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Wearable Inertial Sensor-Based Limb Lameness
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Abstract— Accurate objective, automated limb lameness detec-
tion and pose estimation play an important role for animal
well-being and precision livestock farming. We present a wear-
able sensor-based limb lameness detection and pose estimation
for horse walk and trot locomotion. The gait event and lameness
detection are first built on a recurrent neural network (RNN)
with long short-term memory (LSTM) cells. Its outcomes are
used in the limb pose estimation. A learned low-dimensional
motion manifold is parameterized by a phase variable with a
Gaussian process dynamic model. We compare the RNN-LSTM-
based lameness detection method with a feature-based multi-layer
classifier (MLC) and a multi-class classifier (M/CC) that are built
on support vector machine/K-nearest-neighbors and deep con-
volutional neural network methods, respectively. Experimental
results show that using only accelerometer measurements, the
RNN-LSTM-based approach achieves 95% lameness detection
accuracy and also outperforms the feature-based MLC or MCC
in terms of several assessment criteria. The pose estimation
scheme can predict the 24 limb joint angles in the sagittal plane
with average errors less than 5 and 10 degs under normal and
induced lameness conditions, respectively. The presented work
demonstrate the successful use of machine learning techniques
for high performance lameness detection and pose estimation in
equine science.

Note to Practitioners—Automation technologies are increas-
ingly used for precision agriculture but few have focused
on monitoring individual animals in open field for precision
livestock farming. Limb lameness detection and pose estima-
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tion in open field is labor-intensive, unsafe for farmers, and
inefficient. The presented machine learning-enabled, wearable
inertial sensor-based design provides an effective and efficient
approach for horse limb lameness detection and pose estimation
applications. We present an RNN-LSTM for lameness detection
and an integrated manifold learning model is used to predict
the horse limb joint angles in walk and trot gaits under
normal and induced lameness conditions. We also present a
systematic analysis and experiments to demonstrate the impacts
of the wearable sensor locations and signal information on
lameness detection and pose estimation performance. Several
other machine learning-based lameness detection methods are
also presented and compared. The extensive multi-horse testing
results are presented to demonstrate the superior accuracy
and higher performance than other types of machine learning
methods. One attractive feature of the proposed design lies in its
high performance and fast computational capability for potential
real-time applications in open field.

Index Terms— Equine gait analysis, lameness detection, inertial
measurement units, pose estimation, machine learning.

I. INTRODUCTION

NIMAL diseases are responsible for an average loss of

more than 20% of animal production worldwide and
economic and societal impacts are significant [1]. Lameness
is considered as a symptom of underlying pathological afflic-
tions [2], [3]. Animals with lameness often demonstrate a devi-
ation of the normal gait, i.e., abnormal gait. It is reported that
only in the USA, the economic cost for equine lameness has
been estimated ranging from USD $678 million to $1 billion
in 1998 [4]. Real-time, holistic evaluation and gait analysis
are effective ways to reliably identify and predict early-stage
lameness or disease infection to improve animal well-being
and enable proactive interventions for animal production
loss [5].

Detecting lameness is a labor intensive, expensive and
challenging task for veterinarians [6]. Most of the lame-
ness evaluation is built on visual examinations and relies
on the observations of movement asymmetries [7]. A great
gap exists between the levels of awareness of lameness by
different observers and therefore, the evaluation results are
subjective depending on examiner’s personal and technical
experience [8]. Using locomotion data collected by wearable
sensors and applying statistical analysis with specific features
is a trend in lameness study [9]. The common sensors used
include optical motion capture systems and force plates [10].
The high cost and indoor usage of cameras and force plates
restrict wide applications in farming industry. Wearable inertial
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measurement units (IMUs) have been commonly used to col-
lect large livestock motion data for gait analysis and lameness
detection due to their small-size, light-weight, low-cost and
setup convenience [11]-[13]. For large livestock such as horse,
small-size IMUs are attached to the limbs and body and
provide non-intrusive motion measurements without causing
gait changes.

Although various accurate, field-deployable sensing tech-
nologies have been reported for enabling real-time monitoring
of animals [9], [14], few are focused on limb pose (i.e.,
joint angle) estimation. Motion capture or machine vision
systems are the main sensing modality to obtain the animal
gaits and poses. In [15], [16], horse forelimb and hindlimb
joint angles are presented for trot gait using motion capture
systems. The limb kinematics and ground reaction forces for
horse walk are obtained by video analysis and force plates,
respectively in [17], [18]. The motion capture or machine
vision systems are expensive and also difficult for use in open
field and outdoor environment. Wearable IMUs were used in
recent years for real-time human pose estimations [19]-[24].
Particularly, the work in [20] used wearable IMUs to estimate
the lower-limb joint angles for equestrian sports riders and the
study does not include horse limb pose estimation. Indeed,
few research has been reported for wearable IMU-based joint
angles estimation for horses or quadrupedal animals.

Most of the IMU-based gait analysis use statistical
approaches to investigate particular bio-features to assess horse
lameness. These features include withers and pelvis move-
ment asymmetries, proximal flexion tests of hindlimbs and
horizontal velocity and acceleration of forelimbs on hoof-off
and hoof-on events, and the stride duration [25]-[27], etc.
Although successful evaluation results were reported [28],
[29], these approaches only consider particular features and
lack comprehensive analysis of locomotion. This motivates
us to use machine learning techniques to generate a holistic
approach for lameness detection from all limb IMUs. It is
also of interest to analyze and identify the wearable sensor
locations and selective signal (i.e., acceleration or angular rate)
contributions to limb lameness detection and pose estimation.

Emerging techniques such as machine learning provide
promising approaches for IMU-based bipedal gait detection
and pose estimation [22], [30]. The number of used wear-
able IMUs and their locations on human body for the best
gait estimation performance were reported (e.g., [31], [32]).
Unlike bipedal locomotion, the quadrupedal gaits of large-size
animals such as horses are much more complex in terms of
the gait styles and the number of joint angles [33], [34].
In recent years, machine learning methods were increasingly
used for animal gait analysis and lameness detection. Decision
tree induction was applied for animal lameness detection
and claimed to be useful with small data-sets [35]. A two-
phase classifier has been developed for sheep lameness detec-
tion in [36]. In [37], a long-short term memory (LSTM)
network was used to accurately identify horse gaits using
seven wearable IMUs on the body and limbs. Similarly, five
different machine learning models including support-vector
machine (SVM), Gaussian process regression GPR, decision
tree, boosted trees and random forest were used to predict
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horse velocity using seven body-mounted IMUs. However,
these studies do not use wearable sensors to estimate the
limb joint angles and the machine learning techniques have
not been reported for applications such as horse lameness
detection.

In this paper, we present a machine learning-based limb
lameness detection and pose estimation scheme for horse trot
and walk. The pose estimation and lameness detection design
is built on the acceleration and gyroscope measurements from
four IMUs that are attached to four limbs each. A recurrent
neural network (RNN) with LSTM cells is used to detect
the gait and induced lameness on forelimb during trot and
walk. The gait and lameness detection only uses accelerometer
measurements. A manifold learning method is taken to predict
limb joint angles with the gyroscope measurements. Inspired
by the work in [38] for human upper-limb joint angle estima-
tion, we use a Gaussian process dynamic model (GPDM) to
construct the horse limb motion manifold. A phase variable
is used to parameterize the GPDM for real-time joint angles
estimation. We also compare the lameness detection results
with the feature-based multi-layer classification (MLC) that
was reported previously in [39] and a multi-class classifier
such as deep convolutional neural network (DCNN) [40]. The
MLC includes gait classification, limb lameness detection,
and lameness localization layers by considering the property
of horses motion and is built on the SVM and K-nearest-
neighbors (KNN) methods. The experimental results confirm
the effectiveness and efficacy of the proposed detection and
evaluation scheme. We also discuss and analyze the signal
selection (i.e., gyroscope and accelerometer) of the limb IMUs
for lameness detection and pose estimation.

The main contributions of the work are two-folds. First,
using machine learning (i.e., RNN-LSTM) for horse lameness
detection is new. To the author’s best knowledge, no sim-
ilar work has been reported for horse lameness detection.
Comparing with other horse lameness detection methods that
rely mainly on specific asymmetric features, the proposed
RNN-LSTM method provides an automated, holistic features
selection from all wearable limb IMUs. One additional attrac-
tive feature for RNN-LSTM design is the real-time capability
for lameness detection and pose estimation. Second, the pro-
posed limb joint angle estimation for animal locomotion is
novel. Although the similar approaches are used for human
walk, the GPDM-enabled pose estimation is the first reported
result for quadrupedal locomotion. The proposed lameness and
pose estimation method provides an effective enabling tool for
field deployment for future precision livestock farming. The
work in this paper significantly extends the MLC that was
reported in previous conference publication [39] with the new
RNN-LSTM-based lameness detection and the GPDM-based
pose estimation design and many additional analyses and
experiments.

The rest of this paper is organized as follows. Data col-
lection and problem statement are discussed in Section II.
Section III presents the RNN-LSTM and MLC approaches
for gait activity and lameness detection. We discuss the
GPDM-based limb pose estimation in Section IV and the per-
formance evaluation metrics in Section V. The experimental
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Fig. 1.

(a) Indoor horse gait and locomotion data collection setup on a treadmill. A motion capture system and wearable IMUs are used in experiments.

A plastic shoe is attached to fore hoof to introduce gait changes (i.e., induced lameness) in both indoor and outdoor experiments. (b) Outdoor horse locomotion
experiments using a 50-m runway. Plastic shoes are used and attached to horse forelimbs to induce gait alterations in data collection. (c) Schematic of the

forelimb and hindlimb joint angles and IMU locations.

results are presented in Section VI before we summarize the
concluding remarks in Section VIII.

II. HORSE LOCOMOTION EXPERIMENTS AND
PROBLEM STATEMENT

A. Experiments and Data Collection

Experimental data were collected at the Equine Exercise
Physiology Laboratory at Rutgers University. Both indoor
and outdoor horse locomotion experiments were conducted.
Fig. 1(a) shows the indoor experimental setup on a treadmill
and Fig. 1(b) illustrates the outdoor experiment with wearable
IMUs. Four wearable IMUs are attached and firmly secured
on the lateral portion of the distal third metacarpal and third
metatarsal with self-adhesive bandages with one on each limb.
The x-axis of the limb IMUs was oriented along the vertical
axis and z-axis was oriented along the frontal axis. The y-axis
was oriented along the sagittal axis with the positive axes
oriented cranially on the left and caudally on the right; see
Fig. 1(c). Another IMU was attached at the withers location.
The lameness detection and pose estimation algorithms do
not use the fifth IMU at the withers but it is used only for
comparison purpose. The IMUs were attached to the horse
limbs by equine science professionals to minimize the possible
intrusive effect. Before the actual IMU data were recorded and
collected, a few warm-up trails were conducted to allow the
horses to adapt to the wearable sensors.

For indoor experiments, each limb IMU (from INSENCO
Inc., Hangzhou, China) included a triaxial accelerometer and a
triaxial gyroscope. The ranges of accelerometer and gyroscope
are £100g (g = 9.8 m/s? is the gravitational constant) and
+4000 deg/s, respectively. The IMU measurements were sam-
pled and collected at a frequency of 100 Hz. An optical motion
capture system (8 Bonita cameras, Vicon, Inc., Oxford Metrics,
Oxford, UK) was used to capture the limb motion. Following
the recommendations in [41], a total of 37 retroreflective
markers were placed on the horses. Eight markers were placed
on the lateral side of the left and right forelimb each to evaluate
angles between the proximal and distal segments of the joints:
the proximal end of the spine of the scapula, shoulder joint,
elbow joint, carpal joint, fore fetlock joint, coffin joint, fore
hoof and fore toe. Another eight markers were placed on the

TABLE I
BASIC INFORMATION ABOUT HORSES IN EXPERIMENTS

SN | Height at withers (cm) | Gender | Age Shoeing

1 154.3 Gelding | 13 Barefoot

2 154.9 Gelding | 13 Barefoot

3 153 Mare 5 Barefoot

4 160 Mare 15 Barefoot

5 149.9 Mare | 16 | Shod/Hind hooves only
6 156.8 Mare 17 Barefoot

lateral side of the left and right hindlimb each: the ventral
aspect of the tuber coxae (point of the hip), hip joint, stifle
joint, talus (hock joint), hind fetlock joint, coffin joint, hind
hoof, and hind toe. Five additional markers were mounted on
the back along the vertebral column at the withers, lumbar-
sacral junction, point of the croup, and on the right and left
side of the temporal bone, along the zygomatic process. For
walk and trot, the treadmill speeds were controlled around
1.62 m/s and 4.18 m/s, respectively. For outdoor experiments,
horses were instrumented with four IMUs (MPU-9250 from
Noraxon, Scottsdale, Arizona, USA) [42]. The ranges of
accelerometer and gyroscope are +16g and +2000 deg/s,
respectively. The IMU measurement data were wirelessly
transmitted to the receiver and displayed on a laptop at a
frequency of 400 Hz; see Fig. 1(b).

Experimental data were collected from six horses (Stan-
dardbreds). Table I lists the detailed information about the
horses. Two plastic shoes (from EponaMind, Paso Robles,
California, USA) as shown in Fig. 1(a) were attached to the
left or right fore hoof in a randomized order to induce gait
alterations or lameness. The induced lameness (abnormal gait)
was used to evaluate the proposed lameness detection and
pose estimation design. In each data collection session, horses
completed twenty-four trials at walk and trot each under three
conditions: controlled normal gaits, shoe on left front, and shoe
on right front. For outdoor experiments, one trial consists of
the horse being led by a handler at the appropriate gait along a
straight 50-m runway as shown in Fig. 1(b). Between two trials
horses turned around to traverse back over the runway and the
process repeated until twenty-four trials were completed. The
data collection resulted in six distinct classes of data: normal
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Fig. 2. Raw IMU (on left forelimb) gyroscope measurements about the
z-axis under the normal and abnormal conditions for the horses walk (top)
and trot (bottom) gaits.

walk, normal trot, walk with shoe on left or right fore hoofs,
and trot with shoe on left or right fore hoofs. The testing
protocol was approved by the Institutional Animal Care and
Use Committee (IACUC) at Rutgers University.

We obtain and extract the gait cycle and limb pose infor-
mation from the motion capture system and the wearable limb
IMU data. For joint angle estimation, this work mainly focuses
on forelimb and hindlimb joint angles in the sagittal plane.
Fig. 1(c) illustrates these joint angles. We denote 65 . OF
OF, OFL, 6El., and 0%, i = L, R, for the hoof, coffin, fetlock,
carpus, elbow and shoulder joint angles for the left and right
forelimb, respectively. Similarly, Of 65, OF, OF | 8!, and
6&;, i = L,R, are used to denote the hoof, coffin, fetlock,
tarsus, stifle and hip joint angles for the left and right hindlimb,
respectively. Only the hoof joint angles are absolute and all
others are relative joint angles [18], [43]. To calculate and
evaluate these joint angles, we first form the sagittal plane
using the marker on the point of the croup, medial midpoints of
the markers on the hip joints, and the points of the hip. Then,
all other markers’ positions are projected on the sagittal plane
by an orthogonal projection. Link vectors for the proximal
and distal segments for each limb are calculated using the
projected markers’ positions on the sagittal plane and finally
the joint angles are computed by the relative angles between
two adjacent corresponding link vectors.

For walk and trot, each limb touches down on the ground
and then swings periodically and both are symmetric gaits, i.e.,
each limb repeats similar pattern for stance and swing phases.
To capture the periodic steady-state walk and trot gait, we use
phase variable, denoted by s € [0, 1], as the normalized gait
progression by each cycle duration (between two consecutive
hoof touchdowns). Different approaches exist in the literature
to extract gait cycle events, that is, to determine hoof-on and
hoof-off events. It has been observed that acceleration rises
sharply from a negative peak to a positive peak when the
hoof contacts the ground [11]. To construct the feature-based
MLC algorithm, we create gait cycle routines by stacking
three linear acceleration and three gyroscope measurements
(total 6 signals) from four IMUs into a signal array of size
24 x N;, where N; is the number of samples within one gait
cycle. As an example, Fig. 2 shows the raw IMU gyroscope
measurements about the z-axis (i.e., the transversal axis of
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Schematic of the lameness detection and gait phase estimation by

the major rotation of the metacarpal bone) under normal and
abnormal walking and troting on the indoor treadmill.

B. Problem Statement

The problem statement of this work is to design a limb lame-
ness detection and poses (i.e., joint angles) estimation scheme
for horse walk and trot under normal and induced abnormal
conditions using the complete or partial measurements from
four wearable limb IMUs. It is desirable to have the design
for real-time, open field applications.

III. LiMmB LAMENESS DETECTION

In this section, we first discuss an overview design for
limb lameness and gait activity detection. We then present
an RNN-LSTM and a feature-based MLC implementation.

A. Overview

The gait and lameness detection scheme is built on a layer-
by-layer approach to identify the property of current data and
detect the lameness occurrence and location step-by-step. The
scheme provides the flexibility of using different classification
algorithms at each layer. Fig. 3 illustrates the schematic of the
multi-layer lameness detection and pose estimation approach.
We consider and assign three properties associated with each
motion data instance: gait, lameness situation, and lameness
location. For example, for walk and trot with induced lameness
at horse forelimb, the data are accordingly categorized into six
groups: normal walk (NW), normal trot (NT), abnormal walk
with left or right forelimb lameness (denoted as LW or RW),
and abnormal trot with left or right forelimb lameness (denoted
as LT or RT).
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Instead of recognizing the data with one label (e.g., left
forelimb lameness walk) that contains the above three prop-
erties, we consider to use three labels (e.g., left forelimb,
lameness, and walk) that each corresponds to one property.
By doing so, we identify the property of the data layer-by-
layer and therefore, the multi-class problem is transferred to
a multi-layer classification problem. In each layer, the data
are compared in terms of one single property. As shown in
Fig. 3, three layers are constructed: the gait classifier (GC) (top
layer), lameness detection within walk (LDW) or trot (LDT)
(middle layer), and lameness localization within walk (LLW)
or trot (LLT) (bottom layer). Additional advantages of using
multi-layer classifiers include reducing the class of current
layer and possibly forming a binary classification, reducing
the cost of time and storage for training and testing data, and
providing quantitative methods for horse lameness evaluation
and flexibility to design each classifier independently. The last
module in Fig. 3 is for pose estimation that will be discussed
in the next section.

Using the above multi-layer structure, two different machine
learning classifiers are used in implementation. The first one
is the RNN-LSTM that uses the (partial) IMU measurements
for classification. The second approach first extracts features
from the IMU data and then feeds into the classifier at each
layer.

B. Lameness Detection by RNN-LSTM

Lameness detection by the RNN-LSTM design directly uses
the IMU measurement as input sequence. Fig. 4 illustrates
overall network architecture for gait and lameness detection.
Each LSTM cell (shown in the left bottom in the figure)
includes a forget, an update and an output gate consecutively.
‘When new information arrives, the cell first decides what to
keep or forget in the current cell state, then determines what
new information is stored and updates the cell state in order
to finally filter out an output [44]. The LSTM architecture
is highly efficient and the classifier can be used in real-time
applications. To improve classification performance, multiple
LSTM layers are added to construct a deep neural network.

For walk and trot with induced lameness in forelimb,
we separately train five classifiers: one for GC, two for LDW
and LDT, and two for LLW and LLT as described above.
As shown in Fig. 4, gait classification in the first layer uses
a single LSTM cell with 100 hidden units. It is followed by
a Dropout (0.2) layer to randomly drop 20% units from
the network to prevent overfitting of the model. The outputs
from the dropout layer are passed through a fully connected
layer with ReLU. Finally, the classification is done based on
the probability outputs from the Softmax activation function,

Gait-Feature Matrix

The structure of feature extraction based multi-layer classifier for horse lameness detection.

which converts the class scores to probabilities such that the
gait with the highest probability is detected. Two classifiers
in the lameness detection and localization layers include an
additional LSTM cell with 120 hidden units and another
Dropout (20%) module in front of the LSTM with 100 units.
The IMU data in each stride are considered as one
data point. In particular, since the horse motion is not
exactly periodical, each data point has different duration. The
LSTM-based classifier does not require to normalize each
stride into the same size and using the same configuration,
different combinations of the IMU data can be fed into the
classifier to identify the most sensitive channels in the IMU
measurements for normal and abnormal conditions.

C. Feature-Based MLC Lameness Detection

The MLC data feature is constructed in both time and
frequency domains to provide comprehensive information.
Only the sensitive components in data are then selected to
train the classifier by feature selection algorithms by their
importance. Fig. 5 illustrates the feature-based MLC lameness
detection scheme. Before training the classification model,
feature vectors from IMU data are extracted to form a single
gait feature matrix (GFM) in both time and frequency domains.

1) Time Domain Feature: In time domain, we consider
statistical measurements of the gait data. For each gait cycle
data, the features include: (1) maximum, minimum, mean and
standard deviation values of the each IMU signal channel; (2)
quartiles data, including 25%, 50%, and 75% are the value that
splits off the lowest 25%, median and highest 25% of the data,
respectively; (3) skewness § = ﬁ Z:V;I (x; — )3 to describe
the distribution of the data, where X and o are the average and
standard deviation of IMU data series {x,-}?i, for each gait
cycle; and (4) singular value set of the magnitude matrix of
acceleration and gyroscope measurements of each IMU unit,
i.e., £ = o (M), where o (-) represents the singular value oper-
ator, matrix M = [A; Ay A3z A4, A; = [||la;|| |le;]]]", and
a;, ; € R? are the accelerometer and gyroscope measurement
vectors of ith IMU, respectively, i =1, 2, 3, 4.

2) Frequency Domain Feature: We apply the discrete
Fourier transformation (DFT) to each channel of the IMU mea-
surements to obtain the properties in frequency domain. The
frequency domain features include: (1) @pq,: the frequency
with maximum power, also known as dominant frequency;
(2) harmonic frequency, i.e., frequencies with the second and
third highest powers; and (3) harmonic ratio, which is the ratio
of the sum of the even and odd frequency amplitudes.

The above selected time and frequency domains features
also incorporate many commonly used characteristics for
lameness detection, such as time duration of each gait and the
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duration from the minimal value to the maximal value [36],
etc. Using the above procedure, we convert all the gait cycles
into feature vectors to form the GFM; see Fig. 5. Since
the feature vector consists of many components, to avoid
overfitting and decrease expense in the simulation, we select
key components that are relevant to current classification
problem intentionally. Feature selection also helps reduce the
cost of time and storage for training and testing. For each
classifier we select the top relevant components that are not
necessarily the same in terms of size and content.
Classification algorithms used in the feature-based MLC
includes the SVM method for GC (top layer) and the KNN
method for LDW/LDT (middle layer) and LLW/LLT (bottom
layer). Those two algorithms have been successfully used to
detect the motion type and lameness of sheep [36]. The input
are the features extracted from the IMU motion data and the
ground truth labels. For KNN algorithms, the number of the
neighbor is set as 10 and the Euclidean distance metric is used.

IV. GPDM-BASED LIMB POSES ESTIMATION

In this section, the manifold learning method is adopted to
estimate the 24 limb joint angles 6'}, i = FL, FR, HL, HR,
J = Shd/Tip, Elb/Sti, Car/Tar, Fet, Cof, Hof, for a given gait
activity. The high dimensional horse joint angles data are
first processed through the GPDM to learn and obtain the
low-dimensional dynamic latent model. By parameterizing the
latent manifold dynamics with the gait phase variable, we are
able to predict the horse pose through IMU measurements.
For this work, we focus on horse walk and trot under normal
and abnormal (limb lameness) conditions and therefore, a total
of six gait activities such as NW, NT, LW, RW, LT and RT
(defined in Section III-A) are considered.

For the ith gait activity, i = NW, NT, LW, RW, LT, RT,
denoting # € RP as the joint angles vector, where D is the
joint angle dimension, the dynamics for latent variable x € R?
and observation mapping between 6 and x are obtained as
manifold M; as

M; : [%:ﬂx’“H”‘ )

6 =g(x, B) +no,

where s is the gait phase variable, d is the latent space
dimension, nonlinear functions f(-,-) and g(-,-) represent
the latent dynamics vector field and the mapping from the
latent space to the joint angle space, respectively. Variables
n, and ny are zero-mean, white Gaussian noises, and « and
B are the hyperparameters for the latent dynamics and output
observation functions.

In the GPDM framework, functions f and g are marginal-
ized out by using the kernel-based method. We try to identify
the optimal hyperparameters in the model by considering a
Gaussian process (GP) for kernel function. Given joint angle
data set ©® = {ﬂg}f‘; 1> Where N is the number of data points,
and denoting X = {x;} |, the GPDM is indeed to maximize
the following posterior probability

p(X,a, B|©) x p(©|X, B, W) p(X|a) p(e) p(B) p(W)

where p(-) represents the probability of an event, «, S
and W are hyperparameters in the GP kernel function and
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Pose 1

Fig. 6. Schematic of the learned latent manifolds and dynamics for pose
estimation.

Pose 2

above problem can be solved equivalently by minimizing
—In p(X, «, #|®) through a gradient descending algorithm.
A similar approach in [38] is taken for initialization of latent
variable x in model estimation. One attractive feature is that
the periodic characteristic of the locomotion would allow use
of the GPDM dynamics to estimate high-dimensional joint
angles effectively and efficiently and therefore, it is feasible
for real-time applications.

Unlike many reported GPDM applications, the model
in (1) is parameterized by the gait phase variable s, namely,
latent variable is given as x(s). The advantage of using s,
rather than time variable 7, is to capture the gait progression
precisely and therefore, predict the joint angle #. This treat-
ment is attractive for estimation of all joint angles collectively
and accurately. Fig. 6 illustrates the latent manifold M; for
pose estimation. The phase variable s and gait activity are
obtained through an LSTM-based network with the similar
structure as the classifier discussed in the previous section;
see Fig. 4. We first train this network offline using the IMU
measurement as input sequence with labeled data by the
motion capture system. With the trained LSTM model, the
IMU measurements are embedded to the high-dimensional
joint angels through the phase variable. Due to the fast compu-
tation for the LSTM-based gait detection and low-dimensional
GPDM implementation, the prediction can be achieved for
real-time pose estimation.

V. EVALUATION METRICS

In this section, we describe a few evaluation metrics for the
lameness detection and pose estimation design.

A. Lameness Detection Metrics

Following metrics for lameness detection are used.

1) Detection Accuracy: Confusion matrix is used to capture
and demonstrate the detection results. Confusion matrix is
a table which summarizes the predictive results by listing
the true label and predicted label of the testing data. Each
row of the matrix represents the instances in a predicted
class, while each column represents the instances in an actual
class (or vice versa). In a binary classification with test data
labeled as positive or negative (although the actual label
can be defined in different ways in specific context), the
confusion matrix is of the dimension 2 by 2. Particularly, the
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four entries are named as True Positive (TP), True Negative
(TN), False Positive (FP) and False Negative (FN). “Positive”
means correctly prediction, while “false™ refers to incorrect
prediction.

Given the confusion matrix of each layer, we define several
metrics to evaluate the performance of the classifiers, including
recall and precision as

TP;
~ TP; +FN;’

and the accuracy is

TP;

=— 2
TP; + FP; @

i i

_ TP; + TN; 3)
"~ TP; + FP; + TN; +FN;’

where subscripts i = GC, LDW, LDT, LLW, LLT represent
these classifiers of the three MLC layers. In calculating the
accuracy, we exclude the incorrectly labeled data by previous
layer. For instance, when calculating the accuracy for LDW,
the input might include the trot data (incorrectly labeled as
walk).

Given the above accuracy calculation for each classifier
among three layers, the overall accuracy is obtained as

Vi

y = }’Gc{aw}'LDw[an + (1 — anw)yLLw]
+ (1 — aw)yLor[ant + (1 — ﬂNT)}'LLT]], 4

where aw denotes the portion of walk samples in the test
pool, and anw and ant are the portions of normal walk and
trot samples within walk and trot instances, respectively. The
rationale for (4) is that a testing instance can be correctly
labeled at ygc level, while such randomly chosen walk or trot
instance is an intrinsic property of the test pool. One correctly
labeled instance has the probability of aw being further
classified by lameness detection within walk or (1 —aw) within
trot.

2) F-Measure: For multi-class classification, we also use
F-Measure as a metric to assess the performance. F-Measure
is a harmonic mean of recall and precision of the classifier

_(B+DPR;
F = " wmrn . B
B*P; + R;

where £ is the weight and Pygicro and Rmicro are defined as

n n
PMicro = Zi:l Pt': RMicm = z‘.:] Rt’

and Pyacro = 3 Pticro a0d Riacro = + Ruicro, Where P; and
R; is precision and recall for the ith classifier that is defined
in (2), and n = 5 is the total number of classifiers. The value
of F-measure is ranged from zero to one, and high values of
F-measure indicate preferable performance [45].

Jj = Micro, Macro,

(&)

B. Pose Estimation Metrics

To quantify the accuracy of the joint angle estimation,
several performance metrics are taken. The first metric is the
mean and standard variation of the estimated joint angle errors
that are calculated by using the motion capture system as the
ground truth.

1371

) Nc;,-g.‘& hc""r\'\ \_‘_:-5.‘3
W LAY &'

Fig. 7. Lameness detection accuracy for various combinations of selective
IMU measurements. For the x-axis label, “All™: all four IMU gyroscope
and accelerometer measurements; “Gyro™ (“Acc™): gyroscope (accelerometer)
measurements from all four IMUs; “Acc-xy™: accelerometer measurements
in the xy (sagittal) plane; “F” (“H”): frontlimb (hindlimb); “FL" (“FR™):
left (right) frontlimb. The axis labels are combination of these abbreviations.
For instance, FL Acc-xy indicates that the xy channels of the accelerometer
measurements in the front left limb IMU are used in the LSTM classifier.

Similar to [15] we evaluate the variability of joint angle @
within the multiple gait cycles by using the variance ratio VRy
as

VR, — > Z?{;(&j - 5i)2st(Nc -1
N > (0 — 0)°/(NeNy — 1)

where Nj is the number of samples in each gait cycle and N, is
the number of used gait cycles, 6;; is the jth joint angle value
at the ith sample point and 6; is the average ith joint angles
over N, cycles, # is the mean of the average joint angles,
that is, § = Nl: Zi] ;. The smaller VR value, the greater
similarity (or repeatability) of each cycle of the gait.

We also use the intra-individual variability (IAV) and inter-
individual variability (IEV) for capturing limb gait cycle-to-
cycle variations among N, horses as [46]

(6)

Np
— L S5t@) + 5% —F
IAVy = 5 g[a @) +3%@)]. 1EV,=5(0),

where & (6;) is the average of the standard deviation of joint
angle &; of the ith horse (over the N, cycles), and superscripts
“L” and “R” represent the left and right limbs, respectively.
in the above IEVy is the average of all N, horses by using
both the left and right limbs in N, cycles. We will present
these metrics results in the next section.

VI. EXPERIMENTAL RESULTS

In this section, we present experimental results to illustrate
the performance of the lameness detection and pose estimation
design. The experimental data collected for this study include
16500 total strides (14000 outdoor + 2500 indoor). The data
are randomly shuffled and then split into 80% and 20% for
training and testing the machine learning methods. From these
data, we obtain aw = 0.59, anw = 0.36 and ayt = 0.37 for
parameters in (4). To build the GPDM model, D = 24 and
d =4 are used in implementation.
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RT

Truth Truth Truth
(h) (i) )

Confusion matrix for RNN-LSTM (Top row) and Feature based (Bottom row) classifiers. (a) and (f) for GC layer, (b) and (g) for LDW, (c) and

(h) for LDT, (d) and (i) for LLW, and (e) and (j) for LLT. Some other notations, W: walk, T: Trot, A: Abnormal, N: Normal, L: Left and R: Right.

TABLE II
LAMENESS DETECTION ACCURACY (%) COMPARISON

Classifier GC | LDW | LDT | LLW | LLT | Overall
LSTM (F Acc-zy) | 99.5 | 97.0 | 959 | 99.5 | 96.5 | 95.3
LSTM (All) 99.5| 922 | 93.1 | 90.7 | 94.7 | 92.6
LSTM (All+withers) | 99.6 | 94.1 | 90.8 | 93.5 | 94.8 | 92.7
Feature-based MLC | 99.5 | 98.2 [ 92.5 | 98.8 | 954 | 944
DCNN - - - - - 93.6

A. Lameness Detection Results

For the feature-based MLC detection method, gyroscope
and accelerometer measurements from all four wearable IMUs
are used to form the gait feature matrix, while for the
RNN-LSTM design, selective IMUs measurements are used.
We first discuss how different selective combinations of the
IMU data impact the lameness detection accuracy. Fig. 7
shows the lameness detection inaccuracy (i.e., 1 — y) for all
horses by using selective combinations of IMU measurements
and IMU locations such as all limbs, forelimbs, or hindlimb.
From these results, it is clear that the accuracy is more sensi-
tive to accelerometer measurements than these of gyroscope.
Moreover, the forelimb accelerometer measurements in the
(xy) sagittal plane (labeled as “F Acc-xy” in the figure) are
the most sensitive to detect the induced lameness. From this
observation, for the RNN-LSTM design, we mainly present
the detection results using such accelerometer measurements.

We now present the lameness detection results by the
RNN-LSTM and the feature-based MLC methods. Fig. 8
shows confusion matrix results for each layer by these two
methods. The top row in the figure shows the confusion
matrices for each layer of the RNN-LSTM implementation
and the bottom row for the feature-based MLC. It is clear that
from these confusion matrices, the two methods demonstrate
comparable results. Using (4), we compute the detection
accuracy metrics for each layer. Table II lists the lameness
detection accuracy at each layer. For the RNN-LSTM method,
the overall accuracy by (4) is yrgrm = 95.3%. For the
feature-based MLC, the overall accuracy is calculated as
ymic = 94.4%. The RNN-LSTM demonstrates a slightly
better accuracy than that by the feature-based MLC. It is also
interesting to notice that using all IMUs measurements or even

with additional IMU at withers does not improve the lameness
detection accuracy (with respectively only 92.6% and 92.7%).
This might be due to different sensitivities of IMU signals for
the induced gait changes.

We further compare the results with a deep concurrent
neural network (DCNN) multi-class classifier [47]. A DCNN
is formed by stacking three types of layers: convolutional
layer, pooling layer, and fully connected layer. The training
figures are constructed by applying DFT to the gait feature
matrix and then take magnitude of each element [40].
Using the same training data and testing data, Fig. 9 shows
corresponding confusion matrices by using feature-based
MLC (Fig. 9(a)), DCNN (Fig. 9(b)), RNN-LSTM with all
IMU signals (Fig. 9(c)) and RNN-LSTM with the forelimb
accelerometer signals in the sagittal plane (Fig. 9(d)).
Obviously, both feature-based MLC and RNN-LSTM (using
the forelimb acceleration measurements in the xy-plane)
have slightly higher accuracy rates than the DCNN. Using a
radar chart, Fig. 10 further shows the classifier performance
metrics (f = 1) defined in the previous section such as
Fuicros FMacro, 7 etc. The RNN-LSTM (with “F Acc-xy”™)
has the largest values in terms of each criterion than those
under the feature-based MLC, which outperforms the DCNN
and the RNN-LSTM with all IMUs.

B. Gait Estimation Results

Similar to the lameness detection results, we first compare
how the selective IMU signals would impact on the joint angle
estimation. Fig. 11 shows the average joint angle estimation
errors for each limb by using various combinations of IMU
signals. From these results, we observe that using the z-axial
gyroscope measurements from four limb IMUs generates
the comparable accuracy as using all IMUs (accelerometers
and gyroscopes) measurements. One reason for such results
might be due to that the z-axial angular rate measurements
capture the joint angle motion in the sagittal plane. Therefore,
in the following discussion, we only present the joint angle
estimation by using the gyroscope z-axis (denoted as “gyro-z”)
measurements.

Fig. 12 shows the joint angle estimation for one normal
walk and trot trial on treadmill by one horse. Similar to [17],
we here present the estimation results of the relative joint
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Fig. 9. Comparison of lameness classification results under the feature-based classifier, DCNN and RNN-LSTM with complete or partial IMU measurements

(in percentage with respect to the entire testing data).

TABLE 11T
LIMB JOINT ANGLE ESTIMATION DIFFERENCES BETWEEN NORMAL AND ABNORMAL CONDITIONS UNDER WALK AND TROT
Gait Forelimb (deg) Hindlimb (deg)
i
eghd GEIb aga.r ggct ggof 9}1.{& egllf G'Il‘{ar 9{:‘{“ ggof
Walk|2.80 + 1.4 895+ 7.2 1082+ 11.6 | 7.58 +4.3 |13.90 £ 10.5|2.45+1.9| 518+ 6.7 | 7.75+7.5 7.75+ 5.8 |13.61 = 10.9
Trot |4.53 +3.5(12.67 £ 9.8|17.83 £ 13.2|11.18 + 7.5| 25.74 + 7.5 (9.58 £ 7.2|14.45 + 8.8|19.89 &+ 13.9|17.70 + 8.5|26.68 £ 14.5
i Feature-based MLC 30 T —— T i
DCNN 7
LSTM (All+withers) o5 — @i;
LSTM {All) or EEIAL 1
—@— LSTM (F Aco-zy) | - |

Precison

Fig. 10.  Performance comparison of the multi-layer (RNN-LSTM and
feature-based) and DCNN classifiers.

angles for each limb only. The estimated joint angles follow
the ground truth for both walk and trot gaits. We also add
the estimation for outdoor experiments in the figure and they
are consistent with these on treadmill. Fig. 13 shows the
calculation of all joint angle estimation errors for six horses
for both walk and trot under normal and abnormal conditions
(i.e., plastic shoes on). Figs. 13(a) and 13(c) show absolute
errors and Figs. 13(b) and 13(d) for relative estimation errors
for normal and abnormal gaits, respectively. The average
estimation errors for all joint angles are less than 5 and 10 degs
under normal and abnormal conditions, respectively, while
the average relative errors are less than about 5% and 10%,
respectively. Relatively large estimation errors and variations
happen for the fetlock and coffin joints.

We take the fetlock joint angle comparison as an example to
show joint angles difference between the normal and abnormal
gaits. Fig. 14(a) shows the fetlock joint angle comparison
for walk and Fig. 14(b) for trot. Plastic shoes were wore
at the left forelimb in these experiments. It is clear that the

= =
=] o
T T

Aeverage Estimation Error (deg)
o

Gyro-

Gyro

Al Acc

Fig. 11. Average joint angle prediction errors of each limb (4 strides) using
various combinations of selective limb IMU measurements.

fetlock joint angles show quite significant differences for both
walk and trot. Table III further lists all joint angle estimation
differences (mean and standard deviation) between the normal
and abnormal conditions for walk and trot for all horses.
We calculate the joint angle estimation differences for the
forelimb and hindlimb by adding left and right limbs results
in the table. For walk, coffin angles of both forelimb and
hindlimb show significantly difference and for trot gait, carpus
and coffin joints for forelimb and tarsus, fetlock and coffin
joints for hindlimb are demonstrated significant difference.
We further take a hypothesis test for difference between
all 20 relative joint angles of four limbs under normal and
abnormal conditions using t-test with 95% confidence. The
results are shown significantly different for both walk and trot
with pyo = 0.015 and pyax = 0.024.

To demonstrate the estimated joint angle variability and
repeatability, we calculate the IAV and IEV defined in the
previous section using the horse data on treadmill. Table IV
lists the IAV and IEV for each joint angles of forelimb and
hindlimb under normal and abnormal conditions for walk and
trot. For normal trot, the IAV values for all joints and the IEV
values for most joints are similar to those reported in [46] and
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Fig. 12.
and (b) trot. The subfigures in each row shares the same label at y-axis.
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Joint angle estimation (mean and standard deviation, in deg) of left forelimb (FL) and hindlimb (HL) for one horse (SN1) on treadmill. (a) Walk
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- Four-limb joint angles
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Fig. 13. Absolute and relative errors of the four-limb joint angle estimation for walk (“cross™ markers) and trot (“circle” markers) for all horses on treadmill.
For each of four limbs marked as “FL”, “FR”, “HL", and “HR™, the plotted data follow the order of shoulder/hip, elbowistifle, carpus/tarsus, fetlock, and
coffin joint angles. (a) Absolute estimation errors under normal gaits. (b) Relative estimation errors under normal gaits. (c) Absolute estimation errors for

abnormal gaits. (d) Relative estimation errors under abnormal gaits.

the IEV values for some hindlimb joints (tarsus, fetlock and
coffin) are larger than the reported values. The IAV and IEV
values for the walk gait are similar to or smaller than those for
trot. Fig. 15 shows the calculated VR metric for all 20 joints
for walk and trot gaits under normal and abnormal conditions
using the estimated joint angles. For normal trot, the VR values
demonstrate similar trends and ranges reported in [15], [16].

We also notice that most VR values for normal walk are
slightly larger than those for normal trot. This is consistent
with the reported results that reducing velocity would decrease
the gait variability [48]. Furthermore, the VR values under
abnormal conditions are in general larger than those under
normal conditions for both walk and trot. This observation is
also consistent with the IAV and IEV metrics.
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Fig. 14. Fetlock angle estimation ffe (in deg) comparison for normal and abnormal conditions. (a) Walk and (b) trot gaits.
TABLE IV
IAV AND IEV FROM THE ESTIMATED JOINT ANGLES FOR ALL HORSES UNDER NORMAL AND ABNORMAL CONDITIONS FOR WALK AND TROT
Forelimb Hindlimb
Gait F F F F F H H H H H
Osha | Ow Ocar Oret Ocot | Onip | Os | Orar | OFet Ocof
Normal IAV | 1.44 | 475 4.21 3.00 5.17 1.52 3.40 3.94 | 426 8.38
walk IEV | 5.65 | 440 | 7.18 | 525 | 874 | 815 | 3.92 | 475 | 5.25 | 9.42
Abnormal | TAV | 4.21 | 14.52 | 11.01 | 7.31 11.12 | 3.60 | 568 | 7.53 | 5.38 | 11.78
walk IEV | 6.40 | 15.76 | 12.34 | 10.94 | 13.13 | 7.27 | 5.61 9.13 | 6.67 | 12.49
Normal 1AV | 1.29 | 3.19 3.19 3.96 544 | 1.74 | 3.21 | 446 | 4.51 6.50
trot IEV | 461 | 5.82 4.34 5.14 6.32 | 542 | 422 | 11.2 | 133 | 14.14
Abnormal | 1AV | 235 | 8.10 10.43 | 8.33 10.17 | 5.20 | 6.55 | 9.13 | 7.20 | 12.31
trot IEV | 6.54 | 11.15 | 10.39 | 9.00 | 12.34 | 9.62 | 13.40 | 9.31 | 10.32 | 14.65
VII. DISCUSSION 04 = | = 1 = | B
In the proposed multi-layer structure, each classifier is 0.3 FL .
. . . = — NW
a binary classifier and.Flg. 16 shqws thf: precision and & o2f| Jynr i
recall (PR) curve comparison of the gait classier, and lameness ol |
detection classifiers in walk and trot. The PR curves of ) . ' ; ' s} % YRR
the LSTM-based classifier performs similar to the DCNN Y ——— B ——
classifier, maintaining almost 100% for all recall values, which 0sl FL FR ] HL HR |
outperform the classical feature-based classifier. To compare . ‘
the performance with the existing wearable sensor-based = 02 ) 7
approach, we follow the methods described in [49] to compute 01f 1
the maximum difference of withers (i.e., WDmax) between o T v 54t I tr [ legsdintss
two consecutive peaks in a gait cycle. Since the change of Four-limb joint angles
WDmax is one of the indications for forelimb lameness, Fig. 15. Calculated VR values for all joints for walk and trot gaits under

it is used for the lameness detection [49]. We set the mean
and standard deviation of WDmax as 3.6 &= 12.5 mm for
all normal gait cycles as a threshold to evaluate detection
accuracy. Using the same data set, the calculation results in
Ywbmax = 72% of accuracy. Therefore, the proposed machine
learning-based approaches in this study outperform the result
by using asymmetric time-domain feature (i.e., WDmax).
The joint angle estimation is built on the learned latent
manifolds (1) for each gait activity. Figs. 17(a) and 17(b) show
the learned manifolds for walk and trot, respectively. The latent
manifolds under both the normal and abnormal conditions
are included in the figure. Both manifolds are 4-dimensional
closed curves (the fourth dimension is shown by the colored
value for each point). It is clear that manifolds are regular

normal and abnormal conditions. The top plot shows the normal walk (NW)
and normal trot (NT) and the bottom for abnormal walk (AW) and abnormal
trot (AT).

closed curves because of periodic, symmetric motion for walk
and trot. Under the abnormal condition, the manifold curves
look close to these under normal walk or trot with small
variations.

Using the symmetry property, it was reported in [24] to
use a single IMU to estimate the lower-limb joint angles for
human walk gaits. Therefore, it is of interests to understand
whether a single limb IMU is capable to estimate all limb joint
angles. Figs. 18(a) and 18(b) show the total estimation errors
of left and right limbs for 10 joint angles of forelimb and
hindlimb by using different gyroscope measurements for walk
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Fig. 16. PR curve comparison among various classification methods for (a) gait classification, lameness detection in (b) walk and (c) trot.
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Fig. 17. Latent manifolds for (a) walk and (b) trot for normal and abnormal
conditions.

under normal and abnormal conditions, respectively. Under the
normal condition (Fig. 18(a)), the prediction errors by using
four gyroscopes’ z-axis component (labeled as “Gyro-z”) are
at the same level to these by using a single gyroscope on
each limb (labeled as “FL/FR/HL/HR gyro-z”). Therefore, it is
feasible to use one IMU to estimate all joint angles under
normal gait condition. On the other hand, when a plastic shoe
was on the left forelimb (Fig. 18(b)), only the estimation error
using the gyroscope on the same limb has the similar level by
using all gyroscopes. Using gyroscope measurements on other
limbs (i.e., FR, HL or HR) however generates much larger
errors. The main reason for large estimation errors is due to
that the gyroscopes on other limbs cannot precisely capture the
joint angles for the limb with plastic shoe. This result implies
that when the lameness occurrence and location is unknown,
four limb gyroscopes are necessary for obtaining accurate pose
estimation.

Meanwhile, for lameness detection, we similarly try to
reduce the number of the used wearable IMUs. Fig. 18(c)
shows the lameness detection inaccuracy rates under using
combinations of accelerometer measurements from different
limb IMUs. The lameness was introduced on the left or the
right forelimb. Detection inaccuracy rates of the three layers
(GC, LDW, LDT) and overall lameness detection are plotted
under four combination cases: using the left or right forelimb
IMU accelerometer to detect the case when a plastic shoe was
on left or right forelimb. When the IMU accelerometer on
the limb with the shoe was selected and used for detection
(ie., FL-L and FR-R), the lameness detection accuracy is
high (over 90%). However, when the IMU accelerometer on
the other limb (i.e., FL-R and FR-L) was used for detection,
the accuracy rate dropped significantly (overall rates dropped

below 80% and 40%, respectively). We also tried to use the
IMU accelerometers attached on hindlimb and the accuracy
rates dropped even further. Those results imply that four
limb IMUs are necessary if lameness or abnormal gait might
occur to any limb. It is also of interests to notice from
Fig. 18(c) that the gait classification (GC) accuracy by using
any combinations of the IMU accelerometer data is over 99%
and this implies that the walk and trot gaits are easily classified
even with one IMU attached on any of four limbs.

The outdoor experiments were conducted on the unpaved
dirt road with small pebbles and the indoor experiments on the
treadmill. We consider the influence of terrain conditions on
joint angle estimation. Fig. 19 shows the joint angle estimation
errors (mean and one standard deviation) for walk gait in
indoor and outdoor experiments. The estimation errors for
indoor experiments are calculated as the difference with the
ground truth, while for outdoor experiments as the difference
with the indoor estimates because of no ground truth in
outdoor experiments. The mean and standard deviation values
maintain at the similar levels for all joint angles in indoor
and outdoor experiments. Because its proximity to terrain
surface, we further consider the hoof angle estimates and
conduct hypotheses testings of the differences between any
two data sets of the indoor ground truth, and the estimates in
indoor and outdoor experiments. The testing results show no
significant differences at the 95% confidence level and the p-
value is 0.98. The plausible explanations for these comparison
results include: (1) the difference of the terrain conditions is
not significant to cause any pose changes for trot or walk
gaits, and (2) the IMU measurements do not capture the
pose change given a limited number of the sensors used.
Further experiments are needed to test the influence of terrain
conditions on the pose estimation scheme.

Given low-cost of video cameras and fast growing compu-
tational capability, the vision-based method has been used for
animal lameness detection, e.g., [50], [51]. Comparing with
the vision-based lameness detection, the wearable IMU-based
approach has several advantages. First, one single camera
only obtains a partial view of the horse motion. To obtain
all limb motion data, multiple cameras are needed to place
around a horse and imaging acquisition and processing have
to be synchronized among cameras. Second, the wearable IMU
measurements provide more sensitive and accurate gait event
detection such as toe touch-down and heel lift-off than vision-
based methods, which is particularly attractive for equestrian
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Fig. 19. Indoor and outdoor joint angle estimation errors (mean and standard
deviation) for normal walk gait.

training on sandy ground. Finally, the IMU measurement data
size is much smaller compared with the video/image data and
therefore, the computational cost is low and can be used in
outdoor farming field without the need of infrastructure setup
to install ground cameras.

The induced horse lameness in this study was not from
pathological conditions and indeed it was gait alterations.
Lameness considered here represents a symptom of any devi-
ation of the normal gait, namely, abnormal gait. This is
consistent with recent discussion in [3]. Although the lameness
detection and pose estimation design has been successfully
demonstrated, this study has several limitations. First, the
lameness detection and pose estimation results were primarily
built on treadmill and limited outdoor experiments. In experi-
ments, we only tried to put the plastic shoe on the forelimb to
induce the lameness gaits. It is a limitation for not including
experiments to introduce additional abnormal conditions on
hindlimb or multiple shoes at the same time to comprehen-
sively validate the detection and estimation approach. This
study does not consider and address the accuracy issues
from the motion capture markers that are attached on horse
skin. The LSTM-based lameness detection and GPDM pose
estimation methods have the attractive property for real-time
applications but the presented results in this paper are not from
real-time implementation. Finally, only walk and trot gaits are
used as examples to test and validate the design and both gaits
are symmetric locomotion. It is of interests to extend and apply

the proposed lameness detection and pose estimation approach
to other types of horse gaits, particularly asymmetric gaits.

VIII. CONCLUSION

We presented a learning-based multi-layer classifier for
horse limb lameness detection and a limb pose estima-
tion scheme for walk and trot. The lameness and gait
activity detection scheme used indoor and outdoor motion
data collected by a set of four wearable IMUs on limbs.
The multi-layer classifier enabled to transfer the origi-
nal multi-class classification problem into three indepen-
dent binary classification sub-problems to recognize horse
gaits, and step-by-step detect and identify lameness. Both
the RNN-LSTM and the feature-based SVM/KNN algorithms
were used to implement the multi-layer classifiers. The limb
pose estimation was built on the learned motion latent man-
ifolds with the detected gait activity. We tested the lameness
detection and pose estimation design by extensive experiments
under normal and induced lameness conditions. Both the
RNN-LSTM and feature-based detection algorithms achieved
more than 94% detection accuracy. The estimated joint angle
errors were also less than 5 and 10 degs for under normal
and abnormal conditions, respectively. Besides high accuracy
and many other advantages by using wearable limb IMUs, the
proposed RNN-LSTM lameness detection and the manifold
learning-based pose estimation method is potentially capable
for real-time applications.
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