








Linear regression was used to derive an empirical relationship between log10-transformed

COVID-19 laboratory-confirmed incidence rates and log10-transformed measured SARS-

CoV-2 N gene concentrations using data obtained by merging ten wells; relationships were

quantified for each POTW separately, and for the POTWs in aggregate. For the linear regres-

sion, NDs were substituted with half the theoretical lower measurement limit calculated for

X = 10. Using the empirical relationship between incidence rate and SARS-CoV-2 RNA con-

centration for the associated POTW, the lowest detectable COVID-19 incidence rate was esti-

mated based on the calculated theoretical lower measurement limits.

A logistic regression was used to model the fraction of samples that were assigned a concen-

tration (versus assigned ND) for X = 1–9 as a function of the true concentration of the sample,

defined as the concentration obtained using 10 wells. The concentration corresponding to a

detection frequency of 0.5 (C0.5) was calculated using the regression equation. For this analysis,

half of the theoretical lower measurement limit was substituted for the 6 NDs for X = 10. All

code for simulations and statistics is available through the Stanford Digital Repository (https://

purl.stanford.edu/km637ys9238).

The Institutional Review Board of Stanford University determined that this project does

not meet the definition of human subject research as defined in federal regulations 45 CFR

46.102 or 21 CFR 50.3 and indicated that no formal IRB review is required.

Results

QA/QC

We ran a total of 3–7 negative and 1 positive extraction controls, and 3–7 negative and 1 posi-

tive PCR controls per plate. All negative controls were ND and positive controls showed posi-

tive detections. BCoV was used as a process control to verify that the extraction was successful

and there was no gross inhibition in quantification. Samples that had less than 10% recovery of

BCoV were rerun; no sample had less than 10% recovery. No further correction or analysis of

BCoV recoveries are provided here given the complexities of interpreting recoveries of exoge-

nous controls [23]. PMMoV concentrations across samples are similar to those measured and

reported previously, also suggesting no gross issues with extraction or inhibition (Fig A in S3

Text). Data on N and PMMoV gene concentrations are available through the Stanford Digital

Repository (https://purl.stanford.edu/km637ys9238).

Measurement overview

A total of 327 samples from four different POTW were analyzed for the N gene of SARS-CoV-

2. When using ten wells, the SARS-CoV-2 RNA concentration ranged from ND to 3.05 x 105

(Dav), ND to 3.64 x 105 (Gil), ND to 1.93 x 105 (Ocean), and 3.09 x 103 to 2.00 x 105 cp/g dry

weight. A summary of SARS-CoV-2 RNA concentration for each month is shown in the SI

(Table C in S3 Text).

Simulation output trends at high and low concentrations

For each measurement, a thousand simulations were conducted to sample each possible num-

ber of merged wells (X = 1–9) and the results are reported as concentration in units of cp/g dry

weight (cp/g, hereafter). The resulting concentration distributions obtained for each X for

each measurement were not normally distributed based on Shapiro-Wilk tests (p< 0.05);

therefore, medians and interquartile ranges are used to describe the results. Simulation outputs

of example measurements for SARS-CoV-2 N gene in samples collected during a period of low

COVID-19 incidence (June 1, 2021) and high COVID-19 incidence (August 31, 2021); as well
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as example PMMoV gene measurements (June 6, 2021) are provided in Fig 1. The simulation

dispersion can be compared to the results obtained using 10 merged wells and its standard

deviation, defined by the total error as reported by the ddPCR instrument, which includes

errors associated with the Poisson distribution and variability among replicate wells.

There are several important insights to glean from these results. First, when the number of

positive droplets is less than 3 across the 10 wells (< 0.0015% of droplets positive), and the

measurement is deemed as ND (see Dav sample from June 1, 2021), the results obtained from

fewer wells agree with the results obtained from 10 wells. Second, when the number of positive

droplets is high (for example, for PMMoV where there are 104~105 positive droplets across 10

wells, 5–50% of droplets positive), then the dispersion as represented by the interquartile range

(IQR), in the simulations for X< 10 wells is similar to the standard deviation reported by the

instrument for X = 10 wells. Finally, when the number of positive droplets is intermediate to

Fig 1. Example output of simulation results to calculate the final concentration in wastewater solids. (Top)

SARS-CoV-2 N gene in June 1, 2021 sample during low COVID-19 incidence, (middle) SARS-CoV-2 N gene in

August 31, 2021 sample during high COVID-19 incidence, and (bottom) for PMMoV in June 6, 2021 sample. For

X = 1–9, the circle in the box represents the median, and the top and bottom of the box represent 75th and 25th

percentile, respectively. Any X that resulted in ND in all simulations are marked with an unfilled circle. For X = 10, the

circle in the red box represents the software reported concentration from merging all ten wells, and the top and bottom

of the box represent upper and lower confidence intervals, respectively, from 68% total error as given by the

instrument software, which includes errors associated with the Poisson distribution and variability among replicate

wells. Percentage of positive droplets in 10 wells is shown in boxes within each plot.

https://doi.org/10.1371/journal.pwat.0000066.g001
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these two regimes (fraction of positive droplets between 0.0015% and 0.5%), then the IQR

increases as X decreases and is often greater than the standard deviation from the X = 10 well

measurement, particularly when X< 3. Below SARS-CoV-2 concentration of 104 cp/g (where

the fraction of positive droplets is 0.0062% - 0.024% depending on POTW), the value of X

below which the relative dispersion, defined by IQR divided by the median, is larger than the

standard deviation normalized by the measured concentration for X = 10 scales inversely with

SARS-CoV-2 N gene concentration (Fig B in S3 Text).

As PMMoV is present in such high concentrations and the measurements yielded high pos-

itive droplet counts, resulting in similar concentrations across X = 1–10, the remainder of this

analysis will focus on the SARS-CoV-2 N gene concentrations, as those measurements yielded

low to intermediate positive droplet counts.

Theoretical sensitivity

An empirical relationship between the log10-transformed COVID-19 incidence rate and

the log10-transformed SARS-CoV-2 concentration using ten merged wells was derived with

linear regression. The regression showed that for 1 log10 increase in SARS-CoV-2 RNA cp/g,

there was between 0.50 and 0.88 log10 increase in laboratory-confirmed COVID-19 incidence

rate (Table D in S3 Text), depending on the POTW. The data from all four POTWs appear to

fall on a single line when COVID-19 incidence rate is plotted against SARS-CoV-2 concentra-

tion (Fig C in S3 Text); when data from all POTW are combined, there was a 0.64 log10

increase in laboratory-confirmed COVID-19 incidence rate for 1 log10 increase in SARS-CoV-

2 RNA cp/g.

Theoretical lower measurement limit (Table E in S3 Text) and the corresponding incidence

rate lower limit (Table F in S3 Text) was calculated. The theoretical lower measurement limit

for each POTW ranged from 7500 (SJ) to 24000 (Gil) cp/g when using only one well and from

750 (SJ) to 2400 (Gil) cp/g when using ten merged wells. Since this theoretical lower measure-

ment limit was calculated with average solid content of samples from each POTW by measur-

ing the percent weight of the dewatered solids and assuming a total of 20 000 generated

droplets, the observed lower measurement limit may be different. The corresponding inci-

dence rate lower limit per 100 000, calculated using the empirical relationships in Table D in

S3 Text, ranged from 1.6 (SJ) to 6.9 (Gil) when using one well and from 0.2 (SJ) to 1.4 (Gil)

when using ten merged wells (Table F in S3 Text).

Association with clinical data

Time series of median concentrations resulting from a thousand simulations for each mea-

surement for all possible numbers of wells are provided in Fig D in S3 Text, with X = 1, 3, 6

highlighted in Fig 2. Lines representing low number of wells deviate from those representing

higher number of wells during the low incidence rate period in June 2021 when SARS-CoV-2

N gene concentrations in wastewater were relatively low. When the entire study period of June

1, 2021 to August 31, 2021 was considered, SARS-CoV-2 N gene concentrations were posi-

tively and significantly correlated with 7-day smoothed COVID-19 incidence rates at all four

POTWs regardless of X (Table G in S3 Text, tau> 0.54, p< 0.05 for all); X did not have an

effect on Kendall’s tau when considering the entire time series (tau changed by< 0.05 as X var-

ied). However, when considering the month of June alone when COVID-19 incidence rate

was relatively low, SARS-CoV-2 N gene concentrations were positively and significantly corre-

lated with 7-day smoothed COVID-19 incidence rates only when X> 1 (α = 0.1) and X did

affect tau by as much as 0.15 (Table H in S3 Text).
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Detection frequency

Detection frequency for SARS-CoV-2 N gene across all POTWs was examined as a function of

X and the true concentration of N gene, as defined by the concentration obtained using 10

merged wells (Fig 3). Logistic regressions were fit to the curves (Table I in S3 Text) and the

Fig 2. Time series of SARS-CoV-2 N gene concentration in wastewater solids. (Top to bottom) X = 1, 3, 6, for

wastewater SARS-CoV-2 gene concentration (cp/g dry weight) and 7 day centered smoothed average laboratory-

confirmed SARS-CoV-2 incidence rate for each of the four POTWs from June 1, 2021 to August 31, 2021. Note that

the SARS-CoV-2 N gene concentrations are displayed in log10-scale format for ease of visualization. Each wastewater

data point represents median SARS-CoV-2 RNA concentration for a single sample obtained from 1000 simulations;

for X = 10, each data point is the concentration obtained by merging 10 wells. Samples that resulted in ND were

substituted with zero. A figure showing all possible numbers of merged wells is included in the SI (Fig D in S3 Text).

https://doi.org/10.1371/journal.pwat.0000066.g002

Fig 3. Detection frequency for all samples across four POTWs against true concentration. True concentration is

defined as concentration obtained by merging all ten wells. Each data point shows the fraction of 1000 simulations that

did not result in ND in each well on the y-axis and its true concentration on the x-axis. ND for X = 10 was substituted

with half of the theoretical lower measurement limit. 95% confidence intervals of the logistic regression are shown as

the gray ribbon.

https://doi.org/10.1371/journal.pwat.0000066.g003
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Consistent with other studies, the wastewater concentration showed positive and significant

correlation with 7-day smoothed COVID-19 incidence rates [1–3, 8–12]. When there was vari-

ation in COVID-19 incidence rates within the time frame being investigated (here before and

during the Delta variant surge), the number of wells being used for the analysis did not affect

the magnitude or statistical significance of the correlation. There was a positive and significant

correlation even when using only one well because there was enough variation in both vari-

ables, although the majority of June measurements were characterized as non-detects. This

illustrates that finding a significant correlation between disease incidence and SARS-CoV-2

gene concentrations does not necessarily indicate good measurement sensitivity. It should be

noted that while we take the laboratory confirmed COVID-19 incidence rates to be reflective

of the level of COVID-19 that the community is experiencing, they are likely an underestimate

of incidence rates in the sewershed as the reported incidence rates are dependent on test-seek-

ing behavior and test availability [26].

The results described here on the effect of the number of wells used for ddRT-PCR on sensi-

tivity of PMMoV and SARS-CoV-2 measurements are extendable to other platforms and other

gene targets. Increasing the number of wells is analogous to increasing the volume of the PCR

reaction (for any PCR method) and increasing the number of (constant volume) partitions for

digital PCR applications. Although uncommon, some researchers have previously also used a

similar approach to increase sensitivity of qPCR by adding the resulting concentration of repli-

cates [27]. Similarly, the recommendations for increased sensitivity herein apply to other gene

targets. Generally, for any high copy number target, like PMMoV, increased sensitivity is gen-

erally not needed, so efforts to improve sensitivity through replication are unnecessary. Exam-

ples of other high copy targets in wastewater matrices include the 16S rRNA and crAssphage

genes. For lower copy number targets, or rare targets, increased sensitivity is likely needed par-

ticularly if the results will be used for disease surveillance. Examples include other viral targets

like norovirus and rotavirus RNA or bacterial targets like those for Salmonella or

Campylobacter.

There are a few limitations of this analysis. First, in our analysis, we assumed that the mea-

surement obtained using 10 wells is the “true concentration” and compared all results simu-

lated with fewer than 10 wells to the true concentration and its error from the ddRT-PCR

instrument. Second, the results presented herein regarding assay sensitivity, and in particular

the C0.5 values in Table 1 are specific to the methods applied in this study. The relationship

between the number of wells used to the number of non-detects, and the lowest measurable

concentration will be impacted by the pre-analytical and analytical processes used. Addition-

ally, we were able to do a large number of replicates, each with its own extraction to embrace

the variability one might expect in environmental samples, which not all labs may be capable

of due to cost constraints. However, we would not expect the general trend of reduced sensitiv-

ity with fewer merged PCR wells to change if the replication scheme was different.

Although the specific values in Table 1 are only extendable to other studies using our meth-

ods (available on protocols.io [28–30]), the framework for examining the required sensitivity

for wastewater surveillance is extendable to all studies. That is, careful attention to how sensi-

tivity affects the lowest measurable concentration and the number of non-detects, as well as

the relationships between these values and laboratory confirmed COVID-19 incidence rates is

needed to fully understand how decisions on assay implementation are made.

Conclusions

We developed and implemented a framework for examining how molecular assay sensitivity

for a viral RNA genome target affects its utility for wastewater-based epidemiology. The

Effect of digital RT-PCR sensitivity on wastewater surveillance

PLOS Water | https://doi.org/10.1371/journal.pwat.0000066 November 16, 2022 11 / 14

https://doi.org/10.1371/journal.pwat.0000066


framework involves understanding how assay sensitivity affects lowest measurable concentra-

tions in units of copies per environmental matrix mass, and the detection probability of a tar-

get that is present; and how this change during periods of different disease occurrence can

affect resultant statistical associations between the viral target and measures of disease inci-

dence. We applied this framework to digital droplet RT-PCR (ddRT-PCR) measurements of a

SARS-CoV-2 gene made using 10 replicate wells, and determined how using fewer wells

affected assay sensitivity and its performance for wastewater-based epidemiology applications.

From a reagent cost savings perspective, we recommend an adaptive analytical approach

where assay sensitivity is increased by running more replicate wells (6 or more) during periods

of low SARS-CoV-2 gene concentrations (using our methods, < 104 cp/g) and COVID-19

incidence rate (< 3.5/100 000) and fewer replicate wells (3 or more) during periods of higher

SARS-CoV-2 RNA concentrations and COVID-19 incidence. While the precise recommenda-

tions here are only generalizable if one is using the same pre-analytical and analytical proto-

cols, the framework and the conclusion that adaptive approaches can reduce costs and

increase sensitivity during periods of low disease incidence can be applied to other methods

and other wastewater-based epidemiology targets.
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