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Abstract— Passive RFID technology is widely used in user1

authentication and access control. We propose RF-Rhythm,2

a secure and usable two-factor RFID authentication system with3

strong resilience to lost/stolen/cloned RFID cards. In RF-Rhythm,4

each legitimate user performs a sequence of taps on his/her RFID5

card according to a self-chosen secret melody. Such rhythmic6

taps can induce phase changes in the backscattered signals,7

which the RFID reader can detect to recover the user’s tapping8

rhythm. In addition to verifying the RFID card’s identification9

information as usual, the backend server compares the extracted10

tapping rhythm with what it acquires in the user enrollment11

phase. The user passes authentication checks if and only if both12

verifications succeed. We also propose a novel phase-hopping13

protocol in which the RFID reader emits Continuous Wave (CW)14

with random phases for extracting the user’s secret tapping15

rhythm. Our protocol can prevent a capable adversary from16

extracting and then replaying a legitimate tapping rhythm from17

sniffed RFID signals. Comprehensive user experiments confirm18

the high security and usability of RF-Rhythm with false-positive19

and false-negative rates close to zero.20

Index Terms— RFID security, authentication.21

I. INTRODUCTION22

PASSIVE (battery-less) RFID technology has been widely23

used in user authentication and access control. An RFID24

authentication system comprises a backend server, RFID read-25

ers, and RFID cards which refer to identification cards with26
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embedded RFID tags. For convenience only, we use the terms 27

RFID cards and tags interchangeably hereafter whenever no 28

confusion arises. An RFID reader sends wireless signals to 29

interrogate a nearby RFID card, which returns its tag ID by 30

backscattering the reader’s signals. The reader then forwards 31

the tag ID to the backend server. If a matching ID can be 32

found in the database, the user passes authentication and is 33

permitted to access protected electronic or physical resources 34

such as entering a gated area. 35

Lost/stolen/cloned RFID cards pose the most critical threat 36

to RFID authentication systems. In particular, RFID cards 37

are often of small size and can be easily lost or stolen; 38

they can also be cloned with many cheap off-the-shelf tools. 39

More specifically, most commodity RFID cards do not support 40

cryptographic operations, so the RFID reader-card commu- 41

nications are in plaintext and vulnerable to eavesdropping 42

with cheap tools online. The adversary can then easily exploit 43

the sniffed card information to make a clone. Since RFID 44

cards are not password-protected, the adversary can use a 45

lost/stolen/cloned RFID card—referred to as an adversarial 46

RFID card henceforth—to pass authentication and imper- 47

sonate the legitimate user to get illegal access to a gated 48

area or sensitive physical/electronic resources protected by 49

RFID-based access control. An effective countermeasure can 50

be two-factor authentication which requires the RFID user to 51

present the second piece of identification information. One 52

such solution requires the RFID user to additionally input a 53

PIN code on a keypad [1]. This solution not only diminishes 54

the convenience of contactless RFID authentication but also 55

requires a nontrivial infrastructure update to existing RFID 56

systems. Another plausible solution is exploring commercial 57

mobile 2FA solutions such as Duo Mobile [2], which require 58

the RFID user to manually acknowledge an authentication 59

request on his/her enrolled smartphone/smartwatch. This solu- 60

tion needs the RFID user to own and always carry a smart- 61

phone with good network connectivity, which may not be 62

feasible in practice. 63

We propose RF-Rhythm, a secure and usable two-factor 64

RFID authentication system with strong resilience to adversar- 65

ial RFID cards. In RF-Rhythm, each legitimate user performs 66

a sequence of taps on his/her RFID card according to a 67

self-chosen secret melody. Such rhythmic taps can induce 68

phase changes in the backscattered RFID signals, which the 69

RFID reader can detect to recover the user’s rhythm. In addi- 70

tion to verifying the card ID as usual, the backend server 71

compares the recovered rhythm with what it acquires in the 72
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user enrollment phase. The user passes authentication only if73

both verifications succeed.74

The security, usability, and feasibility of RF-Rhythm lie in75

many aspects. First, a user can easily select a secret song76

segment which is familiar to him/herself but very difficult for77

others to guess. Second, different users may interpret the same78

song segment in various ways, resulting in diverse rhythmic79

tap patterns on the card. This means that even if the adversary80

knows the secret song segment, it may still have great difficulty81

performing the correct tapping rhythm on the RFID card.82

Third, RF-Rhythm is naturally resilient to traditional replay83

and relay attacks on RFID authentication systems. Fourth, the84

phase information of backscattered signals is readily available85

on commodity RFID readers, so RF-Rhythm only needs a86

minor software update to an existing RFID authentication87

system. Finally, RF-Rhythm applies to commodity RFID cards88

and does not need the user to carry any other device.89

The design of RF-Rhythm faces two critical challenges.90

1. Rhythm detection and classification: how to detect91

and verify the tapping rhythm from noisy RFID92

signals? Rhythmic taps are performed on the RFID card93

and have to be indirectly extracted from noisy backscat-94

tered signals. We explore various signal processing tech-95

niques to process noisy raw phase data for extracting a96

reliable tapping rhythm. We also use machine learning97

techniques to train a classifier the backend server uses98

to validate an extracted tapping rhythm.99

2. Rhythm anti-eavesdropping, i.e., how to prevent the100

adversary from acquiring the user’s tapping rhythm101

from sniffed RFID signals? The adversary can easily102

eavesdrop on the open RFID channel and then behave103

in the same way as the RFID reader to decode the user’s104

tapping rhythm from sniffed RFID signals. It can then105

repeat the rhythmic taps on adversarial RFID card to106

attempt impersonating the legitimate user. We tackle this107

challenge by a novel phase-hopping protocol in which108

the RFID reader emits Continuous Wave (CW) with109

random phases for extracting the user’s tapping rhythm.110

Since the adversary does not know the phase-hopping111

sequence, it can no longer extract the correct tapping112

rhythm from sniffed RFID signals.113

We evaluate the security and usability of RF-Rhythm by114

comprehensive experiments on Impinj RFID readers, commod-115

ity passive tags, and USRP devices. Our experiments involve116

19 volunteers from two countries and explore three represen-117

tative machine learning techniques, including Support Vector118

Machine (SVM), Neural Networks (NN), and Convolutional119

Neural Networks (CNN). We show that RF-Rhythm is highly120

secure with false-positive and false-negative rates close to zero.121

In addition, we demonstrate the high resilience of RF-Rhythm122

to brute force, visual eavesdropping, and RF eavesdropping123

attacks. We also confirm the high usability of RF-Rhythm by124

a user survey.125

The rest of this paper is organized as follows. Section II126

gives some necessary background about RFID systems.127

Section III describes the adversary model. Section IV provides128

an overview of RF-Rhythm. Section V details the design of129

Fig. 1. FM0 baseband symbols and preamble.

Fig. 2. The basic EPC Gen-2 query protocol with a single RFID card.

RF-Rhythm. Section VI presents the phase-hopping protocol 130

for anti-eavesdropping. Section VII reports the experimental 131

evaluation of RF-Rhythm. Section VIII briefs the related work. 132

II. BASICS OF PASSIVE UHF RFID SYSTEMS 133

Passive RFID systems can be classified into low- 134

frequency, high-frequency, and ultra-high-frequency (UHF) 135

types. We focus on UHF systems which are dominating the 136

RFID market. The extension of RF-Rhythm to low-frequency 137

and high-frequency RFID systems are left as future work. 138

In this section, we introduce some necessary background about 139

passive UHF RFID systems to help illustrate the subsequent 140

RF-Rhythm design. A typical RFID system consists of a 141

backend server, readers, and RFID cards. The RFID reader 142

sends both modulated commands and continuous wave (CW). 143

The RFID card sends back its data by exploring the energy har- 144

vested from the reader’s signals to switch its input impedance 145

between two states and thus modulate the backscattered signal. 146

EPC Gen 2 [3] is the most popular UHF RFID standard and 147

assumed hereafter. 148

RFID cards encode the backscattered data using either 149

FM0 baseband or miller modulation. We only consider FM0 150

encoding in this paper, but our work can easily extend to 151

miller modulation. Fig. 1 shows the basic FM0 symbols. FM0 152

inverts the baseband phase at every symbol boundary with an 153

additional mid-symbol phase inversion for each data-0. The 154

duration of an FM0 symbol is denoted by Tpri = 1/BLF, where 155

BLF represents the backscatter link frequency ranging from 156

40 kHz to 6400 kHz [3]. To ease our presentation, we assume 157

BLF equal to 40 kHz, corresponding to Tpri = 25 μs. 158

Fig. 2 shows the basic query protocol in EPC Gen-2 [3]. 159

1) The reader emits CW of length T4 for the RFID card to 160

harvest and store energy. 161

2) The reader sends a Query command followed by CW 162

of length T1 + T2 + TRN16. During this CW period, the 163

card backscatters an RN16 message comprising a 6-bit 164

preamble, a 16-bit random number, and one dummy bit. 165

3) The reader sends an ACK followed by CW of length 166

T1 + T2 + TEPC. During this CW period, the card 167

backscatters its EPC (Electronic Product Code). 168

4) The reader sends QueryRep to end this session. 169

EPC Gen-2 [3] gives recommendations for the above timing 170

parameters. Let RTcal represent the duration of Interrogator- 171

to-Tag calibration symbol, which is specified in the reader 172
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Fig. 3. The RF-Rhythm system flowchart.

configuration and set to RTcal = 72 μs in our implementation.173

Also let FrT be the frequency tolerance of FM0 baseband174

signals, which equals 4% for BLF = 40 KHz. We have T4 =175

2RTcal = 144 μs and 75 μs ≤ T2 ≤ 500 μs. In addition, the176

maximum, minimum, and nominal values of T1 are 262 μs,177

238 μs, and 250 μs, respectively.178

III. ADVERSARY MODEL179

We assume an adversary A who attempts to use an adversar-180

ial RFID card to pass authentication checks and thus imperson-181

ate the legitimate user. Since the adversarial RFID card has182

identical information to that of the corresponding legitimate183

card, A can succeed in a traditional RFID authentication184

system if no additional countermeasure is adopted. A knows185

how RF-Rhythm works and can perform rhythmic taps on the186

RFID card with fingers or even a fully programmable robotic187

arm. We assume that A does not know the legitimate user’s188

secret song segment and can try the following attack strategies.189

• Brute force: A performs totally random rhythmic taps190

on the RFID card.191

• Visual eavesdropping: A observes the legitimate user’s192

tapping behavior, e.g., by shoulder surfing or a spy193

camera, and then tries to emulate it.194

• RF eavesdropping: A sniffs all the PHY communication195

traces between the RFID reader and card to attempt196

recovering and performing the legitimate user’s rhythmic197

taps.198

IV. SYSTEM OVERVIEW199

RF-Rhythm consists of an enrollment phase and a verifica-200

tion phase, and its major modules are depicted in Fig. 3,201

During the enrollment phase, the legitimate user first selects202

an arbitrary song segment familiar to him/herself. Then the203

user performs rhythmic taps on his/her RFID card in accor-204

dance with his/her own interpretation of the chosen song205

segment, e.g., by singing it silently. The user’s tapping rhythm206

is referred to as his/her secret rhythm hereafter.207

The security of RF-Rhythm relies on the secrecy of the208

chosen song segment and also the user’s likely unique tapping209

rhythm for it. In particular, since there are numerous song210

segments available, the adversary can hardly guess the selected211

song segment of a target user; an advanced user such as a212

musician can even self-compose the song segment. In addition,213

people may have very subjective mental interpretations about214

the same song segment, resulting in very different tapping215

rhythms.216

The backend server handles the enrollment request as fol- 217

lows. First, it acquires the EPC of the user’s RFID card through 218

the reader with the protocol in Fig. 2. Second, it instructs the 219

user to perform rhythmic taps on the RFID card, which would 220

induce phase changes in the backscattered signals received 221

by the reader. Third, the server invokes a Signal Processing 222

module to extract reliable phase data from noisy backscattered 223

signals. Fourth, it uses a Feature Extraction module to obtain 224

a feature vector that characterizes the use’s tapping rhythm. 225

Finally, it asks the user to repeat the rhythmic taps multiple 226

times and then feeds all the resulting feature vectors into a 227

Rhythm Learning module to train a high-quality binary rhythm 228

classifier for this user. 229

In the verification phase, the backend server first explores 230

the RFID card for its EPC with the protocol in Fig. 2. If the 231

EPC is found in the database, the server instructs the reader to 232

execute multiple rounds of the protocol again in Fig. 2. RF- 233

Rhythm is highly usable in the sense that the RFID user just 234

needs to perform his/her secret tapping rhythm multiple times 235

without the need to know when the server starts to extract it in 236

both the enrollment and verification phases. The server invokes 237

the same Signal Processing and Feature Extraction modules to 238

extract a candidate tapping rhythm in each round, which is then 239

tested with the trained rhythm classifier associated with the 240

EPC acquired before. The authentication process terminates 241

until when the server either detects a valid tapping rhythm or 242

fails to detect one after a threshold number of rounds. The 243

RFID card and corresponding user are considered authentic in 244

the former case and fake in the latter. 245

RF-Rhythm features a novel anti-eavesdropping protocol 246

employed by the RFID reader to emit CW with random 247

phases for extracting the user’s secret tapping rhythm in both 248

enrollment and verification phases. Our protocol can prevent 249

a capable adversary from recovering and then replaying the 250

legitimate user’s secret rhythm from sniffed RFID signals. 251

V. RF-RHYTHM DESIGN DETAILS 252

In this section, we illustrate the details of RF-Rhythm. 253

A. Feasibility Study: Tap Detection 254

The backscattered signal’s phase information is read- 255

ily available on commercial RFID readers such as Impinj 256

R420 [4]. According to [5], it can be expressed as φ = 257

(4πdf
c + φreader + φcard) mod 2π, where 2d is the round-trip 258

propagation distance between the reader and card, f is the 259

CW frequency, c is the speed of light, φreader denotes the phase 260

rotation due to the reader’s transmit and receive circuits, and 261

φcard represents the phase rotation caused by the RFID card’s 262

reflection characteristics. 263

Finger taps on the RFID card can change its circuit 264

impedance [6] and also signal propagation, leading to some 265

additional phase rotation denoted by φtap. So we modify the 266

phase expression above to 267

φ =
(4πdf

c
+ φreader + φcard

)
+ φtap mod 2π. (1) 268

To better understand the effect of finger taps, we perform 269

a simple experiment using an Impinj R420 reader and a 270
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Fig. 4. Absolute phase changes induced by rhythmic taps.

Fig. 5. Absolute and differential phase changes caused by a single tap.

Fig. 6. (a) SMARTRAC R6 DogBone tag labeled with 9 positions; (b) box
plot of phase variations of different tapping positions; (c) 3 tapping-pressure
levels: low, medium, high (from left to right); (d) experiment setup for
measuring the impacts of ambient environment changes.

SMARTRAC R6 DogBone tag Fig. 6(a). Fig. 4 shows the271

phase changes induced by rhythmic finger taps on the edge of272

the RFID card in accordance with the shown song segment.273

We also show the phase change associated with a single tap274

in Fig. 5. A tap event can be decomposed into a press stage275

and a release stage. So we use [tpress, trelease] to represent a tap276

event in the time domain, where tpress and trelease denote the277

time that the phase (difference) starts to change and return to278

the baseline value, respectively. Fig. 5(a) and Fig. 5(b) depict279

the absolute phase values and the difference between adjacent280

phase values, respectively.281

These results demonstrate the feasibility of exploring phase282

changes for tap detection under the simplest scenario. How-283

ever, the phase changes induced by finger taps are also affected284

by tapping positions and pressure, finger-skin humidity, and285

ambient environment changes. We further conduct the fol-286

lowing experiments to validate that finger taps can induce287

consistent and stable phase changes even when these factors288

are considered. To quantify the tap-induced phase changes, 289

we define the phase variation as the phase difference between 290

the baseline and the bottom of the pit with an example shown 291

in Fig. 5(a). 292

1) Impact of Tapping Positions: We first measure the phase 293

changes induced by finger taps on different tag positions. The 294

SMARTRAC R6 DogBone tag is attached to a flat cardboard 295

as shown in Fig. 6(a). We evenly divide the tag into 9 zones 296

labeled on the cardboard. 297

The same volunteer uses his index finger to tap the tag 298

10 times at each position with similar tapping pressure. 299

Fig. 6(b) is a box plot of phase variations, which illustrates 300

the maximum, mean and minimum phase variations at each 301

position. The results indicate that the tap event can induce 302

obvious phase changes over all positions except position 5. 303

When touching the metallic antenna, the impedance of the 304

antenna is changed due to the coupling effect [6], which further 305

causes the phase change of the backscatter signal. However, 306

when the volunteer taps position 5, the average phase variation 307

is only 0.47 rad and much less obvious than the second 308

smallest value 1.46 rad at position 6, as the silicon RFID chip 309

is not affected by the coupling effect. 310

2) Impact of Tapping Pressure: The actual tapping pressure 311

is hard to quantify without special equipment. To simplify 312

the experiment, we let the volunteer raise his index finger to 313

3 different height to tap the tag. A longer distance gives the 314

finger more time to accelerate so that the tapping can have 315

higher pressure over the tag. We associate 3 different heights 316

with 3 tapping-pressure levels: low, medium, and high. The 317

volunteer taps the tag at position 8 for 10 times for each 318

pressure level. The average phase variations shown in Table I 319

indicates that the phase changes are not affected by different 320

tapping-pressure levels. 321

3) Impact of Finger-Skin Humidity: We simulate three dif- 322

ferent finger-skin humidity levels by applying different volume 323

of water to the volunteer’s finger tip. The volunteer taps 324

position 8 for 10 times with 3 humidity levels. The results in 325

Table I indicates that the wet finger can decrease the average 326

phase variation by about 0.25 rad, but the phase changes are 327

still obvious under all three humidity levels. 328

4) Impact of Ambient Environment Changes: We design the 329

following experiment to measure the phase change caused 330

by ambient environment changes. The experiment setup is 331

shown in the Fig. 6(d). The tag is placed on the top of 332

3 cardboard boxes. We let the volunteer freely move between 333

the antenna and the tag and do whatever he wants to induce 334

as many ambient environment changes as possible. We let 335

the volunteer perform a random movement for 10 s and 336

repeat it 5 times. We compare the Variance and Range (i.e., 337

maximum - minimum) of the backscattered signal phase due 338

to such ambient environment changes with those caused by 339

the volunteer’s finger taps on position 8 in Table I. As we can 340

see, ambient environment changes do not induce any rapid and 341

huge phase changes in contrast to finger taps. 342

From the above experiment results, we can conclude that 343

finger-tapping pressure, finger-skin humidity, and ambient 344

environment changes have negligible impact on tap detection 345

based on the backscattered signal’s phase changes. As for 346
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TABLE I

AVERAGE PHASE VARIATIONS UNDER DIFFERENT CASES

the tapping position, as long as the users avoids tapping the347

chip position of the tag per some usage guideline, finger taps348

dominate the phase changes in the backscattered signals. These349

results demonstrate that the phase-change feature is reliable350

and robust for finger-tap detection.351

B. Data Processing352

We represent the reader’s phase report at time ti by353

[φi, fi, ti], where fi denotes the CW frequency at ti. Accord-354

ing to Eq. (1), we have355

φi =
(4πdfi

c
+ φreader + φcard

)
+ φtap,i mod 2π , (2)356

where φtap,i denotes the phase shift during the ith tap. The357

interval ti+1 − ti (i ≥ 0) is about 4ms on the Impinj R420358

reader. We temporarily assume that fi is constant and process359

the raw phase data to extract more useful information for360

further rhythm extraction as follows.361

1) Phase Difference and Unwrapping: We use the phase362

difference instead of the absolute phase to eliminate the363

approximately constant 4πdfi

c + φreader + φcard during adjacent364

tap events. In addition, the raw phase data are wrapped365

within [0, 2π], so it is critical to perform phase unwrapping366

to eliminate ambiguity. Our experiments reveal that although367

the phase change induced by tap events are sharp, it is always368

bounded by π. According to this finding, the unwrapped phase369

difference is calculated by370

Δφi = φtap,i − φtap,i−1371

=

⎧⎨
⎩

φi − φi−1, |φi − φi−1| ≤ η
φi − φi−1 + 2π, φi − φi−1 < −η
φi − φi−1 − 2π, φi − φi−1 > η

(3)372

Here η is an empirical value set to 3.5 in this paper.373

2) Normalization: Since the sampling rate of the374

RFID reader is not consistent, so we further derive the375

time-normalized phase difference as376

Δφi =
Δφi

Δti
=

Δφi

ti − ti−1
. (4)377

3) Interpolation and Filtering: We further use a linear378

interpolation with a factor of 4 and a 15-point average value379

filter to smooth the data and also mitigate the noise. We denote380

the final smoothed data by Φ = [Δφ1, Δφ2, . . . , ΔφN ], where381

N denotes the total number of data points.382

Fig. 7. Mitigating frequency hopping in phase data.

Fig. 8. An example of threshold-based tap event detection. (a) Find the
local minimum and maximum points which are labeled by red triangles and
circles, respectively; (b) find the tpress,start, tpress,end labeled by red crosses and
the trelease,start, trelease,end labeled by blue pluses.

C. Mitigating Frequency Hopping 383

We intend RF-Rhythm to be a universal solution worldwide 384

and thus must deal with frequency hopping mandated in many 385

regions. For example, FCC requires that all RFID readers 386

used in the US apply frequency hopping across 50 channels 387

ranging from 902 MHz to 928 MHz with the dwell time on 388

each interval no larger than 0.4 s. According to Eq. (2), such 389

frequency hopping naturally leads to phase discontinuity in 390

Fig. 7(a). 391

To see the effect of frequency hopping more clearly, assume 392

that frequency hopping occurs at ti (i ≥ 2). In the Impinj R420 393

reader, the frequency-hopping interval is 200 ms, while the 394

phase-report interval is about 4 ms. So there is no frequency 395

hopping at ti−2, ti−1, and ti+1, i.e., fi−2 = fi−1 �= fi = fi+1. 396

The phase difference in Eq. (3) is in effect 397

Δφi = φtap,i − φtap,i−1 +
(4πdfi

c
− 4πdfi−1

c

)
. 398

Since d is unknown and hard to estimate in practice, we cannot 399

do a simple calibration by subtracting the term in the parenthe- 400

sis from Δφi. Instead, we compute the time-normalized phase 401

difference for ti as 402

Δφi = (Δφi+1 + Δφi−1)
ti − ti−1

ti+1 − ti−1
(5) 403

Fig. 7(b) plots the output of the Data Processing module 404

corresponding to Fig. 7(a) after we adopt the above technique. 405

D. Feature Extraction 406

Since a tapping rhythm consists of individual taps and tap- 407

durations, we first seek to extract individual tap events from the 408

processed phase data Φ = [Δφ1, Δφ2, . . . , ΔφN ]. Recall that 409

each tap event can be represented by [tpress, trelease]. We draw 410

three observations from Fig. 5(b) obtained from preliminary 411

experiments. First, the start and end of a tap event correspond 412

to the phase difference beginning to deviate from and return 413
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Fig. 9. Three cases in which the threshold-based detector does not work. In all three figures, the top curves represent the phase difference Δφi, and the
bottom curves are the absolute phase φi.

to the zero baseline, respectively. Second, the phase difference414

first decreases from and then returns to the zero baseline415

when the user finger goes from just touching to fully press416

on the RFID card, leading to a local minimum. Finally, the417

phase difference first increases from and then returns to the418

zero baseline when the user finger goes from decreasing the419

pressure on to completely leaving the RFID card, resulting in420

a local maximum. The later two observations are both because421

the card impedance gradually change with the finger pressure422

on the card during a tap event.423

Armed with these observations, we use the following empir-424

ical process.425

1) Find all the local maximums above δ and minimums426

below −δ in Φ, which are the triangle marks in Fig. 8(a).427

The threshold δ can be obtained empirically through428

experiments.429

2) Pair each local minimum with the immediate local430

maximum (if any) such that there are no other local431

minimums or maximums in between. We require the432

user’s tapping rhythm to be sufficiently long such that433

M � 2 local minimum-maximum pairs can be located434

in Φ, each associated with a unique tap event.435

3) Find the starting and end points—tpress,start, tpress,end,436

trelease,start, trelease,end—of the press and release events,437

which are the red crosses and blue pluses shown in438

Fig. 8(b), respectively. tpress,start and tpress,end denote the439

first data points smaller than the zero baseline before and440

after the local minimum, respectively, while trelease,start441

and trelease,end are the first data points larger than the zero442

baseline before and after the local maximum, respec-443

tively. Furthermore, tpress,start and trelease,end are selected444

to represent the tap event, which are simplified to be445

tpress and trelease hereafter.446

Finally, we obtain an M -tap event sequence as447

V =
[

tpress,1 tpress,2 . . . tpress,M

trelease,1 trelease,2 . . . trelease,M

]
, (6)448

from which we can derive a feature vector F =449

[F1, . . . , FM−1], where Fi = tpress,i+1 − trelease,i.450

The aforementioned threshold-based empirical process can451

extract most tap events in the dataset, but there are some452

exceptions which may cause false or missed detections453

1) Case 1: Finger Vibration: Even a tiny vibration of the 454

user’s finger tip can induce a large phase change in the 455

backscattered signals, which may be similar to that associated 456

with a real tap event and thus make the threshold-based 457

detector output a fake tap event. Fig. 9(a) shows an example. 458

When the user presses the RFID card, the phase of the 459

backscattered signal decreases. The user’s finger stays on the 460

tag for a while after touching the tag, during which the phase 461

is stable. Then the user releases his/her finger, so the phase 462

returns to the previous value. When comparing Fig. 9(a) with 463

Fig. 5(a) which corresponds to a standard tap event, we can see 464

a bump at the bottom in Fig. 9(a) in contrast to the flat bottom 465

in Fig. 5(a). That bump is caused by the finger vibration. The 466

threshold-based detector detects two continuous tap events as 467

the top curve in Fig. 9(a). This kind of false detections cannot 468

be eliminated by simply raising the threshold, as the phase 469

changes induced by different users’ finger movement may vary 470

a lot. 471

E. Case 2: Missing Samples 472

The RFID reader cannot maintain a consistent query rate. 473

In particular, the reader may occasionally stop querying the 474

tag for a few hundred milliseconds, during which some 475

backscattered signals relating to true tap events are lost. The 476

incomplete signals may cause missed tap-event detections. 477

As exemplified in Fig. 9(b), only a release event is detected, 478

while the samples ahead of the release event are missed. This 479

case can be easily detected because all the phase samples have 480

corresponding timestamps. More specifically, if the difference 481

of timestamps between two samples are much larger than the 482

sampling period, there are most likely missed samples between 483

them. 484

F. Case 3: Slow Press/Release 485

Some users may press or release their fingers too slowly. 486

If we compare Fig. 9(c) with Fig. 5(a), the phase caused by a 487

slow press in Fig. 9(a) decreases much more slowly. Therefore, 488

the corresponding phase difference Δφi stays low for a long 489

while and does not exceed the threshold. We have the similar 490

observation for a slow release. Slow finger presses and releases 491

both lead to missed tap-event detections. 492
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Fig. 10. Eliminate rate variations via DTW.

To solve the above issues, an absolute phase-based cor-493

rection mechanism is developed to mitigate the drawbacks494

of the threshold-based detector. In Section V-C, we use the495

phase difference instead of the absolute phase to mitigate496

the phase discontinuity issues caused by frequency hopping.497

The absolute phase φi can be easily reversed from Δφi by498

summing up. The correction process is as follows.499

1) To prevent the fake events from been detected, the500

detector checks the amount of the absolute phase change501

during finger press or release. If |φtpress,start−φtpress,end | < δI502

or |φtrelease,start−φtrelease,end | < δI , the detected press (release)503

events are considered fake events and then ignored.504

The threshold δI can be obtained empirically through505

experiments.506

2) Since cases 2 and 3 have the similar phase difference507

curves and both lead to missed tap-event detections,508

we use the same strategy to correct the detection results.509

If there is any unpaired press or release event that satisfy510

|φtpress,start − φtpress,end | ≥ δI or |φtrelease,start − φtrelease,end | ≥ δI ,511

missed detections are considered happening. We empir-512

ically make up the missed tap event by tpress, start =513

trelease, start − Trelease or trelease, end = tpress, end − Tpress,514

where Trelease and Tpress denote the duration of the515

detected but unpaired release or press event, respectively.516

G. Rhythm Classification517

The backend server builds a rhythm classifier during the518

enrollment phase. To do so, it instructs the user to per-519

form rhythmic taps in accordance with his/her secret song520

segment multiple times. The resulting phase-difference vec-521

tors may vary due to slight tapping-rate variations. So we522

apply Dynamic Time Warping (DTW) [7] to align all the523

phase-difference vectors to that of the first acquired tapping524

rhythm. Fig. 10(a) shows two examples for the same rhythm525

performed by the same volunteer with different tapping rates.526

We use DTW to warp the original curve to the nominal curve.527

The results in Fig. 10(b) demonstrate the efficacy of DTW528

Fig. 11. Complex demodulated signals received by the reader.

on handling the tapping-rate variations. Then we obtain a 529

feature vector from each aligned phase-difference vector and 530

pad zeros in the end (if needed) to make all the feature vectors 531

have the same length. Finally, we use the resulting feature 532

vectors to train a rhythm classifier based an any established 533

machine learning technique. We compare the performance 534

of one-vs-all linear Support Vector Machine (SVM), Neural 535

Networks (NN), and Convolutional Neural Networks (CNN) 536

in Section VII. During each authentication session, the server 537

explores the same processes to extract a tapping rhythm and 538

then test it with the rhythm classifier. 539

VI. ANTI-EAVESDROPPING VIA PHASE HOPPING 540

In this section, we present a phase-hopping technique to 541

prevent a capable adversary from acquiring the legitimate 542

tapping rhythm from sniffed RFID signals. Below we first 543

illustrate the rhythm-eavesdropping attack, followed by the 544

motivation for using phase hopping as a defense. Then we 545

detail the protocol design and analyze its security. 546

A. Rhythm-Eavesdropping Attack 547

We first explain the principle with which the RFID reader 548

extracts the signals backscattered by the RFID card. As shown 549

in Fig. 1, there are two possible voltage levels in FM0 symbols. 550

The card only backscatters when transmitting high-voltage 551

pulses. Consider the query protocol in Fig. 2. The symbols 552

received by the reader between its two consecutive commands 553

(e.g., Query and ACK) can be classified into two states (S1 554

and S2). The symbols in S1 contain only constant CW, while 555

those in S2 are the superposition of CW and backscattered 556

signals. For simplicity, we represent the symbols in S1 and 557

S2 by two single points in the complex I-Q plane in Fig. 11, 558

corresponding to vector �VL and �VB , respectively. The phase 559

of backscattered signals can be derived as [8] 560

φ = arccos(
�VB · �VL∣∣∣ �VB

∣∣∣ ∣∣∣ �VB

∣∣∣ ). (7) 561

The phase reports from the reader correspond to the samples of 562

φ above. As said, the phase-sampling frequency in the Impinj 563

R420 reader is about 4 ms. 564

To launch the rhythm-eavesdropping attack, the adversary 565

can just passively sniff the reader-card communications with 566

its own RFID reader or a software-defined radio. After clas- 567

sifying sniffed symbols into S1 and S2, it uses the same 568

process above to extract φ. Next, it explores the workflow 569

in Section V to acquire the legitimate tapping rhythm. Finally, 570

it can carefully study the tapping rhythm and reproduce it 571
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Fig. 12. Illustration of reader-phase hopping. (a) CW phase shift for data-0
symbol. (b) Constellation diagram of data-0 symbol with phase hopping.

by hand or even through a programmable robotic arm on572

the lost/stolen/cloned RFID card. Since this attack directly573

exploits physical-layer RFID signals, it cannot be thwarted574

by encrypting protocol messages at the application layer.575

B. Phase Hopping to Mitigate Rhythm Eavesdropping576

We propose to let the RFID reader emit CW with random577

phases to counteract the rhythm-eavesdropping attack. The578

objective is to prevent the adversary from obtaining matching579

symbols in states S1 and S2, so it cannot derive the correct580

phases of backscattered signals as in Fig. 11.581

Fig. 12 explains the intuition of our defense. Assume that582

the RFID card is backscattering a data-0 symbol. As said583

above, the card only backscatters the high-voltage part.584

As shown in Fig. 12(a), we let the reader set the CW phases585

to π/6 and π/3 during backscattering and non-backscattering,586

respectively. The adversary again tries to cluster sniffed sym-587

bols into states S1 and S2. Due to phase hopping, the S1588

symbols that correspond to non-backscattering has a phase589

offset of π/3, labeled by S1′ in Fig. 12(b). The true S1 symbol590

matching the S2 symbol, however, should have a phase offset591

of π/6, labeled by S1 in Fig. 12(b). Since the adversary does592

not know the true CW phase during backscattering, it can only593

use the symbols in S1′ and S2 to derive a wrong phase φ′.594

But the reader knows the true CW phase or S1 symbol and595

can thus derive the correct phase φ.596

C. Protocol Design597

It is very challenging to properly implement the598

phase-hopping idea above. In particular, our example in Fig. 12599

assumes perfect reader-tag synchronization such that the reader600

knows exactly when backscattering occurs and thus when to601

change the CW phase. This assumption is impossible to hold602

in practice. Therefore, the adversary may still be able to obtain603

matching symbols in S1 and S2 to derive the correct phase and604

eventually the legitimate tapping rhythm. A tempting solution605

is using a very short hopping interval, which nevertheless606

may negatively affect the reader’s capability to recover the607

correct phase and thus the tapping rhythm. It is thus critical608

to determine the optimal phase-hopping interval to strike a609

balance between attack resilience and system correctness.610

We illustrate our phase-hopping protocol with a simplified611

version of the query protocol in Fig. 2. Assume that the612

backend server acquires and validates the card’s EPC with the613

protocol in Fig. 2. It then instructs the RFID reader to initiate614

Fig. 13. Timing diagram of phase hopping.

additional query rounds to acquire the user’s tapping rhythm. 615

Each query round consists of a Query message followed by a 616

CW period of length T1 + T2 + TRN16, where T1 and T2 are 617

random variables mentioned in Section II. In the original 618

RFID protocol, the CW phase is constant. Our goal now is 619

to determine when phase hopping should start/stop and how 620

often it should be in each CW period. 621

The begin and end of phase hopping depend on T1. 622

According to Section II, T1 is in [238 μs, 262 μs] with the 623

nominal value equal to 250 μs. We also measure the actual 624

distribution of T1 over 5,639 card replies. Since 98.92% of 625

T1 are between 244 μs to 247 μs, it is safe to conclude that if 626

the phase-hopping duration covers [244 μs, 247 μs + TRN16], 627

almost all the backscattered signals associated with RN16 can 628

be covered. 629

The next challenge is to determine the hopping interval τ , 630

which should be as short as possible for high attack resilience. 631

The minimum τ is hardware-specific and empirically set to 632

τ = Tpri

5 = 5 μs in our USRP implementation, where 633

Tpri = 1/BLF = 25 μs denotes the FM0 symbol duration 634

introduced in Section II. Ideally speaking, each CW phase 635

value leads to a unique pair of S1 and S2 symbols as shown 636

in Fig. 11. In practice, we can only obtain two clusters of 637

symbols associated with S1 and S2, respectively, which are 638

referred to the S1 and S2 clusters for convenience. The RFID 639

reader needs to obtain the matching S1 and S2 clusters for at 640

least one random CW phase to recover the correct phase for 641

the backscattered RN16. Our experiments reveal that strictly 642

sticking to τ would induce too many randomly distributed 643

symbols in the I-Q plane, which make it very difficult for the 644

reader to do proper symbol clustering. 645

We tackle the above issue by introducing a short phase- 646

discovery period lasting γ that must satisfy two requirements. 647

First, it starts from a random hopping interval hard to predict 648

by the adversary. Second, it covers at least one phase inversion 649

in the FM0 symbols of the RN16 message. An RN16 message 650

comprises a 6-bit preamble, a 16-bit random number, and one 651

dummy bit. According to FM0 encoding in Fig. 1, there is 652

a phase inversion at every symbol boundary and also one 653

in the middle of each data-0 symbol, but the FM0 pream- 654

ble contains a phase-inversion violation at the fifth symbol 655

labeled “v”. So the longest time that the RFID card does not 656

invert the signal phase is 1.5 Tpri. Since the reader does not 657

know when backscattering (i.e., the RN16 transmission) starts, 658

we set γ = 2Tpri = 10τ to satisfy both requirements above. 659

The phase-discovery period obviously consists of 10 hopping 660

intervals. In addition, the reader uses the same CW phase in the 661
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Fig. 14. (a) The I/Q signals received by the RFID reader, which con-
tains the RN16 response from the RFID tag; (b) The amplitude (

�
I2 + Q2)

of the I/Q signals in Fig. 14(a) and the detection threshold used for detecting
the positive and negative edges.

odd-numbered hopping intervals and performs random phase662

hopping in the rest intervals of the phase-discovery period.663

Now we explain the protocol details with the timing dia-664

gram in Fig. 13. After sending the Query message, the665

RFID reader starts the phase-hopping duration at T ′
1 which666

is divided into short hopping intervals of τ = 5 μs long.667

We require the phase-hopping duration to at least cover the668

range [244 μs, 247 μs + TRN16], where TRN16 = 575 μs [3].669

So we set T ′
1 = 240 μs and the phase-hopping duration to670

600 μs long which corresponds to 120 hopping intervals. For671

each rhythm-query round, the reader determines 24 CW phase672

values673

Θ = [θinit, θinit + 1, θinit + 2, . . . , θinit + 23], (8)674

where θinit is a random integer in [0, 360). Assume that the675

phase-recovery period starts at T ′
1 + nτ , where n ∈ [0, 110]676

is randomly chosen by the reader because the phase-hopping677

duration lasts 120 hopping intervals. In addition, the reader678

randomly selects θreserve ∈ Θ and uses it for the five679

odd-numbered hopping intervals (represented by lined blocks)680

in the phase-recovery period. Finally, the reader performs681

random phase hopping across the remaining 23 phase values682

in the rest 115 hopping intervals (represented by gray blocks)683

such that each phase value in Θ (including θreserve) is used684

exactly five times in each rhythm-query round.685

Fig. 14(a) gives an example for the efficacy of our protocol,686

which is based on our prototyping implementation on a USRP687

2954R device. The phase-hopping duration is from 0.1 ms to688

0.7 ms, and the reader’s received signals in the phase-recovery689

period are enclosed by the black rectangle. Since the reader690

knows exactly when the phase-recovery period starts, it can691

precisely locate the symbols associated with the constant692

phase θreserve. As shown in Fig. 15(a), the reader can easily693

cluster these symbols into states S1 and S2 whereby to extract694

the correct phase of backscattered signals. To highlight the695

correctness of our protocol, we show complete phase plots696

Fig. 15. (a) Extracted samples for phase recovery; (b) The adversary’s sniffed
symbols for Fig. 14(a).

Fig. 16. Phase recovered by the reader.

obtained by the reader in Fig. 16 with our phase-hopping 697

protocol, which match well with those on a traditional RFID 698

reader without phase hopping [4]. We also demonstrate the 699

decoding correctness of the proposed protocol using Fig. 14(b) 700

which plots the amplitude of the I/Q signals in Fig. 14(a). 701

The red dash line is the threshold used for detecting the 702

positive and negative edges of the backscatter signal. The 703

detection threshold is the average amplitude with window 704

length equal to 500, according to Nikos’ implementation [9]. 705

Although the amplitude is slightly distorted due to the I/Q 706

imbalance, the positive and negative edges are still perfectly 707

separated by the detection threshold, and the decoding proce- 708

dure is not affected by phase hopping. The proposed random 709

phase-hopping protocol only shifts the phase of the continuous 710

wave. Since phase shifting theoretically does not change the 711

signal amplitude, the amplitude-based decoder is not affected. 712

In the experiment, we also observe that the RFID reader with 713

random phase hopping has the similar reading rate to the 714

original reader. In contrast, the adversary does not know when 715

the phase-recover period starts. So it has to exploit all the 716

sniffed symbols for phase recovery, which is almost impossible 717

as shown in Fig. 15(b). 718

D. Resilience to Advanced Eavesdropping 719

The proposed phase-hopping protocol can thwart basic 720

eavesdropping attacks in which the adversary has only one 721

sniffer that overhears the superposition of the backscattered 722

signal and CW with random phase hopping. Now we analyze 723

its resilience to advanced eavesdropping attacks in which the 724

adversary has an additional sniffer at distance d1 from the 725

reader and d2 from the card. The adversary can also vary 726

d1 and d2 arbitrarily. Theoretically speaking, the second sniffer 727

also receives the superposition of the backscattered signal and 728

CW with random phase hopping. Assume that the adversary 729

can make d2 large enough such that the backscattered signal 730

is attenuated too much to detect, while keeping d1 sufficiently 731
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small such that the CW signal is still strong enough. The signal732

overheard by the second sniffer thus corresponds to CW alone.733

The adversary can then derive the phase-hopping sequence734

and correlate it with the signals obtained by the first sniffer to735

recover the phase information of backscattered signals.736

To analyze the feasibility of the advanced eavesdropping737

attack above, we assume the free-space path loss (FSPL)738

model for RFID signal propagation, FSPL = (4πd
λ )2, where d739

is the distance between antennas, and λ is the CW wavelength.740

Assume that the RFID card is at distance d0 from the reader.741

The power of the reader’s signal at the card is Pcard =742

PtGt( λ
4πd0

)2, where Pt is the reader’s transmission power, d0743

is the distance between reader, and Gt is the reader’s antenna744

gain. According to [10], the EIRP (Equivalent Isotropically745

Radiated Power) of passive RFID cards is746

EIRPcard = Preader
4πσ

λ2
= PtGt

σ

4πd2
0

, (9)747

where σ denotes the tag’s radar cross section (RCS) [10]. σ748

mainly depends on the impedance of card antenna and chip749

and depicts the backscattered power strength tag.750

The second sniffer receives the superposition of CW and751

the backscattered signal. The signal strength for CW can be752

expressed by753

PCW,d1 =
PtGtGr

FSPLreader
= PtGtGr(

λ

4πd1
)2 ,754

where Gr denotes the second sniffer’s antenna gain. Simi-755

larly, the signal strength for the backscattered signal can be756

expressed by757

PBS,d2 =
EIRPcardGr

FSPLreader
= PtGtGr

σλ2

(4π)3d2
0d

2
2

.758

Let τrx and τdec denote the minimum signal strengths that the759

sniffer can detect and decode RFID signals, respectively. The760

advanced eavesdropping attack works if and only if PCW,d1 ≥761

τdec and PBS,d2 ≤ τrx can simultaneously hold. It is equivalent762

for the adversary to find d1 and d2 that satisfy763

d1 ≤
√

PtGtGr

τdec
(

λ

4π
)2764

and765

d2 ≥
√

PtGtGr

τrx

σλ2

(4π)3d2
0

.766

The above requirement corresponds a vulnerable region out-767

side the circle centered at the card with radius d2 and inside768

the circle centered at the reader with radius d1. In Section VII,769

we experimentally show that the vulnerable region can be very770

difficult or infeasible to find in practice.771

VII. EVALUATION772

A. Experimental Setup773

We use two Impinj R420 readers (GX21M and USA2M1774

models) with Laird S9028 antenna. GX21M does not use775

frequency hopping, while USA2M1 does. The data from776

USA2M1 are calibrated with the method in Section V-C and777

then combined with the data from GX21M. We use three778

Fig. 17. Experiment setup.

types of RFID tags, including SMARTRAC R6 DogBone, 779

Impinj E51, and Alien 9640. In addition, we prototype the 780

phase-hopping protocol on a USRP 2954R and also used an 781

R&S FSVR7 real-time spectrum analyzer for signal analysis. 782

We compare the classification performance of SVM, NN, 783

and CNN. The comparison is based on the SVM toolbox in 784

Matlab and the NN and CNN implementations in PyTorch. 785

We use a fully connected NN with one hidden layer and 786

256 perceptions. In addition, the CNN we use has two 1D 787

convolutional layers and a kernel size of 2. All the training and 788

classification procedures are performed on a Ubuntu desktop 789

with i7-8700k CPU and 16 GB RAM. 790

We recruite 19 volunteers from China and US who are either 791

undergraduate or graduate students. The data-collection setup 792

is shown in Fig. 17. Each volunteer taps a random RFID 793

tag 40 times according to his/her self-chosen rhythm. The 794

volunteers are asked not to tap the chip position of the tag as 795

described in the previous section. Most chosen rhythms last 796

6 s to 12 s with the average and variance equal to 9.61 s and 797

5.86 s, respectively. The RFID reader-tag distance is always 798

about 40 inches. We collect 760 tapping rhythm samples in 799

total. 800

B. Resilience to Brute-Force Attacks 801

We first evaluate the performance of RF-Rhythm under the 802

brute-force attack. For this evaluation, we randomly choose 803

K rhythm samples from each volunteer to train one-vs-all 804

classifiers. The remaining rhythm samples are treated as the 805

testing set. We use a modified K-fold cross validation method 806

to eliminate the potential dataset bias. K denotes the number 807

of training samples and can be used to represent the duration 808

of user enrollment phase. A smaller K means that a legitimate 809

user can input his/her tapping rhythm fewer times in the 810

enrollment phase, leading to shorter enrollment time and 811

higher usability, and vice versa. When the classifier of each 812

volunteer is tested against the data samples of all the other 813

19 volunteers, it amounts to launching a brute-forth attack on 814

RF-Rhythm. 815

Fig. 18 shows the testing accuracy (ACC), false positive rate 816

(FPR) and false negative rate (FNR) of SVM, NN and CNN 817

classifiers. Overall, RF-Rhythm can admit legitimate users 818

and reject random impostors with overwhelming probability 819

under all three classifiers. The ACCs of SVM, NN and 820
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TABLE II

CLASSIFICATION ACCURACY FOR ENROLLMENT-AUTHENTICATION
LOCATION VARIATIONS

CNN are 95.91%, 95.04%, 95.40% at K = 4, and 98.39%,821

98.21%, 99.11% at K = 20, which are similar. The FPRs822

for three classifiers are 0.24%, 0.38%, and 0.35%, which823

means all three models are resilient to the brute-force attack,824

and SVM shows the better overall performance. Especially,825

the performance of CNN fluctuates when K increases, which826

contradicts the intuition that its performance should improve.827

This is because the training dataset is not large enough to feed828

the neural network.829

Since the same user may perform enrollment and authenti-830

cation at a different distance from the RFID reader, we also831

evaluate the impact of this distance factor. In this experiment,832

we place an RFID card at 20, 40, 80, and 120 inches833

from the RFID reader and let a random volunteer input834

his tapping rhythm 40 times at each testing location. Then835

we train a classifier for the volunteer at each location by836

using his rhythm samples collected there and the samples837

of all the other 18 volunteers as the training data. Finally,838

we test each obtained classifier against the volunteer’s rhythm839

samples collected at the same and different locations. Table II840

shows the classification accuracy for this evaluation, where841

E1&T1, E2&T2, E3&T3, and E4&T4 denote the enrollment842

and testing locations at 20, 40, 80, and 120 inches, respec-843

tively. If the enrollment and testing locations are the same,844

we randomly divide the volunteer’s samples at that location845

into 2 parts for training and testing, respectively; otherwise,846

all the 40 samples are used for training in each enrollment847

location. The results represent the average of 10 runs. It is clear848

that RF-Rhythm is robust to enrollment-authentication location849

variations.850

C. Robustness to Elapsed Time851

Now we evaluate the robustness of RF-Rhythm to the852

elapsed time after the user enrolls. For this experiment,853

we recruit 10 new volunteers from US. Each volunteer854

taps a random tag 40 times during the enrollment phase.855

We combine the rhythms collected during the enrollment856

phase and all the previous collected rhythms as the train-857

ing dataset. We let each volunteer come back after 1 hour,858

1 day, 3 days, and 10 days, and recollect his/her rhythms859

5 times each time as the testing dataset. The training and860

testing processes for each classifier are repeated 10 times. The861

average accuracy and recall rates are shown in Table III. All862

three classifiers perform well over 4 subsets of testing data,863

especially the CNN because of the increased training dataset864

size. The results demonstrate the robustness of RF-Rhythm865

over a long period, in which the user can easily reproduce866

his/her rhythmic taps according to a self-selected favorite song867

segment.868

TABLE III

ACCURACY AND RECALL RATES FOR DIFFERENT
ELAPSED-TIME SETTINGS

TABLE IV

REJECTION RATE (%) FOR VISUAL EAVESDROPPERS

D. Resilience to Visual Eavesdropping 869

We also evaluate the resilience of RF-Rhythm to visual 870

eavesdropping. In this evaluation, we use a high-definition 871

smartphone to video-record each volunteer’s entire 872

rhythm-tapping process as shown in Fig. 19. Then we 873

recruit five volunteers that act as attackers to watch all the 874

19 videos and then emulate the tapping rhythms they observe. 875

We consider two scenarios. First, each attacker has a one-time 876

watching of each video and then tries to perform the observed 877

rhythm once. This scenario emulates the shoulder-surfing 878

attack. Second, each attacker can watch each video as many 879

times as they want and then performs each perceived rhythm 880

four times. This scenario emulates the video-taping attack via 881

a spy camera. We totally collect 475 attack samples. Then 882

we build a classifier for each of the 19 volunteers with all 883

the aforementioned 760 rhythm samples as the training data. 884

Finally, we test each attack sample with the corresponding 885

volunteer’s classifer. 886

Table IV shows the rejection rate for visual eavesdrop- 887

pers, which represents the average of 10 runs. We can see 888

that RF-Rhythm has strong resilience to visual eavesdroppers 889

under all three classification methods. In addition, a visual 890

eavesdropper can intuitively achieve a higher success rate with 891

more observations and authentication attempts. RF-Rhythm 892

can rate-limit unsuccessful authentication attempts to provide 893

a stronger defense. 894

E. Resilience to Basic Rhythm Eavesdropping 895

Next we examine the efficacy of our phase-hopping protocol 896

to a rhythm eavesdropper with a single sniffer. As shown in 897

Fig. 15(b), the adversary can roughly cluster sniffed symbols 898

into states S1 and S2, respectively. But it cannot precisely 899

find the matching S1 and S2 symbols of the same CW 900

phase. We assume that the adversary is very powerful and 901

knows how our phase-hopping protocol works. Since the CW 902

phase in each query round takes random values in Θ = 903

[θinit, θinit + 1, θinit + 2, . . . , θinit + 23], we assume that the 904

adversary can estimate a candidate phase vector Θ′ from 905

sniffed S1 symbols. Due to noise, interference, and processing 906

errors, Θ′ may overlap but is usually much larger than Θ. The 907

symbols in Θ′ can be much fewer than sniffed S1 symbols. 908

Then the adversary picks an arbitrary sniffed S2 symbol, 909
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Fig. 18. The accuracy (ACC), false positive rate (FPR) and false negative rate (FNR) of SVM, NN and CNN.

Fig. 19. Recorded rhythm tapping process.

denoted by s2, and uses each S1 symbol in Θ′ as a candidate910

matching symbol for s2 to derive a candidate phase of the911

backscattered RN16. The probability of a correct guess is912

simply 1/|Θ′|. Each rhythm-query round is about 2.179 ms913

long, and the average tapping-rhythm duration is 9.61 s in914

our experiments. So we need about 4,410 rounds to cover and915

detect an average tapping rhythm. The probability that the916

adversary can recover the correct tapping rhythm from sniffed917

signals can be estimated by P̃ = (1/|Θ′|)n. For example,918

if |Θ′| = 24|48|72, the adversary can succeed with negligible919

probability. Therefore, our phase-hopping protocol is highly920

effective against the basic rhythm-eavesdropping attack.921

F. Resilience to Advanced Rhythm Eavesdropping922

We also evaluate the resilience of RF-Rhythm to advanced923

rhythm-eavesdropping attacks in which the adversary has two924

sniffers at strategic locations. In Section VI-D, we identify a925

theoretical vulnerable region in which this attack can succeed.926

In this section, we show that the vulnerable region may not927

be easily found by an adversary with reasonable equipment.928

In this evaluation, we assume that the adversary places929

his second sniffer d1 from the RFID reader and d2 from930

the RFID card. For simplicity, we assume that the reader,931

tag, and sniffer are on the straight line. This is a reasonable932

assumption because most commonly used RFID antennas are933

directional with a relatively focused and narrow radio wave934

beam. We implement a EPC Gen2 RFID reader prototype [9]935

on an NI USRP 2954R and assume that the adversary has a936

similar sniffer device. We also use an R&S FSVR7 real-time937

spectrum analyzer for signal measurements. Recall that τrx and938

τdec denote the minimum signal strengths that the sniffer can939

detect and decode RFID signals, respectively. According to our940

measurements, τrx = −81.21 dB m and τdec = −55.98 dB m.941

To emulate the attack, we vary the RFID card-reader942

distance d0 from 10 to 40, 80, and 120 inches. For each943

d0 value, we measure the CW signal strength PCW,d1 and the944

backscattered signal strength PBS,d2 at d2 = 40 inches from945

the RFID card, which also corresponds to d1 = d0+40 inches.946

This location is regarded as the sniffer’s initial location. The947

results are shown in Table V. Since we assume the reader-948

card-sniffer line topology, PCW,d1 and PBS,d2 are attenuated949

by the same amount when d2 and equivalently d1 increase.950

According to our analysis in Section VI-D, the advanced951

TABLE V

POWER MEASUREMENTS FOR ADVANCED RHYTHM EAVESDROPPING

eavesdropping attack succeeds if and only if PCW,d1 ≥ τdec and 952

PBS,d2 ≤ τrx can simultaneously hold. This requires PCW,d1 − 953

PBS,d2 ≥ τdec − τrx = 25.23 dB m per our measurements. This 954

requirement cannot be satisfied according to Table V, so the 955

advanced eavesdropping attack would fail. 956

It is possible that a more capable adversary with advanced 957

equipment can successfully overhear the legitimate user’s tap- 958

ping rhythm. Instead of being a perfect solution, RF-Rhythm, 959

however, just aims to enhance the security of a traditional 960

RFID authentication system that is naturally vulnerable to 961

lost/stolen/cloned RFID cards. In other words, RF-Rhythm 962

significantly raises the bar for launching successful attacks on 963

RFID authentication systems. 964

G. Latency 965

We evaluate the latency performance of RF-Rhythm based 966

on our hardware and software configurations mentioned in 967

Section VII-A. For simplicity, we only report the data for 968

K = 4 and K = 20, which corresponds to requiring a 969

user to input the chosen rhythm 4 and 20 times in the 970

enrollment phase, respectively. The average training time with 971

SVM|NN|CNN is 0.39 s|0.07 s|0.22 s for K = 4 and 972

4.48 s|0.28 s|0.95 s for K = 20, respectively; the average test- 973

ing time with SVM|NN|CNN is 0.337 ms|0.067 ms|0.73 ms. 974

The classifier training and testing time is obviously negligible 975

for the backend server which can be much more powerful 976

than our machine. So the enrollment and authentication time is 977

roughly K times of and equal to the tapping-rhythm duration, 978

respectively. Since the average rhythm length chosen by our 979

volunteers is 9.61 s, the enrollment and authentication times 980

is both quite acceptable in practice. 981

H. Usability Study 982

Finally, we evaluate the usability of RF-Rhythm by asking 983

each volunteer to give a score between [0,5] (with 5 being 984

the highest) to each of the following questions: whether 985

RF-Rhythm is easy to use (Q1), whether self-defined rhythms 986

are easy to memorize (Q2), whether the rhythm length is 987

appropriate (Q3), and whether RF-Rhythm would be easier 988
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TABLE VI

USABILITY SCORES

to use with more practice (Q4). According to the results in989

Table VI, RF-Rhythm is highly usable.990

VIII. RELATED WORK991

Rhythm-based authentication for mobile devices has been992

explored. RhyAuth [11] is a two-factor rhythm-based authen-993

tication scheme for multi-touch mobile devices. It requires a994

user to perform a sequence of rhythmic taps/slides on a device995

screen to unlock the device. In the follow-on work, Beat-996

PIN [12] requires a user to tap the screen of a smartwatch to997

unlock it. RF-Rhythm differs significantly from RhyAuth and998

Beat-PIN in the application context, totally different rhythm-999

extract techniques, adversary models, and countermeasures.1000

There is also significant effort on RFID security. For1001

example, novel cryptographic RFID authentication protocols1002

are presented in [13], [14], and [15]. Haitham [16] proposes1003

RF-Cloak to prevent eavesdropping attacks by randomizing1004

the modulation and channel. Selective jamming is proposed1005

in [17] to prevent unauthorized inquiries to RFID tags. Zanetti1006

and Danev [18] explore the time interval error, average1007

baseband power and spectral features to fingerprint RFID1008

tags. TapPrint [19] uses the phase of backscattered signals1009

combined with the geometric relationship to fingerprint RFID1010

tags. Hu-Fu [20] uses the inductive coupling of two tags to1011

fingerprint them. RF-Mehndi [21] identifies an RFID card and1012

its user simultaneously by exploring the backscattered signal1013

changes induced by the user’s fingertip on a specially build1014

passive tag array. RF-Rhythm explores COTS RFID tags and1015

is complimentary to the above work.1016

The phase information of backscattered RFID signals has1017

been explored in many applications, such as gesture recog-1018

nition [22], [23], action recognition [24], [25], orientation1019

tracking [26], mechanical features sensing [27], [28], and1020

localization [29]. RF-Rhythm is the first work to extract1021

a tapping rhythm from backscattered RFID signals and is1022

orthogonal to the above work.1023

IX. CONCLUSION1024

In this paper, we proposed RF-Rhythm, a secure and usable1025

two-factor UHF RFID authentication system which is resilient1026

to lost/stolen/cloned RFID cards. Comprehensive prototyped1027

experiments confirmed that RF-Rhythm has strong resilience1028

to common attacks on RFID authentication systems and is also1029

highly usable with short enrollment and authentication time.1030
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