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Abstract: Photoaging is an important extrinsic aging factor leading to altered skin morphology and 7 
reduced function. Prior work has revealed a connection between photoaging and loss of 8 
subcutaneous fat. Currently, primary models for studying this are in vivo (human samples or animal 9 
models) or in vitro models, including human skin equivalents (HSEs). In vivo models are limited by 10 
accessibility and cost, while HSEs typically do not include a subcutaneous adipose component. To 11 
address this, we developed an “adipose-vascular” HSE (AVHSE) culture method, which includes 12 
both hypodermal adipose and vascular cells. Further, we tested AVHSE as a potential model for 13 
hypodermal adipose aging via exposure to 0.45 ± 0.15 mW/cm2 385 nm light (UVA). One week of 2 14 
hour daily UVA exposure had limited impact on epidermal and vascular components of the 15 
AVHSE, but significantly reduced adiposity by approximately 50%. Overall, we have developed a 16 
novel method for generating HSE that include vascular and adipose components and demonstrated 17 
potential as an aging model using photoaging as an example. 18 

Keywords: HSE; human skin equivalent; tissue engineering; self-assembly; scaffold; aging; 19 
photoaging 20 
 21 

1. Introduction 22 

Human skin provides essential physical protection, immune barrier function, and 23 
thermal regulation [1]. As humans age, there is a decline of skin function, including loss 24 
of barrier function and healing capacity [2]. This correlates with structural changes 25 
including decreased vasculature, decreased dermal elasticity and collagen organization, 26 
stiffening, lower hydration, reduced dermal and hypodermal (or subcutaneous fat) 27 
volumes [3–17]. These detrimental effects of natural aging are compounded by extrinsic 28 
aging factors including ultraviolet A (UVA; 320–400 nm) [18] photoaging that occurs with 29 
sun exposure [2,19–21]. With normal aging, the skin is smooth with fine wrinkles and has 30 
decreasing elasticity. With photoaging skin is coarse, rough, even lower elasticity, and has 31 
changes in pigmentation [9,17]. Particularly, UVA sun exposure mainly damages by 32 
generation of reactive oxygen species [18,22]; the primary effects are in the dermis and 33 
hypodermis; with the epidermis being primarily damaged by UVB. Further, UVA 34 
exposure to human skin has demonstrated decreased expression of subcutaneous 35 
adipokines such as adiponectin [23–25]. These effects are harmful since adipokines have 36 
been found to benefit wound healing and anti-inflammatory skin properties; the 37 
hypodermis as a whole contributes to thermal regulation, skin elasticity and regeneration 38 
[26,27]. UVA exposure additionally degrades the dermal matrix through decreases in 39 
procollagen synthesis and increases in MMP-1, -3, and -9 expression [23–25]. Photoaged 40 
skin has also exhibited reduced dermal vasculature and dermal connective tissue 41 
breakdown and disorganization in human explant cultures [3,18,25,28–30]. 42 

Human Skin Equivalents (HSEs) are in vitro tissue models that have been previously 43 
used for studies on photoaging, wound healing, skin development, alopecia, disease, stem 44 
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cell renewal, and toxicology screening research [31–50]. The models rely on self-assembly 45 
of skin components within an appropriate matrix. Traditionally-used animal models such 46 
as rabbits, pigs, mice, and rats have different physiology than humans, for example in 47 
wound healing [31,51]. These examples add to longstanding recognition of the limitations 48 
inherent to animal models [52] and bolster recent consideration of reduction strategies 49 
[53,54]. While HSEs present with limitations of their own, they are increasingly 50 
demonstrated as useful models for human skin [34–38]. 51 

Although HSE research has been well developed to recreate the dermal and 52 
epidermal layers using fibroblasts and keratinocytes, novel co-culture systems are needed 53 
to recapitulate human anatomy more closely [55] and mimic trophic factor exchange of 54 
different cell populations in vivo [40,55–58]. Building on our previously published 55 
protocol generating vascularized HSE (VHSE) [59,60], here we demonstrate inclusion of a 56 
hypodermis, which we term adipose and vascular human skin equivalent (AVHSE), and 57 
demonstrate suitability for UVA photoaging studies. Multi-cellular skin models similar to 58 
this AVHSE have been previously explored but with fewer cell types, much shorter 59 
culture lengths, and little to no volumetric characterization [61–64]. UV photoaging has 60 
been previously investigated with in vitro skin models of the epidermis [50], keratinocytes 61 
in 2D [65], dermal fibroblasts in 2D [66,67], and adipose components in 2D [24,26]. This 62 
work combines photoaging studies with comprehensive in vitro skin models and allows 63 
for volumetric quantification of epidermal, dermal, and hypodermal components through 64 
volumetric imaging (confocal and optical coherence tomography). Further, the effects of 65 
photoaging on adipokine and inflammatory cytokines have been quantified using ELISA. 66 

2. Materials and Methods 67 

2.1. Cell Culture 68 

AVHSE cultures were created using a modified form of our prior VHSE protocol 69 
[59,60]. Briefly, N/TERT1 human keratinocytes (hTERT immortalized; gift of Dr. Jim 70 
Rheinwald and Dr. Ellen H. van den Bogaard [31,68]), HMEC1 human microvascular 71 
endothelial cells (SV40 immortalized; ATCC, Manassas, VA; #CRL-3243) [69], and 72 
primary adult human dermal fibroblasts (HDFa; ATCC #PCS-201-012) were used as 73 
previously described, and ASC52telo adipose derived mesenchymal stem cells (hTERT 74 
immortalized; ATCC #SCRC-4000) [70] were included for the hypodermis. All cell lines 75 
were routinely cultured at 37 °C and 5% CO2; all media blends given in supplemental 76 
Table 1. N/TERT1 cells have been shown to maintain normal epidermal behavior in 77 
previous organotypic skin cultures [31,35,68]. N/TERT1 cells (passages: 8,10,16,19) were 78 
grown up in a modified K-SFM media blend including K-SFM base, 0.2 ng/mL endocrine 79 
growth factor (EGF), 25 µg/mL bovine pituitary extract, 0.3 mM CaCl2, and 1% 80 
penicillin/streptomycin (PCN/STREP). N/TERT1 were routinely passaged once 30% 81 
confluence was met to prevent undesired differentiation in 2D cultures [68]. HMEC1 cells 82 
were grown up in MCDB1 base media with 10 mM L-glutamine, 1 µg/mL hydrocortisone, 83 
10 ng/mL EGF, 10% FBS, and 1% PCN/STREP. HMEC1 cells at passages 9 and 11 were 84 
used. HDFa were originally expanded in fibroblast basal media supplemented with 85 
fibroblast growth kit per manufacturer instructions. For short term expansion 86 
immediately prior to AVHSE cultures, HDFa cells (all passage 4) were grown up in 87 
DMEM (4.5 g/L glucose) supplemented with 5% FBS and 1% FBS. ASC52telo were used 88 
to generate the adipose component of the skin construct. Cells were originally expanded 89 
in mesenchymal stem cell basal media (ATCC #PCS-500-030) with added supplements 90 
from a mesenchymal stem cell growth kit (ATCC #PCS-500-040) and G418 at 0.2 mg/mL; 91 
this was used as the 2D culture media until adipogenesis induction. Adipogenesis media 92 
[71,72] (recipe given in Table 1) was administered once ASC52telo plates were ~90% 93 
confluent (ASC52telo passages: 6, 8, 10 were used for AVHSEs).  94 
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Table 1. Media used for 2D and 3D culture. 95 

Cell Line or 

Culture Period 
Recipe Notes 

Corresponding 

Timepoint 

N/TERT 1 

K-SFM base media 

1% P/S 

Bovine Pituitary Extract (BPE) [25 

µg/mL] 

Epidermal Growth Factor (EGF) 

[0.2 ng/mL] 

CaCl2 [0.3 mM] 

Media recipe based 

off of these references 

[31,68]. BPE and EGF 

are from the K-SFM 

supplement kit. 

Maintenance 

culture 

HMEC1 

MCDB131 base media 

10% FBS 

1% P/S 

L-Glutamine [10 mM] 

Epidermal Growth Factor (EGF) 

[10 ng/mL] 

Hydrocortisone [10 ug/mL] 

Media recipe as 

recommended by 

manufacturer. 

Maintenance 

culture 

Human 

Dermal 

Fibroblasts 

DMEM HG base 

5% FBS 

1% P/S 

Media used for short 

term expansion in 2D. 

For longer expansion, 

use the manufacturer 

recommendation. 

Maintenance 

culture 

ASC52telo 

Mesenchymal Stem Cell Basal 

Medium 

2% MSC supplement 

L-Alanyl-L-Glutamine [2.4 mM] 

G418 [0.2 mg/mL] 

MSC Basal Medium is 

from ATCC (ATCC 

PCS-500-030); To 

make the complete 

medium the MSC 

growth kit (ATCC 

PCS-500-040) is 

added. MSC 

supplement from the 

growth kit contains: 

2% FBS, 5 ng/mL 

rhFGF basic, 5 ng/mL 

rhFGF acidic, 5 ng/mL 

rhEGF. 

Maintenance 

culture 

Adipogenesis 

Differentiation 

media 

DMEM/HAM’s F12 base media 

3% FBS 

3-isobutyl-1-methyl-xanthane 

(IBMX) [250 µM] 

Indomethacin [10 µg/mL; 28 µM] 

Insulin [5 µg/mL] 

Media recipe is based 

on prior work [71,72]. 

IBMX, Insulin, and 

Dexamethasone 

stocks stored at -

20 °C. Indomethacin, 

3 weeks prior 

to dermal 

seeding. 1 

week for 2D 

culture and 2 
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Dexamethasone [1 µM] 

D-pantothenate [34 µM] 

Biotin [66 µM] 

D-pantothenate, and 

Biotin stocks stored at 

4 °C. 

weeks for 3D 

culture. 

Adipocyte 

Maintenance 

Media 

(serum free) 

DMEM/HAM’s F12 base media 

Insulin [5 µg/mL] 

Dexamethasone [1 µM] 

D-pantothenate [34 µM] 

Biotin [66 uM] 

This media blend is 

not used by itself for 

AVHSE culture, but it 

is used to make 

dermal submersion 

media. Adipocyte 

maintenance media is 

adipogenesis 

differentiation media 

without IBMX or 

Indomethacin (a 

PPARγ agonist) [72] 

Used indirectly 

for Dermal 

Submersion 

media. 

Dermal 

Submersion 

(DS) 

1:1 Serum Free Adipocyte 

Maintenance media and serum 

free HMEC1 media 

 

Aliquot supplement: 3% FBS 

 

Daily supplements: L-Ascorbic 

Acid [100 µg/mL], VEGF [2 

ng/mL] 

Dermal submersion 

media is half 

adipocyte 

maintenance media 

and half HMEC1 

media with 

supplement changes. 

Media prepared 

serum-free and used 

as base for ESM and 

AVHSE media. 

During week 4 

of culture: 

dermal cells 

are seeded and 

dermis is 

maturing. 

Epidermal 

Seeding and 

maturation 

media (ESM) 

Dermal submersion media with 

CaCl2 [1.44 mM] 

 

Aliquot supplement: 1% FBS 

 

Daily supplements: L-Ascorbic 

Acid [100 µg/mL] 

Media used for 

addition of N/TERT1s, 

shares base with DS 

and AVHSE media. 

During week 4 

of culture: 

epidermal cells 

are seeded and 

maturing. 

AVHSE media 

Dermal submersion media with 

CaCl2 [1.44 mM] 

 

Daily supplements: L-Ascorbic 

Acid [100 µg/mL], Selenium 

(sodium selenite) [30 nM] 

AVHSE media is 

serum free. L-ascorbic 

acid is important for 

collagen synthesis by 

fibroblasts, collagen 

stability, vessel wall 

integrity and barrier 

function [73–78]. 

~4 weeks into 

whole culture 

and through 

culture 

endpoint. 

Media is used 

for ALI. 
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2.2. Collagen Isolation: Rat-Tail Collagen 96 

Collagen Type I was isolated from rat tail tendons as described previously [79–82]. 97 
Briefly, tendons were extracted from rat tails (Pel-Freez Biologics, Rogers, AR), washed in 98 
Dulbecco’s phosphate buffered saline (PBS) and soaked in acetone for 5 minutes, 70% 99 
isopropanol for 5 minutes, and then dissolved in 0.1% glacial acetic acid for at least 72 100 
hours rocking at 4 °C. After dissolving, collagen was centrifuged at ~20,000× g for 1 hour 101 
and the supernatant was frozen at –80 °C and lyophilized for long term storage at –80 °C. 102 
When ready to use, collagen was dissolved in 0.1% glacial acetic acid to 8 mg/mL and 103 
stored at 4 °C. 104 

2.3. Construct Fabrication Overview 105 

Generation of AVHSE cultures includes four main steps, shown graphically in Figure 106 
1: (1) adipogenesis, (2) dermal seeding and maturation, (3) epidermal seeding, and (4) air 107 
liquid interface (ALI); total duration is approximately twelve weeks: adipose 108 
differentiation (3 weeks), dermal maturation (< 1 week), epidermal seeding (2–3 days), air 109 
liquid interface exposure (8–9 weeks). Collagen gel was used to create the hypodermis 110 
and dermal layer of the AVHSE constructs in 12-well culture inserts (translucent PET, 3 111 
µm pore; Greiner Bio-One, Monroe, NC; ThinCerts #665631), similar to previously used 112 
[31,35–38,42,43]. In all cases, final collagen concentration was 3 mg/mL [59]. 113 

 114 

Figure 1. AVHSE generation. There are four main steps in creating an AVHSE: (1) Adipogenesis, (2) 115 
Dermal seeding and maturation, (3) Epidermal seeding, (4) Air liquid interface. Cartoons on the left 116 
show cross-sectional representations of AVHSE during each step. 117 

2.4. Adipogenesis and Hypodermal Seeding 118 

ASC52telo cells were grown to > 90% confluent and adipogenesis was induced for 3 119 
weeks (media blend given in Table 1), split between 1 week in 2D culture and 2 weeks in 120 
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3D culture. For 3D culture, ASC52telo cells (750,000 cells/mL of collagen) were 121 
encapsulated in 125 µL of 3 mg/mL collagen and seeded into the culture insert. After 122 
gelation, constructs were submerged with adipogenesis media (~0.5 mL and ~1 mL of 123 
media in the culture insert and well, respectively). Media was added to the insert chamber 124 
first to prevent detachment of the collagen from the membrane). Media was changed 125 
every 2–3 days until dermal seeding. 126 

 127 
2.5. Dermal/Epidermal Seeding & Air Liquid Interface 128 

Media was aspirated from each well and 250 µL of 3 mg/mL collagen with HMEC1 129 
and HDFa cells (750,000 and 75,000 cells/mL of collagen, respectively) was seeded onto 130 
the hypodermis then quickly transferred to 37 °C for gelation. After gelation, constructs 131 
were submerged with dermal submersion (DS) media (Table 1) supplemented with 3% 132 
FBS, 2 ng/mL vascular endothelial growth factor (VEGF-A; Peprotech, Cranbury, NJ; #100- 133 
20) and 100 µg/mL L-ascorbic acid (L-AA; Thermo Fisher Scientific, Waltham, MA). Media 134 
was changed every 2–3 days with fresh L-AA [59,79,83]. After 3–5 days of growth in 135 
submersion, DS media was aspirated and epidermal seeding and maturation media (ESM) 136 
supplemented with 1% FBS and 100 µg/mL L-AA (1.5 mL added to each well). N/TERT1 137 
keratinocyte cells were immediately seeded dropwise at 170,000 cells per insert (~1.13 cm2 138 
growth area) using 200 µL of their maintenance media, K-SFM. One/two days after 139 
epidermal seeding, media was changed to AVHSE media and the cultures were lifted to 140 
ALI within 8–24 h, with longer times leading to increased contraction [59]. The process to 141 
establish ALI was outlined previously [59]; typical ALI was established with ~1 mL of 142 
media. Following ALI establishment, media was changed every 2–3 days with AVHSE 143 
media and supplemented with 100 µg/mL L-AA and 30 nM selenium (sodium selenite; 144 
ThermoFisher Scientific, Waltham, MA). 145 

2.6. Photoaging of AVHSEs 146 

After completing 7 weeks at ALI, AVHSEs were exposed to UVA to model 147 
photoaging (PA). A UVA LED array was established by drilling a 5 mm through-hole at 148 
center of each well in the plate lid, and inserting a 385 nm/80 mcd LED (VAOL-5GUV8T4; 149 
VCC, Carlsbad, CA); 1 LED directly illuminated each insert (Figure S1). Four LEDs were 150 
powered in series with ~10 mA, providing a 0.45 ± 0.15 mW/cm2 dose as measured by a 151 
UV sensor (UVAB Digital Light Meter, #UV513AB, General Tools & Instruments, 152 
Secaucus, NJ). LEDs were measured every 3–4 days and replaced as needed. AVHSEs 153 
were exposed to UVA for 2 hours daily for one week using an automated timer. UV dose 154 
and exposure was determined within values of prior work on human skin equivalents, 155 
cell monolayers, and mouse models [18,23,24,26,50,84,85]. 156 

2.7. ELISA (Adiponectin, IL-6, MMP-1) 157 

AVHSE culture supernatant was collected at the end of ALI week 8 from controls and 158 
photoaged samples. Samples were centrifuged and frozen at –80 °C until use. ELISAs 159 
were performed for human Adiponectin, Interleukin-6 (IL-6), and total matrix 160 
metalloproteinase (MMP-1) according to the manufacturer’s protocol (Proteintech Group, 161 
Rosemont, IL). Each sample was assayed in duplicate with standards completed for each 162 
run. For color development, tetramethylbenzidine (TMB)-substrate exposure was 20 163 
minutes for Adiponectin and IL-6 and 15 minutes for MMP-1 at 37 °C in the dark. After 164 
stop solution was administered, color development was immediately measured at 450 nm 165 
with a correction wavelength of 630 nm using a SpectraMax M2 Multi-mode microplate 166 
reader (Molecular Devices, San Jose, CA) and corrected against a run zero standard. Four 167 
parametric logistic curves (4PLC) fits were used and values below detection limit were set 168 
to zero. Sample sizes varied for each assay due to sample availability and are as follows: 169 
Adiponectin: for each condition n = 10, r2 = 0.9975; IL-6: control n = 6 and photoaged n = 8, 170 
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r2 = 0.9993; MMP1: control n = 7 and photoaged n = 10, r2 = 0.9954 (9 values) and 0.91 (7 171 
values). 172 

2.8. Post-Culture Immunostaining and Confocal Microscopy 173 

After culture, samples were pre-fixed in 4% paraformaldehyde for 5 minutes then 174 
fixed for 1 hour in 4% paraformaldehyde and 0.5% Triton X100 at room temperature. 175 
Samples were washed three times in PBS then stored at 4 °C until staining. For staining, 176 
culture insert membranes were removed using forceps, as described previously [59]. The 177 
staining and imaging processes were completed in four phases: epidermal, dermal 178 
vasculature, adipose, and post-clearing (Table 2). The nuclear marker DRAQ7 was 179 
administered during the epidermal staining phase and was used until imaging was 180 
completed. Imaging orientation of the AVHSEs were dependent on stain phase (Table 2). 181 
For staining, primary and secondary antibody stain solutions were made up in blocking 182 
buffer (Table 2). All samples were stored at 4 °C in PBS until imaging. 183 

To image each fixed sample, custom polydimethylsiloxane (PDMS; Dow Corning, 184 
Midland, MI) molds were punched specific to each sample size and adhered to glass slides 185 
[59]. Samples were placed in the well with PBS and covered with another glass slide to 186 
preserve humidity while imaging. As AVHSE are too thick for direct confocal imaging 187 
throughout the structure without tissue clearing, each sample was imaged in both apical 188 
and basal orientations. Stains were multiplexed to laser excitations in cases of minimal 189 
overlap (e.g. epidermal and subdermal stains), and this was confirmed through the 190 
sequential staining process. 191 

Table 2. Staining sequence, antibodies, and blocking buffer used. 192 

Staining Sequence 

Stain/Imaging Phase 
Staining/Processing 

Used 
Imaging Orientation 

1. Epidermal 
Cytokeratin 10, 

Involucrin, DRAQ7 
Apical (epidermal) 

2. Dermal 

Vasculature 
Collagen IV Basal (hypodermis) 

3. Adipose BODIPY Basal (hypodermis) 

4. Post-clearing 

(Methanol 

dehydration, methyl 

salicylate clearing) 

Basal (hypodermis) 

Epidermal Staining 

Antibody/Stain Information & Source Concentration Notes 

DRAQ 7 Cell Signaling; [1:250] Nuclear marker 

Cytokeratin 10   

Suprabasal 

epidermal marker 

Primary 

Cytokeratin 10 (DE-

K10) mouse IgG, 

supernatant. Santa 

Cruz; sc-52318 

 

Secondary 

Goat Anti-Mouse IgG 

(H&L), DyLight™ 488. 

Thermo Scientific; 

35502 (1 mg/mL) 

[1:500] 
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Involucrin   

Stratum Corneum, 

terminal 

differentiation 

marker[32] 

Primary 

Involucrin rabbit 

polyclonal IgG. 

Proteintech; 

55328-1-AP (30 µg/150 

µL) 

 

Secondary 

Anti-Rabbit IgG (H&L) 

(GOAT) Antibody, 

DyLight™ 549 

Conjugated. 

Rockland 

Immunochemicals; 

611-142-002 

[1:500] 

Dermal Vasculature Staining 

Collagen IV   

Vascular basement 

membrane 

Primary 

Collagen IV rabbit 

polyclonalProteintech; 

55131-1-AP 

[1:500] 

Secondary 

Anti-Rabbit IgG (H&L) 

(GOAT) Antibody, 

DyLight™ 549 

Conjugated. Rockland 

Immunochemicals; 

611-142-002 

[1:500] 

Adipose Staining 

BODIPY 

Difluoro{2-[1-(3,5-

dimethyl-2H-pyrrol-2-

ylidene-N)ethyl]-3,5-

dimethyl-1H-

pyrrolato-N}boron; 

dissolved in 200 proof 

EtOH, CAS: 121207-31-

6; Aldrich; 790389 

[2 µM] 
Mature adipocyte 

marker 

Clearing 

Methanol CAS: 67-56-1 
4 baths, 10 

min. each 

For sample 

dehydration. 

Methyl Salicylate CAS: 119-36-8 
4 baths, 5 min. 

each 

For sample 

clearing 

Blocking Buffer Recipe 

Reagent Amount 

ddH2O 450 mL 

10 x PBS 50 mL 
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Bovine Serum Albumin (BSA) 5 g 

Tween 20 0.5 mL 

Cold water Fish Gelatin 1 g 

Sodium Azide (10% Sodium Azide in diH2O) 5 mL (0.1 % final concentration) 

All exposure for stains and antibodies: 48 hours, stationary, 4 °C 

2.9. Tissue Clearing 193 

After completing staining and imaging phases 1–3, constructs were cleared via 194 
methyl salicylate with methanol dehydration. Constructs were dehydrated in methanol 195 
with 4x 10 min baths then cleared in methyl salicylate with 4x 5 min baths. Constructs 196 
were stored in methyl salicylate and imaged via confocal microscopy on the same day, as 197 
detailed previously [59,60]. 198 

2.10. Quantitative Epidermal Analysis 199 

Thickness of epidermal layers were automatically detected from confocal images via 200 
thresholding differences using a custom analysis algorithm designed in MATLAB 201 
(MATLAB 2018b; Mathworks, Natick, MA), similar to prior descriptions [60]. For each 202 
sample, five confocal sub-volumes in the center of the AVHSE were used to detect 203 
thickness (total volume of 1.85 × 0.37 × 0.25–0.4 mm; imaging depths were adjusted per 204 
sample but a consistent voxel size of 0.7 × 0.7 × 3 µm was used). An average thickness was 205 
found for each XY position to obtain a volumetric thickness indication rather than from a 206 
single cross-sectional position or from max projection. Briefly, epidermis was localized 207 
using DRAQ7, cytokeratin 10, and involucrin stains. Noise was removed using median 208 
filters applied to each XY-plate and intensities were scaled by linear image adjustment. 209 
Background auto-fluorescence was removed using rolling ball filters on each XY plane 210 
and the epidermis was segmented using hysteresis thresholding. Gaps in the epidermal 211 
binary volume were removed via morphological closing and opening with a disk 212 
structuring element. The resulting binary volume created a computational plane from 213 
which the top and bottom difference could be calculated and metrically scaled by 214 
appropriate voxel size. Intensity comparison of the suprabasal markers, Cytokeratin 10 215 
and Involucrin, was completed across all samples using confocal images. A maximum 216 
projection image of ten positions per sample was generated and average intensity values 217 
were calculated. For all epidermal quantification, five AVHSE replicates were used for 218 
analysis. 219 

2.11. Quantitative Dermal/Hypodermal Analysis 220 

Adipose thickness, volume fraction (VF), and integrated intensity quantification was 221 
completed from 10 confocal sub-volumes per each sample (a total volume of 3.7 × 0.37 × 222 
0.35 mm). VF is an estimate of the adipose within the hypodermis and dermal space. 223 
Volumetric thickness was calculated using localization of the BODIPY mature adipose 224 
marker, as described for epidermal thickness quantification. Integrated intensity of 225 
BODIPY was quantified via custom algorithms. Briefly, image sub-volumes were 226 
segmented and the resulting binary masks were used to isolate BODIPY stain from 227 
background noise and autofluorescence. The sum of raw intensity along the z-axis was 228 
calculated for each sub-volume within its binary map, then all sub-volume values were 229 
averaged as a metric of the whole sample volume. These data were gathered from images 230 
taken in the 3rd imaging phase (Table 2). Six AVHSE replicates were used for analysis. 231 

Vascular quantification parameters of diameter, VF of the vasculature, and diffusion 232 
length (Rk) were determined from the average of 6 confocal sub-volumes per each sample 233 
(total volume of 2.22 × 0.37 × 0.35 mm), similar to published methods [59,79,86]. Using the 234 
Collagen IV marker from cleared AVHSE structures (4th imaging phase, Table 2), vessels 235 
were located through segmentation (using built-in MATLAB functions, custom functions, 236 
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and previously published functions [87,88]) and ultimately vessel detection via an 237 
enhanced Hessian based Frangi filter [89–91]. VF was determined using the resulting 238 
volume segmentation. After locating vessels, the segmented volume was skeletonized 239 
through a fast marching algorithm [59,79,92–94]. Diameter was quantified by performing 240 
Euclidean distance transform on the vascular segmentation and collecting values along 241 
the skeleton. Additionally, Rk was defined as a “diffusion length” from the vascular 242 
fraction that encompasses 90% of the volume [79]. Rk was obtained by determining the 243 
Euclidean distance between all points in the collagen volume and the nearest point on the 244 
network. Four AVHSE replicates each were used for analysis. 245 

2.12. Live Culture Imaging 246 

On a limited number of cultures, optical coherence tomography (OCT) was used as 247 
a non-invasive technique to measure epidermal thickness in live samples as previously 248 
described [60]. OCT imaging was conducted with a custom built fiber-based spectral 249 
domain optical coherence tomography (SD-OCT) system centered at 1310 nm, as 250 
described previously [95]. Each sample was imaged then immediately returned to culture 251 
while maintaining sterility, requiring imaging through the well plate lid. To minimize the 252 
reflective effect of the lid, the sample arm of the OCT system was tilted at 15°, reducing 253 
reflection while maintaining adequate illumination. Imaging took ~1 hour for each 254 
sample; no loss of sample viability was observed. Settings for imaging remained 255 
consistent through culture: 1 volumes, 400 frames, and 4096 A-lines were taken per 256 
sample; resulting image size was 4096 × 512 × 400 voxel (4 × 2 × 4 mm). Epidermal thickness 257 
was assessed via post-processing of the data using custom-written scripts in MATLAB 258 
(MATLAB 2018b; Mathworks, Natick, MA) which detected the top and bottom surfaces 259 
of the hyper-reflective epidermis and calculated thickness across the volume, as 260 
previously described [60]. 261 

2.13. Statistics 262 

Pairwise comparisons of control v. photoaged samples were completed through two- 263 
tailed t-test. ANOVA followed by Tukey’s HSD post-hoc test was used to test for 264 
statistically significant differences when applicable. Un-normalized data points are shown 265 
for comparison to tissue scale morphology. For statistical comparison, data were 266 
normalized to control for epidermal, vascular, and adipose quantification. Significant 267 
differences of normalized data are plotted with p < 0.05 represented by a single asterisk; p 268 
< 0.01 represented by a double asterisk. 269 

3. Results 270 

3.1. AVHSE Enables Tissue-Scale Studies of Skin Biology 271 

AVHSEs and the analysis techniques presented here enable study of skin 272 
volumetrically and at the tissue scale (Figure 2). Through automated imaging and 273 
stitching, epidermal, dermal, and hypodermal markers can be assessed volumetrically. 274 
The automated image analysis of the three skin compartments described in the following 275 
sections was completed on biologically large volumetric areas with minimum volumes of 276 
~1 × 0.7 × 0.25 mm to analyze the epidermis and up to 3.6 × 0.37 × 0.35 mm to analyze the 277 
hypodermis. Importantly, the volumetric approach allows assessment of variation across 278 
the culture that is difficult with standard histological approaches that involve sectioning 279 
[60]. 280 



Biomolecules 2022, 12, x FOR PEER REVIEW 11 of 31 
 

 281 

Figure 2. AVHSE allow for large-scale assessment of cultures. (A) Demonstration of scale of 282 
epidermal analysis. Cytokeratin 10 (cyan) is a suprabasal epidermal marker and Involucrin 283 
(magenta) is a stratum corneal marker. Image is an en face max projection of ~0.7 × 1 × 0.2 mm 284 
volume. (B) Adipose and vasculature morphology can be assessed at scales that span 3.6 mm 285 
(approximately half of this representative AVHSE), presented as an en face max projection. Collagen 286 
IV (cyan) marks the vasculature and BODIPY (magenta) marks lipid droplets secreted from mature 287 
fat cells (magenta). (C) Volumetric rendering of segmented Collagen IV (cyan) and BODIPY 288 
(magenta), demonstrating vascular infiltration into the hypodermis. Images were acquired pre- 289 
clearing and are median filtered for clarity. 290 

3.2. UVA Photoaging Alters Adiponectin Expression 291 

Prior studies have demonstrated decreased adipokine production during 292 
photoaging, and adipokines are mediators of the dermal photoaging mechanism [24,96]. 293 
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To test if the AVHSE cultures were similarly responsive to UVA, we measured production 294 
of adiponectin using ELISA. AVHSE cultures were prepared and maintained through ALI 295 
as described in the methods. After 7 weeks of ALI, AVHSE were exposed to 7 days of 296 
UVA (2 h/day, 385 nm, 0.45 ± 0.15 mW/cm2), or left as controls. Media supernatant was 297 
collected from both photoaged and control samples after UVA exposure. Adiponectin 298 
expression was significantly reduced, in agreement with prior in vivo studies [24] (Figure 299 
3). This was not accompanied by a general inflammatory response or increased matrix 300 
metalloproteinase-1 (MMP-1) presence, as indicated by stable IL-6 and MMP-1 expression 301 
(Figure 3). 302 

 303 

Figure 3. Cytokine evaluation from cell media was completed via ELISA. Cell media was collected 304 
after week 8 of culture. All values were corrected by a zero standard and values below detection 305 
limit were set to zero. All values were determined from four-parametric logistic curve fits. Data is 306 
shown as medians (black bars) and individual data points (triangles). Sample numbers varied for 307 
each assay due to limited culture volumes. Adiponectin: for each condition n = 10. IL-6: control n = 308 
6 and photoaged n = 8; MMP1: control n = 7 and photoaged n = 10. A two-tailed t-test showed a 309 
significant decline in the adiponectin secreted into media after photoaging AVHSEs (p < 0.05; 310 
indicated with *). 311 

3.3. Epidermis is Stable During UVA Photoaging 312 

Photoaging by the UVA largely acts on the dermal and hypodermal portions of the 313 
skin rather than the epidermis, in contrast to UVB which shows epidermal toxicity [18,22]. 314 
To assess any changes in epidermal morphology, we stained suprabasal markers 315 
(involucrin and cytokeratin 10) along with the nuclear stain DRAQ7 to assess epidermal 316 
thickness. No statistically significant differences were observed in the staining intensity 317 
of involucrin and cytokeratin 10 (Figure 4A–B), or in the overall thickness of the epidermis 318 
(Figure 4C), when comparing the control and the photoaged AVHSEs. For a limited 319 
number of samples, we further assessed epidermis through OCT imaging as previously 320 
described [60]. Consistent with the confocal data we observed no gross change in 321 
epidermal morphology with photoaging. These data are consistent with the minimal in 322 
vivo effects of UVA on the epidermis [22]. 323 
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 324 

Figure 1. Epidermal characterization and quantification. (A) The epidermal differentiation markers, 325 
Involucrin (magenta) and Cytokeratin 10 (cyan), localize to epidermis. Nuclei are marked with a 326 
DRAQ7 counterstain and shown in yellow. No apparent qualitative changes in the experimental 327 
groups were observed, as shown in these representative images. Scalebars are 100 µm. (B) 328 
Quantification of epidermal intensities was completed from z-axis maximum projections; no 329 
indication of intensity changes were found in either epidermal stain when comparing control (Ctrl) 330 
to photoaged (PA) samples. For both control and photoaged groups n = 5. (C) Epidermal thickness 331 
was volumetrically quantified and no differences were indicated (n = 6 for both control and 332 
photoaged groups). Data is shown as medians (black bars) and individual data points (triangles). 333 
Images were acquired pre-clearing and are median filtered for clarity. 334 

3.4. Dermal Vasculature is Stable during UVA Photoaging 335 

Prior studies have shown dermal vascular damage is associated with chronic UVA 336 
exposure, as determined from sun-exposed skin biopsies from young v. aged individuals 337 
(20–80 years) [97]. As a proxy for vascular damage, we quantified overall morphology in 338 
the AVHSE. Vascular structures were identified through localization of collagen IV 339 
(Figure 5A). Formation of well-developed vascular networks was observed in both control 340 
and photaged samples as shown in maximum projections. Imaging for vascular 341 
quantification was performed after tissue clearing, to minimize the loss of signal deeper 342 
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in the confocal volume. The 3D rendering shown is representative of the vascular network 343 
segmentation and skeletonization that was made possible with cleared tissues (Figure 5B). 344 
Vascular network diameters were quantified as 6.45 ± 0.14 μm for control and 6.34 ± 0.12 345 
μm for photoaged (median ± S.E.M.). Volume fraction (VF) of vasculature had median 346 
values of 0.037 ± 0.01 and 0.032 ± 0.007 (control and photoaged, respectively; median ± 347 
S.E.M.). No statistical difference was determined in comparison of diameter or vascular 348 
VF. Diffusion length (Rk) [79] was calculated with median values of 73.16 ± 23.75 and 83 ± 349 
29.36 microns (control and photoaged, respectively; median ± S.E.M.). A significant 350 
increase in diffusion length of photoaged AVHSEs was detected (p < 0.01; normalized to 351 
biological replicate controls) which corresponds to a slight non-significant decrease in VF 352 
of photoaged samples, consistent with slight loss of vascular density. 353 

 354 

Figure 5. Vascular staining and quantification. (A) A comparison of maximum projections of 355 
confocal images of control v. photoaged AVHSE sub-dermis and dermis; Collagen IV marks 356 
vasculature in cyan. Scalebars are 100 µm. (B) Segmentation of the vascular fraction (cyan) was 357 
completed on 6 cleared sub-volumes per sample. Skeletonization was completed using 358 
segmentation data (magenta line). Shown is a representative 3D rendering of one confocal sub- 359 
volume. (C) Segmentation and skeletonization of vascular networks enables quantitative 360 
assessment of the morphology (n = 4 for each condition). Vessel diameter and volume fractions 361 
remain stable when AVHSEs are photoaged and there is an increase in diffusion length for 362 
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photoaged (p < 0.01; indicated with **). Data is shown as medians (black bars) and individual data 363 
points (triangles). Images are median filtered for clarity. 364 

3.5. Hypodermal Adiposity is Reduced with Photoaging 365 

Prior in vivo studies have shown decreases in hypodermal adipose associated with 366 
UVA photoaging. To test if this was mimicked in the AVHSE model, we used confocal 367 
imaging of the lipid stain BODIPY in both controls and photoaged AVHSE. 368 
Representative images shown in Figure 6A show decreased staining intensity and 369 
representative volume renderings are shown in Figure 6B. To quantify adiposity, we 370 
utilized two morphological measures (lipid volume fraction and adipose thickness) as 371 
well as the integrated intensity of the BODIPY. Both morphological measures exhibit 372 
subtle declines, but the results are non-significant (Figure 6C). However, the overall stain 373 
intensity was significantly decreased (Figure 6C), indicating an overall loss of lipid 374 
content in the photo-aged AVHSE. 375 

 376 

Figure 6. Adipose staining and quantification. (A) A comparison of confocal images of control vs. 377 
photoaged AVHSE sub-dermis; BODIPY marks lipid accumulation at mature adipocytes in 378 
magenta. Scalebars are 100 µm. (B) Representative 3D rendering of adipose volume fraction for 379 
control and photoaged samples. (C) Top-Volume Fraction was calculated based on segmentation of 380 
the BODIPY stain as seen in B. Middle-Thickness quantification based on morphological closing of 381 
BODIPY segmentation. Bottom- Integrated Intensity of BODIPY across the volume shows a 382 
significant (p < 0.05; indicated with *) drop in photoaged samples (n = 6 for each condition). Data is 383 
shown as medians (black bars) and individual data points (triangles). Images were acquired pre- 384 
clearing and are median filtered for clarity. 385 

4. Discussion 386 

Skin provides critical barrier, insulation, and homeostatic functions in human 387 
physiology; these are known to be disrupted in aging [2,17,98]. Despite the importance, 388 
research is limited by the accessibility of physiologically relevant models, with 389 
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conventional culture methods lacking the structure and organization of the overall tissue 390 
[4] and conventional animal models presenting key differences from human aging 391 
physiology [31,51]. To address this, human skin equivalents (HSE) have been previously 392 
established as valuable models in the study of skin and aging [4,8,12,14,99–108]; however 393 
limitations remain. Of special relevance, loss and dysregulation of hypodermal adipose is 394 
implicated in physiological aging [98,109,110] and aging-associated diseases including 395 
lipoatrophy [111] associated with insulin-resistant diabetes mellitus [112]. This 396 
dysregulation is poorly captured in current HSE. To address this, we have developed a 397 
robust and reproducible HSE that includes adipose and vascular components (AVHSE). 398 
This methodology builds off of previous studies [62,113–116] and provides a model to 399 
study crosstalk between adipose, vascular, stromal, and epithelial components of skin in 400 
the context of aging. Further, this model is tissue-scale, stable for long culture durations 401 
(experiments described were 8 weeks, 16 week cultures have been performed using 402 
similar methods), and suitable for aging studies. Other researchers have reported that 403 
when skin models are cultured with adipose tissue, after 2 weeks of culture, there was 404 
epidermal disintegration and that 7 days is enough time at ALI to produce a fully 405 
functional skin equivalent [64]. Although we did not directly compare skin equivalents 406 
without adipose to AVHSEs here or directly compare culture timepoints, we have not 407 
observed any obvious changes in epidermal coverage compared to our previous work in 408 
vascularized human skin equivalents that do not contain a subcutaneous adipose 409 
compartment [59]. While the model is customizable to study the effects of intrinsic and 410 
extrinsic aging factors, as a test case we have demonstrated suitability for studies in UVA 411 
photoaging due to the strong literature base of both in vitro and in vivo studies available 412 
for comparison. Finally, we demonstrated the accessibility of the model for both molecular 413 
(e.g. ELISA) and morphological studies (e.g. volumetric analysis of cell organization). 414 

A key aspect of any HSE model is a differentiated and stratified epidermis. Here, 415 
N/TERT-1 keratinocytes [68] were used to generate skin epidermis as previously 416 
completed [31,35,59]. Importantly, N/TERTs are a suitable and robust substitute to 417 
primary keratinocytes which have disadvantages including limited supply, limited in 418 
vitro passage capabilities, and donor variability [35]. HSEs generated with N/TERT 419 
keratinocytes demonstrate comparable tissue morphology, appropriate epidermal protein 420 
expression, and similar stratum corneum permeability when compared to HSEs generated 421 
with primary keratinocytes [31,35]. Similar to prior models, we demonstrate AVHSEs 422 
appropriately model the skin epidermis with correct localization of involucrin (a stratum 423 
corneum marker) and cytokeratin 10 (suprabasal early differentiation marker) [1,38] 424 
(Figure 1). Further, volumetric imaging and automated analysis allows for epidermal 425 
thickness to be robustly calculated. AVHSE present with median epidermal thicknesses 426 
within 90–100 µm, similar to values in both prior in vitro studies 100-200 µm [117] and in 427 
vivo optical coherence tomography imaging of adult skin 59 ± 6.4 to 77.5 ± 10 µm [118]. 428 
Consistent with prior in vitro and in vivo results showing UVA wavelengths 429 
predominantly impact dermal rather that epidermal layers [119,120], UVA photoaging 430 
resulted in no observable changes in epidermal thickness or expression of differentiation 431 
markers in AVHSE (Figure 3). 432 

In the dermis and hypodermis, skin is highly vascularized with cutaneous 433 
microcirculation playing important roles in thermal regulation and immune function 434 
[98,121]. Many prior HSE models have not included a vascular component 435 
[31,34,35,43,63]; however, there is increasing recognition of its importance 436 
[1,4,40,47,48,122,123]. In the present work, we used collagen IV as a marker of the vascular 437 
basement membrane, enabling the automated segmentation and mapping of a vascular 438 
network within AVHSEs. Importantly, volumetric quantification of the vasculature was 439 
performed with imaging after tissue clearing; however, these techniques are possible with 440 
uncleared images as well with some limitations [59]. The vascular VF of AVHSEs is lower 441 
than in vivo dermis (~3% compared to 20.0 ± 5.0 to 40.3 ± 2.4 % measured by OCT at four 442 
positions in the arm [124]), but prior work has shown this is tunable by using different 443 
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cell seeding conditions [79]. Optimizing the VF may be more involved in the AVHSE, 444 
since the ratio of adipose and vascular cells has been shown to be important in regulating 445 
tissue morphology [113]. Thus, ratio of adipose and vascular cells would need to be 446 
optimized for new cell and collagen densities. Adipose tissue is densely vascularized 447 
[113,125,126] and the ability of adipocytes to generate lipid droplets and adipokines in the 448 
presence of endothelial cells is important to replicate the in vivo environment [114]. 449 
Previous work has shown that in co-culture of endothelial cells (ECs) and mature 450 
adipocytes can lead to dedifferentiation of mature adipocytes [126], but in homeostatic 451 
cultures ECs and adipocyte crosstalk is important. Through soluble factor release, ECs 452 
regulate lipolysis and lipogenesis and adipocytes regulate vasodilation and contraction 453 
[64,126]. Secretion of adipokines by adipocytes aids vascular formation and adipose tissue 454 
stability [114,126]. In prior work, Hammel & Bellas demonstrated that 1:1 is the optimal 455 
ratio for vessel network within 3D adipose [113], and we matched the 1:1 cell ratio in the 456 
present work. 457 

Quantification of vessel diameter in the Hammel & Bellas study shows that a 1:1 ratio 458 
of adipocytes to endothelial cells gives an average vessel diameter of ~10 µm [113], our 459 
work similarly finds a median vessel diameter of ~6 µm. Importantly, these data are 460 
within the range of human cutaneous microvascular of the papillary dermis (4 to 15 µm 461 
[121]). We did not observe morphological changes of VF and diameter within the 462 
vasculature due to photoaging. While it is established that chronic UVA exposure can 463 
contribute to vascular breakdown [97,127], the duration of our studies may be too short 464 
to see this effect in diameter and VF (1 week vs lifetime UV exposure in people over 80 465 
[3,97]). However, photoaging did induce an increase in diffusion length (Rk), in this case 466 
defined as the distance from the vasculature that covers 90% of the construct; higher 467 
values corresponds to lower vascular density. Values presented here match previous 468 
studies of vascularized collagen [79]. Rk of the vascular network for both control and 469 
photoaged samples was within the range of 51–128 µm, lower than the frequently cited 470 
200 µm diffusion limit for supporting a cellular tissue [128]. These findings conflict with 471 
studies of acute UV exposure in skin, which show stimulation of angiogenesis [3,129]. It 472 
has been proposed that UV light exposure may improve psoriasis by normalizing 473 
disrupted capillary loops through upregulation of VEGF by keratinocytes [121]. The 474 
AVHSE model could be used to more thoroughly test the effects of UV light and other 475 
molecular mechanisms it induces in future studies. 476 

Further, we observed vasculature colocalized with the lipid droplet BODIPY staining 477 
(Figure 2), indicating recruitment of the vascular cells to the hypodermis. Importantly, the 478 
vascular networks in prior studies and the present AVHSE are self-assembled. While there 479 
are advantages to self-assembly, especially the simplicity of the method, it is important to 480 
note the limitations. Cutaneous microcirculation in vivo has a particular anatomical 481 
arrangement with two horizontal plexus planes, one deep into the tissue in the 482 
subcutaneous fat region and one just under the dermal-epidermal junction [121,130]. 483 
Between these two planes are connecting vessels running along the apicobasal axis that 484 
both supply dermal tissues with nutrients and are an important part of thermoregulation 485 
[121,130]. Although the AVHSEs presented here have reasonable vascular densities they 486 
do not recapitulate this organization. While not covered in this work, future studies could 487 
incorporate layers of patterned or semi-patterned vasculature [128] to more closely match 488 
the dermal organization, depending on the needs of the researcher. 489 

This photoaging model did demonstrate impacts to the hypodermis. Volumetric 490 
imaging of BODIPY, which stains lipid droplets [113], was used as a measure of adiposity. 491 
While small reductions in the morphological parameters (adipose thickness and lipid VF) 492 
were observed, they were not significant, suggesting there was not large-scale apoptosis 493 
or other cellular loss. However, there was a significant decrease in the intensity of BODIPY 494 
staining, indicating decreased lipid levels (Figure 6). This is consistent with photoaging 495 
of excised human skin showing that UV exposure decreases lipid synthesis in 496 
subcutaneous fat tissue [96]. We further collected culture supernatant and tested for the 497 
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presence of adiponectin, IL6, and MMP-1. The data collected through ELISA (Figure 3) 498 
show that this AVHSE model secretes both adiponectin and IL6, which are also present in 499 
native skin and both considered important adipokines [62,126,131,132]. Elevated serum 500 
adiponectin levels are linked to anti-inflammatory effects in humans [131,132] and 501 
centenarians (a model of healthy aging) have elevated levels of adiponectin [131]. 502 
Decreased adiponectin has previously been associated with photoaging in both excised 503 
human skin that was sun-exposed compared to protected skin and in protected skin that 504 
was exposed to acute UV irradiation [24]. Conversely, IL6 is a key factor in acute 505 
inflammation in skin, and has been shown to regulate subcutaneous fat function [96,133]. 506 
In prior studies of photoaging, IL6 has demonstrated an increase after UVA irradiation in 507 
monolayer fibroblast cultures [134] and excised human skin [96,133]. IL-6 is released after 508 
UV irradiation and has been linked to decreased expression of adipokine receptors and 509 
mRNA associated with lipid synthesis [24], decreases in lipid droplet accumulation [96], 510 
and enhanced biosynthesis of MMP1 [134,135]. However, after one week of photoaging 511 
we did not observe an increase in IL-6 or MMP-1 via ELISA (Figure 3). 512 

The absence of changes in IL-6 and MMP-1 expression but decreases in lipid 513 
accumulation and adiponectin are not expected results but they could be due to 514 
methodology differences in UVA exposure. We determined our UVA dose and exposure 515 
based on literature values [18,23,24,26,50,84,85]. The dose used here was 0.45 ± 0.15 516 
mW/cm2 with exposure for 2 hours daily for 7 d; this converts to approximately 3.24 J/cm2 517 
per day and a total of 22.68 J/cm2. Many studies do not report exposure time and/or 518 
present ambiguous timepoints. This compounded with the practice of using doses based 519 
on sample pigmentation and broad definition of UVA wavelengths may be contributing 520 
to the differences in IL-6 and MMP-1 expressions compared to prior work. While not 521 
addressed in the present study, the AVHSE culture platform is suited for future studies 522 
investigating the specific molecular mechanisms associated with altered wavelength(s), 523 
dosing, and durations. 524 

Unexplored in this study is the mechanics of the AVHSE, and the impact of 525 
photoaging on mechanics. Acting as a defense against mechanical trauma is a key function 526 
of the skin in vivo [1], the mechanical properties that enable this are highly dependent on 527 
the structure and composition of the tissue [136]. Importantly, the collagen density in the 528 
AVHSE model is 3 mg/mL, much lower than in vivo densities [137,138]; this difference is 529 
likely accompanied by dramatically reduced mechanical strength of AVHSE compared to 530 
native skin. Increasing the collagen density to physiologically relevant levels and directly 531 
quantifying AVHSE mechanics will be an important aspect of future studies [136]. 532 
Importantly, higher collagen densities are possible through a variety of techniques, 533 
including dense collagen extractions [81] and compression of the collagen culture [41]. In 534 
addition to density, the anisotropic collagen organization of native dermis is a key factor 535 
in mechanics. It has long been understood that dermal collagen has a preferential 536 
orientation, and that the mechanical properties of skin differ parallel or perpendicular to 537 
that orientation [136,139]. In these studies, collagen alignment was not controlled and 538 
likely has no global alignment [140]; future studies that included collagen orientation 539 
could leverage a range of previously established techniques depending on the specific 540 
goals [141]. In the context of photoaging, these mechanical studies are especially relevant. 541 
Decline of collagen density is an important aspect of skin aging, correlating with skin 542 
elasticity and wound healing [4–7,11,17,142]. Further, photoaging increases the expression 543 
of MMPs and decreases collagen synthesis [23–25], resulting in fragmentation and 544 
disorganization of the dermal extracellular matrix [18]. Future studies that measure and 545 
control the mechanics of AVHSE will be important for fully characterizing the model and 546 
more closely matching the physiology of native skin. 547 

There are additional limitations of the AVHSE model presented. Although we have 548 
presented a skin model that is closer to both anatomy and biology of human skin in 549 
comparison to past HSEs, we have not modeled skin fully through inclusion of other 550 
features of in vivo skin such as immune and nerve components. Including a functional 551 
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immune system is important in understanding autoimmune diseases, cancer, wound 552 
healing, and decline of immune function in aged skin [4,98]. Additionally, neuronal cell 553 
inclusion will allow for modeling of sensory processes necessary for grafting and 554 
modeling of skin disorders associated with nerve dysregulation [98]. Further, while the 555 
cell lines used in this study were chosen for their low cost and accessibility, primary cells 556 
or populations differentiated from induced pluripotent stem cells (iPSCs) would more 557 
closely match the physiology in vivo. While changing cell populations would likely require 558 
some adjustment to the culture system, we have previously demonstrated that cell types 559 
can be replaced with minimal changes [59]. We model epidermis, dermis, and hypodermis 560 
here, but we do not model the depth that is present in thick skin tissue. As nutrient and 561 
waste diffusion in tissues is limited to ~200 µm [128], thick tissues will likely require 562 
perfusion to maintain throughout culture. Vasculature in thicker skin has higher 563 
diameters, especially in the lower dermis and hypodermis, these can be up to 50 µm [121], 564 
and thick skin models may benefit from patterning larger vessels. Further, the AVHSE 565 
method was demonstrated with low serum requirements; while serum was used for initial 566 
growth, the cultures are maintained for weeks without serum. Serum replacements 567 
during the growth phase could potentially provide a chemically defined xeno-free culture 568 
condition in beginning culture stages for greater reproducibility and biocompatibility. 569 

The presented AVHSE model provides unique capabilities compared to cell culture, 570 
ex vivo, and animal models. Excised human skin appropriately models penetration of 571 
dermatological products but there is limited supply and high donor variability [143]; 572 
replacing excised human skin with animal models or commercially available skin 573 
equivalents limits due to the differences such as varying penetration rates, lipid 574 
composition, lipid content, morphological appearance, and healing rates [143,144]; cost 575 
and limitations of customization are additional factors. AVHSE can be cultured using 576 
routinely available cell populations, are cost effective, and are customizable for specific 577 
research questions. Further, the model is accessible for live imaging, volumetric imaging, 578 
and molecular studies, enabling a wide range of quantitative studies. The current work 579 
focused on AVHSE as a research tool, but similar techniques could be further developed 580 
for the development of grafts. Grafting would require addressing many of the structural 581 
and biological limitations noted above, as well as modifications to address host immunity 582 
issues. Overall, we have demonstrated AVHSEs as a research platform with regards to 583 
photoaging effects, but expansions of this model could be utilized for clinical skin 584 
substitutes [73], personalized medicine, screening of chemicals/cosmetics, drug discovery, 585 
wound healing studies [73,144], and therapeutic studies [62]. 586 

Supplementary Materials: The following supporting information can be downloaded at: 587 
www.mdpi.com/xxx/s1, Figure S1: UVA Photoaging Setup. 588 



Biomolecules 2022, 12, x FOR PEER REVIEW 20 of 31 
 

 589 

Figure S1. UVA Photoaging Setup. UVA exposure was completed by drilling out a well plate lid 590 
and inserting UVA LEDs. Each LED had an output of 0.45 ± 0.15 mW/cm2. AVHSEs were exposed 591 
daily for 2 hours, for 7 days. 592 
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