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Abstract 25 

Aging remains a primary risk factor for a host of diseases, including leading causes of death. Aging 26 

and associated diseases are inherently multifactorial, with numerous contributing factors and phenotypes 27 

at the molecular, cellular, tissue, and organismal scales. Despite the complexity of aging phenomena, 28 

models currently used in aging research possess limitations. Frequently used in vivo models often have 29 

important physiological differences, age at different rates, or are genetically engineered to match late 30 

disease phenotypes rather than early causes. Conversely, routinely used in vitro models lack the complex 31 

tissue-scale and systemic cues that are disrupted in aging. To fill in gaps between in vivo and traditional in 32 

vitro models, researchers have increasingly been turning to organotypic models, which provide increased 33 

physiological relevance with the accessibility and control of in vitro context. While powerful tools, the 34 

development of these models is a field of its own, and many aging researchers may be unaware of recent 35 

progress in organotypic models, or hesitant to include these models in their own work. In this review, we 36 

describe recent progress in tissue engineering applied to organotypic models, highlighting examples 37 

explicitly linked to aging and associated disease, as well as examples of models that are relevant to aging. 38 

We specifically highlight progress made in skin, gut, and skeletal muscle, and describe how recently 39 

demonstrated models have been used for aging studies or similar phenotypes. Throughout, this review 40 

emphasizes the accessibility of these models and aims to provide a resource for researchers seeking to 41 

leverage these powerful tools.  42 
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Introduction 43 

Chronic aging associated disease (AAD) remains one of the defining medical challenges of our 44 

time, representing 95% of direct health costs for seniors and driving expected Medicare spending to over 45 

$1.2 trillion by 2024 [1,2]. Further, patient care is complicated by the convolution of systemic factors, 46 

multiple diseases, and conflicting treatment plans. Indeed, patients co-presenting two or more AADs are 47 

common and costly, with patients managing 2 or more chronic conditions representing over 70% of 48 

healthcare spending [3]. This complexity is reflected at the molecular level, with numerous mechanisms 49 

implicated in the aging process. These mechanisms prominently include inflammation, oxidation, metabolic 50 

and mitochondrial dysfunction, telomere shortening, and cellular senescence; we direct readers to other 51 

reviews on the molecular drives of aging [4,5]. Despite strong research efforts, connecting the host of 52 

molecular changes to development of effective treatments for AAD remains challenging. Identifying and 53 

intervening in early stages of chronic disease remains difficult with the slow degeneration distributed over 54 

years, evaluation of molecular markers occurring long after pathogenesis, and convolution of many subtle 55 

pathway dysregulations. A major contributor to these challenges is the limitations of commonly used in vivo 56 

and in vitro models.  57 

 Animal models of aging broadly follow the phenotypes of human aging and can be used to model 58 

specific AAD [6]. However, specific mechanisms (e.g. immune function or telomere regulation) differ in 59 

important ways [7]. Further, many human AAD lack analogs in naturally occurring animal disease, especially 60 

in more cost-effective rodent models. Prime examples of this are cardiovascular disease [8], primary open 61 

angle glaucoma [9–11], and neurodegeneration [12]. While animal studies will remain an essential 62 

component of biomedical research for the foreseeable future, there is longstanding recognition of their 63 

limitations [13] and consideration of reduction strategies [14,15]. 64 

 Similarly, conventional two-dimensional in vitro culture has been indispensable in understanding 65 

the molecular mechanisms associated with aging [16]; advantages include cost-effectiveness, replicability, 66 

ease of chemical and genetic manipulation, and accessibility to analytical and imaging methods [17,18]. 67 

Unfortunately, these advantages come with a number of known limitations including modified sensitivity to 68 

pharmacological agents, distorted expression profiles, abnormal morphology, and altered differentiation 69 

schema [7,19,20]. To address these limitations in both conventional in vitro and in vivo animal models, 70 
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there has been increasing development of more physiologically representative in vitro models. Ideally, these 71 

models incorporate human cells and more accurately reflect the mechanical, physicochemical, biochemical, 72 

and cellular context of in vivo tissue. Models that mimic the heterogeneous cell composition and 73 

organization of native tissue are generally referred to as organotypic, a category that includes both ex vivo 74 

and in vitro models. Key examples of in vitro organotypic models include organoid, organ-on-a-chip, 75 

organotypic tissue slice, and tissue engineered organotypic models. 76 

 Organoid models are generated by a number of different source materials including tissue 77 

fragments and explants, reconstituted primary cells, and stem cells [7,18]. While there is no single definition 78 

of organoid models, broadly speaking, they are constructed through the self-assembly of patient, primary, 79 

or stem cells; exhibit cellular and matrix organization mimetic of the in vivo environment; and a 80 

heterogeneous cell population mimetic of native tissue. Organ-on-a-chip models generally possess these 81 

same advantages, with additional potential features consisting of defined structural patterning of the cells, 82 

microfluidic or environmental control of the system, and incorporation of sensors or physiological readouts 83 

[21–23]. Organotypic tissue slice cultures use thinly sliced sections of tissue, preserving the cellular 84 

microenvironment and tissue organization; these have been used in a range of tissues, including heart, 85 

lung, liver, and most prominently, brain [24–30]. These model classes have enabled significant contributions 86 

to research and drug discovery, including in the aging field. A notable example is in brain, where organoids 87 

and organotypic slices have been used to research aging associated degeneration, Alzheimer’s, dementia, 88 

and Parkinson’s; the progress in brain organotypic models has been extensively reviewed by others [31,32]. 89 

These model classes have enabled significant contributions to research and drug discovery, yet have 90 

notable limitations. For example, organoids and organ-on-a-chip models are typically small (sub-mm) due 91 

to the lack of vasculature and diffusion limits of oxygen and metabolites [33–35], although organ-on-a-chip 92 

models sometimes address this issue through microfluidic perfusion. Further, organoid and slice models 93 

often require patient or freshly isolated animal tissue that can be difficult to acquire; organ-on-a-chip models 94 

often rely on specialized microfabrication techniques that not all aging research labs can easily implement.  95 

Another culture category and topic of this review, tissue engineered organotypic culture, leverages the 96 

progress in tissue engineering to create tissue-scale and physiologically relevant in vitro models. 97 
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 Tissue engineering, a term first coined over three decades ago, has long held promise for the in 98 

vitro creation of fully functional tissue grafts [36,37], however, numerous challenges have limited 99 

development. In vitro development of skin grafts, one of the initial targets of the field [37], is only just now 100 

entering medical use as an adjunct to traditional therapy [38], with fully functional engineered skin still 101 

unavailable [39]. This is broadly representative of the current state of the field, which, despite significant 102 

research progress, have demonstrated limited clinical application of grafts. However, for the past two 103 

decades, researchers have repurposed engineered tissues towards research questions [14,40–42]. Similar 104 

to organoid and organ-on-a-chip cultures, these models are constructed from organotypic cell populations, 105 

but typically offer a greater degree of control over the tissue architecture and included cell populations. 106 

Cells and structures can be patterned or allowed to self-assemble depending on the needs of the research 107 

[43,44]; similarly, cell populations and sub-populations can be easily controlled or replaced to reflect tissue 108 

health and disease. Leaders in tissue engineering have urged the simplicity and cost-effectiveness of 109 

design [34,45], and this is reflected into the increasing number of methods papers and decreasing costs of 110 

biomaterials [14,40]. These models represent a powerful and accessible set of tools for aging research; 111 

and are likely to become increasingly relevant as the field moves towards bridging cellular and tissue-scale 112 

hallmarks of aging. 113 

 In this review, we summarize research efforts and potential for utilizing organotypic and tissue 114 

engineered models for aging and AAD. To streamline the review, it is broken into independent sections for 115 

skin, intestine, and skeletal muscle; which represent well-developed fields and are important tissues in 116 

physiological aging and AAD. Each section briefly covers important facets of the aging physiology in the 117 

tissue system, before describing current and emerging organotypic techniques and their application to 118 

aging. In each tissue section, we describe the advantages (and limitations) of organotypic models in 119 

elucidating aging mechanisms at the cellular and tissue scales, as well as highlighting the key 120 

methodological and accessibility factors. 121 

 122 

Demonstrative Organotypic models relevant to aging tissue 123 

SKIN 124 

Native skin aging 125 
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 Skin is one of the largest organs of the body and has functional roles in immune response, physical 126 

protection, and thermal regulation [46]. A simplification of skin anatomy is shown in Figure 1A. As aging 127 

occurs, skin function and healing capacity is reduced, with key aging changes summarized in Table 1. Skin 128 

aging is frequently divided into two related processes: intrinsic and extrinsic aging [47–50]. Intrinsic aging, 129 

also referred to as chronological aging, includes genetic and hormonal changes and the progression from 130 

cell maturity to cellular senescence [47,50]. Extrinsic aging, also referred to as environmental aging, 131 

represents the impact of the environment, including: photoaging associated with sun exposure [47,51,52], 132 

cigarette smoking, pollution, chemical exposure, and trauma [50]. Due to the different underlying 133 

mechanisms, characteristics of each type of aged skin are different. Chronologically (intrinsically) aged skin 134 

presents as unblemished, smooth, pale, dry, lower elasticity, and has fine wrinkles while environmentally 135 

(extrinsically) aged skin has coarse wrinkling, rough textures, pigmentation changes, and lower elasticity 136 

[50,53]. 137 

 138 

 139 

Figure 1: Organotypic Models of Skin Aging. (A) Simplified skin anatomy and aging phenotypes. Skin can 140 

be separated into epidermal, dermal, and hypodermal layers. The epidermis is composed of Stratum 141 

Basale, Spinosum, Granulosum, and Corneum, composed of increasingly differentiated epidermal cells. 142 

The dermal-epidermal junction (DEJ) connects the basement membrane of the Stratum Basale to the 143 
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upper (papillary) dermis, and is characterized by small dermal extensions (or papilla) into the epidermis. 144 

The DEJ flattens with age. The dermis is a collagen rich tissue supported by dermal fibroblasts. The 145 

subdermis (or hypodermis) is an important adipose compartment that contributes to overall metabolic 146 

function; this tends to thin with age. Both the dermis and subdermis are highly vascularized, important 147 

for thermal regulation; in age vascularization is reduced. The above schematic is simplified to focus on the 148 

level of current organotypic models, nerves, melanocytes, immune cells, and other components of in vivo 149 

skin are not pictured. (B) Organotypic skin models, also referred to as Human Skin Equivalents (HSE), 150 

typically consist of a dermal/subdermal culture grown on a permeable culture support (left), followed by 151 

seeding and differentiation of epidermis at the air-liquid interface (ALI). Benefits of this style is the 152 

accessibility of the culture format, ready customization of the specific cell populations (both immortalized 153 

or primary, patient specific, or transgenic disease models), and customization of the matrix and media 154 

formulations. 155 

 156 

Table 1: Prominent Phenotypes of Aging Skin 157 

Prominent Aging Phenotypes References 

Lower elasticity, increased fragility,  and wrinkle formation [47,50,53,54]  

Increased collagen disorganization, accumulation of advanced glycation end products, 

and changes in (GAG) and (PG) concentrations/organization 

[49,53,55–

61] 

Flattening of the dermal epidermal junction [50,52] 

Decreased dermal vasculature [62] 

Reduced subcutaneous fat volume [50] 

Increased cellular senescence [49,63] 
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Decreased cell population and turnover, including melanocytes, epidermal cells, dermal 

fibroblasts, and immune cells 

[50,63,64] 

Reduced barrier function coupled with changes in the stratum corneum, lipid 

composition, and filaggrin expression 

[65–69] 

 158 

 159 

 Structural changes in intrinsically aged skin include decreased dermal vasculature [62]; changes 160 

in dermal elasticity and increased collagen disorganization [70,71]; build-up of advanced glycation end 161 

products (AGEs) and changes in glycosaminoglycan (GAG) and proteoglycan (PG) 162 

concentrations/organization contributing to stiffening of dermal structure and frailty, and decreased 163 

hydration [49,53,55–61]; imbalance of tissue inhibitors and matrix metalloproteinases (MMPs) resulting in 164 

imbalance between collagen deposition and breakdown [50,72]; and flattening of the dermal epidermal 165 

junction/loss of rete ridges [50,52,63,64,73]. Aging also contributes to variations in epidermal and dermal 166 

thickness [63,64,74,75] and reduced subcutaneous fat volume [50]. There are also many changes related 167 

to cell population in all three main skin compartments (epidermal, dermal, hypodermal) including reduced 168 

epidermal cell turnover [50,73], drop in number of active melanocytes [50]; decreases in dermal fibroblast 169 

concentrations [64], decreases in immune cells [63,64] and immune function. Abnormalities of skin barrier 170 

(a major function of the epidermis) occur during aging and often present as dryness or skin irritation. In 171 

aged skin, barrier function has been studied in the context of decreases of filaggrin [65], increases in pH (5 172 

to ~5.6), altered lipid presence [66,67], and changes in cornified envelope arrangement [63,68,69,76]. 173 

These changes add to fragility of older skin and increase chances of infection [54], it remains unclear exactly 174 

how these changes take place and what mechanisms are controlling them.  175 

 On the molecular scale, expression levels of soluble factors, proteins, and vitamins are both effects 176 

and contributors to aging phenotypes. Examples include upregulation of stress regulatory proteins 177 

(hypoxia-inducible factors, nuclear factor kappa-light chain-enhancer) [63], increases in AP-1 (leading to 178 

increased collagen breakdown via MMP activity) [52,72], and declines in vitamin D production by the 179 

epidermis [63]. These changes are largely attributed to increases in reactive oxygen species (ROS) [52,63], 180 

DNA mutations (including mitochondrial DNA), telomere shortening [63], increased cell senescence, and 181 

hormonal changes [49,63]. Changes in skin aging have been associated with fluctuations in expression 182 
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patterns of integrins including α6 and ß1 integrins [57,71,77–79]. In healthy human skin, α6 and ß1 (and 183 

other α/ ß subunits) integrin expression are localized on the basal side of basal keratinocytes [57,79]. 184 

Defects in integrin expression are present in human blistering skin diseases with supporting evidence in 185 

knockout mice [79] and also in aged human skin [57,77], although further work is necessary to understand 186 

how integrin expression changes in aging. 187 

 Aging in the skin has sex-related differences as well, specifically, sex is linked to faster thinning of 188 

the dermis and collagen density decline in males as opposed to females [50,80]. Males undergo a decline 189 

in androgen levels while estradiol levels are constant, these changes result in a linear decline of skin 190 

thickness and collagen content in men [70]. Women experience both androgen and estrogen decline 191 

linearly and an additional post-menopausal estrogen decline which is linked to lower collagen content, lower 192 

skin moisture and capacity to hold water, lessened wound healing response, thinner skin, and lower skin 193 

elasticity [50,53,70,81]. Detailed summary and discussion of sex-related changes in skin aging have been 194 

previously reviewed [70].  195 

 These intrinsic mechanisms are compounded by environmental skin aging (extrinsic aging) 196 

[49,52,63]. A key example is the effects of ultraviolet (UV) irradiation (an extrinsic aging mechanism), which 197 

accelerates telomere shortening and DNA damage present with intrinsic aging [50,82]. Other extrinsic aging 198 

and examples of compounding UV effects are discussed in previous literature [49,71,83–89]. Overall, skin 199 

aging at the molecular, cellular, and tissue levels continues to be a field of active research. While in vivo 200 

and traditional cell culture models remain important tools, there is increasing interest in more physiologically 201 

relevant culture models, and there is a growth in recent studies employing organotypic skin models (OSCs). 202 

 203 

Tissue engineered skin models  204 

 Researchers have used organotypic models to study skin biology since the 1980s [90,91], and the 205 

methodology are increasingly accessible. OSCs are also commonly referred to as human skin equivalents 206 

(HSEs) or full-thickness skin models; they typically have dermal and properly stratified epidermal layers 207 

(Figure 1B). These models have proven useful for studying skin development, evaluating cytotoxicity, 208 

studying wound healing, and more recently as disease and aging models. OSCs are highly customizable 209 

and allow for control of organotypic cell populations, genotypes, and culture conditions to enable carefully 210 
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controlled studies on tissue-level biology. OSCs have the capacity to be used for in depth aging studies 211 

without the dangers of human trials or expensive animal models; with long-term culture stability for chronic 212 

studies (typical culture lengths of 8-12 weeks) [92–94]. Most commonly, OSCs contain dermal fibroblasts 213 

and keratinocytes and are cultured at an air-liquid interface for epidermal differentiation and stratification. 214 

However, with the growth of interest in heterogeneous cell-cell communication, an increasing number of 215 

models have been demonstrated with additional cell populations [71,95,96]. These include vascular 216 

endothelial cells [93,94,97–102], immune cells [103–106], adipose derived stem cells and adipocytes from 217 

adipose derived stem cells [107–109], embryonic stem cells [71], melanocytes [110–112] and melanocytes 218 

derived from induced pluripotent stem cells [113]. With this customizability and a growing number of 219 

accessible protocols, OSCs represent a useful tool for studying skin aging; exemplar applications are 220 

discussed below, first for disease generally and then with aging specifically. 221 

 OSCs have been used in a number of disease studies, both directly and as “hybrid” studies where 222 

a humanized OSC is grafted onto immunodeficient mice. Additionally, models have been shown useful for 223 

testing potential therapeutic techniques for debilitating skin disorders or injuries [114]. OSC skin disorder 224 

models include: psoriasis [115–117], recessive dystrophic epidermolysis bullosa  [118,119], lamellar 225 

ichthyosis [120], Netherton syndrome [121], congenital pachyonychia [122], Junctional epidermolysis 226 

bullosa [71,123], and fibrosis [124–126]. Of these disease models, the fibrosis model by Varkey et al. is 227 

especially interesting for its potential to be adapted to use as an aging model. In this study, OSCs were 228 

generated using either deep dermal fibroblasts or superficial dermal fibroblasts in combination with normal 229 

human keratinocytes [124]. They found that the antifibrotic properties of deep dermal fibroblasts and the 230 

fibrotic properties of superficial fibroblasts influence OSC characteristics. Authors found that when 231 

compared to constructs with superficial or mixed fibroblast populations, OSCs with deep fibroblasts had 232 

higher levels of IL-6, reduced TGF-β1 production, higher PDGF expression, and epidermal formation was 233 

less defined and less continuous [124]. This model is potentially interesting as a platform for aging research, 234 

as TGF-β is implicated in skin aging through regulation of matrix metalloprotease activity [127,128]. The 235 

work of Varkey et al. highlights the usefulness of OSCs to study signaling between specific cellular 236 

subpopulations in a controlled way; this approach could be readily adapted to aging studies. Given this 237 
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potential, it is unsurprising that several research groups have used OSCs in aging research, which we 238 

highlight in the next section. 239 

 240 

Tissue engineered skin models to study aging 241 

 As OSCs are stable for long culture periods (>17 weeks), using the extended culture time to study 242 

intrinsic aging is perhaps one of the most straightforward techniques and can be combined with other aging 243 

models and/or cell types [73]. With this model, authors demonstrated that extended culture (using a non-244 

traditional matrix of collagen-glycosaminoglycan-chitosan porous polymer) exhibited several age-related 245 

aspects similar to those that occur with in vivo aging, including decreases in epidermal thickness, decreases 246 

in hyaluronan expression, increases of the aging biomarker p16Ink4a, decreases in keratinocyte proliferation 247 

over time, loss of expression of healthy epidermal markers, and basement membrane alterations. Another 248 

straightforward application of OSCs in aging is studying the impact of senescent cells. A number of studies 249 

have incorporated senescent fibroblasts into OSCs to generate models that recapitulate many of the 250 

features of in vivo aged skin. [74,129,130]. Diekmann and colleagues induced senescence in human dermal 251 

fibroblasts and keratinocytes using Mitomycin-C (MMC) treatment and incorporated the cells into OSCs 252 

[130]. When compared to mitotic OSCs, the senescent models demonstrated changes similar to aged in 253 

vivo skin, including a more compact stratum corneum (outer layer of the differentiated epidermis), reduced 254 

dermal fibroblast population, decreased collagen type I and III content, decreased elastin expression and 255 

looser elastin structures, increases in MMP1, and disordered epidermal differentiation. A similar study 256 

involving senescent fibroblasts used healthy fibroblasts that were exposed to H2O2 to induce senescence 257 

and then cultured the senescent fibroblasts in skin equivalents with healthy keratinocytes [129]. Aging 258 

phenotypes were characterized by changes in proliferation, differentiation of suprabasal epidermal layers, 259 

impairments of skin barrier function, and surface property modification. Further, authors found that 260 

fibroblasts exhibited senescence-associated secretory phenotype (SASP) markers including IL-6, GmCSF, 261 

and IL-1α. Interestingly, Weinmueller et al. observed more Ki67 positive epidermal cells when senescent 262 

fibroblasts were present. More research is required to understand senescence in the dermis and how it 263 

may effect keratinocyte homeostasis [131]. Serial passaging of fibroblasts has also been employed to 264 

simulate aging in OSCs, showing that constructs generated with late passage fibroblasts were similar to in 265 
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vivo aged skin [74]. OSCs were generated with 15-20% SA-β-gal positive fibroblasts cells in 2D culture 266 

prior to 3D seeding. Authors observed few changes in the epidermal compartment while the dermal 267 

component of OSCs presented a thinner dermis and increased MMP1, similar to in vivo aged skin [74]. 268 

Defects in epidermal-dermal junction in these OSCs were not observed and keratinocytes exhibited a 269 

healthy phenotype. Although not shown, authors noted that when greater than 30% SA-β-gal positive 270 

fibroblast cells in 2D were used to generate OSCs, the fibroblasts did not produce sufficient extracellular 271 

matrix (ECM) and constructs were not viable [74]. As Janson et al. found, generating an OSC using 272 

senescent cells is technically challenging since the percentage of senescent cells used to generate an OSC 273 

can alter skin structure and long-term culture health [74].  274 

 Other studies focused on the aging of the keratinocyte population. In OSCs generated from primary 275 

cells isolated from donors, cell donor age is an option for simulating intrinsic aging in vitro [71]. OSCs 276 

generated with either keratinocytes isolated from aged individuals or serially passaged keratinocyte cells 277 

have been used to examine the effects of replicative senescence [132]. Constructs generated with older 278 

keratinocytes (61 or 35-year-old donors) exhibited thinner epidermis compared to OSCs generated from 1-279 

year old donor cells. Additionally, there were differences in epidermal organization, where constructs 280 

generated with young keratinocytes exhibiting more consistent organization and stratification than OSCs 281 

with older cells. This study also investigated the expression of epidermal stem cell markers. They found 282 

that when keratinocytes were passaged over six times (modeling in vitro cellular senescence), there was a 283 

decrease of stemness, indicated by high expression of α6 integrin and low expression of CD71 (a 284 

proliferation-associated cell surface marker) [132]. Likewise, in constructs generated with young (infant) 285 

keratinocytes, α6 integrin expression was observed in basal cells of epidermis while in constructs generated 286 

with adult and elderly cells there was faint and absent α6 integrin expression (respectively). These OSC 287 

findings demonstrated in both intrinsic aging (simulated from aged donor cells) and in vitro senescence 288 

induced by serial passaging results in depletion of epidermal stemness markers [132].  289 

 Epidermal changes associated with aging have also been shown in models generated through 290 

genetically altering expression of key components, for example p16Ink4a [133]. In vivo chronological human 291 

aging markers, p16Ink4a and its repressor BM1, are established markers of in vitro aging tissue 292 

[71,73,133,134]. p16Ink4a is an inhibitor of cyclin-dependent kinases that blocks the progression from G1 293 
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phase to S phase of the cell cycle and promotes senescence onset. In vitro aged skin models can be 294 

generated from young donor keratinocytes cells by p16Ink4a overexpression [133]. Conversely, aging 295 

phenotypes observed in old donor keratinocytes can be rescued through silencing p16Ink4a. Aged models 296 

(both from older donors or p16Ink4a overexpression) resulted in thinner epidermis, loss of stratum corneum 297 

(the terminal epidermal layer), and atrophy [133]. 298 

 OSCs also allow for studies of matrix and cell-matrix interactions in aging skin. Expression patterns 299 

of glycosaminoglycans (GAGs) and proteoglycans (PGs) are important in skin tissue mechanical integrity, 300 

and aging-related changes contribute to frailty in both intrinsically and extrinsically aged skin [53,55,135–301 

139]. Glycation and the presence of advanced glycation end products (AGEs) increase in aging skin, and 302 

this has been leveraged in OSCs to create an aged skin model [57,77]. In this model, collagen was glycated 303 

in vitro prior to construction of the OSC. This simulated intrinsic aging of the construct, resulting in modified 304 

integrin patterns in the suprabasal epidermal layers, activation of the dermal fibroblasts to increase the 305 

production of metalloproteinase, type III procollagen, and type IV collagen [57,77]. Authors found that these 306 

morphological and molecular changes in the epidermis and dermis could be partially rescued by 307 

antiglycation agents such as aminoguanidine [57]. More investigation is necessary to understand exactly 308 

how GAGs and PGs are affected during skin aging. Open questions include how sex specific hormones 309 

may affect concentrations [53] and what downstream effects GAGs and PGs have on the expression of 310 

cytokines and growth factors [140]. As an accessible platform that can be customized with specific cell 311 

lines, biomolecules, and materials, OSCs are uniquely suited to elucidate aging mechanisms including 312 

detailed molecular studies regarding GAGs and PGs in skin. 313 

 In addition to researching aging biology, OSCs can also be employed as a testing platform for aging 314 

therapeutics [137,140]. C-Xyloside is a xyloside derivative that has been investigated as therapeutic to 315 

improve dermal-epidermal junction (DEJ) morphology in aging skin [141,142]. Sok et al. exposed OSCs to 316 

C-Xyloside and investigated the resulting DEJ morphology. C-Xyloside exposure resulted in higher 317 

basement membrane protein concentrations, specifically collagen IV, laminin 5, and collagen VII, and 318 

organization more similar to the microanatomy of healthy human skin. Further, C-Xyloside increased 319 

concentrations of dermal proteins such as pro-collagen I and fibrillin, which are key ECM proteins for the 320 
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maintenance of skin elasticity. Since defects in the basement membrane, DEJ, or elasticity contribute to 321 

skin fragility in aging, this model has potential as a test bed for other aging therapeutics [137]. 322 

 In the context of skin, tissue engineering has provided accessible and customizable models both 323 

for the direct research of aging phenotypes as well as models that can be readily adapted to aging 324 

questions. Further, there is demonstrated potential for therapeutic testing. Importantly, the cited models (or 325 

variants thereof) rely on commonly available cells, reagents, and techniques adaptable to many lab 326 

environments. Increasing use of these models in aging research holds promise to accelerate discovery and 327 

therapeutic goals. Despite this promise, there remain challenges to the use of OSCs in aging research, 328 

discussed below. Most notably, the power of OSCs comes from their intermediate status between simple 329 

in vitro models and in vivo models; there is an explicit tradeoff between increasing the complexity of the 330 

culture system and its cost or ease of use. While OSCs do allow customization by the researcher to focus 331 

on factors most important to their question, the tradeoff can be difficult to make for aging research. Some 332 

examples of OSC limitations relevant to aging research are provided below. 333 

 334 

Limitations 335 

The most predominant limitation of using tissue engineered organotypic models is that they typically 336 

do not match all cellular populations found in vivo. Nerves, sweat glands, stem cell niches, immune cells, 337 

subcutaneous adipose, and vasculature are important aspects of aging skin biology that are frequently 338 

missing in OSCs. While in many cases there is no strict technical reason for the absence of a specific 339 

component, any increase in complexity provides more challenge and cost. For example, inclusion of nerves 340 

requires a source of nerve cells, they must be maintained in culture while not losing their phenotype, and 341 

simply including cells in the OSC does not capture the complexity of the nervous system. However, progress 342 

is being made through iteration, providing researchers with increasingly powerful models that capture more 343 

of the relevant physiology. For example, wound healing is slowed in aged skin, and immune cells are vital 344 

in both physiological and pathological wounds. While fibrosis has been studied using OSCs, this is typically 345 

limited to observing fibroblast and keratinocyte responses; there is a recognized need for OSC models that 346 

include immune populations [103]. While not prevalent, some models do incorporate the immune system  347 

[117,143–146], demonstrating the trajectory of the field toward increased capability and flexibility. Similarly, 348 
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changes in vasculature are prevalent in aged skin, but OSCs often lack vascular cells. While progress has 349 

been made in vascularizing OSCs and related models [93,94,97,101,143,147–151], there is still a great 350 

deal of work to be done in applying this to aging questions. 351 

Further, OSCs tend to be structurally simplified. As mentioned, they typically lack nerves, glands, 352 

and other structures typical of skin. Building on the example of vasculature, even with appropriate vascular 353 

cells, OSCs often have a random or simplified organization; native cutaneous vasculature is organized into 354 

two horizontal plexus planes with connecting vessels between them along the apicobasal axis [152,153]. 355 

In OSCs, this organization could be recapitulated through the inclusion of patterned or semi-patterned 356 

vasculature, although this is typically not done [154]. Additionally, decline of collagen density is an important 357 

aspect of skin aging, yet many OSCs are fabricated with collagen densities much lower than those found 358 

in vivo [80,155]. While not common yet, OSCs can be fabricated from higher collagen densities through 359 

techniques such as dense collagen extractions [156], and compression of collagen cultures [157], to more 360 

closely represent the in vivo dermal matrix.  361 

Another key limitation of current OSCs is loss of systemic factors present in vivo. For example, 362 

age-associated changes in sex hormone profiles impact skin physiology; e.g. post-menopausal decreases 363 

in collagen content, reduced elasticity, and lowered skin moisture in women. While changes in systemic 364 

factors can be addressed, they will invariably lack the full complexity of an in vivo model. For example, a 365 

recent study addressed the impact of exogenous estradiol on elastin synthesis using male and female 366 

dermal organotypic cultures [158]. Studies such as this highlight the tradeoffs in organotypic models, as 367 

reductionist culture models allow specific questions to be interrogated, they obviously lack the complexity 368 

inherent in aging at the organismal scale. 369 

 370 

INTESTINE/GUT 371 

Native intestinal aging 372 

 In this section we focus on the gastrointestinal system and review relevant three-dimensional 373 

organotypic culture models. The small intestine is the primary organ for nutrient absorption from food, while 374 

the colon (or large intestine) is the primary organ for reabsorption of water [159]. Here, we focus on the 375 

small intestine, due to the larger number of in vitro three-dimensional models, but large intestine models 376 



Title: Organotypic cultures as aging associated disease models 

are briefly discussed as well. The small intestine has a complex tissue structure involving crypts (valley 377 

points) and villi (mountain points); with the crypts providing a stem cell niche (Figure 2A). Stem cells located 378 

within crypts asymmetrically divide and the resultant epithelial cells migrate up toward villi and eventually 379 

slough off into the gut lumen. Multiple distinct epithelial populations arise from these stem cells, including 380 

microfold cells, enteroendocrine cells, enterocytes, goblet cells, Paneth cells, and tuft cells; this process of 381 

continual epithelial renewal and differentiation is integral to a healthy gut barrier. On the epithelial surface 382 

there is a brush boarder and single or bi-layered mucus layer depending on location within the gut [160]. 383 

Interacting with this surface is the microbiome which is made up of commensal bacteria and pathobionts 384 

(resident microbes with pathogenic potential) that constantly interact with the mucin layer of the gut [160]. 385 

Diversity of the gut microbiome has been established as an important factor in gut health and host health 386 

[161–170]. The diversity of the microbiota present in different regions of the gastrointestinal tract depend 387 

on many factors including pH, host health, mucin composition, bacterial cooperation, nutrient availability, 388 

location within the gut, and age of the host [162]. Further, within the subepithelial and stromal tissue there 389 

are additional cells, including fibroblasts, smooth muscle cells, microvascular cells, and both circulating and 390 

resident immune cells (e.g. monocyte derived macrophages, neutrophils, dendritic cells, T cells). The 391 

immune cells are known to interact with and traverse the epithelial surface [171–173]. Given the complexity 392 

of the intestinal tissue and the number of host and bacterial cell types, it is unsurprising that many of the 393 

cellular interactions are poorly understood, especially in aging tissue where both the host tissue and 394 

microbiome can change [174]. 395 

 396 
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 397 

Figure 2: Organotypic Models of Gut Aging. (A) Simplified gut anatomy and aging, focusing on the most 398 

commonly modeled components. A mixed epithelial population, described in the text, forms a simple 399 

cuboidal epithelial layer with both secretory and absorptive epithelium. A layer of mucus inside the gut 400 

lumen supports the host/microbiome interaction. The stroma underneath the epithelium, the submucosa, 401 

is host to nerves (not shown) blood vessels, fibroblasts, and immune cells important for gut function. 402 

Smooth muscle is required for gut peristalsis. In aging, the macrostructure of villi degrades, with villi 403 

becoming shorter and broader. Immune cell populations are disrupted, and reduced epithelial barrier 404 

integrity can lead to increased microbial infiltration into the submucosa and vasculature. (B) Organotypic 405 

models of the gut typically only model a small subset of these features, and are typically adapted to 406 

aspects that are relevant to specific questions. For example, epithelial and immune populations may be 407 

co-cultured to study intercellular interactions in a simple format. To study the influence of villous 408 

structures, soft lithography can be used to recreate the villi/crypt geometry. Microbiome co-cultures can 409 

be included, and microfluidic organ-on-a-chip models have been used to mimic the oxygen gradient from 410 

the vascularized submucosa to the anaerobic lumen. 411 
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 412 

 Aging in the gut presents as reductions to nutrient ingestion, the tolerance of resident microbiota, 413 

and the response to infection (key aging phenotypes are summarized in Table 2). Often these co-present 414 

with dehydration and malnutrition [171]. Generally, there is a lower intake of macronutrients and 415 

micronutrients in aged individuals, although this lower intake could be attributed to lower physical activity, 416 

problems with teeth, impaired sense of taste and smell, psychological factors, income levels, and drug side 417 

effects [175–177]. Together, lessened nutrient intake, dehydration, and malnutrition contribute to overall 418 

healthy decline and morbidity in aged individuals [177]. Additionally, there is evidence showing that 419 

absorption of glucose and vitamins increases with age while some nutrients such as cholesterol and fatty 420 

acid decrease or slow; changes in absorption has been well reviewed in animals [175,177] but continues 421 

to require more investigation in the human gut [177,178]. It has been suggested that changes in nutrient 422 

absorption could also be tied to the changes in morphology found in aged animals and in humans [179].  423 

 Morphologically, as the small intestine ages, numerous structural changes have been observed in 424 

several models. These structural changes are coupled to cellular changes, for example, the dynamics of 425 

cell life cycle from the crypt to extrusion at the villi [175,180–182]. In one year old rabbits compared to 426 

young rabbits, there are morphological changes in the jejunum and ileum; villi shorten, number of cells/villus 427 

drops, and mucosal surface area declines in the jejunum while villus cell size remained constant in both 428 

areas [183]. Changes in villous height are associated with mucosal surface area at all ages [183] and these 429 

declines in surface area have been related to differences in nutrient absorption of aged individuals [179]. 430 

In healthy mice it takes around 4-5 days for a stem cell derived progenitor to move from the crypt, 431 

differentiating along the way, to the tip of the villus, where it ultimately undergoes apoptosis and extrusion. 432 

Morphological changes such as villi length increase and crypt number decrease lead to larger crypts with 433 

more cells and are coupled with less travel of progenitor cells to the tip of the villus as well as increased 434 

apoptotic events, decreased cell proliferation, and lower cell survival in aged mice [182]. Aging and how it 435 

effects wound healing in the small intestine has also been investigated in mouse models. Martin and 436 

colleagues studied the regenerative capacity of small intestinal epithelium after injury in young and old mice 437 

using full or partial body irradiation [184]. Authors found that after injury induced by full body irradiation, 438 

crypts of old mice were smaller than controls while young mice had larger crypts. After partial body 439 
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irradiation, the crypts of young animals were found to be smaller, while the number of surviving crypts in 440 

old mice was lower than in young mice. 441 

 442 

Table 2: Prominent Phenotypes of Aging Intestine 443 

Prominent Aging Phenotypes References 

Increased microbial infiltration into submucosa and vasculature [185–187] 

Reductions to nutrient ingestion, tolerance of resident microbiota, and the response 

to infection. 

[171] 

 

Villi morphology changes, decreased cells per villus, decreased mucosal surface 

area, decreased crypt numbers 

[179,182,183,188–

190] 

Increased cell apoptosis, reduced cell proliferation and survival, decreased 

regenerative potential of stem cells 

[171,182,189–192] 

Disruption of Wnt Signaling [182,193–195] 

 444 

 445 

 In rats, morphological changes such as increased numbers of crypts and villi are observed with 446 

aging, although size and cell production rate changes were not observed [188]. Atrophy of intestinal mucosa 447 

also occurs in aged rats and this contributes to decreased number of enterocytes [189,190]. These changes 448 

can be localized to specific tissues; for example, mucosal atrophy in rats has been found in proximal regions 449 

of the small intestine, but not in the distal small intestine; similarly the decline in villi height has been found 450 

in the ileum but not the duodenum [189]. Changes in morphology are thought to be closely tied to transport 451 

function across the gut barrier and may be tied to malabsorption of nutrients, but more evidence is needed 452 

to support this [174,175,179,183]. Further, the association between aging and morphological changes is 453 

poorly understood in human intestine. Currently, there are few studies that have examined human intestinal 454 

morphology; Webster and colleagues found that elderly people have shorter villi and possibly broader villi 455 



Title: Organotypic cultures as aging associated disease models 

when comparing shape and dimensions of proximal jejunal villi in young versus aged humans [179]. The 456 

villous changes in humans were not definitively linked to changes in intestinal function, but changes in 457 

surface area are thought to contribute to the nutrient absorption decline that aged individuals often 458 

experience [179]. 459 

 Changes in enzyme distribution and brush border membrane makeup have been observed in mice 460 

[175], rats [190], and rabbits [183], but the conclusions differ by species and it is unclear whether these 461 

changes are associated with aging [175]. Briefly, in adult and aged mice there are similar activities and 462 

distribution of enzymes in the brush boarder membrane [175]; while in aged rats lower alkaline phosphatase 463 

activities have been found; conversely, higher sucrase/alkaline phosphatase in the brush boarder 464 

membrane have been found in adult vs. young rabbits. Differences in mucus structure and chemical 465 

composition have been tied to age changes [171,175,196]; specifically glycoproteins in the mucus change 466 

with age in rats [175,196]. There is some evidence suggesting that the process of bacterial adhesion to 467 

mucus also changes with age, shown with bifidobacterial strains [171,197–199]. However, gastric and 468 

duodenal mucus thickness does not change with age in healthy individuals [171,200]; mechanical 469 

properties of mucus have been found to remain stable as well [171]. 470 

 On a cellular level, differences have been observed with aging. Most prominently, stem cell 471 

changes have been observed in aged animal studies and in organoid cultures [182,193]. In small intestinal 472 

tissue from mice, the intestinal stem cell markers Lgr5 and Olfm4 were examined but found to be similar in 473 

young and old samples, while the quiescent intestinal stem cell markers Lrig1 and Tert were reduced [182]. 474 

However, when examining numbers of stem cells in young versus old cultures, no difference was found 475 

[182]. Wnt signaling, an important aspect of self-renewal and proliferation in intestinal stem cells, is altered 476 

in aging gut [193–195]. Elevated Wnt activation can lead to intestinal tumorigenesis [201] and malformed 477 

crypts (less lobes and buds per crypt) in small intestine mouse organoid cultures [194]. However, there is 478 

conflicting literature on how elevated or lowered Wnt signaling effects stem cells in aged mice. Nalapareddy 479 

and colleagues found that during aging, intestinal stem cells, Paneth cells, and mesenchyme secrete less 480 

Wnt ligands which leads to overall reduced Wnt signaling and lower regenerative potential of stem cells 481 

[182]. Using organoid models derived from duodenal (proximal) crypts in mice, the decreased stem cell 482 

function can be rescued by endogenous Wnt in vitro [182]. There is evidence that the stem cells may lose 483 
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fitness in maintaining differentiated cell populations; specifically Paneth cells, responsible for generating 484 

anti-microbial peptides [171]. The amount of Paneth cells and their secretory functions have been found to 485 

decline with age [171,192], and this may be due to the age related stem cell decline and reduced ability to 486 

generate Paneth cells [171,184,202]. 487 

 The mucus is the site of antibody production (specifically, secretory immunoglobulin A; IgA) and is 488 

the first defense against harmful microorganisms [171]. Goblet cells, the primary contributor to the mucus 489 

layer, have a stable population in aging mice [171,203]. As previously reviewed, the literature remains 490 

unclear on the effect of aging on IgA response, migration, and production [171]. Aging has been found to 491 

decrease secretory IgA amounts in animals (mice, rat, non-human primates) when exposed to cholera toxin 492 

[171,204–207] and increase somatic hypermutation in mice [171,208]. In contrast, other studies have 493 

shown no changes in serum or intestinal amounts of IgA in aged rats and mice; some results suggest that 494 

the lower levels or IgA are due to an overall homing decline rather than changes in amounts of IgA 495 

[171,206,209–212]. Dendritic cells present antigens to B and T cells in the intestinal immune system, and 496 

evidence points to decreasing cell numbers and function in aged mice [191]. Further, this plays a role in 497 

decline of regulatory immune functioning [171,213,214] and may play a role in low grade inflammation 498 

observed in the aging gut [171,174,215,216].  499 

 The microbiome plays an important role in digestion, absorption, and nutrient processing [217], but 500 

it remains incompletely understood how the intestinal barrier and immune system interact with microbiota 501 

and how this system is affected by aging. In the study of microbiota, it remains unclear how gut diversity 502 

affects the aging process and how gut diversity changes with age. There is not enough evidence or 503 

investigation on age related associations and gut health to determine causes/effects of gut on old age 504 

[169,170], although there are many health practices that correlate with perturbations of the gut microbiome 505 

including drug/antibiotic usage and diet [169,218]. There is evidence that the gut microbiome is affected by 506 

sex differences [217,219–222], and this may be implicated in sex differences in aging-associated disease. 507 

Sex differences in the microbiome affect gut health but also risk of disease development including 508 

atherosclerosis, diabetes, hypertension, dyslipidemia, and obesity [217]. In general, aging and its relation 509 

to sex and hormonal differences requires more investigation, but there are indications that changes in the 510 

aging gut are sex-linked due to hormonal differences during early life, adulthood, and aging [219,220]. In 511 
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aging males, testosterone levels drop slightly from levels during adulthood while in aging females, there is 512 

a dramatic drop in estrogen from the oscillation range of adulthood [220]. The general effects of hormonal 513 

supply decline to the gut microbiome are unknown, but are likely sex-specific [220] and may be associated 514 

with the immune component of the gut [221]. 515 

 516 

Tissue engineered gut models 517 

 There are a few limitations to traditional intestinal models that can be addressed with 3D 518 

organotypic gut models (Figure 2B). 2D cultures on culture inserts are often used to model gut, but these 519 

cultures are unstable after 4 weeks due to cellular overgrowth and formation of multicellular layers [160]. 520 

To study enteric bacterial pathogens, researchers have often used human tissue explants; animal models 521 

[223]; and 2D cultures with cell lines such as T84 and HT-29 which mimic goblet cells, and Caco-2 which 522 

serve as enterocytes [224]. Although helpful in understanding microbiome-host responses, these models 523 

are typically inconsistent with the human anatomy and physiology in the gut [223,225]. Similarly, mouse 524 

transgenic models are often used to study inflammatory gut diseases but mice do not develop some 525 

prevalent human diseases, such as ulcerative colitis or Barrett’s esophagus [226]. To address gaps in more 526 

traditional models, several 3D models have been established based on organoid, explant cultures, micro-527 

fluidic chips, and organotypic gut models (OGMs) generated through self-assembly and partial villous 528 

molding. Intestinal tissue derived organoids are a popular model that has been used to study aging; these 529 

are called enteroids for small intestine, or colonoids for large intestine models. Enteroids consist of only 530 

epithelial cells and model crypt like populations or are often differentiated to model surface/villous 531 

epithelium [223]; these have been studied using monolayers on tissue culture inserts and embedded in 532 

extracellular matrix [223,226]. Human induced pluripotent stem cell (iPSC) derived intestinal organoids, 533 

contain both epithelial and mesenchymal lineages and model both crypt and surface villus [223]. Models of 534 

differentiated intestinal organoids, although limit appropriate human scale, can include even the rare cells 535 

of intestine models including enteroendocrine, tuft, M cells, and Paneth cells [227].  536 

 3D cultures have been generated with both primary human cells and commercially available lines. 537 

OGMs have been generated with adult human intestinal stem cells [227], iPSC [227], Caco-2 [160,227,228], 538 

T84 [227], HT-29 [160,227,228], and myofibroblasts [160]. OGMs are only recently developed, but they 539 
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have advantages over 2D models, micro-fluidic chips, explant cultures, and organoid structures because 540 

of their ability to mimic appropriate tissue length scales for oxygen diffusion and customizable cell and 541 

material properties [223]. Additionally, human based models that include human cells and relevant 3D 542 

microenvironments can be used to study diseases such as gastroesophageal reflux disease, Barrett’s 543 

esophagus, IBD, and ulcerative colitis; for therapeutic screening; and other aging associated research 544 

[226]. 545 

 Incorporation of 3D villi in OGMs have been demonstrated to model the human system more closely 546 

[225] and help to understand the changes in crypt/villi that have been observed in aged animals 547 

[182,183,188,189]. Several groups have generated 3D gut models with villous platforms though pre-culture 548 

molding of hydrogels and custom plate inserts [224,225,229]. These systems have been found to mimic 549 

mammalian intestines more closely than 2D cultures facilitating cell differentiation, absorption/metabolism, 550 

and have been used to evaluate drug permeability [225]. Yi and colleagues compared absorption and 551 

metabolism of enterocyte (Caco-2) 2D monolayer cultures and 3D villous collagen scaffolds covered with 552 

enterocytes. They found that in the 3D cultures, cell growth was higher (likely due to more surface area), 553 

there were more in vivo phenotypes such as lower expression of P-gp (efflux transporter protein, p-554 

glycoprotein) which is overexpressed in 2D monolayers, and increased alkaline phosphatase expression 555 

(a metabolic enzyme and intestinal epithelial differentiation marker) [224]. To generate 3D collagen villi 556 

structures, multiple groups have used relatively stiff collagen and an alginate reverse molding method to 557 

create villous structures from collagen hydrogel [224,225]. Yu and colleagues promoted a basement 558 

membrane like surface by coating the collagen with laminin. Villous structures were fabricated to match the 559 

density and depth of human villi and models were cultured for 14 days; a 21 day duration led to breakdown 560 

of villi [225]. Similar pre-culture molding of villous structures has been used in microfluidic-chips [230–232]; 561 

and as reviewed by others [230]. These models capture appropriate microanatomy of the intestinal surface 562 

and have the potential to elucidate the respective roles of structural and cellular changes in aging. 563 

 Organoid models have been used to study several diseases [194,195,227,233,234]; illustrating 564 

how 3D cultures provide a physiologically relevant model without the complexity of fully in vivo studies. Woo 565 

and colleagues demonstrate how a 3D model (specifically an intestinal organoid spheroid model) can be 566 

used to study the human disease dyskeratosis congenita. Dyskeratosis congenita causes intestinal defects 567 
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(including stem cell failure) and is characterized by decreases in telomerase, telomere length, telomere 568 

capping, and Wnt activity [195]; it is particularly relevant to aging since some of these disease 569 

characteristics are similar to what happens in aged intestinal cells [193]. In organoids generated with the 570 

dyskeratosis congenita model cell line, there was incomplete and thin epithelia, overgrowth of mesenchymal 571 

cells, and inferior E-cadherin and beta-catenin expression; the organoids did not have proper budding 572 

crypts or cavitation [195]. Through CRISPR/CAS9-mediated repair and administration of Wnt agonists the 573 

authors were able to rescue the disease phenotype and demonstrate normal organoid formation in vitro. In 574 

other disease specific models, organoids made with cells derived from inflammatory bowel disease patients 575 

maintain characteristics of disease in vitro such as gene expression profiles that regulate absorption and 576 

secretion [227,233]. Disease focused organoid studies [195] and other organoid models generated with 577 

aged mice cells [194] demonstrate the potential of more physiologically relevant in vitro models to address 578 

aging questions. By building off of these methods and incorporating human cell types, anatomies, and 579 

physiology it is possible to develop a human derived organotypic gut model [160] and avoid costly 580 

procedures involved in animal colonies [218].  581 

 582 

Tissue engineered gut models to study aging 583 

 A recent study by Arnold and colleagues demonstrate the physiological relevance of 3D in vitro 584 

models for aging [235]. In vivo, older animals have higher ratios of non-saccharolytic v. saccharolytic 585 

bacteria and lower amounts of β-galactosidase when compared to younger animals. Pre-biotic galacto-586 

oligosaccharides (GOS) have previously been found to have a positive impact on intestinal health and can 587 

be administered through diet. To study the effects of dietary GOS on aging in the gut, using young and old 588 

mice models of Clostridiodes difficile were used. In the aged mouse models, dietary GOS promoted 589 

changes in microbiome composition and transcriptomic analysis also revealed differences in gene 590 

expression. Aged mice that were fed a GOS diet had decreased intestinal permeability and increased 591 

mucus abundance and thickness when compared to aged mice not fed the GOS diet. These changes in 592 

permeability supported previous findings attributing the leaky gut to increased non-saccharolytic bacteria 593 

and lower amounts of key enzymes. Further, these results were additional tested in colonic organoids 594 

injected with stool samples from young and old mice. Using the colonic organoids generated from one 595 
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young mouse and stool sample injection from experimental mouse models, authors showed that they were 596 

able to reproduce differences of age, minor differences of the GOS diet, and bifidogenic responses 597 

observed in the in vivo mouse models [235]. As the authors already showed a reproduction of aged 598 

phenotypes in organoid models, reproducing these characteristics in scalable and humanized organotypic 599 

models may be beneficial in research questions of how diet and microbiome affect aged humans. 600 

 The ability to culture anaerobic bacteria is an important step in modeling the microbiome of the gut 601 

in healthy tissue and to improving the understanding of how aging changes the host-microbiome interaction 602 

[163,168,169,236–238]. Most in vitro models, including OGMs, only study a few relevant features of the 603 

complex physiology at a time; models that include microbiota are no exception. One study showed their 604 

ability to culture 5 different microbe types in vitro on a custom scaffold and evaluated for proliferation and 605 

biofilm formation [239]. It is important to recognize, that although this is a human microbiota gut model, it 606 

does not incorporate human gut cells or microanatomy. Combining microbiota and human 3D OGMs is an 607 

important step in modeling the human gut; some work on the combinations of microbiota and human gut 608 

cells has been carried out in microfluidic chips [230], but these tend to lack relevant villous anatomy and 609 

appropriate oxygen diffusion scales. These factors have been partially addressed in an innovative upright 610 

cylindrical culture system [160]. Authors generated the vertical lumen with an un-patterned surface and a 611 

threaded surface to mimic crypt and villi of the intestine. Their model includes epithelial cells (Caco-2 and 612 

mucus producing HT-29 cells) and myofibroblasts seeded on and into silk-based scaffolds, respectively. 613 

With this design, they achieved proximal-to-distal oxygen gradients and reached anaerobic conditions in 614 

patterned lumens. As a proof of concept, they cultured anaerobic bacteria using this model. Importantly, 615 

the patterned lumen model was stable for long-term culture (at least 8 weeks); they further showed 616 

continuous mucus production and accumulation (~10 µm average thickness of the mucus layer). Although 617 

this model does not incorporate aging phenotypes, aged cells, or differences due to aging in the 618 

microbiome, it highlights the recent progress in developing organotypic constructs that could be adapted to 619 

aging studies.  620 

 In vitro organoids are common in the gut/microbiome field of study [193,223,227,240,241] and have 621 

been used to assess intestinal stem cell function during chronological aging [182,193–195,242,243]. 622 

Although there is conflicting literature on Wnt signaling in the intestine and how it effects intestinal stem 623 
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cells, several recent studies have used organoid models to investigate aging and how it changes crypt/villi 624 

formation and stem cell function in the gut. Each study also presented a rescue method to restore normal 625 

Wnt signaling and gut formations [182,194]. Cui et al. cultured organoids from aged mice and showed 626 

reduced differentiation and increased expression of Wnt target genes (Axin2 and Ascl2). The organoids 627 

generated from aged mice presented rounded cysts without typical differentiated cell types, in contrast to 628 

organoids generated from young mice, which demonstrated differentiation and formation of villus structures. 629 

These phenotypes matched organoid cultures of cells that exhibit overactivation of Wnt signaling (through 630 

seeding with adenomatous polyposis coli deficient cells). The decreased differentiation of intestinal stem 631 

cells and impaired structure could be rescued by reducing exposure to the Wnt agonist R-spondin-1 and 632 

thus reducing Wnt activity. Rescued organoids matched those generated with cells isolated from young 633 

mice. Nalpareddy and colleagues generated organoids from duodenal proximal crypts of aged and young 634 

mice as well as humans [182]. In humans, organoids were generated from people 12-16 and 62-77 years 635 

old. The authors found decreased formation of organoids in the aged group, which was improved by adding 636 

Wnt 3a (a Wnt pathway agonist). This data supported their findings in mice organoids where aged mice 637 

organoids had lower organoid formation rates after 3 passages and decreased stem cell function 638 

(determined by lower lobes and buds per crypt). Adding Wnt 3a increased organoid formation and 639 

expression of Wnt target genes (Axin1 and Ascl2) in the aged cultures [182]. While interpreting the 640 

apparently contradictory results of these studies is difficult, they do highlight the use of organotypic models 641 

in performing detailed signaling studies that would be challenging and expensive in animal models. 642 

 In vitro intestinal models have a particularly relevant potential impact on personalized medicine due 643 

to the person-to-person variability in gut health. Aside from genetics, variation in local community and world 644 

regions as well as day-to-day activities result in microbiome and inflammatory differences that are not yet 645 

understood [244]. Personalized medicine and patient derived organotypic models may help to address 646 

these parameters. One organotypic microfluidic chip model named iHuMix has paved the way for 647 

personalized gut models [245]. The iHuMiX platform utilizes compartments including microbial, epithelial, 648 

and flow chambers and allows for study of specific bacteria on host specific physiology. While microfluidic 649 

systems often present technical barriers for non-specialist labs, these results highlight the customizability 650 

of organotypic models, including adaption to personalized medicine. As with OSCs described in the prior 651 
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section, the tradeoff between complexity and capability for organotypic gut models results in several 652 

limitations. 653 

 654 

Limitations 655 

 As with OSCs and other organotypic models, the most prominent limitation is the lack of cell 656 

populations and structural features of the in vivo gut. While a great deal of the work described above has 657 

extensively modeled epithelial cells and their stem cell niches, the gut is much more complex; immune cells, 658 

vasculature, smooth muscle, and neuronal populations all contribute to the gut, and it’s physiology when 659 

aged. Further, the organization of the gut, most notably the crypts and villi, is well understood to influence 660 

function and disease; these features are only incompletely reflected in organotypic models 661 

[224,225,246].More unique to the gut is the anaerobic microbiome, which is critical to understanding gut 662 

and organismal health [163,168,169,236–238]. While there has been demonstrated inclusion of anaerobic 663 

microbiome in a gut model  [230–232], the complexity of the system make it challenging to broadly replicate 664 

in other labs. Indeed, the general challenges of creating and maintaining hypoxic and anoxic cultures 665 

significantly limits the ability of organotypic models to correctly match the lumen environment. Further, there 666 

is significant evidence that the microbiome is not restricted to the gut lumen, and translocation of 667 

commensal bacteria to surrounding tissues, including lymph nodes, is a driver of disease [247,248]. While 668 

organotypic gut models may be suited to address some questions of bacterial translocation, none have 669 

reached the scale or complexity required to include lymphatics. While this is a single example, it does 670 

highlight the more general limitations on most organotypic models. 671 

 As with other organotypic models, sex differences are understudied. This is despite clear sex 672 

differences in aging associated gastrointestinal diseases [249,250] and cancers [251,252]. While sex 673 

differences local to the cell populations used could, and should, be studied using organotypic models, 674 

systemic factors including hormones remain a challenge. As a pertinent example in the gut, sex hormone 675 

levels are known to regulate the mucosal surface and barrier integrity [253]. While organotypic models to 676 

lend themselves to studying the impact of specific hormone levels, they clearly lack the complexity of overall 677 

systemic changes that come with aging and sex differences. 678 

 679 
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SKELETAL MUSCLE 680 

Native skeletal muscle aging 681 

 Skeletal muscle is an abundant tissue, making up ~30-40% of body mass [254]. Healthy muscle 682 

regulates major physiological processes such as locomotion [255,256], venous return [257–259] and 683 

metabolism [260–263]. From the 3rd to 8th decade of life fat-free mass declines by ~15%, even for healthy 684 

individuals, contributing to loss of independence and higher risk of injury and mortality. The age-associated 685 

loss of muscle mass, known as sarcopenia, is a major hallmark of human aging [264–266] with a complex 686 

etiology, resulting in muscular, vascular, and metabolic impairment [267–269]. Chronic inflammation [270–687 

273], nutrient deficiencies [274–276], and decreased physical activity [277–279] are all contributing factors 688 

of sarcopenia, however, much remains unknown at the molecular, cellular, and tissue levels. Improved 689 

models of sarcopenia and other aging phenotypes are imperative for improving clinical outcomes and 690 

prophylaxis for the expanding geriatric populations. 691 

In a healthy individual, skeletal muscle is composed of densely packed and aligned cylindrical 692 

myofibers individually sheathed in a specialized matrix called endomysium [280] (Figure 3A). Bundles of 693 

myofibers are encapsulated in a connective tissue layer known as the perimysium, while the whole muscle 694 

is surrounded in a thicker connective tissue layer called the epimysium. Myofibers are organized into fiber 695 

types (fast twitch and slow twitch) based on their metabolic, contractile, and morphological properties. Due 696 

to the unique signature of each fiber type, maintaining homeostatic fiber compositions is vital to muscle 697 

function [281]. Multiple muscle fibers and the corresponding motor neuron form a motor unit, with the overall 698 

force of muscle contraction controlled by activating more motor units. A dense vascular network that 699 

delivers nutrients and removes waste supports the high metabolic demands of muscle tissue. 700 

 701 
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 702 

Figure 3: Organotypic Models of Skeletal Muscle Aging. (A) Simplified muscle anatomy and aging, 703 

focusing on the most commonly modeled components. The primary unit of muscle is the myofiber, a 704 

multinucleated cell responsible for contraction. Specialized matrix (endomysium, perimysium, and 705 

epimysium) support and organize the tissue. Satellite cells are an important stem cell population for the 706 

muscle, and the muscle is supported by a host of other cell types including nerves, fibroblasts, adipose, 707 

and vascular cells. In aged muscle, cross-sectional area (CSA) is reduced, in part due to myofiber atrophy, 708 

and decreasing capillary and satellite cell density. Conversely, there is increased infiltration of adipose and 709 

thickening of the connective tissues. At the molecular level, there is decreased expression of GLUT4, an 710 

important glucose transporter, and insulin resistance (IR) frequently develops. (B) Organotypic models of 711 

muscle have several unique challenges but have distinct advantages over other traditional models. Muscle 712 

cultures are contractile, and require anchoring to prevent collapse. Typical approaches include posts 713 

(although other methods are used) to provide points of resistance for the muscle to pull against. In order 714 

to study active contraction, researchers have used various stimulation methods, including electrical and 715 
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optogenetic methods. Due to the high metabolic demand, the cultures are typically quite small, to allow 716 

nutrients and waste to diffuse more readily. As with other organotypic models, the matrix, cell population, 717 

and media can be customized for the research question. 718 

 719 

Structural and cellular changes are prominent in aged muscle (summarized in Table 3). Structural 720 

changes include reduced muscle cross sectional area [282–285], thickening of the epimysium and 721 

endomysium connective tissue layers [286–289], increases in tissue fibrosis [290,291], and decreased 722 

capillarization [283,292,293]. Further, reduction and atrophy of specific fiber types (particularly fast 723 

twitch/Type II fibers) has been observed, leading to altered fiber composition and increased percentages 724 

of slow twitch (Type I) fibers [294–297]. More specifically, Type II (fast) fiber atrophy is associated with 725 

reduced muscle mass and strength [294,298]. Cellular changes include increased adipose infiltration into 726 

the muscle [299–301], and loss of motor units [302–304]; all result in decreased skeletal muscle force 727 

generation. Further, age associated changes in skeletal muscle satellite cell populations include a reduced 728 

progenitor pool [305–307], limited myogenic colony formation [308], loss of amplification and myofiber 729 

differentiation potential [290,309–313], and an increased susceptibility to senescence and apoptosis [306]. 730 

Further, aged satellite cells have been shown to favor fibroblastic and adipogenic differentiation programs 731 

[290,314–316], potentially explaining the observed increase in fibro-adipogenic progenitors in aged skeletal 732 

muscle [317–319]. Of course, aging muscle includes non-muscle cells, other skeletal muscle aging 733 

phenotypes include increased M2 macrophage presence [320–322] and endothelial apoptosis [323]. 734 

Together these cellular and microstructural changes contribute to loss of muscular and systemic function 735 

in the elderly population, motivating research into the molecular mechanisms underpinning these changes.  736 

 737 

Table 3: Prominent Phenotypes of Aging Skeletal Muscle 738 

Prominent Aging Phenotypes References 
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Myofiber atrophy, reduced cross-sectional area, reduced mass, loss of motor units, 

and decreased strength 

[282–

285,294,298,302–

304] 

Change in the ratio of fiber types (increased percentages of slow twitch/Type I 

fibers) 

[294–297] 

Decreased vascularization and increased endothelial cell apoptosis [283,292,293,323] 

Increased fibrosis and thickening of connective tissue layers [286–291] 

Increased adipose infiltration and differentiation [314–319]  

Decreased progenitor pool and loss of regenerative capacity [290,305–

307,309–313] 

Increased insulin resistance and metabolic dysfunction [324–330]  

 739 

The above structural and cellular changes are coupled with molecular changes in the aged tissue. 740 

A loss of overall regenerative potential is likely largely influenced by a reduced satellite cell population and 741 

differentiation potential [311,313]. Satellite cell activation is regulated by myogenic regulatory factors 742 

(MRFs). Primary examples of MRFs include: myogenin, myogenic determination factor (MyoD), myogenic 743 

factor 5 (Myf-5), and myogenic regulatory factor 4 (MRF4) [331]. In rats, MyoD and myogenin have been 744 

found to increase with age, indicating a potential compensatory role to attenuate loss of satellite cell 745 

activation [332]. Yet, human studies have observed a decrease in myogenin, Myf-5, and MyoD [333,334]. 746 

Differential responses between organisms such as this emphasize the need for robust models of human 747 

muscle tissue. Myostatin, a member of the TGF-β superfamily, inhibits satellite cell proliferation (via 748 

upregulation of p21) and activation (via reduced MRF expression). Further, the elevation of myostatin 749 

contributes to muscle atrophy through glucocorticoid signaling [335–337]. Upregulation of myostatin is seen 750 

in aged individuals and is thought to contribute to age-associated loss of muscle mass [338–340]. Further, 751 

mitochondrial dysfunction and increased oxidative stress are hallmarks of aged muscle [341–344]. 752 

Mitochondria manage the cell’s energy supply, ROS generation, and apoptosis. Changes in mitochondrial 753 
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bioenergetics lead to ROS accumulation, impaired quality control mechanisms, and apoptotic cell death 754 

[345–347]. ROS accumulation in aged muscle mitochondria contributes to protein and DNA damage [348–755 

351]. This subsequent loss of mitochondria quality control mechanisms establishes a feedforward cycle of 756 

mitochondrial damage and muscle degeneration [352].  757 

Of course, muscle is not separate from the systemic context, both being influenced by and 758 

influencing changes in the entire aged organism. Systemic changes contributing to skeletal muscle aging 759 

include altered cytokine and hormone signaling. Insulin-like growth factor (IGF) is both a circulating 760 

hormone and localized growth factor. IGF is predominantly produced by the liver and delivered systemically, 761 

although other tissues produce specific IGF splice variants; mechanogrowth factor (MGF) and IGF-1Ea are 762 

produced by skeletal muscle [353–355]. In skeletal muscle, IGF regulates muscle hypertrophy and growth, 763 

and concentrations are known to decline in elderly populations [332,356,357]. IGF and MGF are responsible 764 

for activating anabolic and anti-catabolic pathways via PI3K/Akt, ERK/MAPK, and PKC signaling, leading 765 

to increased protein synthesis and anabolic activity [356–358]. Examples of aging-associated dysregulation 766 

of IGF signaling includes evidence that mechanical loading of skeletal muscle results in MGF stimulation in 767 

young individuals, but not the elderly [359]. Inflammatory cytokines are also implicated in muscle aging. 768 

Elevated TNFα concentrations are found in aged muscle and cause increased apoptosis [360]. IL-6 is a 769 

pleotropic cytokine known to influence skeletal muscle function in a number of ways [361]. Elevated levels 770 

of IL-6 are strongly associated with diseased muscle, proinflammatory signaling, and a catabolic shift. In 771 

rats, with positive stress stimuli such as physical activity, IL-6 levels increase and may have anti-772 

inflammatory effects [362]. In the context of aging there is evidence that in aged human muscle, chronically 773 

IL-6 elevated can initiate muscle wasting [363]. In contrast, local IL-6 expression appears in both young 774 

and aged individuals after exercise with beneficial effects, indicating a complex role for IL-6 in muscle 775 

homeostasis [364,365]. 776 

Hormonally, testosterone and its precursor, dehydroepiandrosterone (DHEA), are key regulators 777 

of muscle mass. Androgens (including testosterone and DHEA) are important for maintaining muscle mass 778 

through hypertrophy via increases in myonuclear number and fiber cross-sectional area [366–368]. The 779 

mechanisms driving androgen mediated muscle growth are poorly understood, but there is evidence of 780 

impact on satellite cell commitment level and trophic signaling, discussed in more detail in other reviews 781 



Title: Organotypic cultures as aging associated disease models 

[366,367]. Relevant to the present work, androgen levels decrease in the elderly and contribute to reduced 782 

muscle mass [367,369–372]. Thyroid hormones (TH), T3 and T4, are important regulators of metabolism, 783 

contractile function, and muscle differentiation [373,374]. Expression of TH decreases with age [375], and 784 

this may be involved in the development of sarcopenia [376,377]. 785 

Skeletal muscle also regulates systemic AAD. Skeletal muscle insulin resistance is a primary 786 

characteristic of Type II Diabetes (T2D) that presents years before the disease’s onset [328–330]. Yet, the 787 

mechanism connecting the pathogenesis of T2D and skeletal muscle insulin resistance is incompletely 788 

understood. Increases in mitochondrial dysregulation, oxidative stress, and inflammation are all known to 789 

contribute to diminished insulin sensitivity in skeletal muscle. Indeed, it has been demonstrated that elderly 790 

individuals have impaired glucose metabolism, and decreased expression of the insulin-mediated glucose 791 

transporter, GLUT4 [325–327]. Additionally, aged skeletal muscle exhibits reduced rates of mitochondrial 792 

oxidative phosphorylation and an inability to switch from lipid to glucose oxidation when stimulated with 793 

insulin [324]. Reduced insulin sensitivity of aged muscle contributes to the development of diabetes and 794 

other metabolic disorders. Importantly, the above molecular changes are not broadly conserved across 795 

species and gender, emphasizing the need to ensure research models match the morphological, functional, 796 

and biochemical characteristics observed in vivo. Overall, understanding human skeletal muscle aging 797 

remains a challenge, especially considering the diverse and interacting factors at the molecular, cellular, 798 

and tissue scales. Developing models that mimic the native tissue, while remaining accessible to 799 

experimental techniques, are needed to further push the field forward. 800 

 801 

Tissue engineered muscle models 802 

 Tissue engineered skeletal muscle models, pioneered by Vandenburgh and colleagues [378], have 803 

been in use for over two decades. The earliest engineered constructs, termed bioartficial muscle (BAM), 804 

consist of skeletal myoblasts encapsulated in an ECM. The ECM is molded around artificial “tendons”, or 805 

posts, responsible for maintaining passive tension within the tissue. As the myoblasts differentiate into 806 

highly contractile myotubes the cells align along the axis of tension and lift off the culture substrate. 807 

Myoblasts from a range of developmental stages are commonly sourced from muscle biopsies of organisms 808 

such as avian (Chromiak et al., 1998), mouse [381,382], rat [380,383,384], and human [385–388]. Due to 809 
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limited availability of primary cells, immortal myogenic lines, including C2C12 (mouse) and L6 (rat) cells, 810 

are commonly used due to ease of culture and availability [389–392]. Yet, immortal cell lines exhibit low 811 

excitability [393] and poor physiological relevance compared to primary cells [394–396]. Induced pluripotent 812 

stem cells (iPSCs) are a promising alternative to traditional primary and immortal cultures due to their high 813 

expansion capability and potential sourcing from specific genetic backgrounds [387,397–402]. BAM models 814 

have been used to examine physiological events such as hypertrophy and atrophy in response to drugs 815 

and exercise [403–406], skeletal muscle wounding and regeneration [405,407,408], force production [409–816 

412], cell signaling [413–415], and drug response [416–419]. Importantly, as different muscle cell sources 817 

have distinct costs and benefits, different cell populations can be readily interchanged in BAM models to 818 

suit specific research needs. 819 

 Further advances have been made in the field of skeletal muscle tissue engineering through other 820 

approaches, such as scaffold free assemblies, bioprinting, and chip based systems. Scaffold free 821 

assemblies use the contractile nature of myotubes to form 3D tissues. In these systems, differentiated 822 

skeletal muscle/fibroblast monolayers delaminate from the culture substrate are rolled in on itself and 823 

pinned down to form “myoids” or “myooids” [380,385,420,421]. Myoid models recapitulate many structural 824 

and functional features of native muscle, such as production of ECM, microvessels, and spontaneous 825 

contractions [422]. Although myoid constructs have been reported to be stable for up to 40 days, drawbacks 826 

include long maturation times (3-4 weeks), inability to scale cultures [423], and low force generation [406]. 827 

Recent advances in bioprinting technology have led to the printing of biomimetic muscle tissues and have 828 

been reviewed extensively [424,425]. Bioprinting skeletal muscle is an appealing technique due to its high 829 

precision in cell positioning and alignment; however, progress in this area is limited by broad challenges in 830 

the field such as cell viability, printing speed, and resolution [424–427]. Additionally, printing the soft 831 

materials necessary to recapitulate the skeletal muscle microenvironment remains a challenge [428]. 832 

Recent “muscle-on-a-chip” devices have shown several advantages, including avoiding perfusion required 833 

to feed thicker tissues. Using microfabricated cultures, researchers have demonstrated muscle viability and 834 

enhanced maturation in response to microtopographical and morphological cues [429–431]. Skeletal 835 

muscle-on-a-chip systems are a promising tool for drug toxicity studies, especially due to their low media 836 

consumption and extensibility to high throughput screenings. Recently, a 3D skeletal muscle microdevice 837 
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has been coupled with a biosensing platform to monitor myokine secretion. The authors validated this 838 

system by measuring IL-6 and TNF-α levels in response to electrical and biological stimulation [432]. 839 

However, muscle microdevices are limited by the need for specialized training and equipment to fabricate 840 

and use these devices. 841 

 It is important to emphasize that most of the models described above largely consist of 842 

homogeneous cell populations that lack the organization of native tissue. Recent progress has been made 843 

in incorporating heterogeneous cell population in BAMs, including the addition of endothelial cells and 844 

demonstration of vascular network formation [415,422,433–438]. In a mixed muscle/vascular mouse myoid 845 

model, researchers found high levels of vascular endothelial markers such as VEGF, CD31, and VE-846 

cadherin, indicating the survival and signaling of vascular cells. Yet, the extent of the network formation 847 

was not examined in this study [422]. Endothelial vessel formation has been demonstrated on engineered 848 

skeletal muscle scaffold systems; however, muscle cells do not align along one axis, limiting contractility 849 

and tissue function [436]. Applying uniaxial strain to a vascularized mouse BAM model has been shown to 850 

induce vascular tube formation, likely through increased VEGF secretion by the differentiating muscle [438]. 851 

In a human vascularized BAM model researchers identified optimal cell seeding ratios (50-70% muscle 852 

cells) and media blends (endothelial growth media) for generating endothelial tubes along with aligned 853 

myofibers [434,435]. Despite these advances, further work should be done to characterize vessel structure, 854 

and nutrient and oxygen delivery in vascularized BAMs. As a model of muscle regeneration, macrophages 855 

have been added into rat BAMs to study the regenerative potential of satellite cells within the engineered 856 

tissue. The incorporation of bone marrow derived macrophages showed recovered Ca2+ transients after 857 

injury compared to muscle only controls. Muscle-macrophage constructs also had improved cell 858 

organization and regeneration of myofibers post injury. Further, the authors demonstrate impaired 859 

regeneration in adult derived engineered muscle compared to neonatal constructs. In the future, this model 860 

can be used to identify pro-regenerative treatments in adult muscle [439]. Continued development of 861 

heterogeneous muscle models is of interest to the field of aging research given the prevalence of 862 

dysregulated adipose, fibroblast, and macrophage signaling with age. 863 

BAMs have been used to study physiological muscle function, pharmaceutical response, and 864 

human disease [380,417,419,440,441]. While few systems have been developed in the context of aging 865 
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(discussed below), other BAM models of disease demonstrate the power of the technique. Disease models 866 

of skeletal muscle include Miyoshi myopathy, Duchenne, limb-girdle, congenital muscular dystrophy, 867 

Pompe disease, and amyotrophic lateral sclerosis [442–450]. One strategy that is readily applicable is 868 

incorporating cells isolated from diseased patients into tissue constructs. As an example, Bersini and 869 

colleagues engineered myobundles co-cultured with endothelial cells and muscle-derived fibroblasts 870 

isolated from patients with Duchenne muscular dystrophy (DMD) [451]. Tissues with DMD fibroblasts 871 

exhibited an increased fibrotic phenotype characterized by higher collagen I and fibronectin deposition 872 

compared to healthy and TGF-β (inducer of fibrotic response) treated controls. Further, samples with DMD 873 

fibroblasts exhibited increases of α-smooth muscle actin compared to controls, indicating a shift towards a 874 

myofibroblast phenotype, consistent with the in vivo disease. The ability to capture and assay fibrosis, as 875 

demonstrated in the above models, has clear applicability to many aging studies. 876 

In another study, human iPSCs from patients with DMD and limb-girdle muscular dystrophy were 877 

used to engineer 3D disease models with muscle, vascular, and neuronal cells [449]. These engineered 878 

muscles recapitulated disease phenotypes seen in vivo including the nuclear elongation typical in 879 

laminopathies. As another key example, BAMs generated from primary muscle cells isolated from both 880 

healthy individuals and patients with Pompe disease were used to test potential therapies [447]. Pompe 881 

disease myobundles exhibited traits consistent with that of clinical data such as elevated glycogen content 882 

and low acid alpha-glucosidase (GAA) gene activity. Researchers compared tissue functionality between 883 

healthy and Pompe disease models, observing reduced fatigue resistance, tetanic force production, and 884 

glycogen mobilization. While the observed functional defects were not alleviated by treatment with 885 

recombinant human GAA (current standard of care) or AAV-mediated GAA expression, the use of similar 886 

platforms for screening therapies is promising. Disease models such as the above can be readily adapted 887 

to study aging phenotypes by incorporating cell populations derived from aged individuals. The ability to 888 

compare functional and mechanical properties of aged and young muscle is of special interest to aging 889 

research, as elderly people have reduced muscle functionality. Further, being able to screen 890 

pharmaceutical interventions in muscle specific AAD models represents a significant advancement in the 891 

field of aging biology. 892 

 893 
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Tissue engineered muscle models to study aging 894 

 In recent years, engineered muscle has been used to study specific aging and aging associated 895 

diseases. A key example is the role muscle plays in insulin sensitivity and the age-related disease, type 2 896 

diabetes (T2D). As aged muscle displays reduced insulin sensitivity [327,452], it is especially relevant to 897 

quantify insulin sensitivity in engineered muscle. To test this, Kondash and colleagues created human 898 

myobundle constructs using primary myoblasts, differentiated in a 3D matrix for 2 weeks [441]. The authors 899 

found that 3D engineered constructs displayed a significantly higher glucose uptake in response to insulin 900 

than similarly cultured 2D cells. Further, the usefulness of this model for elucidating therapeutic 901 

mechanisms was also tested. Metformin, a common pharmaceutical for hyperglycemia and T2D, led to 902 

similar increases in glucose uptake in the presence or absence of insulin; indicating that metformin does 903 

not impact insulin responsiveness in peripheral muscle tissue. Further, metformin was found to impair both 904 

twitch and tetanus force production as well as decrease fatigue resistance. Although the magnitude of 905 

insulin response observed in this study is lower than that of native muscle tissue, the authors demonstrate 906 

the importance of the 3D microenvironment for improving physiological relevance in T2D studies. Additional 907 

work performed by Acosta and colleagues used engineered muscle to test the effect of systemic metabolic 908 

changes on muscle health [453]. Using muscle precursor cells isolated from lean, obese, and diabetic rats, 909 

engineered constructs were maintained in either myogenic media or adipogenic media. The authors 910 

showed that constructs with diabetic muscle precursor cells had decreased creatine kinase activity, tissue 911 

compaction, myotube alignment, and reduced tensile strength when compared to lean control samples. 912 

Overall, these data indicate diabetic myogenic precursor cells reduce overall muscle integrity. Further, the 913 

authors showed increased adipogenic differentiation in diabetic samples. Increased adipose presence 914 

between muscle fibers is common in vivo with aging, where muscle precursor cells are a potential source 915 

of adipose tissue [453]. These examples demonstrate tissue engineered skeletal muscle can be readily 916 

applied to the study of aging phenotypes such as increased insulin resistance and adipose infiltration. 917 

 In addition to the genetic and systemic factors discussed above, models of aged muscle have also 918 

been generated similar to the BAM method described above [454–456]. Sharples and colleagues utilized 919 

late passage C2C12 myoblasts to replicate aging phenotypes, including reduced myofiber diameter, length, 920 

and peak force development [454]. The reduced force generation observed coincides with a decrease in 921 
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construct differentiation and hypertrophy potential. The authors quantified transcript expression of muscle 922 

differentiation and hypertrophy markers throughout culture. In aged constructs, they observed an increase 923 

in myostatin and TNFα, genes associated with impaired differentiation potential and sarcopenia [454]. A 924 

study performed by Rajabian and colleagues takes this work a step further by measuring calcium handling 925 

and metabolic function in aged human engineered muscle tissue [455]. Human myoblasts were obtained 926 

from young and aged donors and seeded into engineered constructs. Tissues formed from aged myoblasts 927 

exerted lower contraction force compared to younger control samples, fail to respond to electrical 928 

stimulation and, consistent with a lack of muscle contraction, have lower Ca2+ and ATP concentrations. 929 

Further, to study regeneration in aged tissue, the authors induced muscle injury using cobra cardiotoxin 930 

(CTX). Samples made with young myoblasts regenerated myofibers within 5 d post CTX injury, while aged 931 

constructs did not regenerate, resulting in reduced myotube diameter. Indeed, the number of multipotent 932 

satellite cells (identified with positive staining for PAX7) did not change after CTX injury in pre-senescent 933 

tissues, indicating increased regenerative potential [455]. Overall, these studies demonstrate that 934 

engineered skeletal muscle replicates many of the basic phenotypes seen with aging in vivo. 935 

An additional application of engineered muscle is to elucidate the molecular mechanisms of aging. 936 

Shahini and colleagues leveraged engineered skeletal muscle to test the role of NANOG expression in 937 

mitigating senescence-associated dysfunction [456]. These studies were built off prior work showing 938 

NANOG expression reversed senescent phenotypes in MSC populations [457,458]. In the skeletal muscle 939 

study, late passage C2C12 myoblasts were engineered to express NANOG under the control of tetracycline 940 

and embedded in a 3D collagen/Matrigel matrix. The authors observed NANOG expression partially 941 

rescued myotube population levels, diameter, and length to that of early passage controls when compared 942 

to late passage constructs without NANOG. They further observed a restoration of differentiation markers 943 

MYHC and Actinin. A key advantage of engineered muscle models, demonstrated by the above studies, is 944 

the accessibility for targeted genetic and pharmacological manipulation. As with other models, the 945 

advantages of engineered muscle cultures are coupled to limitations, discussed below. 946 

 947 

Limitations 948 
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As with other organotypic models, exclusion of cell types present in vivo is a challenge for skeletal 949 

muscle as well. For example, common aging phenotypes of inflammation, reduced peripheral 950 

vascularization, and adipose infiltration require inclusion of immune cells, endothelial cells, and adipocytes. 951 

In addition to sourcing and maintaining these cells, co-culture with muscle cells presents additional 952 

challenges due to their high metabolic demand and contractility. Progress is being made, for example with 953 

inclusion of increasingly complex vascular components  [415,422,433–438], but there are many areas 954 

needing improvement. 955 

Further, skeletal muscle poses unique challenges for cell sourcing. Most in vitro models of aging 956 

skeletal muscle are established from primary cells that are derived from animal models and patients 957 

[455,459–461]. Although primary cells offer increased physiological relevance relative to immortalized lines, 958 

the culture methods needed to isolate and expand these cells to populations suitable for organotypic studies 959 

rely on specialized techniques and restricted supplies, especially for human cells. Established cell lines are 960 

a more accessible sourced of aged myoblasts, and replicative senescence models have been established 961 

and used in 3D culture [454]. While the tradeoffs between primary cells and established cell lines are well 962 

documented for any in vitro culture system, the large number of cells needed for organotypic skeletal 963 

muscle models can make sourcing sufficient primary tissue difficult. 964 

It is important to note that skeletal muscle is typically composed of multiple fiber types, with different 965 

physiology and function. In aging, fast twitch fibers preferentially atrophy, leading to changes in fiber 966 

composition. While an important phenotype, especially in aging, fiber type is typically not assessed or 967 

controlled in organotypic models, leading to an important capability gap [462]. Further, engineered skeletal 968 

muscle generates force several orders of magnitude lower than that of adult human muscle, with reduced 969 

myofiber diameters [463]. Methods to improve contractile properties in these models focus on co-culture 970 

with motor neurons, electrical and mechanical stimulation, and improved nutrient and gas delivery. 971 

Ultimately, better control of muscle differentiation and maturation will improve modeling of both healthy and 972 

aged tissues. 973 

Finally, although both males and females exhibit loss of muscle mass with age, the pattern of 974 

decline is sex dependent. Similar to other tissues, organotypic constructs could be ideal platforms to isolate 975 
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the impact of sex specific cells and specific hormone levels on muscle function [464,465]; however, fully 976 

capturing the systemic sex differences in vitro is beyond the current capabilities of these models.  977 

 978 

Discussion and Outlook 979 

 Progress in tissue engineering has resulted in the development of three-dimensional organotypic 980 

models, and these have demonstrated potential to overcome several limitations of current aging models. 981 

Organotypic models, while not replacing animal models, have multiple advantages, including lower cost, 982 

increased accessibility, and human-specific biology. This allows for re-capitulation of human disease and 983 

aging phenotypes that animals may not experience naturally or may experience differently [7,103]. Further, 984 

tissue engineered organotypic models have advantages over classic two dimensional in vitro models as 985 

they incorporate physiologically important structural-cell and cell-cell interactions [71]. Additionally, tissue 986 

engineered cultures offer flexible scalability when compared to organoid and microchip culture formats. 987 

Appropriately scaled models are especially important when investigating aging; in many cases, aging 988 

contributes to breakdown of disruption and alterations of the overall tissue, and may include altered nutrient 989 

diffusion, organization, and cell-cell communication. In addition, tissue engineered models offer high 990 

customizability compared to conventional in vivo models, where specific cell populations or biomaterials 991 

can be easily selected or replaced to match research needs. In the three tissues that were addressed here, 992 

we highlighted studies that have specifically adapted these models to studying aging; where possible we 993 

have also highlighted the accessibility of these models to research groups that may not have prior 994 

experience. Importantly, organotypic models are straightforward to customize and, with some optimization, 995 

can be a reliable and powerful tool for any aging researcher to adapt to their needs and questions. 996 
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