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Abstract

Aging remains a primary risk factor for a host of diseases, including leading causes of death. Aging
and associated diseases are inherently multifactorial, with numerous contributing factors and phenotypes
at the molecular, cellular, tissue, and organismal scales. Despite the complexity of aging phenomena,
models currently used in aging research possess limitations. Frequently used in vivo models often have
important physiological differences, age at different rates, or are genetically engineered to match late
disease phenotypes rather than early causes. Conversely, routinely used in vitro models lack the complex
tissue-scale and systemic cues that are disrupted in aging. To fill in gaps between in vivo and traditional in
vitro models, researchers have increasingly been turning to organotypic models, which provide increased
physiological relevance with the accessibility and control of in vitro context. While powerful tools, the
development of these models is a field of its own, and many aging researchers may be unaware of recent
progress in organotypic models, or hesitant to include these models in their own work. In this review, we
describe recent progress in tissue engineering applied to organotypic models, highlighting examples
explicitly linked to aging and associated disease, as well as examples of models that are relevant to aging.
We specifically highlight progress made in skin, gut, and skeletal muscle, and describe how recently
demonstrated models have been used for aging studies or similar phenotypes. Throughout, this review
emphasizes the accessibility of these models and aims to provide a resource for researchers seeking to

leverage these powerful tools.
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Introduction

Chronic aging associated disease (AAD) remains one of the defining medical challenges of our
time, representing 95% of direct health costs for seniors and driving expected Medicare spending to over
$1.2 trillion by 2024 [1,2]. Further, patient care is complicated by the convolution of systemic factors,
multiple diseases, and conflicting treatment plans. Indeed, patients co-presenting two or more AADs are
common and costly, with patients managing 2 or more chronic conditions representing over 70% of
healthcare spending [3]. This complexity is reflected at the molecular level, with numerous mechanisms
implicated in the aging process. These mechanisms prominently include inflammation, oxidation, metabolic
and mitochondrial dysfunction, telomere shortening, and cellular senescence; we direct readers to other
reviews on the molecular drives of aging [4,5]. Despite strong research efforts, connecting the host of
molecular changes to development of effective treatments for AAD remains challenging. Identifying and
intervening in early stages of chronic disease remains difficult with the slow degeneration distributed over
years, evaluation of molecular markers occurring long after pathogenesis, and convolution of many subtle
pathway dysregulations. A major contributor to these challenges is the limitations of commonly used in vivo
and in vitro models.

Animal models of aging broadly follow the phenotypes of human aging and can be used to model
specific AAD [6]. However, specific mechanisms (e.g. immune function or telomere regulation) differ in

important ways [7]. Further, many human AAD lack analogs in naturally occurring animal disease, especially

in more cost-effective rodent models. Prime examples of this are cardiovascular disease [8], primary open
angle glaucoma [9-11], and neurodegeneration [12]. While animal studies will remain an essential
component of biomedical research for the foreseeable future, there is longstanding recognition of their
limitations [13] and consideration of reduction strategies [14,15].

Similarly, conventional two-dimensional in vitro culture has been indispensable in understanding
the molecular mechanisms associated with aging [16]; advantages include cost-effectiveness, replicability,
ease of chemical and genetic manipulation, and accessibility to analytical and imaging methods [17,18].
Unfortunately, these advantages come with a number of known limitations including modified sensitivity to
pharmacological agents, distorted expression profiles, abnormal morphology, and altered differentiation

schema [7,19,20]. To address these limitations in both conventional in vitro and in vivo animal models,
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there has been increasing development of more physiologically representative in vitro models. Ideally, these
models incorporate human cells and more accurately reflect the mechanical, physicochemical, biochemical,
and cellular context of in vivo tissue. Models that mimic the heterogeneous cell composition and
organization of native tissue are generally referred to as organotypic, a category that includes both ex vivo
and in vitro models. Key examples of in vitro organotypic models include organoid, organ-on-a-chip,
organotypic tissue slice, and tissue engineered organotypic models.

Organoid models are generated by a number of different source materials including tissue
fragments and explants, reconstituted primary cells, and stem cells [7,18]. While there is no single definition
of organoid models, broadly speaking, they are constructed through the self-assembly of patient, primary,
or stem cells; exhibit cellular and matrix organization mimetic of the in vivo environment; and a
heterogeneous cell population mimetic of native tissue. Organ-on-a-chip models generally possess these
same advantages, with additional potential features consisting of defined structural patterning of the cells,
microfluidic or environmental control of the system, and incorporation of sensors or physiological readouts
[21-23]. Organotypic tissue slice cultures use thinly sliced sections of tissue, preserving the cellular
microenvironment and tissue organization; these have been used in a range of tissues, including heart,
lung, liver, and most prominently, brain [24—30]. These model classes have enabled significant contributions
to research and drug discovery, including in the aging field. A notable example is in brain, where organoids
and organotypic slices have been used to research aging associated degeneration, Alzheimer’s, dementia,
and Parkinson’s; the progress in brain organotypic models has been extensively reviewed by others [31,32].
These model classes have enabled significant contributions to research and drug discovery, yet have
notable limitations. For example, organoids and organ-on-a-chip models are typically small (sub-mm) due
to the lack of vasculature and diffusion limits of oxygen and metabolites [33—35], although organ-on-a-chip
models sometimes address this issue through microfluidic perfusion. Further, organoid and slice models
often require patient or freshly isolated animal tissue that can be difficult to acquire; organ-on-a-chip models
often rely on specialized microfabrication techniques that not all aging research labs can easily implement.
Another culture category and topic of this review, tissue engineered organotypic culture, leverages the

progress in tissue engineering to create tissue-scale and physiologically relevant in vitro models.
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Tissue engineering, a term first coined over three decades ago, has long held promise for the in
vitro creation of fully functional tissue grafts [36,37], however, numerous challenges have limited
development. /n vitro development of skin grafts, one of the initial targets of the field [37], is only just now
entering medical use as an adjunct to traditional therapy [38], with fully functional engineered skin still
unavailable [39]. This is broadly representative of the current state of the field, which, despite significant
research progress, have demonstrated limited clinical application of grafts. However, for the past two
decades, researchers have repurposed engineered tissues towards research questions [14,40—42]. Similar
to organoid and organ-on-a-chip cultures, these models are constructed from organotypic cell populations,
but typically offer a greater degree of control over the tissue architecture and included cell populations.
Cells and structures can be patterned or allowed to self-assemble depending on the needs of the research
[43,44]; similarly, cell populations and sub-populations can be easily controlled or replaced to reflect tissue
health and disease. Leaders in tissue engineering have urged the simplicity and cost-effectiveness of
design [34,45], and this is reflected into the increasing number of methods papers and decreasing costs of
biomaterials [14,40]. These models represent a powerful and accessible set of tools for aging research;
and are likely to become increasingly relevant as the field moves towards bridging cellular and tissue-scale
hallmarks of aging.

In this review, we summarize research efforts and potential for utilizing organotypic and tissue
engineered models for aging and AAD. To streamline the review, it is broken into independent sections for
skin, intestine, and skeletal muscle; which represent well-developed fields and are important tissues in
physiological aging and AAD. Each section briefly covers important facets of the aging physiology in the
tissue system, before describing current and emerging organotypic techniques and their application to
aging. In each tissue section, we describe the advantages (and limitations) of organotypic models in
elucidating aging mechanisms at the cellular and tissue scales, as well as highlighting the key

methodological and accessibility factors.

Demonstrative Organotypic models relevant to aging tissue
SKIN

Native skin aging
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Skin is one of the largest organs of the body and has functional roles in immune response, physical
protection, and thermal regulation [46]. A simplification of skin anatomy is shown in Figure 1A. As aging
occurs, skin function and healing capacity is reduced, with key aging changes summarized in Table 1. Skin
aging is frequently divided into two related processes: intrinsic and extrinsic aging [47-50]. Intrinsic aging,
also referred to as chronological aging, includes genetic and hormonal changes and the progression from
cell maturity to cellular senescence [47,50]. Extrinsic aging, also referred to as environmental aging,
represents the impact of the environment, including: photoaging associated with sun exposure [47,51,52],
cigarette smoking, pollution, chemical exposure, and trauma [50]. Due to the different underlying
mechanisms, characteristics of each type of aged skin are different. Chronologically (intrinsically) aged skin
presents as unblemished, smooth, pale, dry, lower elasticity, and has fine wrinkles while environmentally
(extrinsically) aged skin has coarse wrinkling, rough textures, pigmentation changes, and lower elasticity

[50,53].

A o ANATOMY | AGED
Epidermis 5
Stratum Corneum
Stratum Granulosum

Stratum Spinasum

Stratum Basate
DEJ—\_\_\_\_‘
Dermis \.

Subdermis

Flattening of DEJ
Collagen breakdown
Reduced vascularization

Reduced subcutaneous fat volume

Media Compasition
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Figure 1: Organotypic Models of Skin Aging. (A) Simplified skin anatomy and aging phenotypes. Skin can
be separated into epidermal, dermal, and hypodermal layers. The epidermis is composed of Stratum
Basale, Spinosum, Granulosum, and Corneum, composed of increasingly differentiated epidermal cells.

The dermal-epidermal junction (DEJ) connects the basement membrane of the Stratum Basale to the
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upper (papillary) dermis, and is characterized by small dermal extensions (or papilla) into the epidermis.
The DEJ flattens with age. The dermis is a collagen rich tissue supported by dermal fibroblasts. The
subdermis (or hypodermis) is an important adipose compartment that contributes to overall metabolic
function; this tends to thin with age. Both the dermis and subdermis are highly vascularized, important
for thermal regulation; in age vascularization is reduced. The above schematic is simplified to focus on the
level of current organotypic models, nerves, melanocytes, immune cells, and other components of in vivo
skin are not pictured. (B) Organotypic skin models, also referred to as Human Skin Equivalents (HSE),
typically consist of a dermal/subdermal culture grown on a permeable culture support (left), followed by
seeding and differentiation of epidermis at the air-liquid interface (ALI). Benefits of this style is the
accessibility of the culture format, ready customization of the specific cell populations (both immortalized
or primary, patient specific, or transgenic disease models), and customization of the matrix and media

formulations.

Table 1: Prominent Phenotypes of Aging Skin

Prominent Aging Phenotypes References

Lower elasticity, increased fragility, and wrinkle formation [47,50,53,54]

Increased collagen disorganization, accumulation of advanced glycation end products, | [49,53,55—

and changes in (GAG) and (PG) concentrations/organization 61]
Flattening of the dermal epidermal junction [50,52]
Decreased dermal vasculature [62]
Reduced subcutaneous fat volume [50]

Increased cellular senescence [49,63]
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Decreased cell population and turnover, including melanocytes, epidermal cells, dermal | [50,63,64]

fibroblasts, and immune cells

Reduced barrier function coupled with changes in the stratum corneum, lipid | [65—69]

composition, and filaggrin expression

Structural changes in intrinsically aged skin include decreased dermal vasculature [62]; changes
in dermal elasticity and increased collagen disorganization [70,71]; build-up of advanced glycation end
products (AGEs) and changes in glycosaminoglycan (GAG) and proteoglycan (PG)
concentrations/organization contributing to stiffening of dermal structure and frailty, and decreased
hydration [49,53,55-61]; imbalance of tissue inhibitors and matrix metalloproteinases (MMPs) resulting in
imbalance between collagen deposition and breakdown [50,72]; and flattening of the dermal epidermal
junction/loss of rete ridges [50,52,63,64,73]. Aging also contributes to variations in epidermal and dermal
thickness [63,64,74,75] and reduced subcutaneous fat volume [50]. There are also many changes related
to cell population in all three main skin compartments (epidermal, dermal, hypodermal) including reduced
epidermal cell turnover [50,73], drop in number of active melanocytes [50]; decreases in dermal fibroblast
concentrations [64], decreases in immune cells [63,64] and immune function. Abnormalities of skin barrier
(a major function of the epidermis) occur during aging and often present as dryness or skin irritation. In
aged skin, barrier function has been studied in the context of decreases of filaggrin [65], increases in pH (5
to ~5.6), altered lipid presence [66,67], and changes in cornified envelope arrangement [63,68,69,76].
These changes add to fragility of older skin and increase chances of infection [54], it remains unclear exactly
how these changes take place and what mechanisms are controlling them.

On the molecular scale, expression levels of soluble factors, proteins, and vitamins are both effects
and contributors to aging phenotypes. Examples include upregulation of stress regulatory proteins
(hypoxia-inducible factors, nuclear factor kappa-light chain-enhancer) [63], increases in AP-1 (leading to
increased collagen breakdown via MMP activity) [52,72], and declines in vitamin D production by the
epidermis [63]. These changes are largely attributed to increases in reactive oxygen species (ROS) [52,63],
DNA mutations (including mitochondrial DNA), telomere shortening [63], increased cell senescence, and

hormonal changes [49,63]. Changes in skin aging have been associated with fluctuations in expression
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patterns of integrins including a6 and R1 integrins [57,71,77—-79]. In healthy human skin, a6 and 31 (and
other a/ R subunits) integrin expression are localized on the basal side of basal keratinocytes [57,79].
Defects in integrin expression are present in human blistering skin diseases with supporting evidence in
knockout mice [79] and also in aged human skin [57,77], although further work is necessary to understand
how integrin expression changes in aging.

Aging in the skin has sex-related differences as well, specifically, sex is linked to faster thinning of
the dermis and collagen density decline in males as opposed to females [50,80]. Males undergo a decline
in androgen levels while estradiol levels are constant, these changes result in a linear decline of skin
thickness and collagen content in men [70]. Women experience both androgen and estrogen decline
linearly and an additional post-menopausal estrogen decline which is linked to lower collagen content, lower
skin moisture and capacity to hold water, lessened wound healing response, thinner skin, and lower skin
elasticity [50,53,70,81]. Detailed summary and discussion of sex-related changes in skin aging have been
previously reviewed [70].

These intrinsic mechanisms are compounded by environmental skin aging (extrinsic aging)
[49,52,63]. A key example is the effects of ultraviolet (UV) irradiation (an extrinsic aging mechanism), which
accelerates telomere shortening and DNA damage present with intrinsic aging [50,82]. Other extrinsic aging
and examples of compounding UV effects are discussed in previous literature [49,71,83—89]. Overall, skin
aging at the molecular, cellular, and tissue levels continues to be a field of active research. While in vivo
and traditional cell culture models remain important tools, there is increasing interest in more physiologically

relevant culture models, and there is a growth in recent studies employing organotypic skin models (OSCs).

Tissue engineered skin models

Researchers have used organotypic models to study skin biology since the 1980s [90,91], and the
methodology are increasingly accessible. OSCs are also commonly referred to as human skin equivalents
(HSEs) or full-thickness skin models; they typically have dermal and properly stratified epidermal layers
(Figure 1B). These models have proven useful for studying skin development, evaluating cytotoxicity,
studying wound healing, and more recently as disease and aging models. OSCs are highly customizable

and allow for control of organotypic cell populations, genotypes, and culture conditions to enable carefully
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controlled studies on tissue-level biology. OSCs have the capacity to be used for in depth aging studies
without the dangers of human trials or expensive animal models; with long-term culture stability for chronic
studies (typical culture lengths of 8-12 weeks) [92—94]. Most commonly, OSCs contain dermal fibroblasts
and keratinocytes and are cultured at an air-liquid interface for epidermal differentiation and stratification.
However, with the growth of interest in heterogeneous cell-cell communication, an increasing number of
models have been demonstrated with additional cell populations [71,95,96]. These include vascular
endothelial cells [93,94,97—-102], immune cells [103—106], adipose derived stem cells and adipocytes from
adipose derived stem cells [107—109], embryonic stem cells [71], melanocytes [110—-112] and melanocytes
derived from induced pluripotent stem cells [113]. With this customizability and a growing number of
accessible protocols, OSCs represent a useful tool for studying skin aging; exemplar applications are
discussed below, first for disease generally and then with aging specifically.

OSCs have been used in a number of disease studies, both directly and as “hybrid” studies where
a humanized OSC is grafted onto immunodeficient mice. Additionally, models have been shown useful for
testing potential therapeutic techniques for debilitating skin disorders or injuries [114]. OSC skin disorder
models include: psoriasis [115-117], recessive dystrophic epidermolysis bullosa [118,119], lamellar
ichthyosis [120], Netherton syndrome [121], congenital pachyonychia [122], Junctional epidermolysis
bullosa [71,123], and fibrosis [124—126]. Of these disease models, the fibrosis model by Varkey et al. is
especially interesting for its potential to be adapted to use as an aging model. In this study, OSCs were
generated using either deep dermal fibroblasts or superficial dermal fibroblasts in combination with normal
human keratinocytes [124]. They found that the antifibrotic properties of deep dermal fibroblasts and the
fibrotic properties of superficial fibroblasts influence OSC characteristics. Authors found that when
compared to constructs with superficial or mixed fibroblast populations, OSCs with deep fibroblasts had
higher levels of IL-6, reduced TGF-B1 production, higher PDGF expression, and epidermal formation was
less defined and less continuous [124]. This model is potentially interesting as a platform for aging research,
as TGF-f is implicated in skin aging through regulation of matrix metalloprotease activity [127,128]. The
work of Varkey et al. highlights the usefulness of OSCs to study signaling between specific cellular

subpopulations in a controlled way; this approach could be readily adapted to aging studies. Given this
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potential, it is unsurprising that several research groups have used OSCs in aging research, which we

highlight in the next section.

Tissue engineered skin models to study aging

As OSCs are stable for long culture periods (>17 weeks), using the extended culture time to study
intrinsic aging is perhaps one of the most straightforward techniques and can be combined with other aging
models and/or cell types [73]. With this model, authors demonstrated that extended culture (using a non-
traditional matrix of collagen-glycosaminoglycan-chitosan porous polymer) exhibited several age-related
aspects similar to those that occur with in vivo aging, including decreases in epidermal thickness, decreases
in hyaluronan expression, increases of the aging biomarker p16'™42, decreases in keratinocyte proliferation
over time, loss of expression of healthy epidermal markers, and basement membrane alterations. Another
straightforward application of OSCs in aging is studying the impact of senescent cells. A number of studies
have incorporated senescent fibroblasts into OSCs to generate models that recapitulate many of the
features of in vivo aged skin. [74,129,130]. Diekmann and colleagues induced senescence in human dermal
fibroblasts and keratinocytes using Mitomycin-C (MMC) treatment and incorporated the cells into OSCs
[130]. When compared to mitotic OSCs, the senescent models demonstrated changes similar to aged in
vivo skin, including a more compact stratum corneum (outer layer of the differentiated epidermis), reduced
dermal fibroblast population, decreased collagen type | and Il content, decreased elastin expression and
looser elastin structures, increases in MMP1, and disordered epidermal differentiation. A similar study
involving senescent fibroblasts used healthy fibroblasts that were exposed to H20: to induce senescence
and then cultured the senescent fibroblasts in skin equivalents with healthy keratinocytes [129]. Aging
phenotypes were characterized by changes in proliferation, differentiation of suprabasal epidermal layers,
impairments of skin barrier function, and surface property modification. Further, authors found that
fibroblasts exhibited senescence-associated secretory phenotype (SASP) markers including IL-6, GmCSF,
and IL-1a. Interestingly, Weinmueller et al. observed more Ki67 positive epidermal cells when senescent
fibroblasts were present. More research is required to understand senescence in the dermis and how it
may effect keratinocyte homeostasis [131]. Serial passaging of fibroblasts has also been employed to

simulate aging in OSCs, showing that constructs generated with late passage fibroblasts were similar to in
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vivo aged skin [74]. OSCs were generated with 15-20% SA-3-gal positive fibroblasts cells in 2D culture
prior to 3D seeding. Authors observed few changes in the epidermal compartment while the dermal
component of OSCs presented a thinner dermis and increased MMP1, similar to in vivo aged skin [74].
Defects in epidermal-dermal junction in these OSCs were not observed and keratinocytes exhibited a
healthy phenotype. Although not shown, authors noted that when greater than 30% SA-B-gal positive
fibroblast cells in 2D were used to generate OSCs, the fibroblasts did not produce sufficient extracellular
matrix (ECM) and constructs were not viable [74]. As Janson et al. found, generating an OSC using
senescent cells is technically challenging since the percentage of senescent cells used to generate an OSC
can alter skin structure and long-term culture health [74].

Other studies focused on the aging of the keratinocyte population. In OSCs generated from primary
cells isolated from donors, cell donor age is an option for simulating intrinsic aging in vitro [71]. OSCs
generated with either keratinocytes isolated from aged individuals or serially passaged keratinocyte cells
have been used to examine the effects of replicative senescence [132]. Constructs generated with older
keratinocytes (61 or 35-year-old donors) exhibited thinner epidermis compared to OSCs generated from 1-
year old donor cells. Additionally, there were differences in epidermal organization, where constructs
generated with young keratinocytes exhibiting more consistent organization and stratification than OSCs
with older cells. This study also investigated the expression of epidermal stem cell markers. They found
that when keratinocytes were passaged over six times (modeling in vitro cellular senescence), there was a
decrease of stemness, indicated by high expression of a6 integrin and low expression of CD71 (a
proliferation-associated cell surface marker) [132]. Likewise, in constructs generated with young (infant)
keratinocytes, a6 integrin expression was observed in basal cells of epidermis while in constructs generated
with adult and elderly cells there was faint and absent a6 integrin expression (respectively). These OSC
findings demonstrated in both intrinsic aging (simulated from aged donor cells) and in vitro senescence
induced by serial passaging results in depletion of epidermal stemness markers [132].

Epidermal changes associated with aging have also been shown in models generated through
genetically altering expression of key components, for example p16™“2 [133]. In vivo chronological human
aging markers, p16™“® and its repressor BM1, are established markers of in vitro aging tissue

[71,73,133,134]. p16'™42 is an inhibitor of cyclin-dependent kinases that blocks the progression from G1
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phase to S phase of the cell cycle and promotes senescence onset. /n vitro aged skin models can be
generated from young donor keratinocytes cells by p16"™“2 overexpression [133]. Conversely, aging
phenotypes observed in old donor keratinocytes can be rescued through silencing p16'™“2. Aged models
(both from older donors or p16'™“2 overexpression) resulted in thinner epidermis, loss of stratum corneum
(the terminal epidermal layer), and atrophy [133].

OSCs also allow for studies of matrix and cell-matrix interactions in aging skin. Expression patterns
of glycosaminoglycans (GAGs) and proteoglycans (PGs) are important in skin tissue mechanical integrity,
and aging-related changes contribute to frailty in both intrinsically and extrinsically aged skin [53,55,135—
139]. Glycation and the presence of advanced glycation end products (AGEs) increase in aging skin, and
this has been leveraged in OSCs to create an aged skin model [57,77]. In this model, collagen was glycated
in vitro prior to construction of the OSC. This simulated intrinsic aging of the construct, resulting in modified
integrin patterns in the suprabasal epidermal layers, activation of the dermal fibroblasts to increase the
production of metalloproteinase, type Il procollagen, and type IV collagen [57,77]. Authors found that these
morphological and molecular changes in the epidermis and dermis could be partially rescued by
antiglycation agents such as aminoguanidine [57]. More investigation is necessary to understand exactly
how GAGs and PGs are affected during skin aging. Open questions include how sex specific hormones
may affect concentrations [53] and what downstream effects GAGs and PGs have on the expression of
cytokines and growth factors [140]. As an accessible platform that can be customized with specific cell
lines, biomolecules, and materials, OSCs are uniquely suited to elucidate aging mechanisms including
detailed molecular studies regarding GAGs and PGs in skin.

In addition to researching aging biology, OSCs can also be employed as a testing platform for aging
therapeutics [137,140]. C-Xyloside is a xyloside derivative that has been investigated as therapeutic to
improve dermal-epidermal junction (DEJ) morphology in aging skin [141,142]. Sok et al. exposed OSCs to
C-Xyloside and investigated the resulting DEJ morphology. C-Xyloside exposure resulted in higher
basement membrane protein concentrations, specifically collagen IV, laminin 5, and collagen VII, and
organization more similar to the microanatomy of healthy human skin. Further, C-Xyloside increased

concentrations of dermal proteins such as pro-collagen | and fibrillin, which are key ECM proteins for the
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maintenance of skin elasticity. Since defects in the basement membrane, DEJ, or elasticity contribute to
skin fragility in aging, this model has potential as a test bed for other aging therapeutics [137].

In the context of skin, tissue engineering has provided accessible and customizable models both
for the direct research of aging phenotypes as well as models that can be readily adapted to aging
questions. Further, there is demonstrated potential for therapeutic testing. Importantly, the cited models (or
variants thereof) rely on commonly available cells, reagents, and techniques adaptable to many lab
environments. Increasing use of these models in aging research holds promise to accelerate discovery and
therapeutic goals. Despite this promise, there remain challenges to the use of OSCs in aging research,
discussed below. Most notably, the power of OSCs comes from their intermediate status between simple
in vitro models and in vivo models; there is an explicit tradeoff between increasing the complexity of the
culture system and its cost or ease of use. While OSCs do allow customization by the researcher to focus
on factors most important to their question, the tradeoff can be difficult to make for aging research. Some

examples of OSC limitations relevant to aging research are provided below.

Limitations

The most predominant limitation of using tissue engineered organotypic models is that they typically
do not match all cellular populations found in vivo. Nerves, sweat glands, stem cell niches, immune cells,
subcutaneous adipose, and vasculature are important aspects of aging skin biology that are frequently
missing in OSCs. While in many cases there is no strict technical reason for the absence of a specific
component, any increase in complexity provides more challenge and cost. For example, inclusion of nerves
requires a source of nerve cells, they must be maintained in culture while not losing their phenotype, and
simply including cells in the OSC does not capture the complexity of the nervous system. However, progress
is being made through iteration, providing researchers with increasingly powerful models that capture more
of the relevant physiology. For example, wound healing is slowed in aged skin, and immune cells are vital
in both physiological and pathological wounds. While fibrosis has been studied using OSCs, this is typically
limited to observing fibroblast and keratinocyte responses; there is a recognized need for OSC models that
include immune populations [103]. While not prevalent, some models do incorporate the immune system

[117,143-146], demonstrating the trajectory of the field toward increased capability and flexibility. Similarly,
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changes in vasculature are prevalent in aged skin, but OSCs often lack vascular cells. While progress has
been made in vascularizing OSCs and related models [93,94,97,101,143,147—-151], there is still a great
deal of work to be done in applying this to aging questions.

Further, OSCs tend to be structurally simplified. As mentioned, they typically lack nerves, glands,
and other structures typical of skin. Building on the example of vasculature, even with appropriate vascular
cells, OSCs often have a random or simplified organization; native cutaneous vasculature is organized into
two horizontal plexus planes with connecting vessels between them along the apicobasal axis [152,153].
In OSCs, this organization could be recapitulated through the inclusion of patterned or semi-patterned
vasculature, although this is typically not done [154]. Additionally, decline of collagen density is an important
aspect of skin aging, yet many OSCs are fabricated with collagen densities much lower than those found
in vivo [80,155]. While not common yet, OSCs can be fabricated from higher collagen densities through
techniques such as dense collagen extractions [156], and compression of collagen cultures [157], to more
closely represent the in vivo dermal matrix.

Another key limitation of current OSCs is loss of systemic factors present in vivo. For example,
age-associated changes in sex hormone profiles impact skin physiology; e.g. post-menopausal decreases
in collagen content, reduced elasticity, and lowered skin moisture in women. While changes in systemic
factors can be addressed, they will invariably lack the full complexity of an in vivo model. For example, a
recent study addressed the impact of exogenous estradiol on elastin synthesis using male and female
dermal organotypic cultures [158]. Studies such as this highlight the tradeoffs in organotypic models, as
reductionist culture models allow specific questions to be interrogated, they obviously lack the complexity

inherent in aging at the organismal scale.

INTESTINE/GUT

Native intestinal aging

In this section we focus on the gastrointestinal system and review relevant three-dimensional
organotypic culture models. The small intestine is the primary organ for nutrient absorption from food, while
the colon (or large intestine) is the primary organ for reabsorption of water [159]. Here, we focus on the

small intestine, due to the larger number of in vitro three-dimensional models, but large intestine models
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are briefly discussed as well. The small intestine has a complex tissue structure involving crypts (valley
points) and villi (mountain points); with the crypts providing a stem cell niche (Figure 2A). Stem cells located
within crypts asymmetrically divide and the resultant epithelial cells migrate up toward villi and eventually
slough off into the gut lumen. Multiple distinct epithelial populations arise from these stem cells, including
microfold cells, enteroendocrine cells, enterocytes, goblet cells, Paneth cells, and tuft cells; this process of
continual epithelial renewal and differentiation is integral to a healthy gut barrier. On the epithelial surface
there is a brush boarder and single or bi-layered mucus layer depending on location within the gut [160].
Interacting with this surface is the microbiome which is made up of commensal bacteria and pathobionts
(resident microbes with pathogenic potential) that constantly interact with the mucin layer of the gut [160].
Diversity of the gut microbiome has been established as an important factor in gut health and host health
[161-170]. The diversity of the microbiota present in different regions of the gastrointestinal tract depend
on many factors including pH, host health, mucin composition, bacterial cooperation, nutrient availability,
location within the gut, and age of the host [162]. Further, within the subepithelial and stromal tissue there
are additional cells, including fibroblasts, smooth muscle cells, microvascular cells, and both circulating and
resident immune cells (e.g. monocyte derived macrophages, neutrophils, dendritic cells, T cells). The
immune cells are known to interact with and traverse the epithelial surface [171-173]. Given the complexity
of the intestinal tissue and the number of host and bacterial cell types, it is unsurprising that many of the
cellular interactions are poorly understood, especially in aging tissue where both the host tissue and

microbiome can change [174].
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Figure 2: Organotypic Models of Gut Aging. (A) Simplified gut anatomy and aging, focusing on the most
commonly modeled components. A mixed epithelial population, described in the text, forms a simple
cuboidal epithelial layer with both secretory and absorptive epithelium. A layer of mucus inside the gut
lumen supports the host/microbiome interaction. The stroma underneath the epithelium, the submucosa,
is host to nerves (not shown) blood vessels, fibroblasts, and immune cells important for gut function.
Smooth muscle is required for gut peristalsis. In aging, the macrostructure of villi degrades, with villi
becoming shorter and broader. Immune cell populations are disrupted, and reduced epithelial barrier
integrity can lead to increased microbial infiltration into the submucosa and vasculature. (B) Organotypic
models of the gut typically only model a small subset of these features, and are typically adapted to
aspects that are relevant to specific questions. For example, epithelial and immune populations may be
co-cultured to study intercellular interactions in a simple format. To study the influence of villous
structures, soft lithography can be used to recreate the villi/crypt geometry. Microbiome co-cultures can
be included, and microfluidic organ-on-a-chip models have been used to mimic the oxygen gradient from

the vascularized submucosa to the anaerobic lumen.
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Aging in the gut presents as reductions to nutrient ingestion, the tolerance of resident microbiota,
and the response to infection (key aging phenotypes are summarized in Table 2). Often these co-present
with dehydration and malnutrition [171]. Generally, there is a lower intake of macronutrients and
micronutrients in aged individuals, although this lower intake could be attributed to lower physical activity,
problems with teeth, impaired sense of taste and smell, psychological factors, income levels, and drug side
effects [175—-177]. Together, lessened nutrient intake, dehydration, and malnutrition contribute to overall
healthy decline and morbidity in aged individuals [177]. Additionally, there is evidence showing that
absorption of glucose and vitamins increases with age while some nutrients such as cholesterol and fatty
acid decrease or slow; changes in absorption has been well reviewed in animals [175,177] but continues
to require more investigation in the human gut [177,178]. It has been suggested that changes in nutrient
absorption could also be tied to the changes in morphology found in aged animals and in humans [179].

Morphologically, as the small intestine ages, numerous structural changes have been observed in
several models. These structural changes are coupled to cellular changes, for example, the dynamics of
cell life cycle from the crypt to extrusion at the villi [175,180-182]. In one year old rabbits compared to
young rabbits, there are morphological changes in the jejunum and ileum; villi shorten, number of cells/villus
drops, and mucosal surface area declines in the jejunum while villus cell size remained constant in both
areas [183]. Changes in villous height are associated with mucosal surface area at all ages [183] and these
declines in surface area have been related to differences in nutrient absorption of aged individuals [179].
In healthy mice it takes around 4-5 days for a stem cell derived progenitor to move from the crypt,
differentiating along the way, to the tip of the villus, where it ultimately undergoes apoptosis and extrusion.
Morphological changes such as villi length increase and crypt number decrease lead to larger crypts with
more cells and are coupled with less travel of progenitor cells to the tip of the villus as well as increased
apoptotic events, decreased cell proliferation, and lower cell survival in aged mice [182]. Aging and how it
effects wound healing in the small intestine has also been investigated in mouse models. Martin and
colleagues studied the regenerative capacity of small intestinal epithelium after injury in young and old mice
using full or partial body irradiation [184]. Authors found that after injury induced by full body irradiation,

crypts of old mice were smaller than controls while young mice had larger crypts. After partial body
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440 irradiation, the crypts of young animals were found to be smaller, while the number of surviving crypts in
441  old mice was lower than in young mice.
442

443 Table 2: Prominent Phenotypes of Aging Intestine

Prominent Aging Phenotypes References

Increased microbial infiltration into submucosa and vasculature [185-187]

Reductions to nutrient ingestion, tolerance of resident microbiota, and the response | [171]

to infection.

Villi morphology changes, decreased cells per villus, decreased mucosal surface | [179,182,183,188-

area, decreased crypt numbers 190]

Increased cell apoptosis, reduced cell proliferation and survival, decreased | [171,182,189-192]

regenerative potential of stem cells

Disruption of Wnt Signaling [182,193-195]
444
445
446 In rats, morphological changes such as increased numbers of crypts and villi are observed with

447  aging, although size and cell production rate changes were not observed [188]. Atrophy of intestinal mucosa
448 also occurs in aged rats and this contributes to decreased number of enterocytes [189,190]. These changes
449 can be localized to specific tissues; for example, mucosal atrophy in rats has been found in proximal regions
450 of the small intestine, but not in the distal small intestine; similarly the decline in villi height has been found
451  in the ileum but not the duodenum [189]. Changes in morphology are thought to be closely tied to transport
452  function across the gut barrier and may be tied to malabsorption of nutrients, but more evidence is needed
453  to support this [174,175,179,183]. Further, the association between aging and morphological changes is
454  poorly understood in human intestine. Currently, there are few studies that have examined human intestinal

455  morphology; Webster and colleagues found that elderly people have shorter villi and possibly broader villi
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when comparing shape and dimensions of proximal jejunal villi in young versus aged humans [179]. The
villous changes in humans were not definitively linked to changes in intestinal function, but changes in
surface area are thought to contribute to the nutrient absorption decline that aged individuals often
experience [179].

Changes in enzyme distribution and brush border membrane makeup have been observed in mice
[175], rats [190], and rabbits [183], but the conclusions differ by species and it is unclear whether these
changes are associated with aging [175]. Briefly, in adult and aged mice there are similar activities and
distribution of enzymes in the brush boarder membrane [175]; while in aged rats lower alkaline phosphatase
activities have been found; conversely, higher sucrase/alkaline phosphatase in the brush boarder
membrane have been found in adult vs. young rabbits. Differences in mucus structure and chemical
composition have been tied to age changes [171,175,196]; specifically glycoproteins in the mucus change
with age in rats [175,196]. There is some evidence suggesting that the process of bacterial adhesion to
mucus also changes with age, shown with bifidobacterial strains [171,197-199]. However, gastric and
duodenal mucus thickness does not change with age in healthy individuals [171,200]; mechanical
properties of mucus have been found to remain stable as well [171].

On a cellular level, differences have been observed with aging. Most prominently, stem cell
changes have been observed in aged animal studies and in organoid cultures [182,193]. In small intestinal
tissue from mice, the intestinal stem cell markers Lgr5 and Olfm4 were examined but found to be similar in
young and old samples, while the quiescent intestinal stem cell markers Lrig7 and Tert were reduced [182].
However, when examining numbers of stem cells in young versus old cultures, no difference was found
[182]. Wnt signaling, an important aspect of self-renewal and proliferation in intestinal stem cells, is altered
in aging gut [193—195]. Elevated Wnt activation can lead to intestinal tumorigenesis [201] and malformed
crypts (less lobes and buds per crypt) in small intestine mouse organoid cultures [194]. However, there is
conflicting literature on how elevated or lowered Wnt signaling effects stem cells in aged mice. Nalapareddy
and colleagues found that during aging, intestinal stem cells, Paneth cells, and mesenchyme secrete less
Whnt ligands which leads to overall reduced Wnt signaling and lower regenerative potential of stem cells
[182]. Using organoid models derived from duodenal (proximal) crypts in mice, the decreased stem cell

function can be rescued by endogenous Wnt in vitro [182]. There is evidence that the stem cells may lose
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fitness in maintaining differentiated cell populations; specifically Paneth cells, responsible for generating
anti-microbial peptides [171]. The amount of Paneth cells and their secretory functions have been found to
decline with age [171,192], and this may be due to the age related stem cell decline and reduced ability to
generate Paneth cells [171,184,202].

The mucus is the site of antibody production (specifically, secretory immunoglobulin A; IgA) and is
the first defense against harmful microorganisms [171]. Goblet cells, the primary contributor to the mucus
layer, have a stable population in aging mice [171,203]. As previously reviewed, the literature remains
unclear on the effect of aging on IgA response, migration, and production [171]. Aging has been found to
decrease secretory IgA amounts in animals (mice, rat, non-human primates) when exposed to cholera toxin
[171,204-207] and increase somatic hypermutation in mice [171,208]. In contrast, other studies have
shown no changes in serum or intestinal amounts of IgA in aged rats and mice; some results suggest that
the lower levels or IgA are due to an overall homing decline rather than changes in amounts of IgA
[171,206,209-212]. Dendritic cells present antigens to B and T cells in the intestinal immune system, and
evidence points to decreasing cell numbers and function in aged mice [191]. Further, this plays a role in
decline of regulatory immune functioning [171,213,214] and may play a role in low grade inflammation
observed in the aging gut [171,174,215,216].

The microbiome plays an important role in digestion, absorption, and nutrient processing [217], but
it remains incompletely understood how the intestinal barrier and immune system interact with microbiota
and how this system is affected by aging. In the study of microbiota, it remains unclear how gut diversity
affects the aging process and how gut diversity changes with age. There is not enough evidence or
investigation on age related associations and gut health to determine causes/effects of gut on old age
[169,170], although there are many health practices that correlate with perturbations of the gut microbiome
including drug/antibiotic usage and diet [169,218]. There is evidence that the gut microbiome is affected by
sex differences [217,219-222], and this may be implicated in sex differences in aging-associated disease.
Sex differences in the microbiome affect gut health but also risk of disease development including
atherosclerosis, diabetes, hypertension, dyslipidemia, and obesity [217]. In general, aging and its relation
to sex and hormonal differences requires more investigation, but there are indications that changes in the

aging gut are sex-linked due to hormonal differences during early life, adulthood, and aging [219,220]. In
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aging males, testosterone levels drop slightly from levels during adulthood while in aging females, there is
a dramatic drop in estrogen from the oscillation range of adulthood [220]. The general effects of hormonal
supply decline to the gut microbiome are unknown, but are likely sex-specific [220] and may be associated

with the immune component of the gut [221].

Tissue engineered gut models

There are a few limitations to traditional intestinal models that can be addressed with 3D
organotypic gut models (Figure 2B). 2D cultures on culture inserts are often used to model gut, but these
cultures are unstable after 4 weeks due to cellular overgrowth and formation of multicellular layers [160].
To study enteric bacterial pathogens, researchers have often used human tissue explants; animal models
[223]; and 2D cultures with cell lines such as T84 and HT-29 which mimic goblet cells, and Caco-2 which
serve as enterocytes [224]. Although helpful in understanding microbiome-host responses, these models
are typically inconsistent with the human anatomy and physiology in the gut [223,225]. Similarly, mouse
transgenic models are often used to study inflammatory gut diseases but mice do not develop some
prevalent human diseases, such as ulcerative colitis or Barrett’'s esophagus [226]. To address gaps in more
traditional models, several 3D models have been established based on organoid, explant cultures, micro-
fluidic chips, and organotypic gut models (OGMs) generated through self-assembly and partial villous
molding. Intestinal tissue derived organoids are a popular model that has been used to study aging; these
are called enteroids for small intestine, or colonoids for large intestine models. Enteroids consist of only
epithelial cells and model crypt like populations or are often differentiated to model surface/villous
epithelium [223]; these have been studied using monolayers on tissue culture inserts and embedded in
extracellular matrix [223,226]. Human induced pluripotent stem cell (iPSC) derived intestinal organoids,
contain both epithelial and mesenchymal lineages and model both crypt and surface villus [223]. Models of
differentiated intestinal organoids, although limit appropriate human scale, can include even the rare cells
of intestine models including enteroendocrine, tuft, M cells, and Paneth cells [227].

3D cultures have been generated with both primary human cells and commercially available lines.
OGMs have been generated with adult human intestinal stem cells [227], iPSC [227], Caco-2 [160,227,228],

T84 [227], HT-29 [160,227,228], and myofibroblasts [160]. OGMs are only recently developed, but they
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have advantages over 2D models, micro-fluidic chips, explant cultures, and organoid structures because
of their ability to mimic appropriate tissue length scales for oxygen diffusion and customizable cell and
material properties [223]. Additionally, human based models that include human cells and relevant 3D
microenvironments can be used to study diseases such as gastroesophageal reflux disease, Barrett's
esophagus, IBD, and ulcerative colitis; for therapeutic screening; and other aging associated research
[226].

Incorporation of 3D villiin OGMs have been demonstrated to model the human system more closely
[225] and help to understand the changes in crypt/villi that have been observed in aged animals
[182,183,188,189]. Several groups have generated 3D gut models with villous platforms though pre-culture
molding of hydrogels and custom plate inserts [224,225,229]. These systems have been found to mimic
mammalian intestines more closely than 2D cultures facilitating cell differentiation, absorption/metabolism,
and have been used to evaluate drug permeability [225]. Yi and colleagues compared absorption and
metabolism of enterocyte (Caco-2) 2D monolayer cultures and 3D villous collagen scaffolds covered with
enterocytes. They found that in the 3D cultures, cell growth was higher (likely due to more surface area),
there were more in vivo phenotypes such as lower expression of P-gp (efflux transporter protein, p-
glycoprotein) which is overexpressed in 2D monolayers, and increased alkaline phosphatase expression
(a metabolic enzyme and intestinal epithelial differentiation marker) [224]. To generate 3D collagen villi
structures, multiple groups have used relatively stiff collagen and an alginate reverse molding method to
create villous structures from collagen hydrogel [224,225]. Yu and colleagues promoted a basement
membrane like surface by coating the collagen with laminin. Villous structures were fabricated to match the
density and depth of human villi and models were cultured for 14 days; a 21 day duration led to breakdown
of villi [225]. Similar pre-culture molding of villous structures has been used in microfluidic-chips [230-232];
and as reviewed by others [230]. These models capture appropriate microanatomy of the intestinal surface
and have the potential to elucidate the respective roles of structural and cellular changes in aging.

Organoid models have been used to study several diseases [194,195,227,233,234]; illustrating
how 3D cultures provide a physiologically relevant model without the complexity of fully in vivo studies. Woo
and colleagues demonstrate how a 3D model (specifically an intestinal organoid spheroid model) can be

used to study the human disease dyskeratosis congenita. Dyskeratosis congenita causes intestinal defects
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(including stem cell failure) and is characterized by decreases in telomerase, telomere length, telomere
capping, and Wnt activity [195]; it is particularly relevant to aging since some of these disease
characteristics are similar to what happens in aged intestinal cells [193]. In organoids generated with the
dyskeratosis congenita model cell line, there was incomplete and thin epithelia, overgrowth of mesenchymal
cells, and inferior E-cadherin and beta-catenin expression; the organoids did not have proper budding
crypts or cavitation [195]. Through CRISPR/CAS9-mediated repair and administration of Wnt agonists the
authors were able to rescue the disease phenotype and demonstrate normal organoid formation in vitro. In
other disease specific models, organoids made with cells derived from inflammatory bowel disease patients
maintain characteristics of disease in vitro such as gene expression profiles that regulate absorption and
secretion [227,233]. Disease focused organoid studies [195] and other organoid models generated with
aged mice cells [194] demonstrate the potential of more physiologically relevant in vitro models to address
aging questions. By building off of these methods and incorporating human cell types, anatomies, and
physiology it is possible to develop a human derived organotypic gut model [160] and avoid costly

procedures involved in animal colonies [218].

Tissue engineered gut models to study aging

A recent study by Arnold and colleagues demonstrate the physiological relevance of 3D in vitro
models for aging [235]. In vivo, older animals have higher ratios of non-saccharolytic v. saccharolytic
bacteria and lower amounts of (-galactosidase when compared to younger animals. Pre-biotic galacto-
oligosaccharides (GOS) have previously been found to have a positive impact on intestinal health and can
be administered through diet. To study the effects of dietary GOS on aging in the gut, using young and old
mice models of Clostridiodes difficile were used. In the aged mouse models, dietary GOS promoted
changes in microbiome composition and transcriptomic analysis also revealed differences in gene
expression. Aged mice that were fed a GOS diet had decreased intestinal permeability and increased
mucus abundance and thickness when compared to aged mice not fed the GOS diet. These changes in
permeability supported previous findings attributing the leaky gut to increased non-saccharolytic bacteria
and lower amounts of key enzymes. Further, these results were additional tested in colonic organoids

injected with stool samples from young and old mice. Using the colonic organoids generated from one
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young mouse and stool sample injection from experimental mouse models, authors showed that they were
able to reproduce differences of age, minor differences of the GOS diet, and bifidogenic responses
observed in the in vivo mouse models [235]. As the authors already showed a reproduction of aged
phenotypes in organoid models, reproducing these characteristics in scalable and humanized organotypic
models may be beneficial in research questions of how diet and microbiome affect aged humans.

The ability to culture anaerobic bacteria is an important step in modeling the microbiome of the gut
in healthy tissue and to improving the understanding of how aging changes the host-microbiome interaction
[163,168,169,236—238]. Most in vitro models, including OGMs, only study a few relevant features of the
complex physiology at a time; models that include microbiota are no exception. One study showed their
ability to culture 5 different microbe types in vitro on a custom scaffold and evaluated for proliferation and
biofilm formation [239]. It is important to recognize, that although this is a human microbiota gut model, it
does not incorporate human gut cells or microanatomy. Combining microbiota and human 3D OGMs is an
important step in modeling the human gut; some work on the combinations of microbiota and human gut
cells has been carried out in microfluidic chips [230], but these tend to lack relevant villous anatomy and
appropriate oxygen diffusion scales. These factors have been partially addressed in an innovative upright
cylindrical culture system [160]. Authors generated the vertical lumen with an un-patterned surface and a
threaded surface to mimic crypt and villi of the intestine. Their model includes epithelial cells (Caco-2 and
mucus producing HT-29 cells) and myofibroblasts seeded on and into silk-based scaffolds, respectively.
With this design, they achieved proximal-to-distal oxygen gradients and reached anaerobic conditions in
patterned lumens. As a proof of concept, they cultured anaerobic bacteria using this model. Importantly,
the patterned lumen model was stable for long-term culture (at least 8 weeks); they further showed
continuous mucus production and accumulation (~10 ym average thickness of the mucus layer). Although
this model does not incorporate aging phenotypes, aged cells, or differences due to aging in the
microbiome, it highlights the recent progress in developing organotypic constructs that could be adapted to
aging studies.

In vitro organoids are common in the gut/microbiome field of study [193,223,227,240,241] and have
been used to assess intestinal stem cell function during chronological aging [182,193-195,242,243].

Although there is conflicting literature on Wnt signaling in the intestine and how it effects intestinal stem
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cells, several recent studies have used organoid models to investigate aging and how it changes crypt/villi
formation and stem cell function in the gut. Each study also presented a rescue method to restore normal
Whnt signaling and gut formations [182,194]. Cui et al. cultured organoids from aged mice and showed
reduced differentiation and increased expression of Wnt target genes (Axin2 and Ascl2). The organoids
generated from aged mice presented rounded cysts without typical differentiated cell types, in contrast to
organoids generated from young mice, which demonstrated differentiation and formation of villus structures.
These phenotypes matched organoid cultures of cells that exhibit overactivation of Wnt signaling (through
seeding with adenomatous polyposis coli deficient cells). The decreased differentiation of intestinal stem
cells and impaired structure could be rescued by reducing exposure to the Wnt agonist R-spondin-1 and
thus reducing Wnt activity. Rescued organoids matched those generated with cells isolated from young
mice. Nalpareddy and colleagues generated organoids from duodenal proximal crypts of aged and young
mice as well as humans [182]. In humans, organoids were generated from people 12-16 and 62-77 years
old. The authors found decreased formation of organoids in the aged group, which was improved by adding
Wnt 3a (a Wnt pathway agonist). This data supported their findings in mice organoids where aged mice
organoids had lower organoid formation rates after 3 passages and decreased stem cell function
(determined by lower lobes and buds per crypt). Adding Wnt 3a increased organoid formation and
expression of Wnt target genes (Axin1 and Ascl2) in the aged cultures [182]. While interpreting the
apparently contradictory results of these studies is difficult, they do highlight the use of organotypic models
in performing detailed signaling studies that would be challenging and expensive in animal models.

In vitro intestinal models have a particularly relevant potential impact on personalized medicine due
to the person-to-person variability in gut health. Aside from genetics, variation in local community and world
regions as well as day-to-day activities result in microbiome and inflammatory differences that are not yet
understood [244]. Personalized medicine and patient derived organotypic models may help to address
these parameters. One organotypic microfluidic chip model named iHuMix has paved the way for
personalized gut models [245]. The iHUMiX platform utilizes compartments including microbial, epithelial,
and flow chambers and allows for study of specific bacteria on host specific physiology. While microfluidic
systems often present technical barriers for non-specialist labs, these results highlight the customizability

of organotypic models, including adaption to personalized medicine. As with OSCs described in the prior
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section, the tradeoff between complexity and capability for organotypic gut models results in several

limitations.

Limitations

As with OSCs and other organotypic models, the most prominent limitation is the lack of cell
populations and structural features of the in vivo gut. While a great deal of the work described above has
extensively modeled epithelial cells and their stem cell niches, the gut is much more complex; immune cells,
vasculature, smooth muscle, and neuronal populations all contribute to the gut, and it's physiology when
aged. Further, the organization of the gut, most notably the crypts and villi, is well understood to influence
function and disease; these features are only incompletely reflected in organotypic models
[224,225,246].More unique to the gut is the anaerobic microbiome, which is critical to understanding gut
and organismal health [163,168,169,236—238]. While there has been demonstrated inclusion of anaerobic
microbiome in a gut model [230-232], the complexity of the system make it challenging to broadly replicate
in other labs. Indeed, the general challenges of creating and maintaining hypoxic and anoxic cultures
significantly limits the ability of organotypic models to correctly match the lumen environment. Further, there
is significant evidence that the microbiome is not restricted to the gut lumen, and translocation of
commensal bacteria to surrounding tissues, including lymph nodes, is a driver of disease [247,248]. While
organotypic gut models may be suited to address some questions of bacterial translocation, none have
reached the scale or complexity required to include lymphatics. While this is a single example, it does
highlight the more general limitations on most organotypic models.

As with other organotypic models, sex differences are understudied. This is despite clear sex
differences in aging associated gastrointestinal diseases [249,250] and cancers [251,252]. While sex
differences local to the cell populations used could, and should, be studied using organotypic models,
systemic factors including hormones remain a challenge. As a pertinent example in the gut, sex hormone
levels are known to regulate the mucosal surface and barrier integrity [253]. While organotypic models to
lend themselves to studying the impact of specific hormone levels, they clearly lack the complexity of overall

systemic changes that come with aging and sex differences.
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SKELETAL MUSCLE

Native skeletal muscle aging

Skeletal muscle is an abundant tissue, making up ~30-40% of body mass [254]. Healthy muscle
regulates major physiological processes such as locomotion [255,256], venous return [257-259] and
metabolism [260-263]. From the 3" to 8" decade of life fat-free mass declines by ~15%, even for healthy
individuals, contributing to loss of independence and higher risk of injury and mortality. The age-associated
loss of muscle mass, known as sarcopenia, is a major hallmark of human aging [264—266] with a complex
etiology, resulting in muscular, vascular, and metabolic impairment [267—269]. Chronic inflammation [270-
273], nutrient deficiencies [274—-276], and decreased physical activity [277—-279] are all contributing factors
of sarcopenia, however, much remains unknown at the molecular, cellular, and tissue levels. Improved
models of sarcopenia and other aging phenotypes are imperative for improving clinical outcomes and
prophylaxis for the expanding geriatric populations.

In a healthy individual, skeletal muscle is composed of densely packed and aligned cylindrical
myofibers individually sheathed in a specialized matrix called endomysium [280] (Figure 3A). Bundles of
myofibers are encapsulated in a connective tissue layer known as the perimysium, while the whole muscle
is surrounded in a thicker connective tissue layer called the epimysium. Myofibers are organized into fiber
types (fast twitch and slow twitch) based on their metabolic, contractile, and morphological properties. Due
to the unique signature of each fiber type, maintaining homeostatic fiber compositions is vital to muscle
function [281]. Multiple muscle fibers and the corresponding motor neuron form a motor unit, with the overall
force of muscle contraction controlled by activating more motor units. A dense vascular network that

delivers nutrients and removes waste supports the high metabolic demands of muscle tissue.
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A ANATOMY

Epimysium Reduced CSA

Perimysium Adipose infiltration

Endomysium Connective tissue thickening

Blood vessel Reduced GLUT4 expression & IR

Myofiber Reduced & impaired satellite cells

Satellite cell Myofiber atrophy

Loss of capillaries

Matrix Attachment Sites External Stimulation
posts, velcro anehars, sitk suture electrical,  mechanical,  chemical, &
anchors, & tendon fragments optogenetic stimulation

3D Matrix Composition/\V Size Considerations

coflagen I, fibrin, matrigel typically constructs are engineered on the
micron scale to mitigate nutrent &
\ oxygen diffusion challenges

immortalized myoblasts, skeletal muscle e fow serum/serum free, supplementation
sateflite  celfs, primary myoblasts, & Te— with IGF-1, TGFB-1, & other soluble
pluripatent stem celfs factors to support myoblast differentiation

|
S— ]
Flexible Cell Population \\\ 7L Media Composition
e

Figure 3: Organotypic Models of Skeletal Muscle Aging. (A) Simplified muscle anatomy and aging,
focusing on the most commonly modeled components. The primary unit of muscle is the myofiber, a
multinucleated cell responsible for contraction. Specialized matrix (endomysium, perimysium, and
epimysium) support and organize the tissue. Satellite cells are an important stem cell population for the
muscle, and the muscle is supported by a host of other cell types including nerves, fibroblasts, adipose,
and vascular cells. In aged muscle, cross-sectional area (CSA) is reduced, in part due to myofiber atrophy,
and decreasing capillary and satellite cell density. Conversely, there is increased infiltration of adipose and
thickening of the connective tissues. At the molecular level, there is decreased expression of GLUT4, an
important glucose transporter, and insulin resistance (IR) frequently develops. (B) Organotypic models of
muscle have several unique challenges but have distinct advantages over other traditional models. Muscle
cultures are contractile, and require anchoring to prevent collapse. Typical approaches include posts
(although other methods are used) to provide points of resistance for the muscle to pull against. In order

to study active contraction, researchers have used various stimulation methods, including electrical and



716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

Title: Organotypic cultures as aging associated disease models

optogenetic methods. Due to the high metabolic demand, the cultures are typically quite small, to allow
nutrients and waste to diffuse more readily. As with other organotypic models, the matrix, cell population,

and media can be customized for the research question.

Structural and cellular changes are prominent in aged muscle (summarized in Table 3). Structural
changes include reduced muscle cross sectional area [282-285], thickening of the epimysium and
endomysium connective tissue layers [286—289], increases in tissue fibrosis [290,291], and decreased
capillarization [283,292,293]. Further, reduction and atrophy of specific fiber types (particularly fast
twitch/Type Il fibers) has been observed, leading to altered fiber composition and increased percentages
of slow twitch (Type 1) fibers [294—-297]. More specifically, Type Il (fast) fiber atrophy is associated with
reduced muscle mass and strength [294,298]. Cellular changes include increased adipose infiltration into
the muscle [299-301], and loss of motor units [302—-304]; all result in decreased skeletal muscle force
generation. Further, age associated changes in skeletal muscle satellite cell populations include a reduced
progenitor pool [305-307], limited myogenic colony formation [308], loss of amplification and myofiber
differentiation potential [290,309-313], and an increased susceptibility to senescence and apoptosis [306].
Further, aged satellite cells have been shown to favor fibroblastic and adipogenic differentiation programs
[290,314-316], potentially explaining the observed increase in fibro-adipogenic progenitors in aged skeletal
muscle [317-319]. Of course, aging muscle includes non-muscle cells, other skeletal muscle aging
phenotypes include increased M2 macrophage presence [320-322] and endothelial apoptosis [323].
Together these cellular and microstructural changes contribute to loss of muscular and systemic function

in the elderly population, motivating research into the molecular mechanisms underpinning these changes.

Table 3: Prominent Phenotypes of Aging Skeletal Muscle

Prominent Aging Phenotypes References
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Myofiber atrophy, reduced cross-sectional area, reduced mass, loss of motor units, | [282—

and decreased strength 285,294,298,302—
304]

Change in the ratio of fiber types (increased percentages of slow twitch/Type | | [294-297]

fibers)

Decreased vascularization and increased endothelial cell apoptosis [283,292,293,323]

Increased fibrosis and thickening of connective tissue layers [286—291]

Increased adipose infiltration and differentiation [314-319]

Decreased progenitor pool and loss of regenerative capacity [290,305—
307,309-313]

Increased insulin resistance and metabolic dysfunction [324-330]

The above structural and cellular changes are coupled with molecular changes in the aged tissue.
A loss of overall regenerative potential is likely largely influenced by a reduced satellite cell population and
differentiation potential [311,313]. Satellite cell activation is regulated by myogenic regulatory factors
(MRFs). Primary examples of MRFs include: myogenin, myogenic determination factor (MyoD), myogenic
factor 5 (Myf-5), and myogenic regulatory factor 4 (MRF4) [331]. In rats, MyoD and myogenin have been
found to increase with age, indicating a potential compensatory role to attenuate loss of satellite cell
activation [332]. Yet, human studies have observed a decrease in myogenin, Myf-5, and MyoD [333,334].
Differential responses between organisms such as this emphasize the need for robust models of human
muscle tissue. Myostatin, a member of the TGF- superfamily, inhibits satellite cell proliferation (via
upregulation of p21) and activation (via reduced MRF expression). Further, the elevation of myostatin
contributes to muscle atrophy through glucocorticoid signaling [335-337]. Upregulation of myostatin is seen
in aged individuals and is thought to contribute to age-associated loss of muscle mass [338—340]. Further,
mitochondrial dysfunction and increased oxidative stress are hallmarks of aged muscle [341-344].

Mitochondria manage the cell’'s energy supply, ROS generation, and apoptosis. Changes in mitochondrial
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bioenergetics lead to ROS accumulation, impaired quality control mechanisms, and apoptotic cell death
[345-347]. ROS accumulation in aged muscle mitochondria contributes to protein and DNA damage [348—
351]. This subsequent loss of mitochondria quality control mechanisms establishes a feedforward cycle of
mitochondrial damage and muscle degeneration [352].

Of course, muscle is not separate from the systemic context, both being influenced by and
influencing changes in the entire aged organism. Systemic changes contributing to skeletal muscle aging
include altered cytokine and hormone signaling. Insulin-like growth factor (IGF) is both a circulating
hormone and localized growth factor. IGF is predominantly produced by the liver and delivered systemically,
although other tissues produce specific IGF splice variants; mechanogrowth factor (MGF) and IGF-1Ea are
produced by skeletal muscle [353—355]. In skeletal muscle, IGF regulates muscle hypertrophy and growth,
and concentrations are known to decline in elderly populations [332,356,357]. IGF and MGF are responsible
for activating anabolic and anti-catabolic pathways via PI3K/Akt, ERK/MAPK, and PKC signaling, leading
to increased protein synthesis and anabolic activity [356—358]. Examples of aging-associated dysregulation
of IGF signaling includes evidence that mechanical loading of skeletal muscle results in MGF stimulation in
young individuals, but not the elderly [359]. Inflammatory cytokines are also implicated in muscle aging.
Elevated TNFa concentrations are found in aged muscle and cause increased apoptosis [360]. IL-6 is a
pleotropic cytokine known to influence skeletal muscle function in a number of ways [361]. Elevated levels
of IL-6 are strongly associated with diseased muscle, proinflammatory signaling, and a catabolic shift. In
rats, with positive stress stimuli such as physical activity, IL-6 levels increase and may have anti-
inflammatory effects [362]. In the context of aging there is evidence that in aged human muscle, chronically
IL-6 elevated can initiate muscle wasting [363]. In contrast, local IL-6 expression appears in both young
and aged individuals after exercise with beneficial effects, indicating a complex role for IL-6 in muscle
homeostasis [364,365].

Hormonally, testosterone and its precursor, dehydroepiandrosterone (DHEA), are key regulators
of muscle mass. Androgens (including testosterone and DHEA) are important for maintaining muscle mass
through hypertrophy via increases in myonuclear number and fiber cross-sectional area [366—368]. The
mechanisms driving androgen mediated muscle growth are poorly understood, but there is evidence of

impact on satellite cell commitment level and trophic signaling, discussed in more detail in other reviews
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[366,367]. Relevant to the present work, androgen levels decrease in the elderly and contribute to reduced
muscle mass [367,369-372]. Thyroid hormones (TH), Tz and T4, are important regulators of metabolism,
contractile function, and muscle differentiation [373,374]. Expression of TH decreases with age [375], and
this may be involved in the development of sarcopenia [376,377].

Skeletal muscle also regulates systemic AAD. Skeletal muscle insulin resistance is a primary
characteristic of Type Il Diabetes (T2D) that presents years before the disease’s onset [328—-330]. Yet, the
mechanism connecting the pathogenesis of T2D and skeletal muscle insulin resistance is incompletely
understood. Increases in mitochondrial dysregulation, oxidative stress, and inflammation are all known to
contribute to diminished insulin sensitivity in skeletal muscle. Indeed, it has been demonstrated that elderly
individuals have impaired glucose metabolism, and decreased expression of the insulin-mediated glucose
transporter, GLUT4 [325-327]. Additionally, aged skeletal muscle exhibits reduced rates of mitochondrial
oxidative phosphorylation and an inability to switch from lipid to glucose oxidation when stimulated with
insulin [324]. Reduced insulin sensitivity of aged muscle contributes to the development of diabetes and
other metabolic disorders. Importantly, the above molecular changes are not broadly conserved across
species and gender, emphasizing the need to ensure research models match the morphological, functional,
and biochemical characteristics observed in vivo. Overall, understanding human skeletal muscle aging
remains a challenge, especially considering the diverse and interacting factors at the molecular, cellular,
and tissue scales. Developing models that mimic the native tissue, while remaining accessible to

experimental techniques, are needed to further push the field forward.

Tissue engineered muscle models

Tissue engineered skeletal muscle models, pioneered by Vandenburgh and colleagues [378], have
been in use for over two decades. The earliest engineered constructs, termed bioartficial muscle (BAM),
consist of skeletal myoblasts encapsulated in an ECM. The ECM is molded around artificial “tendons”, or
posts, responsible for maintaining passive tension within the tissue. As the myoblasts differentiate into
highly contractile myotubes the cells align along the axis of tension and lift off the culture substrate.
Myoblasts from a range of developmental stages are commonly sourced from muscle biopsies of organisms

such as avian (Chromiak et al., 1998), mouse [381,382], rat [380,383,384], and human [385-388]. Due to
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limited availability of primary cells, immortal myogenic lines, including C2C12 (mouse) and L6 (rat) cells,
are commonly used due to ease of culture and availability [389-392]. Yet, immortal cell lines exhibit low
excitability [393] and poor physiological relevance compared to primary cells [394—396]. Induced pluripotent
stem cells (iPSCs) are a promising alternative to traditional primary and immortal cultures due to their high
expansion capability and potential sourcing from specific genetic backgrounds [387,397—402]. BAM models
have been used to examine physiological events such as hypertrophy and atrophy in response to drugs
and exercise [403—406], skeletal muscle wounding and regeneration [405,407,408], force production [409—
412], cell signaling [413—415], and drug response [416—419]. Importantly, as different muscle cell sources
have distinct costs and benefits, different cell populations can be readily interchanged in BAM models to
suit specific research needs.

Further advances have been made in the field of skeletal muscle tissue engineering through other
approaches, such as scaffold free assemblies, bioprinting, and chip based systems. Scaffold free
assemblies use the contractile nature of myotubes to form 3D tissues. In these systems, differentiated
skeletal muscle/fibroblast monolayers delaminate from the culture substrate are rolled in on itself and
pinned down to form “myoids” or “myooids” [380,385,420,421]. Myoid models recapitulate many structural
and functional features of native muscle, such as production of ECM, microvessels, and spontaneous
contractions [422]. Although myoid constructs have been reported to be stable for up to 40 days, drawbacks
include long maturation times (3-4 weeks), inability to scale cultures [423], and low force generation [406].
Recent advances in bioprinting technology have led to the printing of biomimetic muscle tissues and have
been reviewed extensively [424,425]. Bioprinting skeletal muscle is an appealing technique due to its high
precision in cell positioning and alignment; however, progress in this area is limited by broad challenges in
the field such as cell viability, printing speed, and resolution [424—427]. Additionally, printing the soft
materials necessary to recapitulate the skeletal muscle microenvironment remains a challenge [428].
Recent “muscle-on-a-chip” devices have shown several advantages, including avoiding perfusion required
to feed thicker tissues. Using microfabricated cultures, researchers have demonstrated muscle viability and
enhanced maturation in response to microtopographical and morphological cues [429—431]. Skeletal
muscle-on-a-chip systems are a promising tool for drug toxicity studies, especially due to their low media

consumption and extensibility to high throughput screenings. Recently, a 3D skeletal muscle microdevice
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has been coupled with a biosensing platform to monitor myokine secretion. The authors validated this
system by measuring IL-6 and TNF-a levels in response to electrical and biological stimulation [432].
However, muscle microdevices are limited by the need for specialized training and equipment to fabricate
and use these devices.

It is important to emphasize that most of the models described above largely consist of
homogeneous cell populations that lack the organization of native tissue. Recent progress has been made
in incorporating heterogeneous cell population in BAMs, including the addition of endothelial cells and
demonstration of vascular network formation [415,422,433—438]. In a mixed muscle/vascular mouse myoid
model, researchers found high levels of vascular endothelial markers such as VEGF, CD31, and VE-
cadherin, indicating the survival and signaling of vascular cells. Yet, the extent of the network formation
was not examined in this study [422]. Endothelial vessel formation has been demonstrated on engineered
skeletal muscle scaffold systems; however, muscle cells do not align along one axis, limiting contractility
and tissue function [436]. Applying uniaxial strain to a vascularized mouse BAM model has been shown to
induce vascular tube formation, likely through increased VEGF secretion by the differentiating muscle [438].
In a human vascularized BAM model researchers identified optimal cell seeding ratios (50-70% muscle
cells) and media blends (endothelial growth media) for generating endothelial tubes along with aligned
myofibers [434,435]. Despite these advances, further work should be done to characterize vessel structure,
and nutrient and oxygen delivery in vascularized BAMs. As a model of muscle regeneration, macrophages
have been added into rat BAMs to study the regenerative potential of satellite cells within the engineered
tissue. The incorporation of bone marrow derived macrophages showed recovered Ca?* transients after
injury compared to muscle only controls. Muscle-macrophage constructs also had improved cell
organization and regeneration of myofibers post injury. Further, the authors demonstrate impaired
regeneration in adult derived engineered muscle compared to neonatal constructs. In the future, this model
can be used to identify pro-regenerative treatments in adult muscle [439]. Continued development of
heterogeneous muscle models is of interest to the field of aging research given the prevalence of
dysregulated adipose, fibroblast, and macrophage signaling with age.

BAMs have been used to study physiological muscle function, pharmaceutical response, and

human disease [380,417,419,440,441]. While few systems have been developed in the context of aging
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(discussed below), other BAM models of disease demonstrate the power of the technique. Disease models
of skeletal muscle include Miyoshi myopathy, Duchenne, limb-girdle, congenital muscular dystrophy,
Pompe disease, and amyotrophic lateral sclerosis [442—450]. One strategy that is readily applicable is
incorporating cells isolated from diseased patients into tissue constructs. As an example, Bersini and
colleagues engineered myobundles co-cultured with endothelial cells and muscle-derived fibroblasts
isolated from patients with Duchenne muscular dystrophy (DMD) [451]. Tissues with DMD fibroblasts
exhibited an increased fibrotic phenotype characterized by higher collagen | and fibronectin deposition
compared to healthy and TGF- (inducer of fibrotic response) treated controls. Further, samples with DMD
fibroblasts exhibited increases of a-smooth muscle actin compared to controls, indicating a shift towards a
myofibroblast phenotype, consistent with the in vivo disease. The ability to capture and assay fibrosis, as
demonstrated in the above models, has clear applicability to many aging studies.

In another study, human iPSCs from patients with DMD and limb-girdle muscular dystrophy were
used to engineer 3D disease models with muscle, vascular, and neuronal cells [449]. These engineered
muscles recapitulated disease phenotypes seen in vivo including the nuclear elongation typical in
laminopathies. As another key example, BAMs generated from primary muscle cells isolated from both
healthy individuals and patients with Pompe disease were used to test potential therapies [447]. Pompe
disease myobundles exhibited traits consistent with that of clinical data such as elevated glycogen content
and low acid alpha-glucosidase (GAA) gene activity. Researchers compared tissue functionality between
healthy and Pompe disease models, observing reduced fatigue resistance, tetanic force production, and
glycogen mobilization. While the observed functional defects were not alleviated by treatment with
recombinant human GAA (current standard of care) or AAV-mediated GAA expression, the use of similar
platforms for screening therapies is promising. Disease models such as the above can be readily adapted
to study aging phenotypes by incorporating cell populations derived from aged individuals. The ability to
compare functional and mechanical properties of aged and young muscle is of special interest to aging
research, as elderly people have reduced muscle functionality. Further, being able to screen
pharmaceutical interventions in muscle specific AAD models represents a significant advancement in the

field of aging biology.
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Tissue engineered muscle models to study aging

In recent years, engineered muscle has been used to study specific aging and aging associated
diseases. A key example is the role muscle plays in insulin sensitivity and the age-related disease, type 2
diabetes (T2D). As aged muscle displays reduced insulin sensitivity [327,452], it is especially relevant to
quantify insulin sensitivity in engineered muscle. To test this, Kondash and colleagues created human
myobundle constructs using primary myoblasts, differentiated in a 3D matrix for 2 weeks [441]. The authors
found that 3D engineered constructs displayed a significantly higher glucose uptake in response to insulin
than similarly cultured 2D cells. Further, the usefulness of this model for elucidating therapeutic
mechanisms was also tested. Metformin, a common pharmaceutical for hyperglycemia and T2D, led to
similar increases in glucose uptake in the presence or absence of insulin; indicating that metformin does
not impact insulin responsiveness in peripheral muscle tissue. Further, metformin was found to impair both
twitch and tetanus force production as well as decrease fatigue resistance. Although the magnitude of
insulin response observed in this study is lower than that of native muscle tissue, the authors demonstrate
the importance of the 3D microenvironment for improving physiological relevance in T2D studies. Additional
work performed by Acosta and colleagues used engineered muscle to test the effect of systemic metabolic
changes on muscle health [453]. Using muscle precursor cells isolated from lean, obese, and diabetic rats,
engineered constructs were maintained in either myogenic media or adipogenic media. The authors
showed that constructs with diabetic muscle precursor cells had decreased creatine kinase activity, tissue
compaction, myotube alignment, and reduced tensile strength when compared to lean control samples.
Overall, these data indicate diabetic myogenic precursor cells reduce overall muscle integrity. Further, the
authors showed increased adipogenic differentiation in diabetic samples. Increased adipose presence
between muscle fibers is common in vivo with aging, where muscle precursor cells are a potential source
of adipose tissue [453]. These examples demonstrate tissue engineered skeletal muscle can be readily
applied to the study of aging phenotypes such as increased insulin resistance and adipose infiltration.

In addition to the genetic and systemic factors discussed above, models of aged muscle have also
been generated similar to the BAM method described above [454—-456]. Sharples and colleagues utilized
late passage C2C12 myoblasts to replicate aging phenotypes, including reduced myofiber diameter, length,

and peak force development [454]. The reduced force generation observed coincides with a decrease in



922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

Title: Organotypic cultures as aging associated disease models

construct differentiation and hypertrophy potential. The authors quantified transcript expression of muscle
differentiation and hypertrophy markers throughout culture. In aged constructs, they observed an increase
in myostatin and TNFa, genes associated with impaired differentiation potential and sarcopenia [454]. A
study performed by Rajabian and colleagues takes this work a step further by measuring calcium handling
and metabolic function in aged human engineered muscle tissue [455]. Human myoblasts were obtained
from young and aged donors and seeded into engineered constructs. Tissues formed from aged myoblasts
exerted lower contraction force compared to younger control samples, fail to respond to electrical
stimulation and, consistent with a lack of muscle contraction, have lower Ca?* and ATP concentrations.
Further, to study regeneration in aged tissue, the authors induced muscle injury using cobra cardiotoxin
(CTX). Samples made with young myoblasts regenerated myofibers within 5 d post CTX injury, while aged
constructs did not regenerate, resulting in reduced myotube diameter. Indeed, the number of multipotent
satellite cells (identified with positive staining for PAX7) did not change after CTX injury in pre-senescent
tissues, indicating increased regenerative potential [455]. Overall, these studies demonstrate that
engineered skeletal muscle replicates many of the basic phenotypes seen with aging in vivo.

An additional application of engineered muscle is to elucidate the molecular mechanisms of aging.
Shahini and colleagues leveraged engineered skeletal muscle to test the role of NANOG expression in
mitigating senescence-associated dysfunction [456]. These studies were built off prior work showing
NANOG expression reversed senescent phenotypes in MSC populations [457,458]. In the skeletal muscle
study, late passage C2C12 myoblasts were engineered to express NANOG under the control of tetracycline
and embedded in a 3D collagen/Matrigel matrix. The authors observed NANOG expression partially
rescued myotube population levels, diameter, and length to that of early passage controls when compared
to late passage constructs without NANOG. They further observed a restoration of differentiation markers
MYHC and Actinin. A key advantage of engineered muscle models, demonstrated by the above studies, is
the accessibility for targeted genetic and pharmacological manipulation. As with other models, the

advantages of engineered muscle cultures are coupled to limitations, discussed below.

Limitations
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As with other organotypic models, exclusion of cell types present in vivo is a challenge for skeletal
muscle as well. For example, common aging phenotypes of inflammation, reduced peripheral
vascularization, and adipose infiltration require inclusion of immune cells, endothelial cells, and adipocytes.
In addition to sourcing and maintaining these cells, co-culture with muscle cells presents additional
challenges due to their high metabolic demand and contractility. Progress is being made, for example with
inclusion of increasingly complex vascular components [415,422,433—-438], but there are many areas
needing improvement.

Further, skeletal muscle poses unique challenges for cell sourcing. Most in vitro models of aging
skeletal muscle are established from primary cells that are derived from animal models and patients
[455,459-461]. Although primary cells offer increased physiological relevance relative to immortalized lines,
the culture methods needed to isolate and expand these cells to populations suitable for organotypic studies
rely on specialized techniques and restricted supplies, especially for human cells. Established cell lines are
a more accessible sourced of aged myoblasts, and replicative senescence models have been established
and used in 3D culture [454]. While the tradeoffs between primary cells and established cell lines are well
documented for any in vitro culture system, the large number of cells needed for organotypic skeletal
muscle models can make sourcing sufficient primary tissue difficult.

Itis important to note that skeletal muscle is typically composed of multiple fiber types, with different
physiology and function. In aging, fast twitch fibers preferentially atrophy, leading to changes in fiber
composition. While an important phenotype, especially in aging, fiber type is typically not assessed or
controlled in organotypic models, leading to an important capability gap [462]. Further, engineered skeletal
muscle generates force several orders of magnitude lower than that of adult human muscle, with reduced
myofiber diameters [463]. Methods to improve contractile properties in these models focus on co-culture
with motor neurons, electrical and mechanical stimulation, and improved nutrient and gas delivery.
Ultimately, better control of muscle differentiation and maturation will improve modeling of both healthy and
aged tissues.

Finally, although both males and females exhibit loss of muscle mass with age, the pattern of

decline is sex dependent. Similar to other tissues, organotypic constructs could be ideal platforms to isolate
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the impact of sex specific cells and specific hormone levels on muscle function [464,465]; however, fully

capturing the systemic sex differences in vitro is beyond the current capabilities of these models.

Discussion and Outlook

Progress in tissue engineering has resulted in the development of three-dimensional organotypic
models, and these have demonstrated potential to overcome several limitations of current aging models.
Organotypic models, while not replacing animal models, have multiple advantages, including lower cost,
increased accessibility, and human-specific biology. This allows for re-capitulation of human disease and
aging phenotypes that animals may not experience naturally or may experience differently [7,103]. Further,
tissue engineered organotypic models have advantages over classic two dimensional in vitro models as
they incorporate physiologically important structural-cell and cell-cell interactions [71]. Additionally, tissue
engineered cultures offer flexible scalability when compared to organoid and microchip culture formats.
Appropriately scaled models are especially important when investigating aging; in many cases, aging
contributes to breakdown of disruption and alterations of the overall tissue, and may include altered nutrient
diffusion, organization, and cell-cell communication. In addition, tissue engineered models offer high
customizability compared to conventional in vivo models, where specific cell populations or biomaterials
can be easily selected or replaced to match research needs. In the three tissues that were addressed here,
we highlighted studies that have specifically adapted these models to studying aging; where possible we
have also highlighted the accessibility of these models to research groups that may not have prior
experience. Importantly, organotypic models are straightforward to customize and, with some optimization,

can be a reliable and powerful tool for any aging researcher to adapt to their needs and questions.
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