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Abstract

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus dis-
ease 2019 (COVID-19). Imaging tests such as chest X-ray (CXR) and computed tomogra-
phy (CT) can provide useful information to clinical staff for facilitating a diagnosis of COVID-
19 in a more efficient and comprehensive manner. As a breakthrough of artificial intelligence
(Al), deep learning has been applied to perform COVID-19 infection region segmentation
and disease classification by analyzing CXR and CT data. However, prediction uncertainty
of deep learning models for these tasks, which is very important to safety-critical applica-
tions like medical image processing, has not been comprehensively investigated. In this
work, we propose a novel ensemble deep learning model through integrating bagging deep
learning and model calibration to not only enhance segmentation performance, but also
reduce prediction uncertainty. The proposed method has been validated on a large dataset
that is associated with CXR image segmentation. Experimental results demonstrate that the
proposed method can improve the segmentation performance, as well as decrease predic-
tion uncertainty.

1 Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease
2019 (COVID-19) which was first identified in 2019 in Wuhan, Central China [1]. It is spread-
ing globally, resulting in more than 458 million confirmed infections and 6 million deaths, and
causing huge economic loss. Although global economics seems to be recovered gradually,
early and accurate tests of this disease such as reverse transcription-polymerase chain reaction
(RT-PCR), antigen tests, and medical imaging tests must be improved to be ready for future
pademics [2, 3]. Compared to RT-PCR tests, medical imaging tests such as chest X-ray (CXR)
and computed tomography (CT) are more effective and efficient [4, 5], especially for severe
patients, which is of great help to physicians. For instance, in Italy, the United States, and
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China, the majority of serious COVID-19 cases have been identified through the manifestation
characteristics in CT images [6]. Therefore, effective extraction of COVID-related information
on medical images will play an important role to fight against a new round of pandemic caused
by COVID mutated variant [7].

Deep learning (DL) played an important role in promoting COVID-related information
extraction by COVID-19 infection region segmentation and disease classification through ana-
lyzing CXR and CT data [8, 9]. Compared with CT images, CXR images are easier to obtain in
radiological inspections. Currently, most of DL models, especially convolutional neural net-
works (CNN), were employed to classify entire CXR images to detect COVID-19 cases [10,
11]. For example, Hemdan et al. proposed COVIDX-Net to assist radiologists to diagnose
COVID-19 based on CXR features [12]. It integrated various deep convolutional neural net-
works (DCNNs) models with different structures, such as DenseNet201 [13], Xception [14],
and MobileNetV2 [15]. Sethy et al. integrated different DCNNs models with a support vector
machine (SVM) classifier to recognize COVID-19 [16]. In addition, to address the shortcom-
ings of training data, Castiglioni et al. employed transfer deep learning techniques for
COVID-19 classification, where the pretrained models were built based on ResNet on Ima-
geNet datasets [17]. Ioannis et al. comprehensively evaluated transfer learning based COVID-
19 classification by investigating 5 DCNN models, including VGG19, MobileNetV2, Incep-
tion, Xception, and InceptionResNetV2 [18]. Similarly, Narin et al. applied 3 typical pretrained
DCNN models (i.e., ResNet50, InceptionV3, and InceptionResNetV2) to classify COVID-19
on a small-scale CXR dataset [19]. Irfan et al. implemented a hybrid COVID-19 classification
model by using a multi-model (CNN + LSTM) [20]. Almalki et al. used Inception-ResNet
block with an extra number of layers branches that consisted of the convolutional layer for
COVID-19 classification [21]. Moreover, Lucy et al. [22] developed two-path semi-supervised
deep learning model to implement COVID-19 classification by using huge amounts of unla-
beled data.

Compared with CXR classification, CXR semantic segmentation is a more challenging task
that is to classify each pixel into predefined classes [23] to recognize region of interests (ROIs)
on CXR images, where a few previous work explored this task [24-26]. However, prediction
uncertainty of DL models for this task has not been comprehensively investigated since most
of DL models focus on performance improvement on this task such as increasing detection
accuracy. For safety-critical applications like medical image processing, the prediction uncer-
tainty of DL models is a key evaluation metic on reliability of model predictions since high pre-
diction uncertainty means low prediction reliability. For example, for COVID-19 applications,
applying uncertain predictions to clinical processes would result in disastrous consequences
such as missing severe COVID cases or delayed treatments.

This paper proposed a novel ensemble deep learning model that integrates bagging deep
learning [27] and model calibration [28] to enhance performance of semantic segmentation, as
well as reduce prediction uncertainty. It includes three stages shown in Fig 1: 1) training multi-
ple state-of-the-art DL models such as fully convolutional networks (FCN) [29], FCN com-
bined with ResNet [30], FCN combined with MobileNet [29], PSPNet [31], and UNet [32] on
training CXR datasets; 2) Calculating calibration errors to measure prediction uncertainties of
these DL models on validation CXR datasets, where expected calibration error (ECE) and
maximum calibration error (MCE) [28] are employed to measure the prediction uncertainties;
3) Implementing calibrated bagging deep learning with weighted voting, where the weight of
each DL model is inversely proportional to the calibration error. The proposed model is vali-
dated on a large-scale CXR dataset to examine its effectiveness. Experimental results demon-
strate that the proposed method not only enhances the performance of semantic
segmentation, but also improves the prediction certainty on CXR data.
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Fig 1. Diagram of building and testing calibrated bagging deep learning based on calibration error (CE). SR
denotes segmentation result generated by individual deep learning model.

https://doi.org/10.1371/journal.pone.0276250.g001

The contributions in this study are below.

o We systematically compared performance of various state-of-the-art DL models for semantic
segmentation on COVID-19 CXR data with different evaluation metrics. Moreover, the pre-
diction uncertainties of these DL models were investigated by measuring expected calibra-
tion error (ECE) and maximum calibration error (MCE).

« We implemented a novel ensemble deep learning model based on model calibration and
bagging deep learning, which is to calibrate bagging deep learning models through weighted
summation of predictions generated by individual models. The proposed approach is easily
implemented and scalable to various tasks.

We validate the proposed method with semantic segmentation on a large COVID-19 CXR
dataset based on different evaluation metrics. Experimental results demonstrate its effective-
ness on improving performance and prediction certainty, simultaneously.

2 Methodology

The proposed method is built based on calibration error [33-35] and bagging deep learning
[27] to enhance image segmentation with higher prediction certainty.
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2.1 Calibration error

In the processing of model calibration, the expected calibration error (ECE) and the maximum
calibration error (MCE) can be employed to measure the quality of uncertainty for machine
learning models in terms of prediction accuracy [36], which is critical for high risk applications
such as medical diagnosis [34, 35] and self-driving [37].

« Expected Calibration Error (ECE). It estimates the calibration error in expectation values
with three steps: 1) Discretizing the prediction probability region into a fixed number of
bins; 2) Assigning each predicted probability to one of these bins; 3) Calculating the differ-
ence between the fraction of predictions in the bin that are correct (accuracy) and the mean
of the probabilities in the bin (confidence) by

K

ECE = Z% lacc(k)  —conf (k)| (1)

k=1

where 7y, is the number of predictions in bin k, N is the total number of samples predicted,
and acc(k) and conf(k) denonte the accuracy and confidence in the bin k, respectively. It is a
weighted average of differences of accuracy vs confidence in these bins.

o Maximum Calibration Error (MCE). It measures an upper bound of ECE that is the maxi-
mum difference between accuracy and confidence over all predictions across all bins.

MCE = r?ialx|acc(k) —conf (k)| (2)

In summary, MCE measures the largest calibration gap across all bins, whereas ECE mea-
sures a weighted average of all gaps. Both MCE and ECE equal 0 if the model is perfectly
calibrated.

2.2 Bagging learning

Ensemble deep learning combines several individual deep models to improve generalization
performance through various ensemble strategies such as bagging and boosting, which inte-
grates the advantages of both deep learning and ensemble learning [27]. Bagging (or bootstrap
aggregating) generates a series of independent subsets from training data to build multiple
individual predictors to build an ensemble model [38]. In detail, it generates the bagging sam-
ples and passes each bag of samples to base models to build multiple predictors. Then, it is to
combine predictions of these multiple predictors with specific strategies such as majority vot-
ing. Fig 2 presents a diagram for building and testing bagging deep learning with majority vot-
ing, where multiple training sets can be generated by sampling with or without replacement.

2.3 Proposed model

We proposed a calibrated bagging deep learning model to enhance generalization performance
as well as reduce prediction uncertainty for COVID-19 semantic segmentation that is to recog-
nize lung region of CXR images. Fig 1 presents the flow for building the proposed approach. It
includes three stages: 1) training various state-of-the-art deep learning models such as UNet

[32], PSPNet [31], and MobileNet [29], on an identical training data for COVID-19 image seg-
mentation models, which differs from the standard strategy for bagging learning that is to gen-
erate a bag of training sets on original training data; 2) Estimating calibration error (CE) for

these different models. First, it is to complete COVID-19 semantic segmentation on validation
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Fig 2. Diagram for building a bagging deep learning model. The model can be different deep learning models such
as convolutional neural networks (CNN) and recurrent neural networks RNN) for different applications.
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data by running these DL models to obtain prediction probabilities and accuracy. Then, it cal-
culates CE including ECE and MCE to evaluate uncertainties of these DL models; 3) Testing
via weighted voting bagging deep learning. We perform calibrated bagging prediction on test-
ing data through implementing weighted voting, where the weights are built with CE of these
DL models. It assumes that lower CE of DL models means higher certainty of these DL models.
Moreover, DL models with the higher certainty are assigned with more weights. Therefore, we
define the weight of ith model as CLE‘_, where CE,; is the calibration error for ith model. For

COVID-19 semantic segmentation, it is to classify each pixel into either Lung or NonLung. If

S & > S Nonkung CLE] for one pixel in a CXR image, this pixel is classified as Lung, otherwise,

Non-Lung.
More details on building calibrated bagging deep learning is illustrated in Algorithm 1,
where M denotes the number of the-state-of-art deep learning models involved.

Algorithm 1 Building calibrated bagging deep learning
Require: Training set Di,sining @and validation set Dy,
Ensure: Calibrated bagging deep learning
1: for m «+— 1 to M do
2 Setting hyper-parameter (HP) for DL,
3 Training DLy, ON Diraining
4: Calculating CE, of DL, on Dy.;
5: end for
6: return DL models DL = {DL,, DL,, ..., DLy} and corresponding CE =
{CE,, CE,, ..., CEy}

3 Experiment
3.1 Dataset

We employed COVID-19 chest X-ray dataset (https://github.com/v7labs/covid-19-xray-
dataset) to validate the effectiveness of the proposed method. It includes 6, 402 images of AP/
PA chest x-rays/CT scan with pixel-level polygonal lung segmentations. Each image has a cor-
responding ground truth with two “Lung” segmentation masks (rendered as polygons,
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(a) original image (b) ground truth

Fig 3. An example of CXR image and corresponding ground truth. (a) original image. (b) ground truth.
https://doi.org/10.1371/journal.pone.0276250.9003

including the posterior region behind the heart), where the masks include most of the heart,
revealing lung opacities behind the heart which may be relevant for assessing the severity of
viral infection. Fig 3 shows one example of CXR image and corresponding ground truth. In
terms of the example, semantic segmentation on CXR images is to classify pixels in the original
image into two classes: Lung (white region in ground truth) and NonLung (black region in
ground truth).

We split the dataset into training (70% data), validation (10% data), and testing (20% data)
datasets.

3.2 Experimental settings

We employed five state-of-the-art individual models as baselines to evaluate performance of
semantic segmentation, namely, UNet [32], PSPNet [31], FCN32 [39] (FCN with 32xupsam-
pling), FCN32_ResNet50 (FCN32 combined with ResNet50 [30]), FCN32_MobileNet(FCN32
combined with MobileNet [29]), and an ensemble baseline built based on majority voting,
where the ensemble baseline is built based on bagging learning with these results generated by
these five baselines (UNet, PSPNet, FCN32, FCN32_ResNet50, and FCN32_MobileNet).
Moreover, key hyper-parameters of these individual models are shown in Table 1.

We implemented two versions of the proposed approach including Ensemble (Weighted
Voting (ECE), EECE) and Ensemble (Weighted Voting (MCE), EMCE). EECE is a weighted
bagging learning method, where the weights are obtained by calculating expected calibration
error (ECE). Similarly, EMCE is a weighted bagging learning method, where the weights are
obtained by calculating maximum calibration error (MCE). Moreover, we combine the predic-
tions of Ensemble (Majority Voting (MV), EMV), EECE, and EMCE by majority voting to
build Ensemble (Majority Voting + ECE + MCE (MVEM), EMVEM).

3.3 Evaluation metric

Various evaluation metrics are employed to evaluate the performance of our proposed model,
which includes accuracy, Flscore, sensitivity, and specificity. Accuracy is calculated by

Table 1. Hyper-parameters of baselines for COVID-19 image segmentation.

Model

UNet

PSPNet

FCN32

FCN32_ResNet50 (F32_R50)
FCN32_MobileNet (F32_M)

https://doi.org/10.1371/journal.pone.0276250.t001

Learning Rate Batch Size Epoch
le-3 2 50
le-3 2 70
le-3 2 50
le-3 2 50
le-3 2 50
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dividing the number of pixels identified correctly over the total number of pixels in chest X-
ray images.

N
Accuracy =~ (3)

total

2 X Precision x Recall
Fscore = — . (4)
Precision + Recall

where Precision defines the capability of a model to represent only correct pixels and Recall
computes the aptness to refer all corresponding correct pixels.

TP

Precision = ——. 5
recision = oo (5)
TP
Recall = ————. (6)
TP 4+ FN

whereas TP (True Positive) counts the total number of pixels that matches the annotated pixels
of RIOs. FP (False Positive) measures the number of pixels that don’t belong to RIOs, but are
recognized as pixels of RIOs. FN (False Negative) counts the number of pixels of RIOs are rec-
ognized as those don’t belong to RIOs. The main goal for binary classification is to improve
the recall without hurting the precision. However, recall and precision goals are often conflict-
ing, since when increasing the true positive (TP) for the minority class (True), the number of
false positives (FP) can also be increased; this will reduce the precision [40].

Moreover, we employed sensitivity and specificity to evaluate performance of semantic seg-
mentation [41], where the sensitivity measures how good a test is at detecting the RIOs while
the specificity refers to how good a test is at avoiding false alarms.

TN
Specificity = ———. 7
pecifcity = o )
TP
Sensitivity = ———. 8
ensitivity = zp——s (8)

whereas TN (True Negative) counts total number of pixels that don’t belong to RIOs and are
recognized as those don’t belong to RIO:s.

Finally, we employ expected calibration error (ECE) and MCE (https://www.tensorflow.
org/probability/api_docs/python/tfp/stats/expected_calibration_error) to measurethe calibra-
tion errors [28] for evaluating the prediction uncertainty, where ECE and MCE are defined as
equations (1) and (2), respectively. The lower ECE and MCE are, the higher prediction cer-
tainty is.

3.4 Experimental results

We validate the proposed method from two perspectives: comprehensive performance com-
parison between the baselines and the proposed method, and hyper-parameter examination.
3.4.1 Performance comparison. Table 2 presents the performance comparison between
the state-of-the-art individual models and the proposed method in terms of various evaluation
metrics and corresponding standard deviations. We can observe that these individual models
can perform well on COVID-19 image segmentation regarding Flscores and Accuracy. More-
over, prediction uncertainties of most of them are promising with respect to ECE and MCE.
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Table 2. Comparing performance between the baselines and the proposed method based on various evaluation metrics and corresponding standard deviations.
F32_R50 and F32_M denotes FCN32_ResNet50 and FCN32_MobileNet while EMV, EECE, EMCE), and EMVEM denotes Ensemble (Majority Voting (MV), EMV),
Ensemble (Weighted Voting (ECE), EECE), Ensemble (Weighted Voting (MCE), EMCE), and Ensemble (Majority Voting + ECE + MCE (MVEM), EMVEM).

DL Accuracy (%) Sensitivity (%) Specificity (%) Flscore (%) ECE (%) MCE (%)
UNet 95.4+2.5 90.7£3.9 88.9+4.5 93.4+£3.0 3.2+1.3 39.7+£18.8
PSPNet 95.0£2.0 89.1£3.9 88.2+4.3 92.5+2.9 4.6x£1.2 40.6+14.9
FCN32 95.8+2.4 92.3+4.5 91.0+5.0 94.0£3.5 2.5%2.1 37.6£19.1
F32_R50 96.0£2.5 92.3£5.5 91.4£5.9 94.3+3.8 2.3%£2.3 29.8+£20.3
F32_ M 95.2+2.3 91.0+4.7 90.1£5.6 93.1+3.3 4.1£1.6 38.2£19.9
EMV 98.8+0.6 94.1+3.0 92.91£3.6 96.6+1.7 2.4+1.2 28.1+14.1
EECE 99.1+0.5 95.4+2.9 94.3£2.9 97.1+1.5 2.3£1.2 24.7+12.4
EMCE 98.7+0.7 93.9+3.7 92.613.7 96.3+1.9 24+1.2 28.9114.6
EMVEM 99.2+0.4 97.7+2.3 95.4+2.3 98.4+0.8 2.1+1.1 20.1£10.1

https://doi.org/10.1371/journal.pone.0276250.1002

For these individual models, FCN32_ResNet50 outperforms other individual models with
higher certainty. In addition, as one baseline, EMV performs better than other individual
methods with highest prediction certainty by comparing ECE and MCE. It means that com-
bining predictions of these individual models can effectively improve performance and predic-
tion certainty in regard of Flscore and ECE.

For the proposed method, EECE can perform better than the baselines including these indi-
vidual models and EMV by comparing accuracy, recall, and Flscore. Moreover, EECE is able
to improve the prediction certainty. It means that using appropriate calibration errors as
weights to implement weighted bagging deep learning can effectively improve prediction cer-
tainty as well as performance. In other words, it is an effective method to calibrate models by
using appropriate calibration errors as weights to combine predictions. Furthermore,
EMVEM obtains the optimal performance with highest prediction certainty. It indicates that
ensemble strategy such as majority voting is effective to combine predictions to further
improve performance and prediction certainty. Moreover, EMVEM performed more stable
since the standard deviations of performance and calibration errors are lower than those of
baselines.

In addition to the performance comparison, we show an example of prediction visualiza-
tion on semantic segmentation generated by the baselines and proposed models in Fig 4.

W,
-

¢

&«n
-
ﬂl ;

(a) original image

(b) ground truth

(f) PSNet (g) UNet (h) EMV (i) EECE (j) EMVEM

Fig 4. An example of prediction visualization on semantic segmentation generated by the baselines and proposed models. (a) original image, (b)
ground truth, (c) FCN32, (d) F32 R50, (e) F32 M, (f) PSNet, (g) UNet, (h) EMV, (i) EECE, (j) EMVEM.

https://doi.org/10.1371/journal.pone.0276250.9004
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When we examine the prediction visualization for these individual models, we can observe
that they miss some key components (yellow regions) for detecting lung. Taking UNet as an
example, through comparing the predictions with ground truth, key components highlighted
with yellow color are missed on subfigure (g). On the contrary, ensemble models such as
EMV, EECE, and EMVEM perform better in that regard of predictions since yellow regions in
their predictions are smaller, where the proposed method including EECE and EMVEM out-
perform other baselines. It means that the proposed method can effectively improve recall on
detecting lung by distributing contributions of prediction based on calibration errors such as
ECE and MCE.

3.4.2 Hyper-parameter examination. Fine-tuning hyper-parameter for building deep
learning models is an imperative step to obtain optimal performance. The process of building
the proposed method involved various hyper-parameters. For example, for each individual DL
model, we have to fine-tune learning rate, batch size, and epoch to achieve optimal perfor-
mance. Specifically, for the proposed bagging deep learning, how many individual models
involved is still an open challenge. Here, we examine if the number of individual models will
significantly affect the performance of the proposed method.

Table 3 presents the performance comparison for various bagging deep learning models
built with different number of individual models. Generally speaking, more individual models
will enhance performance and improve prediction certainty regarding Flscore and ECE.
When we employ five individual models (Ensemble 5 (FCN32_RESNETS50 + FCN32 +
UNet+ FCN32_MOBILENET + PSPNet)), we obtain the optimal performance and the highest
prediction certainty regarding values of accuracy, Flscore, and ECE for EECE and EMVEM,
where the values of Flscore are improved more significantly than other evaluation metrics.

Additionally, Fig 5 shows comparison of prediction visualization produced by the proposed
methods built with different number of individual models. It is observed that more individual

Table 3. Comparing performance of the proposed methods built with different number of individual models.

DL
F32_R50
EECE
EMCE

DL
EMV
EECE
EMCE
EMVEM

DL
EECE
EMCE

DL
EMV
EECE
EMCE
EMVEM

https://doi.org/10.1371/journal.pone.0276250.1003

Accuracy (%)
95.8+2.1
99.0+£0.5
98.8+£0.6

Accuracy (%)
98.7+£0.7
98.4+0.8
98.3£0.9
98.8+0.6

Accuracy (%)
98.3+0.9
97.9+1.1

Accuracy (%)
98.8+£0.6
99.1+£0.5
98.7+£0.7
99.2+0.4

Ensemble 2 (FCN32_RESNET50 + FCN32)

Sensitivity (%) Specificity (%) Flscore (%) ECE (%) MCE (%)
92.3£3.9 91.0£4.5 94.0+£3.0 2.5+1.3 37.6£18.8
95.3+2.4 94.4+2.8 96.9+1.6 2.3+1.2 22.3+11.3
93.8+3.1 93.7+£3.2 96.4+1.8 2.5+1.3 25.1£12.6

Ensemble 3 (FCN32_RESNET50 + FCN32 + UNet)

Sensitivity (%) Specificity (%) Flscore (%) ECE (%) MCE (%)
93.9+3.0 94.1+3.0 96.1£2.0 2.7+1.4 31.1+15.6
95.5+£2.3 94.9+2.6 96.9+1.6 2.8+1.4 26.1£13.1
93.1+3.5 93.0£3.5 96.0£2.0 2.8t1.4 31.2£15.6
97.6x1.2 96.4£1.8 98.1+1.0 2.1£1.1 21.1£10.6

Ensemble 4 (FCN32_RESNET50 + FCN32 + UNet + FN32_MOBILENET)

Sensitivity (%) Specificity (%) Flscore (%) ECE (%) MCE (%)
95.0+2.5 94.612.7 96.5+1.8 2.7+1.4 24.3%£13.5
94.1+3.0 93.84£3.1 96.1£2.0 3.0£1.5 32.3%£15.0

Ensemble 5 (FCN32_RESNETS50 + FCN32 + UNet + FCN32_MOBILENET + PSPNet)

Sensitivity (%) Specificity (%) Flscore (%) ECE (%) MCE (%)
94.1+£3.0 92.9+3.6 96.6+1.7 2.4+1.2 28.1+14.1
95.4+2.9 94.3+2.9 97.1+£1.5 2.3+1.2 24.7+12.4
93.9£3.7 92.6+3.7 96.3+1.9 2.4+1.2 28.9+14.6
97.7+£2.3 95.4+2.3 98.4+0.8 2.1+1.1 20.1£10.1
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(b) ground truth

(g) EECE5 (h) EMCE_5 (i) EMVEM_5

Fig 5. Comparison of prediction visualization produced by the proposed methods built with different number of
individual models. For instance, in the second row, it presents the prediction results generated by ensemble models
that are built with three individual models, namely, FCN32_RESNET50, FCN32, UNet with voting strategies. In the
predictions, purple color, yellow color, and green color denotes background, incorrect prediction, and correct
prediction, respectively, where the smaller region of yellow color means higher performance. (a) original image, (b)
ground truth, (c) F32 R50, (d) EECE 3, (e) EMCE 3, (f) EMVEM 3, (g) EECE 5, (h) EMCE 5, (i) EMVEM 5.

https://doi.org/10.1371/journal.pone.0276250.9005

models involved in the proposed approach will reduce the size of missing components. More-
over, EMVEM outperforms other ensemble methods, which means that majority voting based
on more individual DL models can further enhance the performance of recognition of RIOs.

In summary, in terms of observations mentioned above, the proposed method can effec-
tively improve semantic segmentation, as well as reduce the prediction uncertainty through
using the calibration error as weights of DL models to combine their predictions. Moreover,
more individual DL models involved in the implementation of the proposed approach can fur-
ther enhance the performance and prediction certainty, which meets the intuition of majority
voting for bagging deep learning. To some extent, it is an effective method to combine advan-
tages of these individual DL models to improve the task performance without complex
implementations.

4 Related work

This paper aims to build a novel bagging learning method to implement COVID-19 semantic
segmentation through combining bagging deep learning and model calibration. Semantic seg-
mentation has achieved significant successes by developing deep learning models such as
U-Net [32] and V-Net [42]. In the biomedical domain, there have been numerous techniques
for lung segmentation with different purposes [43, 44]. The U-Net is an effective technique for
segmenting both lung regions and lung lesions in COVID applications [45]. The U-Net built
with fully convolutional network [32] has a U-shape architecture with two symmetric paths:
encoding path and decoding path. The layers at the same level in two paths are connected by
the shortcut connections, which is to learn better visual semantics as well as detailed
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contexture. Zhou et al. [46] proposed the UNet++ that inserts a nested convolutional structure
between the encoding and decoding path. In addition, Milletari ef al. [42] built V-Net using
the residual blocks as the basic convolutional block, and optimized the network by a Dice loss.
Furthermore, Shan et al. [47] built VB-Net for more efficient segmentation by equipping the
convolutional blocks with the so-called bottleneck blocks. Moreover, U-Net and its variants
have been developed, achieving reasonable segmentation results in COVID-19 diagnosis [48].
In recent years, attention mechanisms can learn the most discriminant part of the features in
deep learning models. Oktay et al. [49] proposed an Attention U-Net to capture fine structures
in medical images, thereby suitable for segmenting lesions and lung nodules in COVID-19
applications.

Safety-critical applications like medical image processing [50], autonomous driving [51],
and precipitation forecasting [52] not only require high accuracy, but also need high predic-
tion uncertainty measured by the model calibration. Two categories of methods are proposed
to calculate the model calibration, namely, Bayesian-based and Non-Bayesian-based. Bayes-
ian-based methods refer to Bayesian neural networks that estimates prediction/model uncer-
tainty based on Bayesian process. The main concern of such methods is associate with its high
computation complex and prior assumption on model weights. To reduce the computation
complexity and enhance the scalability of Bayesian neural networks for data analysis on larger
datasets, Hernandez-Lobato et al. [53] proposed probabilistic back-propagation for learning
Bayesian neural networks. Non-Bayesian-based methods develop various strategies such as
model ensemble [54] and prior assumption on predictions [55] to estimate the prediction
uncertainty, which is to reduce the cost of estimating the uncertainty. To reduce computation
cost and training difficulty, Lakshminarayanan et al. [54] proposed deep ensemble that is sim-
ply to implement, trained in a parallel manner, requires less hyper-parameter tuning, and esti-
mates high quality predictive uncertainty. However, it is very tricky to obtain the optimal
number of individual models to build deep ensemble for various applications. Moreover, to
reduce the cost of the memory usage and inference of Bayesian neural networks and deep
ensembles, Liu et al. [56] proposed approaches to estimate uncertainty by building only one
neural networks with two steps: 1) Measuring the distance between testing samples and train-
ing samples; 2) Implementing spectral-normalized neural Gaussian process (SNGP) that is to
improve the measurement of the distance by adding a weight normalization step during train-
ing and replacing the output layer with a Gaussian process. However, experimental results on
dialog intent detection indicated that deep ensemble performed better than the proposed
method on many evaluation metrics such as accuracy. Recently, Wilson et al. [57] systemati-
cally summarized Bayesian deep learning and claimed that deep ensemble can be treated as
approximate Bayesian marginalization of model parameters. On the other side, they also
claimed that Bayesian methods were not perfect regarding prior assumptions on model
weights.

In terms of previous work on model calibration and semantic segmentation, we proposed
the calibrated ensemble model to not only enhance performance on semantic segmentation,
but also reduce the prediction uncertainty.

5 Conclusion and future work

In this paper, a novel bagging deep learning model is proposed for COVID-19 image segmen-
tation on chest x-ray images. It combines the model calibration and traditional bagging learn-
ing to not only enhance the segmentation performance, but also improve the prediction
certainty that is extremely important to high-risk applications in biomedical domain. We vali-
date the proposed method on a large chest x-ray dataset that is associated with COVID-19.

PLOS ONE | https://doi.org/10.1371/journal.pone.0276250 November 16, 2022 11/14


https://doi.org/10.1371/journal.pone.0276250

PLOS ONE

Calibrated bagging deep learning for image semantic segmentation

Experimental results demonstrate that the proposed model could recognize the lung region
more effectively through comparing with state-of-the-art baselines. For the future work, we
plan to extend the proposed model for building an end-to-end model for both COVID-19
image classification and image segmentation.
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