieve cloud-based reproducibility for big data
analytics. By leveraging serverless, containerization and
adapter design pattern techniques, our proposed approach
and RPAC toolkit can achieve reproducibility, portability
and scalability for big data analytics. Our experiments show
our toolkit can achieve good scalability and low overhead
for reproducibility support for both AWS and Azure.
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For future work, we will mainly focus on the following
three aspects. First, we will optimize the executions in terms
of time, cost or ratio by mining execution history, and fur-
ther optimize the overhead of reproducibility via better data
abstraction, modeling and storage. Second, we will extend
our work to easily publish data analytics as public records
following the Research Object framework [19] so they can
be referred via DOI identifiers later. Third, we will study
how to utilize execution history data to achieve automated
execution optimization based on users’ objectives (time, cost
or ratio) and datasets.
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