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Abstract—Passive RFID technology is widely used in user
authentication and access control. We propose RF-Rhythm,
a secure and usable two-factor RFID authentication system with
strong resilience to lost/stolen/cloned RFID cards. In RF-Rhythm,
each legitimate user performs a sequence of taps on his/her RFID
card according to a self-chosen secret melody. Such rhythmic
taps can induce phase changes in the backscattered signals,
which the RFID reader can detect to recover the user’s tapping
rhythm. In addition to verifying the RFID card’s identification
information as usual, the backend server compares the extracted
tapping rhythm with what it acquires in the user enrollment
phase. The user passes authentication checks if and only if both
verifications succeed. We also propose a novel phase-hopping
protocol in which the RFID reader emits Continuous Wave (CW)
with random phases for extracting the user’s secret tapping
rhythm. Our protocol can prevent a capable adversary from
extracting and then replaying a legitimate tapping rhythm from
sniffed RFID signals. Comprehensive user experiments confirm
the high security and usability of RF-Rhythm with false-positive
and false-negative rates close to zero.

Index Terms— RFID security, authentication.

I. INTRODUCTION

ASSIVE (battery-less) RFID technology has been widely
used in user authentication and access control. An RFID
authentication system comprises a backend server, RFID read-
ers, and RFID cards which refer to identification cards with
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embedded RFID tags. For convenience only, we use the terms
RFID cards and tags interchangeably hereafter whenever no
confusion arises. An RFID reader sends wireless signals to
interrogate a nearby RFID card, which returns its tag ID by
backscattering the reader’s signals. The reader then forwards
the tag ID to the backend server. If a matching ID can be
found in the database, the user passes authentication and is
permitted to access protected electronic or physical resources
such as entering a gated area.

Lost/stolen/cloned RFID cards pose the most critical threat
to RFID authentication systems. In particular, RFID cards
are often of small size and can be easily lost or stolen;
they can also be cloned with many cheap off-the-shelf tools.
More specifically, most commodity RFID cards do not support
cryptographic operations, so the RFID reader-card commu-
nications are in plaintext and vulnerable to eavesdropping
with cheap tools online. The adversary can then easily exploit
the sniffed card information to make a clone. Since RFID
cards are not password-protected, the adversary can use a
lost/stolen/cloned RFID card—referred to as an adversarial
RFID card henceforth—to pass authentication and imper-
sonate the legitimate user to get illegal access to a gated
area or sensitive physical/electronic resources protected by
RFID-based access control. An effective countermeasure can
be two-factor authentication which requires the RFID user to
present the second piece of identification information. One
such solution requires the RFID user to additionally input a
PIN code on a keypad [1]. This solution not only diminishes
the convenience of contactless RFID authentication but also
requires a nontrivial infrastructure update to existing RFID
systems. Another plausible solution is exploring commercial
mobile 2FA solutions such as Duo Mobile [2], which require
the RFID user to manually acknowledge an authentication
request on his/her enrolled smartphone/smartwatch. This solu-
tion needs the RFID user to own and always carry a smart-
phone with good network connectivity, which may not be
feasible in practice.

We propose RF-Rhythm, a secure and usable two-factor
RFID authentication system with strong resilience to adversar-
ial RFID cards. In RF-Rhythm, each legitimate user performs
a sequence of taps on his/her RFID card according to a
self-chosen secret melody. Such rhythmic taps can induce
phase changes in the backscattered RFID signals, which the
RFID reader can detect to recover the user’s rhythm. In addi-
tion to verifying the card ID as usual, the backend server
compares the recovered rhythm with what it acquires in the
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user enrollment phase. The user passes authentication only if
both verifications succeed.

The security, usability, and feasibility of RF-Rhythm lie in
many aspects. First, a user can easily select a secret song
segment which is familiar to him/herself but very difficult for
others to guess. Second, different users may interpret the same
song segment in various ways, resulting in diverse rhythmic
tap patterns on the card. This means that even if the adversary
knows the secret song segment, it may still have great difficulty
performing the correct tapping rhythm on the RFID card.
Third, RF-Rhythm is naturally resilient to traditional replay
and relay attacks on RFID authentication systems. Fourth, the
phase information of backscattered signals is readily available
on commodity RFID readers, so RF-Rhythm only needs a
minor software update to an existing RFID authentication
system. Finally, RF-Rhythm applies to commodity RFID cards
and does not need the user to carry any other device.

The design of RF-Rhythm faces two critical challenges.

1. Rhythm detection and classification: how to detect
and verify the tapping rhythm from noisy RFID
signals? Rhythmic taps are performed on the RFID card
and have to be indirectly extracted from noisy backscat-
tered signals. We explore various signal processing tech-
niques to process noisy raw phase data for extracting a
reliable tapping rhythm. We also use machine learning
techniques to train a classifier the backend server uses
to validate an extracted tapping rhythm.

2. Rhythm anti-eavesdropping, i.e., how to prevent the
adversary from acquiring the user’s tapping rhythm
from sniffed RFID signals? The adversary can easily
eavesdrop on the open RFID channel and then behave
in the same way as the RFID reader to decode the user’s
tapping rhythm from sniffed RFID signals. It can then
repeat the rhythmic taps on adversarial RFID card to
attempt impersonating the legitimate user. We tackle this
challenge by a novel phase-hopping protocol in which
the RFID reader emits Continuous Wave (CW) with
random phases for extracting the user’s tapping rhythm.
Since the adversary does not know the phase-hopping
sequence, it can no longer extract the correct tapping
rhythm from sniffed RFID signals.

We evaluate the security and usability of RF-Rhythm by
comprehensive experiments on Impinj RFID readers, commod-
ity passive tags, and USRP devices. Our experiments involve
19 volunteers from two countries and explore three represen-
tative machine learning techniques, including Support Vector
Machine (SVM), Neural Networks (NN), and Convolutional
Neural Networks (CNN). We show that RF-Rhythm is highly
secure with false-positive and false-negative rates close to zero.
In addition, we demonstrate the high resilience of RF-Rhythm
to brute force, visual eavesdropping, and RF eavesdropping
attacks. We also confirm the high usability of RF-Rhythm by
a user survey.

The rest of this paper is organized as follows. Section II
gives some necessary background about RFID systems.
Section III describes the adversary model. Section IV provides
an overview of RF-Rhythm. Section V details the design of
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Fig. 2. The basic EPC Gen-2 query protocol with a single RFID card.

RF-Rhythm. Section VI presents the phase-hopping protocol
for anti-eavesdropping. Section VII reports the experimental
evaluation of RF-Rhythm. Section VIII briefs the related work.

II. BAsICS OF PASSIVE UHF RFID SYSTEMS

Passive RFID systems can be classified into low-
frequency, high-frequency, and ultra-high-frequency (UHF)
types. We focus on UHF systems which are dominating the
RFID market. The extension of RF-Rhythm to low-frequency
and high-frequency RFID systems are left as future work.
In this section, we introduce some necessary background about
passive UHF RFID systems to help illustrate the subsequent
RF-Rhythm design. A typical RFID system consists of a
backend server, readers, and RFID cards. The RFID reader
sends both modulated commands and continuous wave (CW).
The RFID card sends back its data by exploring the energy har-
vested from the reader’s signals to switch its input impedance
between two states and thus modulate the backscattered signal.
EPC Gen 2 [3] is the most popular UHF RFID standard and
assumed hereafter.

RFID cards encode the backscattered data using either
FMO baseband or miller modulation. We only consider FMO
encoding in this paper, but our work can easily extend to
miller modulation. Fig. 1 shows the basic FM0 symbols. FMO
inverts the baseband phase at every symbol boundary with an
additional mid-symbol phase inversion for each data-0. The
duration of an FMO symbol is denoted by Tp,; = 1 /BLF, where
BLF represents the backscatter link frequency ranging from
40 kHz to 6400 kHz [3]. To ease our presentation, we assume
BLF equal to 40 kHz, corresponding to T}, = 25 ps.

Fig. 2 shows the basic query protocol in EPC Gen-2 [3].

1) The reader emits CW of length 7 for the RFID card to
harvest and store energy.

2) The reader sends a Query command followed by CW
of length T + 7% + Trn16- During this CW period, the
card backscatters an RN16 message comprising a 6-bit
preamble, a 16-bit random number, and one dummy bit.

3) The reader sends an ACK followed by CW of length
Ty + T> + Tgpc. During this CW period, the card
backscatters its EPC (Electronic Product Code).

4) The reader sends QueryRep to end this session.

EPC Gen-2 [3] gives recommendations for the above timing

parameters. Let RTcal represent the duration of Interrogator-
to-Tag calibration symbol, which is specified in the reader
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configuration and set to RT'cal = 72 us in our implementation.
Also let FrT be the frequency tolerance of FMO baseband
signals, which equals 4% for BLF = 40 KHz. We have T =
2RTcal = 144 ps and 75 pus < Ts < 500 ps. In addition, the
maximum, minimum, and nominal values of 7 are 262 us,
238 ps, and 250 us, respectively.

III. ADVERSARY MODEL

We assume an adversary .A who attempts to use an adversar-
ial RFID card to pass authentication checks and thus imperson-
ate the legitimate user. Since the adversarial RFID card has
identical information to that of the corresponding legitimate
card, A can succeed in a traditional RFID authentication
system if no additional countermeasure is adopted. .4 knows
how RF-Rhythm works and can perform rhythmic taps on the
RFID card with fingers or even a fully programmable robotic
arm. We assume that A does not know the legitimate user’s
secret song segment and can try the following attack strategies.

o Brute force: 4 performs totally random rhythmic taps
on the RFID card.

o Visual eavesdropping: A observes the legitimate user’s
tapping behavior, e.g., by shoulder surfing or a spy
camera, and then tries to emulate it.

o RF eavesdropping: A sniffs all the PHY communication
traces between the RFID reader and card to attempt
recovering and performing the legitimate user’s rhythmic
taps.

IV. SYSTEM OVERVIEW

RF-Rhythm consists of an enrollment phase and a verifica-
tion phase, and its major modules are depicted in Fig. 3,

During the enrollment phase, the legitimate user first selects
an arbitrary song segment familiar to him/herself. Then the
user performs rhythmic taps on his/her RFID card in accor-
dance with his/her own interpretation of the chosen song
segment, e.g., by singing it silently. The user’s tapping rhythm
is referred to as his/her secret rthythm hereafter.

The security of RF-Rhythm relies on the secrecy of the
chosen song segment and also the user’s likely unique tapping
rhythm for it. In particular, since there are numerous song
segments available, the adversary can hardly guess the selected
song segment of a target user; an advanced user such as a
musician can even self-compose the song segment. In addition,
people may have very subjective mental interpretations about
the same song segment, resulting in very different tapping
rhythms.

The backend server handles the enrollment request as fol-
lows. First, it acquires the EPC of the user’s RFID card through
the reader with the protocol in Fig. 2. Second, it instructs the
user to perform rhythmic taps on the RFID card, which would
induce phase changes in the backscattered signals received
by the reader. Third, the server invokes a Signal Processing
module to extract reliable phase data from noisy backscattered
signals. Fourth, it uses a Feature Extraction module to obtain
a feature vector that characterizes the use’s tapping rhythm.
Finally, it asks the user to repeat the rhythmic taps multiple
times and then feeds all the resulting feature vectors into a
Rhythm Learning module to train a high-quality binary rhythm
classifier for this user.

In the verification phase, the backend server first explores
the RFID card for its EPC with the protocol in Fig. 2. If the
EPC is found in the database, the server instructs the reader to
execute multiple rounds of the protocol again in Fig. 2. RF-
Rhythm is highly usable in the sense that the RFID user just
needs to perform his/her secret tapping rhythm multiple times
without the need to know when the server starts to extract it in
both the enrollment and verification phases. The server invokes
the same Signal Processing and Feature Extraction modules to
extract a candidate tapping rhythm in each round, which is then
tested with the trained rhythm classifier associated with the
EPC acquired before. The authentication process terminates
until when the server either detects a valid tapping rhythm or
fails to detect one after a threshold number of rounds. The
RFID card and corresponding user are considered authentic in
the former case and fake in the latter.

RF-Rhythm features a novel anti-eavesdropping protocol
employed by the RFID reader to emit CW with random
phases for extracting the user’s secret tapping rhythm in both
enrollment and verification phases. Our protocol can prevent
a capable adversary from recovering and then replaying the
legitimate user’s secret rhythm from sniffed RFID signals.

V. RF-RHYTHM DESIGN DETAILS
In this section, we illustrate the details of RF-Rhythm.

A. Feasibility Study: Tap Detection

The backscattered signal’s phase information is read-
ily available on commercial RFID readers such as Impinj
R420 [4]. According to [5], it can be expressed as ¢ =
(47rcdf + Greader + Pcara) mod 27, where 2d is the round-trip
propagation distance between the reader and card, f is the
CW frequency, c is the speed of light, @reader denotes the phase
rotation due to the reader’s transmit and receive circuits, and
®cara Tepresents the phase rotation caused by the RFID card’s
reflection characteristics.

Finger taps on the RFID card can change its circuit
impedance [6] and also signal propagation, leading to some
additional phase rotation denoted by ¢p. So we modify the
phase expression above to

b= (47rdf

Cc

+ ¢reader + d)card) + d)tap mod 2. (1)

To better understand the effect of finger taps, we perform
a simple experiment using an Impinj R420 reader and a
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(a) SMARTRAC R6 DogBone tag labeled with 9 positions; (b) box

SMARTRAC R6 DogBone tag Fig. 6(a). Fig. 4 shows the
phase changes induced by rhythmic finger taps on the edge of
the RFID card in accordance with the shown song segment.
We also show the phase change associated with a single tap
in Fig. 5. A tap event can be decomposed into a press stage
and a release stage. So we use [tpress, trelease] to represent a tap
event in the time domain, where fpress and #rejease denote the
time that the phase (difference) starts to change and return to
the baseline value, respectively. Fig. 5(a) and Fig. 5(b) depict
the absolute phase values and the difference between adjacent
phase values, respectively.

These results demonstrate the feasibility of exploring phase
changes for tap detection under the simplest scenario. How-
ever, the phase changes induced by finger taps are also affected
by tapping positions and pressure, finger-skin humidity, and
ambient environment changes. We further conduct the fol-
lowing experiments to validate that finger taps can induce
consistent and stable phase changes even when these factors
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are considered. To quantify the tap-induced phase changes,
we define the phase variation as the phase difference between
the baseline and the bottom of the pit with an example shown
in Fig. 5(a).

1) Impact of Tapping Positions: We first measure the phase
changes induced by finger taps on different tag positions. The
SMARTRAC R6 DogBone tag is attached to a flat cardboard
as shown in Fig. 6(a). We evenly divide the tag into 9 zones
labeled on the cardboard.

The same volunteer uses his index finger to tap the tag
10 times at each position with similar tapping pressure.
Fig. 6(b) is a box plot of phase variations, which illustrates
the maximum, mean and minimum phase variations at each
position. The results indicate that the tap event can induce
obvious phase changes over all positions except position 5.
When touching the metallic antenna, the impedance of the
antenna is changed due to the coupling effect [6], which further
causes the phase change of the backscatter signal. However,
when the volunteer taps position 5, the average phase variation
is only 0.47 rad and much less obvious than the second
smallest value 1.46 rad at position 6, as the silicon RFID chip
is not affected by the coupling effect.

2) Impact of Tapping Pressure: The actual tapping pressure
is hard to quantify without special equipment. To simplify
the experiment, we let the volunteer raise his index finger to
3 different height to tap the tag. A longer distance gives the
finger more time to accelerate so that the tapping can have
higher pressure over the tag. We associate 3 different heights
with 3 tapping-pressure levels: low, medium, and high. The
volunteer taps the tag at position 8 for 10 times for each
pressure level. The average phase variations shown in Table I
indicates that the phase changes are not affected by different
tapping-pressure levels.

3) Impact of Finger-Skin Humidity: We simulate three dif-
ferent finger-skin humidity levels by applying different volume
of water to the volunteer’s finger tip. The volunteer taps
position 8 for 10 times with 3 humidity levels. The results in
Table I indicates that the wet finger can decrease the average
phase variation by about 0.25 rad, but the phase changes are
still obvious under all three humidity levels.

4) Impact of Ambient Environment Changes: We design the
following experiment to measure the phase change caused
by ambient environment changes. The experiment setup is
shown in the Fig. 6(d). The tag is placed on the top of
3 cardboard boxes. We let the volunteer freely move between
the antenna and the tag and do whatever he wants to induce
as many ambient environment changes as possible. We let
the volunteer perform a random movement for 10 s and
repeat it 5 times. We compare the Variance and Range (i.e.,
maximum - minimum) of the backscattered signal phase due
to such ambient environment changes with those caused by
the volunteer’s finger taps on position 8 in Table I. As we can
see, ambient environment changes do not induce any rapid and
huge phase changes in contrast to finger taps.

From the above experiment results, we can conclude that
finger-tapping pressure, finger-skin humidity, and ambient
environment changes have negligible impact on tap detection
based on the backscattered signal’s phase changes. As for
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TABLE I
AVERAGE PHASE VARIATIONS UNDER DIFFERENT CASES

Tapping Pressure Low Medium| High
Average phase variations 2.5464 2.7059 2.6200
Finger Skin Humidity Dry Damp Wet
Average phase variations 2.2518 1.9941 1.9880
Variance Range
Ambient Environment Changes | 0.0014 0.2147
Tapping position 8 0.6059 2.8286

the tapping position, as long as the users avoids tapping the
chip position of the tag per some usage guideline, finger taps
dominate the phase changes in the backscattered signals. These
results demonstrate that the phase-change feature is reliable
and robust for finger-tap detection.

B. Data Processing

We represent the reader’s phase report at time t¢; by
[@4, fi,ti], where f; denotes the CW frequency at ¢;. Accord-
ing to Eq. (1), we have

i = (47T:lfL + Qreader + (bcard) + ¢lap,i mod 27, (2)
where ¢up; denotes the phase shift during the ith tap. The
interval t;41 — t; (2 > 0) is about 4ms on the Impinj R420
reader. We temporarily assume that f; is constant and process
the raw phase data to extract more useful information for
further rhythm extraction as follows.

1) Phase Difference and Unwrapping: We use the phase
difference instead of the absolute phase to eliminate the
approximately constant % ~+ ODreader + Pcard during adjacent
tap events. In addition, the raw phase data are wrapped
within [0, 27|, so it is critical to perform phase unwrapping
to eliminate ambiguity. Our experiments reveal that although
the phase change induced by tap events are sharp, it is always
bounded by 7. According to this finding, the unwrapped phase

difference is calculated by

Ad)z = ¢lap,i - d)tap,ifl
i — Di—1, loi — dic1| <
=4 i —Pi_1 +2m, i —hi1 < -0 (3)
Qi — Qi1 — 2T, Py — i1 >

Here 7 is an empirical value set to 3.5 in this paper.

2) Normalization: Since the sampling rate of the
RFID reader is not consistent, so we further derive the
time-normalized phase difference as

_Ag;  Ag;
VN7

Ag; )

—ti—1

3) Interpolation and Filtering: We further use a linear
interpolation with a factor of 4 and a 15-point average value
filter to smooth the data and also mitigate the noise. We denote
the final smoothed data by ® = [A¢1, A¢o, ..., Ady]|, where
N denotes the total number of data points.
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Fig. 7. Mitigating frequency hopping in phase data.
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Fig. 8.  An example of threshold-based tap event detection. (a) Find the
local minimum and maximum points which are labeled by red triangles and
circles, respectively; (b) find the Zpress,start, Lpress,end labeled by red crosses and
the Zrelease,start; trelease,end 1abeled by blue pluses.

C. Mitigating Frequency Hopping

We intend RF-Rhythm to be a universal solution worldwide
and thus must deal with frequency hopping mandated in many
regions. For example, FCC requires that all RFID readers
used in the US apply frequency hopping across 50 channels
ranging from 902 MHz to 928 MHz with the dwell time on
each interval no larger than 0.4 s. According to Eq. (2), such
frequency hopping naturally leads to phase discontinuity in
Fig. 7(a).

To see the effect of frequency hopping more clearly, assume
that frequency hopping occurs at ¢; (¢ > 2). In the Impinj R420
reader, the frequency-hopping interval is 200 ms, while the
phase-report interval is about 4 ms. So there is no frequency
hOppiIlg att;_o, ti—h and ti+1, i.e., fi_g = fi—l 75 fi = f7;+1.
The phase difference in Eq. (3) is in effect
47Tdf7 47Tdf7;_ 1

c

A(bL = (btap,i - ¢lap,1’,—1 + ( B

).

Since d is unknown and hard to estimate in practice, we cannot
do a simple calibration by subtracting the term in the parenthe-
sis from A¢;. Instead, we compute the time-normalized phase
difference for ¢; as

- ti—t
Api = (Rpi1 + D) —— 5)

tiyr —ti—1
Fig. 7(b) plots the output of the Data Processing module
corresponding to Fig. 7(a) after we adopt the above technique.

D. Feature Extraction

Since a tapping rhythm consists of individual taps and tap-
durations, we first seek to extract individual tap events from the
processed phase data ® = [A¢1, Aga, ..., Apn]. Recall that
each tap event can be represented by [tpress, Lrelease]- We draw
three observations from Fig. 5(b) obtained from preliminary
experiments. First, the start and end of a tap event correspond
to the phase difference beginning to deviate from and return
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to the zero baseline, respectively. Second, the phase difference
first decreases from and then returns to the zero baseline
when the user finger goes from just touching to fully press
on the RFID card, leading to a local minimum. Finally, the
phase difference first increases from and then returns to the
zero baseline when the user finger goes from decreasing the
pressure on to completely leaving the RFID card, resulting in
a local maximum. The later two observations are both because
the card impedance gradually change with the finger pressure
on the card during a tap event.

Armed with these observations, we use the following empir-

ical process.

1) Find all the local maximums above ¢ and minimums
below —¢ in @, which are the triangle marks in Fig. 8(a).
The threshold § can be obtained empirically through
experiments.

2) Pair each local minimum with the immediate local
maximum (if any) such that there are no other local
minimums or maximums in between. We require the
user’s tapping rhythm to be sufficiently long such that
M > 2 local minimum-maximum pairs can be located
in @, each associated with a unique tap event.

3) Find the starting and end pointS—%press starts Tpress,ends
Lrelease,starts trelease,end—Of the press and release events,
which are the red crosses and blue pluses shown in
Fig. 8(b), respectively. tpress,start aNd Zpress,ena denote the
first data points smaller than the zero baseline before and
after the local minimum, respectively, while Zrcicase,start
and Zyejease,end are the first data points larger than the zero
baseline before and after the local maximum, respec-
tively. Furthermore, fpress start and Zrelease,ena are selected
to represent the tap event, which are simplified to be
Tpress and Trelease hereafter.

Finally, we obtain an M -tap event sequence as

t t t
press,1  lpress,2 - lpress,M 6
) ( )

V =
cee trelease,M

trelease, 1 trelease, 2

from which we can derive a feature vector F =
[Fla ) FM*l]v where F; = tpress,iJrl - trelease,i-

The aforementioned threshold-based empirical process can
extract most tap events in the dataset, but there are some
exceptions which may cause false or missed detections

—
| Release !

(b) Case 2: Missing samples.
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(c) Case 3: Slow press or release.

Three cases in which the threshold-based detector does not work. In all three figures, the top curves represent the phase difference A¢;, and the

1) Case 1: Finger Vibration: Even a tiny vibration of the
user’s finger tip can induce a large phase change in the
backscattered signals, which may be similar to that associated
with a real tap event and thus make the threshold-based
detector output a fake tap event. Fig. 9(a) shows an example.
When the user presses the RFID card, the phase of the
backscattered signal decreases. The user’s finger stays on the
tag for a while after touching the tag, during which the phase
is stable. Then the user releases his/her finger, so the phase
returns to the previous value. When comparing Fig. 9(a) with
Fig. 5(a) which corresponds to a standard tap event, we can see
a bump at the bottom in Fig. 9(a) in contrast to the flat bottom
in Fig. 5(a). That bump is caused by the finger vibration. The
threshold-based detector detects two continuous tap events as
the top curve in Fig. 9(a). This kind of false detections cannot
be eliminated by simply raising the threshold, as the phase
changes induced by different users’ finger movement may vary
a lot.

E. Case 2: Missing Samples

The RFID reader cannot maintain a consistent query rate.
In particular, the reader may occasionally stop querying the
tag for a few hundred milliseconds, during which some
backscattered signals relating to true tap events are lost. The
incomplete signals may cause missed tap-event detections.
As exemplified in Fig. 9(b), only a release event is detected,
while the samples ahead of the release event are missed. This
case can be easily detected because all the phase samples have
corresponding timestamps. More specifically, if the difference
of timestamps between two samples are much larger than the
sampling period, there are most likely missed samples between
them.

F. Case 3: Slow Press/Release

Some users may press or release their fingers too slowly.
If we compare Fig. 9(c) with Fig. 5(a), the phase caused by a
slow press in Fig. 9(a) decreases much more slowly. Therefore,
the corresponding phase difference A¢; stays low for a long
while and does not exceed the threshold. We have the similar
observation for a slow release. Slow finger presses and releases
both lead to missed tap-event detections.
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Fig. 10. Eliminate rate variations via DTW.

To solve the above issues, an absolute phase-based cor-
rection mechanism is developed to mitigate the drawbacks
of the threshold-based detector. In Section V-C, we use the
phase difference instead of the absolute phase to mitigate
the phase discontinuity issues caused by frequency hopping.
The absolute phase ¢; can be easily reversed from A¢; by
summing up. The correction process is as follows.

1) To prevent the fake events from been detected, the
detector checks the amount of the absolute phase change
during finger press or release. If [¢,.. . = Ptpress.cna| < 01
OF | Pt se st — Plretease.cna | < 01 the detected press (release)
events are considered fake events and then ignored.
The threshold 6; can be obtained empirically through
experiments.

2) Since cases 2 and 3 have the similar phase difference
curves and both lead to missed tap-event detections,
we use the same strategy to correct the detection results.
If there is any unpaired press or release event that satisfy
|¢tpress.smr( - ¢tpress,end| > 51 or |¢trelease,s!an - ¢trelease,end| > 51 >
missed detections are considered happening. We empir-
ically make up the missed tap event by Zpregs start =

trelease, start Trelease or trelease, end — tpress, end — Tpress»

where Tielease and Tpress denote the duration of the
detected but unpaired release or press event, respectively.

G. Rhythm Classification

The backend server builds a rhythm classifier during the
enrollment phase. To do so, it instructs the user to per-
form rhythmic taps in accordance with his/her secret song
segment multiple times. The resulting phase-difference vec-
tors may vary due to slight tapping-rate variations. So we
apply Dynamic Time Warping (DTW) [7] to align all the
phase-difference vectors to that of the first acquired tapping
rhythm. Fig. 10(a) shows two examples for the same rhythm
performed by the same volunteer with different tapping rates.
We use DTW to warp the original curve to the nominal curve.
The results in Fig. 10(b) demonstrate the efficacy of DTW

Fig. 11. Complex demodulated signals received by the reader.

on handling the tapping-rate variations. Then we obtain a
feature vector from each aligned phase-difference vector and
pad zeros in the end (if needed) to make all the feature vectors
have the same length. Finally, we use the resulting feature
vectors to train a rhythm classifier based an any established
machine learning technique. We compare the performance
of one-vs-all linear Support Vector Machine (SVM), Neural
Networks (NN), and Convolutional Neural Networks (CNN)
in Section VII. During each authentication session, the server
explores the same processes to extract a tapping rhythm and
then test it with the rhythm classifier.

VI. ANTI-EAVESDROPPING VIA PHASE HOPPING

In this section, we present a phase-hopping technique to
prevent a capable adversary from acquiring the legitimate
tapping rhythm from sniffed RFID signals. Below we first
illustrate the rhythm-eavesdropping attack, followed by the
motivation for using phase hopping as a defense. Then we
detail the protocol design and analyze its security.

A. Rhythm-Eavesdropping Attack

We first explain the principle with which the RFID reader
extracts the signals backscattered by the RFID card. As shown
in Fig. 1, there are two possible voltage levels in FMO symbols.
The card only backscatters when transmitting high-voltage
pulses. Consider the query protocol in Fig. 2. The symbols
received by the reader between its two consecutive commands
(e.g., Query and ACK) can be classified into two states (S1
and S2). The symbols in S1 contain only constant CW, while
those in S2 are the superposition of CW and backscattered
signals. For simplicity, we represent the symbols in S1 and
S2 by two single points in the complex I-Q plane in Fig. 11,
corresponding to vector Vy, and Vg, respectively. The phase
of backscattered signals can be derived as [8]

o= aI‘CCOS(M). 7
e
The phase reports from the reader correspond to the samples of
¢ above. As said, the phase-sampling frequency in the Impinj
R420 reader is about 4 ms.

To launch the rhythm-eavesdropping attack, the adversary
can just passively sniff the reader-card communications with
its own RFID reader or a software-defined radio. After clas-
sifying sniffed symbols into S1 and S2, it uses the same
process above to extract ¢. Next, it explores the workflow
in Section V to acquire the legitimate tapping rhythm. Finally,
it can carefully study the tapping rhythm and reproduce it
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Fig. 12. Illustration of reader-phase hopping. (a) CW phase shift for data-0
symbol. (b) Constellation diagram of data-O symbol with phase hopping.

by hand or even through a programmable robotic arm on
the lost/stolen/cloned RFID card. Since this attack directly
exploits physical-layer RFID signals, it cannot be thwarted
by encrypting protocol messages at the application layer.

B. Phase Hopping to Mitigate Rhythm Eavesdropping

We propose to let the RFID reader emit CW with random
phases to counteract the rhythm-eavesdropping attack. The
objective is to prevent the adversary from obtaining matching
symbols in states S1 and S2, so it cannot derive the correct
phases of backscattered signals as in Fig. 11.

Fig. 12 explains the intuition of our defense. Assume that
the RFID card is backscattering a data-0 symbol. As said
above, the card only backscatters the high-voltage part.
As shown in Fig. 12(a), we let the reader set the CW phases
to 7/6 and 7/3 during backscattering and non-backscattering,
respectively. The adversary again tries to cluster sniffed sym-
bols into states S1 and S2. Due to phase hopping, the Sl
symbols that correspond to non-backscattering has a phase
offset of /3, labeled by S1” in Fig. 12(b). The true S1 symbol
matching the S2 symbol, however, should have a phase offset
of 7/6, labeled by S1 in Fig. 12(b). Since the adversary does
not know the true CW phase during backscattering, it can only
use the symbols in S1’ and S2 to derive a wrong phase ¢'.
But the reader knows the true CW phase or S1 symbol and
can thus derive the correct phase ¢.

C. Protocol Design

It is very challenging to properly implement the
phase-hopping idea above. In particular, our example in Fig. 12
assumes perfect reader-tag synchronization such that the reader
knows exactly when backscattering occurs and thus when to
change the CW phase. This assumption is impossible to hold
in practice. Therefore, the adversary may still be able to obtain
matching symbols in S1 and S2 to derive the correct phase and
eventually the legitimate tapping rhythm. A tempting solution
is using a very short hopping interval, which nevertheless
may negatively affect the reader’s capability to recover the
correct phase and thus the tapping rhythm. It is thus critical
to determine the optimal phase-hopping interval to strike a
balance between attack resilience and system correctness.

We illustrate our phase-hopping protocol with a simplified
version of the query protocol in Fig. 2. Assume that the
backend server acquires and validates the card’s EPC with the
protocol in Fig. 2. It then instructs the RFID reader to initiate
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Fig. 13. Timing diagram of phase hopping.

additional query rounds to acquire the user’s tapping rhythm.
Each query round consists of a Query message followed by a
CW period of length 77 + T 4+ TrN16, Where T4 and T, are
random variables mentioned in Section II. In the original
RFID protocol, the CW phase is constant. Our goal now is
to determine when phase hopping should start/stop and how
often it should be in each CW period.

The begin and end of phase hopping depend on Ti.
According to Section II, T is in [238 us,262 us] with the
nominal value equal to 250 ps. We also measure the actual
distribution of 7} over 5,639 card replies. Since 98.92% of
T are between 244 ps to 247 ps, it is safe to conclude that if
the phase-hopping duration covers [244 us, 247 ps + Traie)s
almost all the backscattered signals associated with RN16 can
be covered.

The next challenge is to determine the hopping interval 7,
which should be as short as possible for high attack resilience.
The minimum 7 is hardware-specific and empirically set to
r =1 =5 pus in our USRP implementation, where
Tyi = 1/BLF = 25 pus denotes the FMO symbol duration
introduced in Section II. Ideally speaking, each CW phase
value leads to a unique pair of S1 and S2 symbols as shown
in Fig. 11. In practice, we can only obtain two clusters of
symbols associated with S1 and S2, respectively, which are
referred to the S1 and S2 clusters for convenience. The RFID
reader needs to obtain the matching S1 and S2 clusters for at
least one random CW phase to recover the correct phase for
the backscattered RN16. Our experiments reveal that strictly
sticking to 7 would induce too many randomly distributed
symbols in the I-Q plane, which make it very difficult for the
reader to do proper symbol clustering.

We tackle the above issue by introducing a short phase-
discovery period lasting + that must satisfy two requirements.
First, it starts from a random hopping interval hard to predict
by the adversary. Second, it covers at least one phase inversion
in the FMO symbols of the RN16 message. An RN16 message
comprises a 6-bit preamble, a 16-bit random number, and one
dummy bit. According to FMO encoding in Fig. 1, there is
a phase inversion at every symbol boundary and also one
in the middle of each data-0 symbol, but the FM0O pream-
ble contains a phase-inversion violation at the fifth symbol
labeled “v”. So the longest time that the RFID card does not
invert the signal phase is 1.5 T};. Since the reader does not
know when backscattering (i.e., the RN16 transmission) starts,
we set v = 2T,; = 107 to satisfy both requirements above.
The phase-discovery period obviously consists of 10 hopping
intervals. In addition, the reader uses the same CW phase in the
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Fig. 14. (a) The I/Q signals received by the RFID reader, which con-

tains the RN16 response from the RFID tag; (b) The amplitude (1/12 + Q2)
of the 1/Q signals in Fig. 14(a) and the detection threshold used for detecting
the positive and negative edges.

odd-numbered hopping intervals and performs random phase
hopping in the rest intervals of the phase-discovery period.

Now we explain the protocol details with the timing dia-
gram in Fig. 13. After sending the Query message, the
RFID reader starts the phase-hopping duration at 7] which
is divided into short hopping intervals of 7 = 5 us long.
We require the phase-hopping duration to at least cover the
range [244 ps,247 us 4+ Trig), where Trnie = 575 pus [3].
So we set T] = 240 ps and the phase-hopping duration to
600 ps long which corresponds to 120 hopping intervals. For
each rhythm-query round, the reader determines 24 CW phase
values

© = [Oinit, Ginit + 1, Oinic + 2, . . ., Ginie + 23], (8)

where iy is a random integer in [0,360). Assume that the
phase-recovery period starts at 77 + n7, where n € [0, 110]
is randomly chosen by the reader because the phase-hopping
duration lasts 120 hopping intervals. In addition, the reader
randomly selects Oreserve € © and uses it for the five
odd-numbered hopping intervals (represented by lined blocks)
in the phase-recovery period. Finally, the reader performs
random phase hopping across the remaining 23 phase values
in the rest 115 hopping intervals (represented by gray blocks)
such that each phase value in © (including Geserve) is used
exactly five times in each rhythm-query round.

Fig. 14(a) gives an example for the efficacy of our protocol,
which is based on our prototyping implementation on a USRP
2954R device. The phase-hopping duration is from 0.1 ms to
0.7 ms, and the reader’s received signals in the phase-recovery
period are enclosed by the black rectangle. Since the reader
knows exactly when the phase-recovery period starts, it can
precisely locate the symbols associated with the constant
phase Oreserve. As shown in Fig. 15(a), the reader can easily
cluster these symbols into states S1 and S2 whereby to extract
the correct phase of backscattered signals. To highlight the
correctness of our protocol, we show complete phase plots
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Fig. 15. (a) Extracted samples for phase recovery; (b) The adversary’s sniffed
symbols for Fig. 14(a).
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Fig. 16. Phase recovered by the reader.

obtained by the reader in Fig. 16 with our phase-hopping
protocol, which match well with those on a traditional RFID
reader without phase hopping [4]. We also demonstrate the
decoding correctness of the proposed protocol using Fig. 14(b)
which plots the amplitude of the I/Q signals in Fig. 14(a).
The red dash line is the threshold used for detecting the
positive and negative edges of the backscatter signal. The
detection threshold is the average amplitude with window
length equal to 500, according to Nikos’ implementation [9].
Although the amplitude is slightly distorted due to the 1/Q
imbalance, the positive and negative edges are still perfectly
separated by the detection threshold, and the decoding proce-
dure is not affected by phase hopping. The proposed random
phase-hopping protocol only shifts the phase of the continuous
wave. Since phase shifting theoretically does not change the
signal amplitude, the amplitude-based decoder is not affected.
In the experiment, we also observe that the RFID reader with
random phase hopping has the similar reading rate to the
original reader. In contrast, the adversary does not know when
the phase-recover period starts. So it has to exploit all the
sniffed symbols for phase recovery, which is almost impossible
as shown in Fig. 15(b).

D. Resilience to Advanced Eavesdropping

The proposed phase-hopping protocol can thwart basic
eavesdropping attacks in which the adversary has only one
sniffer that overhears the superposition of the backscattered
signal and CW with random phase hopping. Now we analyze
its resilience to advanced eavesdropping attacks in which the
adversary has an additional sniffer at distance d; from the
reader and ds from the card. The adversary can also vary
dy and dy arbitrarily. Theoretically speaking, the second sniffer
also receives the superposition of the backscattered signal and
CW with random phase hopping. Assume that the adversary
can make dy large enough such that the backscattered signal
is attenuated too much to detect, while keeping d; sufficiently
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small such that the CW signal is still strong enough. The signal
overheard by the second sniffer thus corresponds to CW alone.
The adversary can then derive the phase-hopping sequence
and correlate it with the signals obtained by the first sniffer to
recover the phase information of backscattered signals.

To analyze the feasibility of the advanced eavesdropping
attack above, we assume the free-space path loss (FSPL)
model for RFID signal propagation, FSPL = (454)2, where d
is the distance between antennas, and A is the CW wavelength.
Assume that the RFID card is at distance dy from the reader.
The power of the reader’s signal at the card is Pq =
P, Gt(F):iO)Q, where P, is the reader’s transmission power, d
is the distance between reader, and (; is the reader’s antenna
gain. According to [10], the EIRP (Equivalent Isotropically
Radiated Power) of passive RFID cards is

4o o
— = PGi—
A2 drd3

where o denotes the tag’s radar cross section (RCS) [10]. o
mainly depends on the impedance of card antenna and chip
and depicts the backscattered power strength tag.

The second sniffer receives the superposition of CW and
the backscattered signal. The signal strength for CW can be
expressed by

EIRP.yq = Reader (9)

P.G.G, A
— = P,G,G, (—
FSPLreader e T(47Td1) '
where G, denotes the second sniffer’s antenna gain. Simi-

larly, the signal strength for the backscattered signal can be
expressed by

Pew,a, =

EIRP ¢arq Gy o2
FSPLycader (4m)3d2d2"

Let 7x and Tge. denote the minimum signal strengths that the
sniffer can detect and decode RFID signals, respectively. The
advanced eavesdropping attack works if and only if Pew 4, >

Tdee and Pgs g, < Tix can simultaneously hold. It is equivalent
for the adversary to find d; and d» that satisfy

Pss.q, = = P,G/G,

dl é PthGT i)2
Tdec 47
and
2
d2 > PthGr oA

- T (4m)3d3

The above requirement corresponds a vulnerable region out-
side the circle centered at the card with radius ds and inside
the circle centered at the reader with radius d;. In Section VII,
we experimentally show that the vulnerable region can be very
difficult or infeasible to find in practice.

VII. EVALUATION
A. Experimental Setup
We use two Impinj R420 readers (GX21M and USA2MI1
models) with Laird S9028 antenna. GX21M does not use
frequency hopping, while USA2M1 does. The data from
USA2M1 are calibrated with the method in Section V-C and
then combined with the data from GX21M. We use three
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Fig. 17.

Experiment setup.

types of RFID tags, including SMARTRAC R6 DogBone,
Impinj ES1, and Alien 9640. In addition, we prototype the
phase-hopping protocol on a USRP 2954R and also used an
R&S FSVR7 real-time spectrum analyzer for signal analysis.

We compare the classification performance of SVM, NN,
and CNN. The comparison is based on the SVM toolbox in
Matlab and the NN and CNN implementations in PyTorch.
We use a fully connected NN with one hidden layer and
256 perceptions. In addition, the CNN we use has two 1D
convolutional layers and a kernel size of 2. All the training and
classification procedures are performed on a Ubuntu desktop
with i7-8700k CPU and 16 GB RAM.

We recruite 19 volunteers from China and US who are either
undergraduate or graduate students. The data-collection setup
is shown in Fig. 17. Each volunteer taps a random RFID
tag 40 times according to his/her self-chosen rhythm. The
volunteers are asked not to tap the chip position of the tag as
described in the previous section. Most chosen rhythms last
6 s to 12 s with the average and variance equal to 9.61 s and
5.86 s, respectively. The RFID reader-tag distance is always
about 40 inches. We collect 760 tapping rhythm samples in
total.

B. Resilience to Brute-Force Attacks

We first evaluate the performance of RF-Rhythm under the
brute-force attack. For this evaluation, we randomly choose
K rhythm samples from each volunteer to train one-vs-all
classifiers. The remaining rhythm samples are treated as the
testing set. We use a modified K-fold cross validation method
to eliminate the potential dataset bias. K denotes the number
of training samples and can be used to represent the duration
of user enrollment phase. A smaller K means that a legitimate
user can input his/her tapping rhythm fewer times in the
enrollment phase, leading to shorter enrollment time and
higher usability, and vice versa. When the classifier of each
volunteer is tested against the data samples of all the other
19 volunteers, it amounts to launching a brute-forth attack on
RF-Rhythm.

Fig. 18 shows the testing accuracy (ACC), false positive rate
(FPR) and false negative rate (FNR) of SVM, NN and CNN
classifiers. Overall, RF-Rhythm can admit legitimate users
and reject random impostors with overwhelming probability
under all three classifiers. The ACCs of SVM, NN and
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TABLE II

CLASSIFICATION ACCURACY FOR ENROLLMENT-AUTHENTICATION
LOCATION VARIATIONS

11

TABLE III

ACCURACY AND RECALL RATES FOR DIFFERENT
ELAPSED-TIME SETTINGS

CNN are 95.91%, 95.04%, 95.40% at K = 4, and 98.39%,
98.21%, 99.11% at K = 20, which are similar. The FPRs
for three classifiers are 0.24%, 0.38%, and 0.35%, which
means all three models are resilient to the brute-force attack,
and SVM shows the better overall performance. Especially,
the performance of CNN fluctuates when K increases, which
contradicts the intuition that its performance should improve.
This is because the training dataset is not large enough to feed
the neural network.

Since the same user may perform enrollment and authenti-
cation at a different distance from the RFID reader, we also
evaluate the impact of this distance factor. In this experiment,
we place an RFID card at 20, 40, 80, and 120 inches
from the RFID reader and let a random volunteer input
his tapping rhythm 40 times at each testing location. Then
we train a classifier for the volunteer at each location by
using his rhythm samples collected there and the samples
of all the other 18 volunteers as the training data. Finally,
we test each obtained classifier against the volunteer’s rhythm
samples collected at the same and different locations. Table II
shows the classification accuracy for this evaluation, where
E1&T1, E2&T2, E3&T3, and E4&T4 denote the enrollment
and testing locations at 20, 40, 80, and 120 inches, respec-
tively. If the enrollment and testing locations are the same,
we randomly divide the volunteer’s samples at that location
into 2 parts for training and testing, respectively; otherwise,
all the 40 samples are used for training in each enrollment
location. The results represent the average of 10 runs. It is clear
that RF-Rhythm is robust to enrollment-authentication location
variations.

C. Robustness to Elapsed Time

Now we evaluate the robustness of RF-Rhythm to the
elapsed time after the user enrolls. For this experiment,
we recruit 10 new volunteers from US. Each volunteer
taps a random tag 40 times during the enrollment phase.
We combine the rhythms collected during the enrollment
phase and all the previous collected rhythms as the train-
ing dataset. We let each volunteer come back after 1 hour,
1 day, 3 days, and 10 days, and recollect his/her rhythms
5 times each time as the testing dataset. The training and
testing processes for each classifier are repeated 10 times. The
average accuracy and recall rates are shown in Table III. All
three classifiers perform well over 4 subsets of testing data,
especially the CNN because of the increased training dataset
size. The results demonstrate the robustness of RF-Rhythm
over a long period, in which the user can easily reproduce
his/her rhythmic taps according to a self-selected favorite song
segment.

T el s TR T T s B 5 Tn 1 hour 1 day 3 days 10 days
BT [ 10 | 0925 05 | 09 | 10 | 0925 08 | 09 | 10 | 0975 09 | 095 SVM | 0.998/1.00 1.00/1.00 0.995/0.920 | 0.998/0.940
B2 1o 10 | To oS 10 [ 1o [ 10 0o5] To | fo[ 10| 0% NN | 0.990/0.948 | 0.996/0.980 | 0.991/0.950 | 0.996/0.976
F1 [ 095 10 | 10 | 092 10 | 10 | 095 095 ] 10 | 10 | 10 | 10 CNN | 1.00/1.00 1.00/1.00 1.00/1.00 1.00/1.00
TABLE IV

REJECTION RATE (%) FOR VISUAL EAVESDROPPERS

SVM NN CNN
one observation, one try 94.28 | 98.58 | 95.72
arbitrary observations, 4 tries | 92.14 | 91.78 | 92.86

D. Resilience to Visual Eavesdropping

We also evaluate the resilience of RF-Rhythm to visual
eavesdropping. In this evaluation, we use a high-definition
smartphone to video-record each volunteer’s entire
rhythm-tapping process as shown in Fig. 19. Then we
recruit five volunteers that act as attackers to watch all the
19 videos and then emulate the tapping rhythms they observe.
We consider two scenarios. First, each attacker has a one-time
watching of each video and then tries to perform the observed
rhythm once. This scenario emulates the shoulder-surfing
attack. Second, each attacker can watch each video as many
times as they want and then performs each perceived rhythm
four times. This scenario emulates the video-taping attack via
a spy camera. We totally collect 475 attack samples. Then
we build a classifier for each of the 19 volunteers with all
the aforementioned 760 rhythm samples as the training data.
Finally, we test each attack sample with the corresponding
volunteer’s classifer.

Table IV shows the rejection rate for visual eavesdrop-
pers, which represents the average of 10 runs. We can see
that RF-Rhythm has strong resilience to visual eavesdroppers
under all three classification methods. In addition, a visual
eavesdropper can intuitively achieve a higher success rate with
more observations and authentication attempts. RF-Rhythm
can rate-limit unsuccessful authentication attempts to provide
a stronger defense.

E. Resilience to Basic Rhythm Eavesdropping

Next we examine the efficacy of our phase-hopping protocol
to a thythm eavesdropper with a single sniffer. As shown in
Fig. 15(b), the adversary can roughly cluster sniffed symbols
into states S1 and S2, respectively. But it cannot precisely
find the matching S1 and S2 symbols of the same CW
phase. We assume that the adversary is very powerful and
knows how our phase-hopping protocol works. Since the CW
phase in each query round takes random values in © =
[Oinit, Oimit + 1, Oinie + 2,. .., binie + 23], we assume that the
adversary can estimate a candidate phase vector ©’ from
sniffed S1 symbols. Due to noise, interference, and processing
errors, ©' may overlap but is usually much larger than ©. The
symbols in ©’ can be much fewer than sniffed S1 symbols.
Then the adversary picks an arbitrary sniffed S2 symbol,
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Fig. 18. The accuracy (ACC), false positive rate (FPR) and false negative rate (FNR) of SVM, NN and CNN.

TABLE V
POWER MEASUREMENTS FOR ADVANCED RHYTHM EAVESDROPPING

do/iIlCh PCW,dl /dB m PBS do /dB m PCW dy — PBS do /dB m
Fig. 19. Recorded rhythm tapping process. 10 -3.30 -27.91 24.61
40 -7.98 -27.00 20.78
denoted by sy, and uses each S1 symbol in ©’ as a candidate 80 -10.15 -24.02 14.53
120 -14.52 -26.43 12.29

matching symbol for sy to derive a candidate phase of the

backscattered RN16. The probability of a correct guess is . . .
simply 1/|0’|. Each rhythm-query round is about 2.179 ms eavesdropping attack succeeds if and only if Pew g, > Tgec and
Pgs.q, < Tix can simultaneously hold. This requires Fcw 4, —

long, and the average tapping-rhythm duration is 9.61 s in P N N B Thi
our experiments. So we need about 4,410 rounds to cover and BS,d> = Tdec — Trx = 25.23 dBm per our measurements. This

detect an average tapping rhythm. The probability that the requirement cannot be satisfied according to Table V, so the

adversary can recover the correct tapping rhythm from sniffed advapced egvesdrop ping attack would fail. .
5 It is possible that a more capable adversary with advanced

signals can be estimated by P = (1/|0'|)". For example, ) L \
if |©/| = 24]48|72, the adversary can succeed with negligible egulpment can successfully. overhear the legltllmate user’s tap-
probability. Therefore, our phase-hopping protocol is highly P8 rhyth.m. In§tead of being a perfect SO¥UUOH, RF—Rhy.thm,
effective against the basic rhythm-eavesdropping attack. however, just aims to enhance thf,: security of a traditional
RFID authentication system that is naturally vulnerable to
lost/stolen/cloned RFID cards. In other words, RF-Rhythm
significantly raises the bar for launching successful attacks on
We also evaluate the resilience of RF-Rhythm to advanced RFID authentication systems.
rhythm-eavesdropping attacks in which the adversary has two
sniffers at strategic locations. In Section VI-D, we identify a
theoretical vulnerable region in which this attack can succeed.
In this section, we show that the vulnerable region may not We evaluate the latency performance of RF-Rhythm based
be easily found by an adversary with reasonable equipment.  on our hardware and software configurations mentioned in
In this evaluation, we assume that the adversary places Section VII-A. For simplicity, we only report the data for
his second sniffer d; from the RFID reader and dy from K = 4 and K = 20, which corresponds to requiring a
the RFID card. For simplicity, we assume that the reader, user to input the chosen rhythm 4 and 20 times in the
tag, and sniffer are on the straight line. This is a reasonable enrollment phase, respectively. The average training time with
assumption because most commonly used RFID antennas are  SVM|NN|CNN is 0.39 s/0.07 s]0.22 s for K = 4 and
directional with a relatively focused and narrow radio wave 4.485|0.28 5|0.95 s for K = 20, respectively; the average test-
beam. We implement a EPC Gen2 RFID reader prototype [9] ing time with SVM|NN|CNN is 0.337 ms|0.067 ms|0.73 ms.
on an NI USRP 2954R and assume that the adversary has a  The classifier training and testing time is obviously negligible
similar sniffer device. We also use an R&S FSVR7 real-time for the backend server which can be much more powerful
spectrum analyzer for signal measurements. Recall that 7, and  than our machine. So the enrollment and authentication time is
Tdec denote the minimum signal strengths that the sniffer can  roughly K times of and equal to the tapping-rhythm duration,
detect and decode RFID signals, respectively. According to our  respectively. Since the average rhythm length chosen by our
measurements, 7x — —81.21 dBm and 7gec = —55.98 dBm. volunteers is 9.61 s, the enrollment and authentication times
To emulate the attack, we vary the RFID card-reader is both quite acceptable in practice.
distance dp from 10 to 40, 80, and 120 inches. For each
dp value, we measure the CW signal strength Fcw 4, and the .
backscattered signal strength Pgs g, at do = 40 inches from H. Usability Study
the RFID card, which also corresponds to d; = dp+40 inches. Finally, we evaluate the usability of RF-Rhythm by asking
This location is regarded as the sniffer’s initial location. The each volunteer to give a score between [0,5] (with 5 being
results are shown in Table V. Since we assume the reader- the highest) to each of the following questions: whether
card-sniffer line topology, Pcw,q, and FPgs g, are attenuated RF-Rhythm is easy to use (Q1), whether self-defined rhythms
by the same amount when d, and equivalently d; increase. are easy to memorize (Q2), whether the rhythm length is
According to our analysis in Section VI-D, the advanced appropriate (Q3), and whether RF-Rhythm would be easier

F. Resilience to Advanced Rhythm Eavesdropping

G. Latency
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TABLE VI
USABILITY SCORES
Mean | Standard Deviation | Min | Median | Max
Q1 | 421 0.63 3.00 | 4.00 5.00
Q2 | 421 0.79 3.00 | 4.00 5.00
Q3 | 4.15 0.60 3.00 | 4.00 5.00
Q4 | 452 0.61 3.00 | 5.00 5.00

to use with more practice (Q4). According to the results in
Table VI, RF-Rhythm is highly usable.

VIII. RELATED WORK

Rhythm-based authentication for mobile devices has been
explored. RhyAuth [11] is a two-factor rhythm-based authen-
tication scheme for multi-touch mobile devices. It requires a
user to perform a sequence of rhythmic taps/slides on a device
screen to unlock the device. In the follow-on work, Beat-
PIN [12] requires a user to tap the screen of a smartwatch to
unlock it. RF-Rhythm differs significantly from RhyAuth and
Beat-PIN in the application context, totally different rhythm-
extract techniques, adversary models, and countermeasures.

There is also significant effort on RFID security. For
example, novel cryptographic RFID authentication protocols
are presented in [13], [14], and [15]. Haitham [16] proposes
RF-Cloak to prevent eavesdropping attacks by randomizing
the modulation and channel. Selective jamming is proposed
in [17] to prevent unauthorized inquiries to RFID tags. Zanetti
and Danev [18] explore the time interval error, average
baseband power and spectral features to fingerprint RFID
tags. TapPrint [19] uses the phase of backscattered signals
combined with the geometric relationship to fingerprint RFID
tags. Hu-Fu [20] uses the inductive coupling of two tags to
fingerprint them. RF-Mehndi [21] identifies an RFID card and
its user simultaneously by exploring the backscattered signal
changes induced by the user’s fingertip on a specially build
passive tag array. RF-Rhythm explores COTS RFID tags and
is complimentary to the above work.

The phase information of backscattered RFID signals has
been explored in many applications, such as gesture recog-
nition [22], [23], action recognition [24], [25], orientation
tracking [26], mechanical features sensing [27], [28], and
localization [29]. RF-Rhythm is the first work to extract
a tapping rhythm from backscattered RFID signals and is
orthogonal to the above work.

IX. CONCLUSION

In this paper, we proposed RF-Rhythm, a secure and usable
two-factor UHF RFID authentication system which is resilient
to lost/stolen/cloned RFID cards. Comprehensive prototyped
experiments confirmed that RF-Rhythm has strong resilience
to common attacks on RFID authentication systems and is also
highly usable with short enrollment and authentication time.
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