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Abstract: Photoaging is an important extrinsic aging factor leading to altered skin morphology and
reduced function. Prior work has revealed a connection between photoaging and loss of
subcutaneous fat. Currently, primary models for studying this are in vivo (human samples or animal
models) or in vitro models, including human skin equivalents (HSEs). In vivo models are limited by
accessibility and cost, while HSEs typically do not include a subcutaneous adipose component. To
address this, we developed an “adipose-vascular” HSE (AVHSE) culture method, which includes
both hypodermal adipose and vascular cells. Further, we tested AVHSE as a potential model for
hypodermal adipose aging via exposure to 0.45 + 0.15 mW/cm? 385 nm light (UVA). One week of 2
hour daily UVA exposure had limited impact on epidermal and vascular components of the
AVHSE, but significantly reduced adiposity by approximately 50%. Overall, we have developed a
novel method for generating HSE that include vascular and adipose components and demonstrated
potential as an aging model using photoaging as an example.

Keywords: HSE; human skin equivalent; tissue engineering; self-assembly; scaffold; aging;
photoaging

1. Introduction

Human skin provides essential physical protection, immune barrier function, and
thermal regulation [1]. As humans age, there is a decline of skin function, including loss
of barrier function and healing capacity [2]. This correlates with structural changes
including decreased vasculature, decreased dermal elasticity and collagen organization,
stiffening, lower hydration, reduced dermal and hypodermal (or subcutaneous fat)
volumes [3-17]. These detrimental effects of natural aging are compounded by extrinsic
aging factors including ultraviolet A (UVA; 320400 nm) [18] photoaging that occurs with
sun exposure [2,19-21]. With normal aging, the skin is smooth with fine wrinkles and has
decreasing elasticity. With photoaging skin is coarse, rough, even lower elasticity, and has
changes in pigmentation [9,17]. Particularly, UVA sun exposure mainly damages by
generation of reactive oxygen species [18,22]; the primary effects are in the dermis and
hypodermis; with the epidermis being primarily damaged by UVB. Further, UVA
exposure to human skin has demonstrated decreased expression of subcutaneous
adipokines such as adiponectin [23-25]. These effects are harmful since adipokines have
been found to benefit wound healing and anti-inflammatory skin properties; the
hypodermis as a whole contributes to thermal regulation, skin elasticity and regeneration
[26,27]. UVA exposure additionally degrades the dermal matrix through decreases in
procollagen synthesis and increases in MMP-1, -3, and -9 expression [23-25]. Photoaged
skin has also exhibited reduced dermal vasculature and dermal connective tissue
breakdown and disorganization in human explant cultures [3,18,25,28-30].

Human Skin Equivalents (HSEs) are in vitro tissue models that have been previously
used for studies on photoaging, wound healing, skin development, alopecia, disease, stem
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cell renewal, and toxicology screening research [31-50]. The models rely on self-assembly
of skin components within an appropriate matrix. Traditionally-used animal models such
as rabbits, pigs, mice, and rats have different physiology than humans, for example in
wound healing [31,51]. These examples add to longstanding recognition of the limitations
inherent to animal models [52] and bolster recent consideration of reduction strategies
[53,54]. While HSEs present with limitations of their own, they are increasingly
demonstrated as useful models for human skin [34-38].

Although HSE research has been well developed to recreate the dermal and
epidermal layers using fibroblasts and keratinocytes, novel co-culture systems are needed
to recapitulate human anatomy more closely [55] and mimic trophic factor exchange of
different cell populations in vivo [40,55-58]. Building on our previously published
protocol generating vascularized HSE (VHSE) [59,60], here we demonstrate inclusion of a
hypodermis, which we term adipose and vascular human skin equivalent (AVHSE), and
demonstrate suitability for UVA photoaging studies. Multi-cellular skin models similar to
this AVHSE have been previously explored but with fewer cell types, much shorter
culture lengths, and little to no volumetric characterization [61-64]. UV photoaging has
been previously investigated with in vitro skin models of the epidermis [50], keratinocytes
in 2D [65], dermal fibroblasts in 2D [66,67], and adipose components in 2D [24,26]. This
work combines photoaging studies with comprehensive in vitro skin models and allows
for volumetric quantification of epidermal, dermal, and hypodermal components through
volumetric imaging (confocal and optical coherence tomography). Further, the effects of
photoaging on adipokine and inflammatory cytokines have been quantified using ELISA.

2. Materials and Methods
2.1. Cell Culture

AVHSE cultures were created using a modified form of our prior VHSE protocol
[59,60]. Briefly, N/TERT1 human keratinocytes (hTERT immortalized; gift of Dr. Jim
Rheinwald and Dr. Ellen H. van den Bogaard [31,68]), HMEC1 human microvascular
endothelial cells (S§V40 immortalized; ATCC, Manassas, VA; #CRL-3243) [69], and
primary adult human dermal fibroblasts (HDFa; ATCC #PCS-201-012) were used as
previously described, and ASC52telo adipose derived mesenchymal stem cells (h"TERT
immortalized; ATCC #SCRC-4000) [70] were included for the hypodermis. All cell lines
were routinely cultured at 37 °C and 5% CO2; all media blends given in supplemental
Table 1. N/TERT1 cells have been shown to maintain normal epidermal behavior in
previous organotypic skin cultures [31,35,68]. N/TERT1 cells (passages: 8,10,16,19) were
grown up in a modified K-5FM media blend including K-SEM base, 0.2 ng/mL endocrine
growth factor (EGF), 25 ug/mL bovine pituitary extract, 0.3 mM CaCly, and 1%
penicillin/streptomycin (PCN/STREP). N/TERT1 were routinely passaged once 30%
confluence was met to prevent undesired differentiation in 2D cultures [68]. HMECI cells
were grown up in MCDB1 base media with 10 mM L-glutamine, 1 pg/mL hydrocortisone,
10 ng/mL EGF, 10% FBS, and 1% PCN/STREP. HMEC1 cells at passages 9 and 11 were
used. HDFa were originally expanded in fibroblast basal media supplemented with
fibroblast growth kit per manufacturer instructions. For short term expansion
immediately prior to AVHSE cultures, HDFa cells (all passage 4) were grown up in
DMEM (4.5 g/L glucose) supplemented with 5% FBS and 1% FBS. ASC52telo were used
to generate the adipose component of the skin construct. Cells were originally expanded
in mesenchymal stem cell basal media (ATCC #PCS-500-030) with added supplements
from a mesenchymal stem cell growth kit (ATCC #PCS-500-040) and G418 at 0.2 mg/mL;
this was used as the 2D culture media until adipogenesis induction. Adipogenesis media
[71,72] (recipe given in Table 1) was administered once ASC52telo plates were ~90%
confluent (ASC52telo passages: 6, 8, 10 were used for AVHSEs).
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Table 1. Media used for 2D and 3D culture.
Cell Line or Corresponding
Recipe Notes
Culture Period Timepoint
K-SFM base media
1% P/S Media recipe based
Bovine Pituitary Extract (BPE) [25 | off of these references
Maintenance
N/TERT 1 pg/mL] [31,68]. BPE and EGF
culture
Epidermal Growth Factor (EGF) are from the K-SFM
[0.2 ng/mL] supplement kit.
CaCl2 [0.3 mM]
MCDB131 base media
10% FBS
1% P/S Media recipe as
Maintenance
HMEC1 L-Glutamine [10 mM] recommended by
culture
Epidermal Growth Factor (EGF) manufacturer.
[10 ng/mL]
Hydrocortisone [10 ug/mL]
Media used for short
Human DMEM HG base term expansion in 2D.
Maintenance
Dermal 5% FBS For longer expansion,
culture
Fibroblasts 1% P/S use the manufacturer
recommendation.
MSC Basal Medium is
from ATCC (ATCC
PCS-500-030); To
make the complete
medium the MSC
Mesenchymal Stem Cell Basal
growth kit (ATCC
Medium
PCS-500-040) is Maintenance
ASC52telo 2% MSC supplement
added. MSC culture
L-Alanyl-L-Glutamine [2.4 mM]
supplement from the
G418 [0.2 mg/mL]
growth kit contains:
2% FBS, 5 ng/mL
rhFGF basic, 5 ng/mL
rhFGF acidic, 5 ng/mL
rhEGF.
DMEM/HAM'’s F12 base media | Media recipe is based
3 weeks prior
3% FBS on prior work [71,72].
Adipogenesis to dermal
3-isobutyl-1-methyl-xanthane IBMX, Insulin, and
Differentiation seeding. 1
(IBMX) [250 uM] Dexamethasone
media week for 2D
Indomethacin [10 pg/mL; 28 pM] stocks stored at -
culture and 2
Insulin [5 pg/mL] 20 °C. Indomethacin,

95
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Acid [100 pug/mL], Selenium

(sodium selenite) [30 nM]

stability, vessel wall

integrity and barrier

4 of 31
Dexamethasone [1 uM] D-pantothenate, and weeks for 3D
D-pantothenate [34 uM] Biotin stocks stored at culture.
Biotin [66 pM] 4°C.
This media blend is
not used by itself for
AVHSE culture, but it
is used to make
DMEM/HAM'’s F12 base media
Adipocyte dermal submersion | Used indirectly
Insulin [5 pg/mL]
Maintenance media. Adipocyte for Dermal
Dexamethasone [1 uM]
Media maintenance media is Submersion
D-pantothenate [34 pM]
(serum free) adipogenesis media.
Biotin [66 uM]
differentiation media
without IBMX or
Indomethacin (a
PPARY agonist) [72]
Dermal submersion
1:1 Serum Free Adipocyte media is half
Maintenance media and serum adipocyte
During week 4
free HMEC1 media maintenance media
of culture:
Dermal and half HMEC1
dermal cells
Submersion Aliquot supplement: 3% FBS media with
are seeded and
(DS) supplement changes.
dermis is
Daily supplements: L-Ascorbic Media prepared
maturing.
Acid [100 pg/mL], VEGF [2 serum-free and used
ng/mL] as base for ESM and
AVHSE media.
Dermal submersion media with
CaCl2[1.44 mM] During week 4
Epidermal Media used for
of culture:
Seeding and addition of N/TERT1s,
Aliquot supplement: 1% FBS epidermal cells
maturation shares base with DS
are seeded and
media (ESM) and AVHSE media.
Daily supplements: L-Ascorbic maturing.
Acid [100 pg/mL]
AVHSE media is
~4 weeks into
Dermal submersion media with | serum free. L-ascorbic
whole culture
CaCl2[1.44 mM] acid is important for
and through
collagen synthesis by
AVHSE media culture
Daily supplements: L-Ascorbic fibroblasts, collagen
endpoint.

Media is used

for ALL

function [73-78].
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2.2. Collagen Isolation: Rat-Tail Collagen 96

Collagen Type I was isolated from rat tail tendons as described previously [79-82]. 97
Briefly, tendons were extracted from rat tails (Pel-Freez Biologics, Rogers, AR), washed in 98
Dulbecco’s phosphate buffered saline (PBS) and soaked in acetone for 5 minutes, 70% 99
isopropanol for 5 minutes, and then dissolved in 0.1% glacial acetic acid for at least 72 100
hours rocking at 4 °C. After dissolving, collagen was centrifuged at ~20,000x g for 1 hour 101
and the supernatant was frozen at —80 °C and lyophilized for long term storage at —80 °C. 102
When ready to use, collagen was dissolved in 0.1% glacial acetic acid to 8 mg/mL and 103
stored at 4 °C. 104

2.3. Construct Fabrication Overview 105

Generation of AVHSE cultures includes four main steps, shown graphically in Figure 106
1: (1) adipogenesis, (2) dermal seeding and maturation, (3) epidermal seeding, and (4) air 107
liquid interface (ALI); total duration is approximately twelve weeks: adipose 108
differentiation (3 weeks), dermal maturation (< 1 week), epidermal seeding (2-3 days), air 109
liquid interface exposure (8-9 weeks). Collagen gel was used to create the hypodermis 110
and dermal layer of the AVHSE constructs in 12-well culture inserts (translucent PET, 3 111
um pore; Greiner Bio-One, Monroe, NC; ThinCerts #665631), similar to previously used 112
[31,35-38,42,43]. In all cases, final collagen concentration was 3 mg/mL [59]. 113

1 Adipogenesis (Hypodermis seeding)

Seed pre-differentiated adipose cells into collagen and continue
adipogenesis for 2 more weeks in 3D environment.

Media: Adipogenesis Differentiation; Timepoint. 2D pre-
differentiation (1 wk) and 3D Adipogenesis (2 wk)

i

Dermal Seeding and Maturation

Seed vascular and fibroblast cells encapsulated in collagen onto the
sub-dermal surface.

Media: Dermal Submersion with supplements; Timepoint: After 2
weeks of 3D adipogenesis, seed dermis and let mature for 3-5 days.

TIME

Epidermal Seeding

Seed keratinocyte cells onto the dermal surface and let mature
before establishing air liquid interface

Media: Epidermal Seeding and Maturation with supplements;
Timepoint: After dermal maturation, during 4" week of total culture

Air Liquid Interface (ALI)

Establish ALI to induce epidermal stratification and whole culture
maturation.

Media: AVHSE with supplements; Timepoint. After epidermal
v e N AR maturation, lift to ALI and maintain for 8 weeks.

11 \~ - -

Membrane Media Adipose Vasculature Fibroblast Keratinocyte

114

Figure 1. AVHSE generation. There are four main steps in creating an AVHSE: (1) Adipogenesis, (2) 115
Dermal seeding and maturation, (3) Epidermal seeding, (4) Air liquid interface. Cartoons on the left 116
show cross-sectional representations of AVHSE during each step. 117

2.4. Adipogenesis and Hypodermal Seeding 118

ASC52telo cells were grown to > 90% confluent and adipogenesis was induced for 3 119
weeks (media blend given in Table 1), split between 1 week in 2D culture and 2 weeksin 120
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3D culture. For 3D culture, ASC52telo cells (750,000 cells/mL of collagen) were 121
encapsulated in 125 pL of 3 mg/mL collagen and seeded into the culture insert. After 122
gelation, constructs were submerged with adipogenesis media (~0.5 mL and ~1 mL of 123
media in the culture insert and well, respectively). Media was added to the insert chamber 124
first to prevent detachment of the collagen from the membrane). Media was changed 125

every 2-3 days until dermal seeding. 126
127
2.5. Dermal/Epidermal Seeding & Air Liquid Interface 128

Media was aspirated from each well and 250 uL of 3 mg/mL collagen with HMEC1 129
and HDFa cells (750,000 and 75,000 cells/mL of collagen, respectively) was seeded onto 130
the hypodermis then quickly transferred to 37 °C for gelation. After gelation, constructs 131
were submerged with dermal submersion (DS) media (Table 1) supplemented with 3% 132
FBS, 2 ng/mL vascular endothelial growth factor (VEGE-A; Peprotech, Cranbury, NJ; #100- 133
20) and 100 pg/mL L-ascorbic acid (L-AA; Thermo Fisher Scientific, Waltham, MA). Media 134
was changed every 2-3 days with fresh L-AA [59,79,83]. After 3-5 days of growth in 135
submersion, DS media was aspirated and epidermal seeding and maturation media (ESM) 136
supplemented with 1% FBS and 100 pg/mL L-AA (1.5 mL added to each well). N/TERT1 137
keratinocyte cells were immediately seeded dropwise at 170,000 cells per insert (~1.13 cm? 138
growth area) using 200 pL of their maintenance media, K-SFM. One/two days after 139
epidermal seeding, media was changed to AVHSE media and the cultures were lifted to 140
ALI within 8-24 h, with longer times leading to increased contraction [59]. The process to 141
establish ALI was outlined previously [59]; typical ALI was established with ~1 mL of 142
media. Following ALI establishment, media was changed every 2-3 days with AVHSE 143
media and supplemented with 100 pg/mL L-AA and 30 nM selenium (sodium selenite; 144
ThermoFisher Scientific, Waltham, MA). 145

2.6. Photoaging of AVHSEs 146

After completing 7 weeks at ALI, AVHSEs were exposed to UVA to model 147
photoaging (PA). A UVA LED array was established by drilling a 5 mm through-hole at 148
center of each well in the plate lid, and inserting a 385 nm/80 mcd LED (VAOL-5GUVS8T4; 149
VCC, Carlsbad, CA); 1 LED directly illuminated each insert (Figure S1). Four LEDs were 150
powered in series with ~10 mA, providing a 0.45 + 0.15> mW/cm? dose as measured by a 151
UV sensor (UVAB Digital Light Meter, #UV513AB, General Tools & Instruments, 152
Secaucus, NJ). LEDs were measured every 3—4 days and replaced as needed. AVHSEs 153
were exposed to UVA for 2 hours daily for one week using an automated timer. UV dose 154
and exposure was determined within values of prior work on human skin equivalents, 155
cell monolayers, and mouse models [18,23,24,26,50,84,85]. 156

2.7. ELISA (Adiponectin, IL-6, MMP-1) 157

AVHSE culture supernatant was collected at the end of ALI week 8 from controlsand 158
photoaged samples. Samples were centrifuged and frozen at —-80 °C until use. ELISAs 159
were performed for human Adiponectin, Interleukin-6 (IL-6), and total matrix 160
metalloproteinase (MMP-1) according to the manufacturer’s protocol (Proteintech Group, 161
Rosemont, IL). Each sample was assayed in duplicate with standards completed for each 162
run. For color development, tetramethylbenzidine (TMB)-substrate exposure was 20 163
minutes for Adiponectin and IL-6 and 15 minutes for MMP-1 at 37 °C in the dark. After 164
stop solution was administered, color development was immediately measured at450 nm 165
with a correction wavelength of 630 nm using a SpectraMax M2 Multi-mode microplate 166
reader (Molecular Devices, San Jose, CA) and corrected against a run zero standard. Four 167
parametric logistic curves (4PLC) fits were used and values below detection limit were set 168
to zero. Sample sizes varied for each assay due to sample availability and are as follows: 169
Adiponectin: for each condition n =10, 12 = 0.9975; IL-6: control n = 6 and photoagedn=38, 170
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2 = 0.9993; MMP1: control n = 7 and photoaged n = 10, r2 = 0.9954 (9 values) and 0.91 (7 171
values). 172

2.8. Post-Culture Immunostaining and Confocal Microscopy 173

After culture, samples were pre-fixed in 4% paraformaldehyde for 5 minutes then 174
fixed for 1 hour in 4% paraformaldehyde and 0.5% Triton X100 at room temperature. 175
Samples were washed three times in PBS then stored at 4 °C until staining. For staining, 176
culture insert membranes were removed using forceps, as described previously [59]. The 177
staining and imaging processes were completed in four phases: epidermal, dermal 178
vasculature, adipose, and post-clearing (Table 2). The nuclear marker DRAQ7 was 179
administered during the epidermal staining phase and was used until imaging was 180
completed. Imaging orientation of the AVHSEs were dependent on stain phase (Table 2). 181
For staining, primary and secondary antibody stain solutions were made up in blocking 182
buffer (Table 2). All samples were stored at 4 °C in PBS until imaging. 183

To image each fixed sample, custom polydimethylsiloxane (PDMS; Dow Corning, 184
Midland, MI) molds were punched specific to each sample size and adhered to glass slides 185
[59]. Samples were placed in the well with PBS and covered with another glass slide to 186
preserve humidity while imaging. As AVHSE are too thick for direct confocal imaging 187
throughout the structure without tissue clearing, each sample was imaged in both apical 188
and basal orientations. Stains were multiplexed to laser excitations in cases of minimal 189
overlap (e.g. epidermal and subdermal stains), and this was confirmed through the 190

sequential staining process. 191
Table 2. Staining sequence, antibodies, and blocking buffer used. 192
Staining Sequence
Staining/Processing
Stain/Imaging Phase Imaging Orientation
Used
Cytokeratin 10,
1. Epidermal Apical (epidermal)
Involucrin, DRAQ7
2. Dermal
Collagen IV Basal (hypodermis)
Vasculature
3. Adipose BODIPY Basal (hypodermis)
(Methanol
4. Post-clearing dehydration, methyl Basal (hypodermis)
salicylate clearing)
Epidermal Staining
Antibody/Stain Information & Source | Concentration Notes
DRAQ 7 Cell Signaling; [1:250] Nuclear marker
Cytokeratin 10
Cytokeratin 10 (DE-
K10) mouse IgG,
Primary
supernatant. Santa
Suprabasal
Cruz; sc-52318
epidermal marker
Goat Anti-Mouse IgG
(H&L), DyLight™ 488.
Secondary [1:500]
Thermo Scientific;
35502 (1 mg/mL)
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Involucrin

Primary

Involucrin rabbit
polyclonal IgG.
Proteintech;

55328-1-AP (30 pg/150
uL)

Secondary

Anti-Rabbit IgG (H&L)
(GOAT) Antibody,
DyLight™ 549
Conjugated.
Rockland
Immunochemicals;

611-142-002

[1:500]

Stratum Corneum,
terminal
differentiation

marker[32]

Dermal Vasculature Staining

Collagen IV

Primary

Collagen IV rabbit
polyclonalProteintech;

55131-1-AP

[1:500]

Secondary

Anti-Rabbit IgG (H&L)
(GOAT) Antibody,
DyLight™ 549
Conjugated. Rockland
Immunochemicals;

611-142-002

[1:500]

Vascular basement

membrane

Adipose Staining

BODIPY

Difluorof2-[1-(3,5-
dimethyl-2H-pyrrol-2-
ylidene-N)ethyl]-3,5-
dimethyl-1H-
pyrrolato-N}boron;
dissolved in 200 proof
EtOH, CAS: 121207-31-
6; Aldrich; 790389

2 uM]

Mature adipocyte

marker

Clearing

Methanol

CAS: 67-56-1

4 baths, 10

min. each

For sample

dehydration.

Methyl Salicylate

CAS: 119-36-8

4 baths, 5 min.

each

For sample

clearing

Blocking Buffer Recipe

Reagent

Amount

ddH0

450 mL

10 x PBS

50 mL
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Bovine Serum Albumin (BSA) 5g
Tween 20 0.5 mL
Cold water Fish Gelatin lg
Sodium Azide (10% Sodium Azide in diH20) 5mL (0.1 % final concentration)
All exposure for stains and antibodies: 48 hours, stationary, 4 °C

2.9. Tissue Clearing 193

After completing staining and imaging phases 1-3, constructs were cleared via 194
methyl salicylate with methanol dehydration. Constructs were dehydrated in methanol 195
with 4x 10 min baths then cleared in methyl salicylate with 4x 5 min baths. Constructs 196
were stored in methyl salicylate and imaged via confocal microscopy on the same day, as 197
detailed previously [59,60]. 198

2.10. Quantitative Epidermal Analysis 199

Thickness of epidermal layers were automatically detected from confocal images via 200
thresholding differences using a custom analysis algorithm designed in MATLAB 201
(MATLAB 2018b; Mathworks, Natick, MA), similar to prior descriptions [60]. For each 202
sample, five confocal sub-volumes in the center of the AVHSE were used to detect 203
thickness (total volume of 1.85 x 0.37 x 0.25-0.4 mm; imaging depths were adjusted per 204
sample but a consistent voxel size of 0.7 x 0.7 x 3 um was used). An average thickness was 205
found for each XY position to obtain a volumetric thickness indication rather than froma 206
single cross-sectional position or from max projection. Briefly, epidermis was localized 207
using DRAQ?, cytokeratin 10, and involucrin stains. Noise was removed using median 208
filters applied to each XY-plate and intensities were scaled by linear image adjustment. 209
Background auto-fluorescence was removed using rolling ball filters on each XY plane 210
and the epidermis was segmented using hysteresis thresholding. Gaps in the epidermal 211
binary volume were removed via morphological closing and opening with a disk 212
structuring element. The resulting binary volume created a computational plane from 213
which the top and bottom difference could be calculated and metrically scaled by 214
appropriate voxel size. Intensity comparison of the suprabasal markers, Cytokeratin 10 215
and Involucrin, was completed across all samples using confocal images. A maximum 216
projection image of ten positions per sample was generated and average intensity values 217
were calculated. For all epidermal quantification, five AVHSE replicates were used for 218
analysis. 219

2.11. Quantitative Dermal/Hypodermal Analysis 220

Adipose thickness, volume fraction (VF), and integrated intensity quantification was 221
completed from 10 confocal sub-volumes per each sample (a total volume of 3.7 x 0.37 x 222
0.35 mm). VF is an estimate of the adipose within the hypodermis and dermal space. 223
Volumetric thickness was calculated using localization of the BODIPY mature adipose 224
marker, as described for epidermal thickness quantification. Integrated intensity of 225
BODIPY was quantified via custom algorithms. Briefly, image sub-volumes were 226
segmented and the resulting binary masks were used to isolate BODIPY stain from 227
background noise and autofluorescence. The sum of raw intensity along the z-axis was 228
calculated for each sub-volume within its binary map, then all sub-volume values were 229
averaged as a metric of the whole sample volume. These data were gathered from images 230
taken in the 3+ imaging phase (Table 2). Six AVHSE replicates were used for analysis. 231

Vascular quantification parameters of diameter, VF of the vasculature, and diffusion 232
length (R«x) were determined from the average of 6 confocal sub-volumes per each sample 233
(total volume of 2.22 x 0.37 x 0.35 mm), similar to published methods [59,79,86]. Using the 234
Collagen IV marker from cleared AVHSE structures (4" imaging phase, Table 2), vessels 235
were located through segmentation (using built-in MATLAB functions, custom functions, 236



Biomolecules 2022, 12, x FOR PEER REVIEW 10 of 31

and previously published functions [87,88]) and ultimately vessel detection via an 237
enhanced Hessian based Frangi filter [89-91]. VF was determined using the resulting 238
volume segmentation. After locating vessels, the segmented volume was skeletonized 239
through a fast marching algorithm [59,79,92-94]. Diameter was quantified by performing 240
Euclidean distance transform on the vascular segmentation and collecting values along 241
the skeleton. Additionally, R« was defined as a “diffusion length” from the vascular 242
fraction that encompasses 90% of the volume [79]. Rx was obtained by determining the 243
Euclidean distance between all points in the collagen volume and the nearest point on the 244
network. Four AVHSE replicates each were used for analysis. 245

2.12. Live Culture Imaging 246

On a limited number of cultures, optical coherence tomography (OCT) was used as 247
a non-invasive technique to measure epidermal thickness in live samples as previously 248
described [60]. OCT imaging was conducted with a custom built fiber-based spectral 249
domain optical coherence tomography (SD-OCT) system centered at 1310 nm, as 250
described previously [95]. Each sample was imaged then immediately returned to culture 251
while maintaining sterility, requiring imaging through the well plate lid. To minimize the 252
reflective effect of the lid, the sample arm of the OCT system was tilted at 15°, reducing 253
reflection while maintaining adequate illumination. Imaging took ~1 hour for each 254
sample; no loss of sample viability was observed. Settings for imaging remained 255
consistent through culture: 1 volumes, 400 frames, and 4096 A-lines were taken per 256
sample; resulting image size was 4096 x 512 x 400 voxel (4 x 2 x 4 mm). Epidermal thickness =~ 257
was assessed via post-processing of the data using custom-written scripts in MATLAB 258
(MATLAB 2018b; Mathworks, Natick, MA) which detected the top and bottom surfaces 259
of the hyper-reflective epidermis and calculated thickness across the volume, as 260
previously described [60]. 261

2.13. Statistics 262

Pairwise comparisons of control v. photoaged samples were completed through two- 263
tailed t-test. ANOVA followed by Tukey’s HSD post-hoc test was used to test for 264
statistically significant differences when applicable. Un-normalized data points are shown 265
for comparison to tissue scale morphology. For statistical comparison, data were 266
normalized to control for epidermal, vascular, and adipose quantification. Significant 267
differences of normalized data are plotted with p <0.05 represented by a single asterisk; p 268

<0.01 represented by a double asterisk. 269
3. Results 270
3.1. AVHSE Enables Tissue-Scale Studies of Skin Biology 271

AVHSEs and the analysis techniques presented here enable study of skin 272
volumetrically and at the tissue scale (Figure 2). Through automated imaging and 273
stitching, epidermal, dermal, and hypodermal markers can be assessed volumetrically. 274
The automated image analysis of the three skin compartments described in the following 275
sections was completed on biologically large volumetric areas with minimum volumes of 276
~1 x 0.7 x 0.25 mm to analyze the epidermis and up to 3.6 x 0.37 x 0.35 mm to analyze the 277
hypodermis. Importantly, the volumetric approach allows assessment of variation across 278
the culture that is difficult with standard histological approaches that involve sectioning 279
[60]. 280
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Figure 2. AVHSE allow for large-scale assessment of cultures. (A) Demonstration of scale of 282
epidermal analysis. Cytokeratin 10 (cyan) is a suprabasal epidermal marker and Involucrin 283
(magenta) is a stratum corneal marker. Image is an en face max projection of ~0.7 x 1 x 0.2 mm 284
volume. (B) Adipose and vasculature morphology can be assessed at scales that span 3.6 mm 285
(approximately half of this representative AVHSE), presented as an en face max projection. Collagen 286
IV (cyan) marks the vasculature and BODIPY (magenta) marks lipid droplets secreted from mature 287
fat cells (magenta). (C) Volumetric rendering of segmented Collagen IV (cyan) and BODIPY 288
(magenta), demonstrating vascular infiltration into the hypodermis. Images were acquired pre- 289
clearing and are median filtered for clarity. 290

3.2. UVA Photoaging Alters Adiponectin Expression 291

Prior studies have demonstrated decreased adipokine production during 292
photoaging, and adipokines are mediators of the dermal photoaging mechanism [24,96]. 293
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To test if the AVHSE cultures were similarly responsive to UVA, we measured production 294
of adiponectin using ELISA. AVHSE cultures were prepared and maintained through ALI 295
as described in the methods. After 7 weeks of ALI, AVHSE were exposed to 7 days of 29
UVA (2 h/day, 385 nm, 0.45 + 0.15 mW/cm?), or left as controls. Media supernatant was 297
collected from both photoaged and control samples after UVA exposure. Adiponectin 298
expression was significantly reduced, in agreement with prior in vivo studies [24] (Figure 299
3). This was not accompanied by a general inflammatory response or increased matrix 300
metalloproteinase-1 (MMP-1) presence, as indicated by stable IL-6 and MMP-1 expression 301

(Figure 3). 302

10°
S " :
= 600
= & § s
£ S
. 8o
£ 751 10 £ —El 400 N
o = A A Q=
: 2 3 S2
5 N A 8 200
g Aaa a © A A
o 2 =
g 10 —<hr— ——
he] R 0 A A
<

Ctrl PA ctrl PA
x10%
A

25
c
o
= 2
o
€315
8 E
58 1
0 el
- A
% 0.5 " ‘
= 0 A A A

03 Ctrl PA

trl
303

Figure 3. Cytokine evaluation from cell media was completed via ELISA. Cell media was collected =~ 304
after week 8 of culture. All values were corrected by a zero standard and values below detection 305
limit were set to zero. All values were determined from four-parametric logistic curve fits. Datais 306
shown as medians (black bars) and individual data points (triangles). Sample numbers varied for 307
each assay due to limited culture volumes. Adiponectin: for each condition n = 10. IL-6: controln= 308
6 and photoaged n = 8; MMP1: control n = 7 and photoaged n = 10. A two-tailed t-test showed a 309
significant decline in the adiponectin secreted into media after photoaging AVHSEs (p < 0.05; 310
indicated with *). 311

3.3. Epidermis is Stable During UVA Photoaging 312

Photoaging by the UVA largely acts on the dermal and hypodermal portions of the 313
skin rather than the epidermis, in contrast to UVB which shows epidermal toxicity [18,22]. 314
To assess any changes in epidermal morphology, we stained suprabasal markers 315
(involucrin and cytokeratin 10) along with the nuclear stain DRAQY7 to assess epidermal 316
thickness. No statistically significant differences were observed in the staining intensity 317
of involucrin and cytokeratin 10 (Figure 4A-B), or in the overall thickness of the epidermis 318
(Figure 4C), when comparing the control and the photoaged AVHSEs. For a limited 319
number of samples, we further assessed epidermis through OCT imaging as previously 320
described [60]. Consistent with the confocal data we observed no gross change in 321
epidermal morphology with photoaging. These data are consistent with the minimal in 322
vivo effects of UVA on the epidermis [22]. 323
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Figure 1. Epidermal characterization and quantification. (A) The epidermal differentiation markers, 325
Involucrin (magenta) and Cytokeratin 10 (cyan), localize to epidermis. Nuclei are marked with a 326
DRAQY7 counterstain and shown in yellow. No apparent qualitative changes in the experimental 327
groups were observed, as shown in these representative images. Scalebars are 100 pm. (B) 328
Quantification of epidermal intensities was completed from z-axis maximum projections; no 329
indication of intensity changes were found in either epidermal stain when comparing control (Ctrl) 330
to photoaged (PA) samples. For both control and photoaged groups n = 5. (C) Epidermal thickness 331
was volumetrically quantified and no differences were indicated (n = 6 for both control and 332
photoaged groups). Data is shown as medians (black bars) and individual data points (triangles). 333
Images were acquired pre-clearing and are median filtered for clarity. 334

3.4. Dermal Vasculature is Stable during UVA Photoaging 335

Prior studies have shown dermal vascular damage is associated with chronic UVA 336
exposure, as determined from sun-exposed skin biopsies from young v. aged individuals 337
(20-80 years) [97]. As a proxy for vascular damage, we quantified overall morphology in 338
the AVHSE. Vascular structures were identified through localization of collagen IV 339
(Figure 5A). Formation of well-developed vascular networks was observed in both control 340
and photaged samples as shown in maximum projections. Imaging for vascular 341
quantification was performed after tissue clearing, to minimize the loss of signal deeper 342
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in the confocal volume. The 3D rendering shown is representative of the vascular network 343
segmentation and skeletonization that was made possible with cleared tissues (Figure 5B). 344
Vascular network diameters were quantified as 6.45 + 0.14 um for control and 6.34 +0.12 345
um for photoaged (median + S.E.M.). Volume fraction (VF) of vasculature had median 346
values of 0.037 + 0.01 and 0.032 + 0.007 (control and photoaged, respectively; median + 347
S.E.M.). No statistical difference was determined in comparison of diameter or vascular 348
VF. Diffusion length (Rx) [79] was calculated with median values of 73.16 + 23.75 and 83 + 349
29.36 microns (control and photoaged, respectively; median + S.E.M.). A significant 350
increase in diffusion length of photoaged AVHSEs was detected (p < 0.01; normalized to 351
biological replicate controls) which corresponds to a slight non-significant decrease in VF 352
of photoaged samples, consistent with slight loss of vascular density. 353
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Figure 5. Vascular staining and quantification. (A) A comparison of maximum projections of 355
confocal images of control v. photoaged AVHSE sub-dermis and dermis; Collagen IV marks 356
vasculature in cyan. Scalebars are 100 pum. (B) Segmentation of the vascular fraction (cyan) was 357
completed on 6 cleared sub-volumes per sample. Skeletonization was completed using 358
segmentation data (magenta line). Shown is a representative 3D rendering of one confocal sub- 359
volume. (C) Segmentation and skeletonization of vascular networks enables quantitative 360
assessment of the morphology (n = 4 for each condition). Vessel diameter and volume fractions 361
remain stable when AVHSEs are photoaged and there is an increase in diffusion length for 362
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photoaged (p < 0.01; indicated with **). Data is shown as medians (black bars) and individual data 363
points (triangles). Images are median filtered for clarity. 364

3.5. Hypodermal Adiposity is Reduced with Photoaging 365

Prior in vivo studies have shown decreases in hypodermal adipose associated with 366
UVA photoaging. To test if this was mimicked in the AVHSE model, we used confocal 367
imaging of the lipid stain BODIPY in both controls and photoaged AVHSE. 368
Representative images shown in Figure 6A show decreased staining intensity and 369
representative volume renderings are shown in Figure 6B. To quantify adiposity, we 370
utilized two morphological measures (lipid volume fraction and adipose thickness) as 371
well as the integrated intensity of the BODIPY. Both morphological measures exhibit 372
subtle declines, but the results are non-significant (Figure 6C). However, the overall stain =~ 373
intensity was significantly decreased (Figure 6C), indicating an overall loss of lipid 374

content in the photo-aged AVHSE. 375
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Figure 6. Adipose staining and quantification. (A) A comparison of confocal images of control vs. 377
photoaged AVHSE sub-dermis; BODIPY marks lipid accumulation at mature adipocytes in 378
magenta. Scalebars are 100 pm. (B) Representative 3D rendering of adipose volume fraction for 379
control and photoaged samples. (C) Top-Volume Fraction was calculated based on segmentation of 380
the BODIPY stain as seen in B. Middle-Thickness quantification based on morphological closing of ~ 381
BODIPY segmentation. Bottom- Integrated Intensity of BODIPY across the volume shows a 382
significant (p < 0.05; indicated with *) drop in photoaged samples (n = 6 for each condition). Datais 383
shown as medians (black bars) and individual data points (triangles). Images were acquired pre- 384
clearing and are median filtered for clarity. 385

4. Discussion 386

Skin provides critical barrier, insulation, and homeostatic functions in human 387
physiology; these are known to be disrupted in aging [2,17,98]. Despite the importance, 388
research is limited by the accessibility of physiologically relevant models, with 389
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conventional culture methods lacking the structure and organization of the overall tissue 390
[4] and conventional animal models presenting key differences from human aging 391
physiology [31,51]. To address this, human skin equivalents (HSE) have been previously 392
established as valuable models in the study of skin and aging [4,8,12,14,99-108]; however 393
limitations remain. Of special relevance, loss and dysregulation of hypodermal adiposeis 394
implicated in physiological aging [98,109,110] and aging-associated diseases including 395
lipoatrophy [111] associated with insulin-resistant diabetes mellitus [112]. This 39
dysregulation is poorly captured in current HSE. To address this, we have developed a 397
robust and reproducible HSE that includes adipose and vascular components (AVHSE). 398
This methodology builds off of previous studies [62,113-116] and provides a model to 399
study crosstalk between adipose, vascular, stromal, and epithelial components of skin in 400
the context of aging. Further, this model is tissue-scale, stable for long culture durations 401
(experiments described were 8 weeks, 16 week cultures have been performed using 402
similar methods), and suitable for aging studies. Other researchers have reported that 403
when skin models are cultured with adipose tissue, after 2 weeks of culture, there was 404
epidermal disintegration and that 7 days is enough time at ALI to produce a fully 405
functional skin equivalent [64]. Although we did not directly compare skin equivalents 406
without adipose to AVHSEs here or directly compare culture timepoints, we have not 407
observed any obvious changes in epidermal coverage compared to our previous work in 408
vascularized human skin equivalents that do not contain a subcutaneous adipose 409
compartment [59]. While the model is customizable to study the effects of intrinsic and 410
extrinsic aging factors, as a test case we have demonstrated suitability for studies in UVA 411
photoaging due to the strong literature base of both in vitro and in vivo studies available 412
for comparison. Finally, we demonstrated the accessibility of the model for both molecular 413
(e.g. ELISA) and morphological studies (e.g. volumetric analysis of cell organization). 414

A key aspect of any HSE model is a differentiated and stratified epidermis. Here, 415
N/TERT-1 keratinocytes [68] were used to generate skin epidermis as previously 416
completed [31,35,59]. Importantly, N/TERTs are a suitable and robust substitute to 417
primary keratinocytes which have disadvantages including limited supply, limited in 418
vitro passage capabilities, and donor variability [35]. HSEs generated with N/TERT 419
keratinocytes demonstrate comparable tissue morphology, appropriate epidermal protein 420
expression, and similar stratum corneum permeability when compared to HSEs generated 421
with primary keratinocytes [31,35]. Similar to prior models, we demonstrate AVHSEs 422
appropriately model the skin epidermis with correct localization of involucrin (a stratum 423
corneum marker) and cytokeratin 10 (suprabasal early differentiation marker) [1,38] 424
(Figure 1). Further, volumetric imaging and automated analysis allows for epidermal 425
thickness to be robustly calculated. AVHSE present with median epidermal thicknesses 426
within 90-100 pum, similar to values in both prior in vitro studies 100-200 pm [117] and in 427
vivo optical coherence tomography imaging of adult skin 59 + 6.4 to 77.5 + 10 um [118]. 428
Consistent with prior in vitro and in vivo results showing UVA wavelengths 429
predominantly impact dermal rather that epidermal layers [119,120], UVA photoaging 430
resulted in no observable changes in epidermal thickness or expression of differentiation 431
markers in AVHSE (Figure 3). 432

In the dermis and hypodermis, skin is highly vascularized with cutaneous 433
microcirculation playing important roles in thermal regulation and immune function 434
[98,121]. Many prior HSE models have not included a vascular component 435
[31,34,35,43,63]; however, there is increasing recognition of its importance 436
[1,4,40,47,48,122,123]. In the present work, we used collagen IV as a marker of the vascular 437
basement membrane, enabling the automated segmentation and mapping of a vascular 438
network within AVHSEs. Importantly, volumetric quantification of the vasculature was 439
performed with imaging after tissue clearing; however, these techniques are possible with 440
uncleared images as well with some limitations [59]. The vascular VF of AVHSEs is lower 441
than in vivo dermis (~3% compared to 20.0 + 5.0 to 40.3 + 2.4 % measured by OCT at four 442
positions in the arm [124]), but prior work has shown this is tunable by using different 443
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cell seeding conditions [79]. Optimizing the VF may be more involved in the AVHSE, 444
since the ratio of adipose and vascular cells has been shown to be important in regulating 445
tissue morphology [113]. Thus, ratio of adipose and vascular cells would need to be 446
optimized for new cell and collagen densities. Adipose tissue is densely vascularized 447
[113,125,126] and the ability of adipocytes to generate lipid droplets and adipokines in the 448
presence of endothelial cells is important to replicate the in vivo environment [114]. 449
Previous work has shown that in co-culture of endothelial cells (ECs) and mature 450
adipocytes can lead to dedifferentiation of mature adipocytes [126], but in homeostatic 451
cultures ECs and adipocyte crosstalk is important. Through soluble factor release, ECs 452
regulate lipolysis and lipogenesis and adipocytes regulate vasodilation and contraction 453
[64,126]. Secretion of adipokines by adipocytes aids vascular formation and adipose tissue 454
stability [114,126]. In prior work, Hammel & Bellas demonstrated that 1:1 is the optimal 455
ratio for vessel network within 3D adipose [113], and we matched the 1:1 cell ratio in the 456
present work. 457

Quantification of vessel diameter in the Hammel & Bellas study shows thata 1:1 ratio 458
of adipocytes to endothelial cells gives an average vessel diameter of ~10 um [113], our 459
work similarly finds a median vessel diameter of ~6 um. Importantly, these data are 460
within the range of human cutaneous microvascular of the papillary dermis (4 to 15 um 461
[121]). We did not observe morphological changes of VF and diameter within the 462
vasculature due to photoaging. While it is established that chronic UVA exposure can 463
contribute to vascular breakdown [97,127], the duration of our studies may be too short 464
to see this effect in diameter and VF (1 week vs lifetime UV exposure in people over 80 465
[3,97]). However, photoaging did induce an increase in diffusion length (Rx), in this case 466
defined as the distance from the vasculature that covers 90% of the construct; higher 467
values corresponds to lower vascular density. Values presented here match previous 468
studies of vascularized collagen [79]. R« of the vascular network for both control and 469
photoaged samples was within the range of 51-128 um, lower than the frequently cited 470
200 pm diffusion limit for supporting a cellular tissue [128]. These findings conflict with 471
studies of acute UV exposure in skin, which show stimulation of angiogenesis [3,129]. It 472
has been proposed that UV light exposure may improve psoriasis by normalizing 473
disrupted capillary loops through upregulation of VEGF by keratinocytes [121]. The 474
AVHSE model could be used to more thoroughly test the effects of UV light and other 475
molecular mechanisms it induces in future studies. 476

Further, we observed vasculature colocalized with the lipid droplet BODIPY staining 477
(Figure 2), indicating recruitment of the vascular cells to the hypodermis. Importantly, the 478
vascular networks in prior studies and the present AVHSE are self-assembled. While there 479
are advantages to self-assembly, especially the simplicity of the method, it is important to 480
note the limitations. Cutaneous microcirculation in vivo has a particular anatomical 481
arrangement with two horizontal plexus planes, one deep into the tissue in the 482
subcutaneous fat region and one just under the dermal-epidermal junction [121,130]. 483
Between these two planes are connecting vessels running along the apicobasal axis that 484
both supply dermal tissues with nutrients and are an important part of thermoregulation 485
[121,130]. Although the AVHSEs presented here have reasonable vascular densities they 486
do not recapitulate this organization. While not covered in this work, future studies could 487
incorporate layers of patterned or semi-patterned vasculature [128] to more closely match 488
the dermal organization, depending on the needs of the researcher. 489

This photoaging model did demonstrate impacts to the hypodermis. Volumetric 490
imaging of BODIPY, which stains lipid droplets [113], was used as a measure of adiposity. 491
While small reductions in the morphological parameters (adipose thickness and lipid VF) 492
were observed, they were not significant, suggesting there was not large-scale apoptosis 493
or other cellular loss. However, there was a significant decrease in the intensity of BODIPY 494
staining, indicating decreased lipid levels (Figure 6). This is consistent with photoaging 495
of excised human skin showing that UV exposure decreases lipid synthesis in 496
subcutaneous fat tissue [96]. We further collected culture supernatant and tested for the 497
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presence of adiponectin, IL6, and MMP-1. The data collected through ELISA (Figure 3) 498
show that this AVHSE model secretes both adiponectin and IL6, which are also presentin 499
native skin and both considered important adipokines [62,126,131,132]. Elevated serum 500
adiponectin levels are linked to anti-inflammatory effects in humans [131,132] and 501
centenarians (a model of healthy aging) have elevated levels of adiponectin [131]. 502
Decreased adiponectin has previously been associated with photoaging in both excised 503
human skin that was sun-exposed compared to protected skin and in protected skin that 504
was exposed to acute UV irradiation [24]. Conversely, IL6 is a key factor in acute 505
inflammation in skin, and has been shown to regulate subcutaneous fat function [96,133]. 506
In prior studies of photoaging, IL6 has demonstrated an increase after UVA irradiationin 507
monolayer fibroblast cultures [134] and excised human skin [96,133]. IL-6 is released after 508
UV irradiation and has been linked to decreased expression of adipokine receptors and 509
mRNA associated with lipid synthesis [24], decreases in lipid droplet accumulation [96], 510
and enhanced biosynthesis of MMP1 [134,135]. However, after one week of photoaging 511
we did not observe an increase in IL-6 or MMP-1 via ELISA (Figure 3). 512

The absence of changes in IL-6 and MMP-1 expression but decreases in lipid 513
accumulation and adiponectin are not expected results but they could be due to 514
methodology differences in UVA exposure. We determined our UVA dose and exposure 515
based on literature values [18,23,24,26,50,84,85]. The dose used here was 0.45 + 0.15 516
mW/cm?with exposure for 2 hours daily for 7 d; this converts to approximately 3.24 J/cm? 517
per day and a total of 22.68 J/cm?2. Many studies do not report exposure time and/or 518
present ambiguous timepoints. This compounded with the practice of using doses based 519
on sample pigmentation and broad definition of UVA wavelengths may be contributing 520
to the differences in IL-6 and MMP-1 expressions compared to prior work. While not 521
addressed in the present study, the AVHSE culture platform is suited for future studies 522
investigating the specific molecular mechanisms associated with altered wavelength(s), 523
dosing, and durations. 524

Unexplored in this study is the mechanics of the AVHSE, and the impact of 525
photoaging on mechanics. Acting as a defense against mechanical trauma is a key function 526
of the skin in vivo [1], the mechanical properties that enable this are highly dependent on 527
the structure and composition of the tissue [136]. Importantly, the collagen density in the 528
AVHSE model is 3 mg/mL, much lower than in vivo densities [137,138]; this difference is 529
likely accompanied by dramatically reduced mechanical strength of AVHSE compared to 530
native skin. Increasing the collagen density to physiologically relevant levels and directly 531
quantifying AVHSE mechanics will be an important aspect of future studies [136]. 532
Importantly, higher collagen densities are possible through a variety of techniques, 533
including dense collagen extractions [81] and compression of the collagen culture [41]. In 534
addition to density, the anisotropic collagen organization of native dermis is a key factor 535
in mechanics. It has long been understood that dermal collagen has a preferential 536
orientation, and that the mechanical properties of skin differ parallel or perpendicular to 537
that orientation [136,139]. In these studies, collagen alignment was not controlled and 538
likely has no global alignment [140]; future studies that included collagen orientation 539
could leverage a range of previously established techniques depending on the specific 540
goals [141]. In the context of photoaging, these mechanical studies are especially relevant. 541
Decline of collagen density is an important aspect of skin aging, correlating with skin 542
elasticity and wound healing [4-7,11,17,142]. Further, photoaging increases the expression = 543
of MMPs and decreases collagen synthesis [23-25], resulting in fragmentation and 544
disorganization of the dermal extracellular matrix [18]. Future studies that measure and 545
control the mechanics of AVHSE will be important for fully characterizing the model and 546
more closely matching the physiology of native skin. 547

There are additional limitations of the AVHSE model presented. Although we have 548
presented a skin model that is closer to both anatomy and biology of human skin in 549
comparison to past HSEs, we have not modeled skin fully through inclusion of other 550
features of in vivo skin such as immune and nerve components. Including a functional 551
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immune system is important in understanding autoimmune diseases, cancer, wound 552
healing, and decline of immune function in aged skin [4,98]. Additionally, neuronal cell 553
inclusion will allow for modeling of sensory processes necessary for grafting and 554
modeling of skin disorders associated with nerve dysregulation [98]. Further, while the 555
cell lines used in this study were chosen for their low cost and accessibility, primary cells 556
or populations differentiated from induced pluripotent stem cells (iPSCs) would more 557
closely match the physiology in vivo. While changing cell populations would likely require 558
some adjustment to the culture system, we have previously demonstrated that cell types 559
can be replaced with minimal changes [59]. We model epidermis, dermis, and hypodermis 560
here, but we do not model the depth that is present in thick skin tissue. As nutrient and 561
waste diffusion in tissues is limited to ~200 pum [128], thick tissues will likely require 562
perfusion to maintain throughout culture. Vasculature in thicker skin has higher 563
diameters, especially in the lower dermis and hypodermis, these can be up to 50 um [121], 564
and thick skin models may benefit from patterning larger vessels. Further, the AVHSE 565
method was demonstrated with low serum requirements; while serum was used for initial =~ 566
growth, the cultures are maintained for weeks without serum. Serum replacements 567
during the growth phase could potentially provide a chemically defined xeno-free culture 568
condition in beginning culture stages for greater reproducibility and biocompatibility. 569

The presented AVHSE model provides unique capabilities compared to cell culture, 570
ex vivo, and animal models. Excised human skin appropriately models penetration of 571
dermatological products but there is limited supply and high donor variability [143]; 572
replacing excised human skin with animal models or commercially available skin 573
equivalents limits due to the differences such as varying penetration rates, lipid 574
composition, lipid content, morphological appearance, and healing rates [143,144]; cost 575
and limitations of customization are additional factors. AVHSE can be cultured using 576
routinely available cell populations, are cost effective, and are customizable for specific 577
research questions. Further, the model is accessible for live imaging, volumetric imaging, 578
and molecular studies, enabling a wide range of quantitative studies. The current work 579
focused on AVHSE as a research tool, but similar techniques could be further developed 580
for the development of grafts. Grafting would require addressing many of the structural 581
and biological limitations noted above, as well as modifications to address host immunity 582
issues. Overall, we have demonstrated AVHSEs as a research platform with regards to 583
photoaging effects, but expansions of this model could be utilized for clinical skin 584
substitutes [73], personalized medicine, screening of chemicals/cosmetics, drug discovery, 585
wound healing studies [73,144], and therapeutic studies [62]. 586

Supplementary Materials: The following supporting information can be downloaded at: 587
www.mdpi.com/xxx/s1, Figure S1: UVA Photoaging Setup. 588
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