FLOOD DEPTH ASSESSMENT WITH LOCATION-BASED SOCIAL
NETWORK DATA AND GOOGLE STREET VIEW - A CASE STUDY WITH
BUILDINGS AS REFERENCE OBJECTS

Boyuan Zou'?, Bo Peng?, Qunying Huang?"

'Department of Computer Science, University of Wisconsin-M adison, M adison, Wisconsin
2Spatial Computing and Data M ining, Department of Geography, University of Wisconsin-M adison, M adison, Wisconsin

T Email; ghuangd6@wisc.edu

ABSTRACT

Flood damage accurate assessment, such as flood depth, is
very helpful for disaster relief. However, most of existing
methods have some limitations, either the expensive data
requirement (e.g., hydrological observations), or only
producing a rough assessment with location-based social
network (LBSN) data. To obtain an accurate and real-time
flood damage assessment, this paper firstly collects pairs of
pre- and post-flood images for the same location from LBSNs
and Google Street View respectively. Next, buildings were
segmented in images using machine learning methods (e.g.,
Mask R-CNN). Finally, the rectifying and building height
extraction were developed to calculate the accurate value of
the flood depth by comparing the paired images. The method
was evaluated by using the real datasets generated fromflood
disasters in Japan and US. Experiment results show that the
proposed method provides an accurate and real-time flood
disasterassessment.

Index Terms—Damage assessment, Flood impact

assessment, socialmedia, machine learning, computer vision

1.INTRODUCTION

While disasters come in many forms, flooding is one of the
most increasingly frequent natural disasters. This is because
the flood disasters can be raised along with many other
different disasters (e.g., tsunamis and earthquakes), other
than only heavy rainfall and river erosion. The flood disasters
can cause the loss both in economy and humans’ lives. As the
most frequent natural disaster, flooding accounts for more
than 75% of federally declared disasters in the US [1]. Global
flood losses are projected to reach $52 billion by 2050, up
from $6 billion in 2005 [2]. Flood impact assessment,
including identification of inundation extent and depth, is
critical in both real-time and longer-term applications [3]. For
example, such assessments can be used to calibrate and
validate the models used for floodplain mapping (e.g.,
FEMA’s RiskMAP program) and to help with allocating
post-disaster infrastructure  reconstruction resources.
“Traditional” assessment of flood depth and extent requires
highly trained domain experts, who visually inspect damages,

high water marks, etc. [4], or intensive manual annotation of
remotely-sensed images to train classification models for
identifying damaged features [5] [6] [7].

In particular, hydraulic simulation models have been
developed to estimate the inundation level or flood water
depth [8]. However, these models require careful calibration
using expensive stream gage observations, which are often
sparsely distributed over a flooding area and fail to estimate
flood water depth with high spatial resolution [1] [9]. As an
alternative, computer vision techniques have recently been
applied for flood area detection and water level measurement
with images of flooding “scenes” recorded by cameras [10]
[11]. However, such models are often case-by-case efforts
with “handcrafted” input features, leading to poor
generalizability. Additionally, these techniques cannot easily
assimilate large-scale datasets,such as crowdsourced images
(e.g., photos from location-based social networks [LBSN]).

To our best knowledge, few studies have investigated
flood disaster accurate assessment methods using LBSN
based images for a specified area. For example, Meng et al.
investigated the flood depth estimation based on state-of-the-
art deep learning technique and publicly available camera
images from the Internet and social media [12]. Specifically,
human objects are detected and segmented from flooded
images with MaskR-CNN [13] to infer the floodwater depth.
However, this method with human objects as reference can
hardly measure the flood more than the height of a human
object (i.e., 2 meters).

To overcome the above limitations, this study proposesa
real-time method of flood disaster assessment based on the
real-time analysis and comparison from images between
ILBSN and Google Street View and uses buildings as
reference objects. The method was evaluated with the real
datasets related to flood disasters in Japan and US.
Experiment results show that this method provides an
accurate and real-time flood disaster assessment. Major
contributions of this study include the following:

(1) The proposed method rectifies the raw image databy
leveraging Uncalibrated Stereo Image Rectification [14]
collected from LBSN and Google Street View and generates
apair of pre- and post-disasterimages related to flood disaster
for the same location. This enables to make the real-time
comparison between apair of images. (2) The values of flood
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depth computed by comparing from image pair for flood
disasterassessment demonstrate the superiority of our model
with respectto accuracy and real-time performance.

2. METHODLOGY
2.1. Data Collection

This paper develops a workflow of flood depth estimation
based on camera photos and machine learning techniques
using buildings as reference. Within this framework, the
flooded building photos (i.e., post-flood photos; Fig 1a) from
news and social media (e.g., twitter) are first collected. Then,
the exact location information of each building is extracted
from geo-tags (i.e., coordinates) attached each photo or by
natural language processing techniques through analyzing
descriptive information (e.g., the text or the name) of the
photos. Next, with the location information, we collected the
pre-flood photo of the same building from Google street view
(Fig 1b). Note the photos are selected based on the
availability of location information, image quality, and
obstacles (e.g., trees) in front of the buildings. In particular,
only photos with location information are selected. Also,
since the image quality will affect the feature extraction and
feature matches between the post- and pre- flood photos,
images with low quality (i.e overexposure or low resolution)
are discarded. Moreover, if the building is partially blocked
by obstacles, the building segmentation algorithm (i.e., Mask
R-CNN; [13]) may fail to get the accurate mask of the
building. Even with those restrictions, our method is still
applicable for large-scale flood depth estimation as a large
number of photos could be taken from different angles by the
citizens during a disaster. Besides, to derive the depth offlood
of an area, it is not necessary to calculate the flood depth of
each building of that area, only a few buildings are sufficient.

2.2. Building Segmentation

Next, MaskR-CNN [13] is designed to segment the buildings
in the photos. However, it is difficult to find a suitable dataset
for training the Mask R-CNN [13]. The building images in
most training datasets are remote sensing images instead of
street view images. While this paper uses the Cityscape
dataset [15], the training result is not ideal even though
various hyperparameter (e.g., model training epochs and
learning rate) tuning strategies are tested. Indeed, Cityscape
dataset provides a great result in detecting certain objects
(e.g., cars). However, it does not work well for building
detection due to several reasons: (1) Many obstacles (trees,
and billboards) can block the buildings; (2) The labelling
quality of the building cannot be guaranteed, leading to the
loss of some general building structure features (e.g., wall,
comer, roof), and therefore some masks of building will not
even be detected. To improve the model segmentation result,
the authors relabeled 500 of those training data. While the
result was improved, it is still not accurate enough with a

small sample size. As such, for the experiment purpose, we
manually labeled several building masks (e.g., Fig 2), which
in turn were used for subsequent water depth inference steps
(Section 2.3 — 2.4). Nevertheless, we will focus on optimizing
the image segmentation for a further improved result in future
work (Section 4).

Fig 1. FloodImage palr in Japan post-flood image in Japan collected from
Twitter (a), and corresponding pre-flooded image collected from Google
street view (b).

; a

Fig 2. Manually labeled mask of building in Fig 1.

2.3. Uncalibrated Stereo Image Rectification

Due to the compared images were taken by different cameras
at different positions and different angles, it is necessary to
rectify them to the same angle to make them comparable.
Specifically, SIFT algorithm [16] proposed by Lowe is used
to collect feature points. Compared to other algorithms, SIFT
is slow but more precise and it is scale-invariant. In other
words, it is robustin changes like affine distortion or change
in 3D viewpoints. After detecting the feature points and
creating descriptor, we use FlannBasedMatcher [17] to
compute matched features. However, there are lots of miss
matches in the results. Correspondingly, Lowe proposed a
filter algorithm using a distance ratio test to eliminate false
matches [16]. If the distance ratio between two nearest
matches of a considered key point is below a threshold, it is
treated as a good match [18]. The higher the ratio is, the more
matches the filter algorithm keeps, but with the lower
accuracy. After filtering, we used those matched feature
points to compute the fundamental matrix for image
rectification [14]. With matched feature points and
fundamental matrix as parameters for the Uncalibrated stereo
image rectification algorithm [14], we get the two
rectification homography matrix and put them in
cv.initUndistortRectifyMap function to get two mapping
matrices for each image. Fach mapping matrix maps each
image’s original x or y coordinate to new coordinate. With
those mapping matrices, we remap the images and obtain the
rectification result, making two images under the same scale
and thus comparable (Fig 3).



Fig 3. Rectified lmaéeé of Fig 1. filtered by a distance ratio of 0.68 g
Lowe filter algorithm.

Due to different conditions that the pictures were taken,
some images need to be preprocessed before moving to the
SIFT step. For example, the flood images are often taken on
cloudy day (Fig 4a), whereas Google street view images were
usually taken full of sunshine (Fig 4b). This can highly
influence the feature point detection and matching, leading to
inaccurate results. Herein, we used a Light averaging method
[19] by dividing the blocks into size of 16%16 and calculated
the average light, to compensate for dark areas and darken
bright areas, and then used Gauss Blur at the end to smooth
the image. Fig 5a and 5b are the corresponding result after
pre-processing images in Fig 4. The rectified results (Fig Sc
and 5d) demonstrate that pre-processing works quite well.
However, due to many differences mentioned above in the
pre- and post-flood image pairs, the feature points match of
some image pairs will still not be as perfect as two images
taken by the same camera at nearly the same time even after
preprocessing. As stated in data collect section, we will
discard those problematic data.

Fig 4. Image pair with light difference: (a) The post-flood image of the
building after flood collected from News, and (b) The comresponding pre-
floodimage collected from Google street view.

Since the extracted building masks (e.g., Fig 2) share the
same location of the original images (e.g., Fig 1 and 4),
applying the same remapping function on these masks can
also derive the rectified mask of each building object (e.g.,
Fig 6) onthe rectified images (e.g., Fig 5).

2.4. Building Height Extraction

The last step is to calculate the ratio of height of the
building of pre- and post-flood images. Here, we used some
vertical lines of the mask of the building (red lines in Fig 7)
as the height of the building. Those vertical lines are usually
formed by connecting the top and bottom comer of the
building. To get the vertical lines, we first use canny edge
detector ([20]; cv.Canny)to get the edges of rectified masks
and then use Hough transform ([21]; cv.HoughLinesP) to get
the line segments of the edges. Next, we can calculate the
angle of each line segment and only keeps vertical lines as
final result.

Fig 5. Co ;éspondinmages afterpreprossing and thenrectification: (a)
The post-flood image afterlight average method, (b) The pre-flood image
after light average method, and (c) and (d) are rectified (a) and (b).

a b

Fig 6. Corresponding mask afterrectification. (a) and (b) are corresponding
to Figlaand 1b, and (c) and (d) corresponding to rectified Fig4a. and 4b.
a b

Fig 8. The reference to calculate the real above water ratio for the
buildings in Fig 1 (left: square windows as reference) and Fig 4
(right: wall texture as reference)

3. EXPERIMENT RESULT

The experiment results in table 1 indicate that when using
Lowe algorithm to get inliers, the best parameter to get the
largest number of matches with the highest accuracy of the
matches is 0.68 or 0.67. Therefore, we will make the average
of those two rates to get the final ratio of the building above
the floodwater.



TABLE 1. DETECTED LENGTH (LEN) OF LINES
AND ABOVE WATER RATIOS

Fi | Distance | Start End Len | Rati | Avg Real
g ratio in [ point | point [ Rati | Rati
filter 0 0
la | 0.68 (1198, | (1239, | 144. | 0.82 | 0.84 | 0.83

766) 627) 92 5 5 9
1b (1107, | (1143, | 175.
801) 629) 73
la | 0.67 (1307, | (1322, | 161. | 0.86
636) 797) 70 6
1b (1154, | (1112, | 186.
639) 821) 78
4a | 0.68 (512, (514, 92.0 | 0.74 | 0.76 | 0.76
318) 410) 2 1 3 9~0.
4b (518, (524, 124. 808
316) 440) 14
4a | 0.67 (560, (593, 128. | 0.78
298) 422) 32 6
4b (560, (605, 163.
295) 452) 32

TABLE 2. ABOVE WATER RATIO TO FLOOD

DEPTH
Fi1 | Avg Real Wall Estimate Real height (m)
g ratio ratio height (m) | height (m)
1 0.845 | 0.839 [ 6.17 0.955 0.995
4 0.763 | 0.769~| 3 0.710 0.577~0.692
0.808

The real ratio of the flooding (i.e., ground truth) is
calculated through manually referencing key features of two
buildings, for example, the square windows and billboard
abovethe flood water (Fig 8a) or the texture of the wall (Fig
8b). Specifically, we calculated the height of the wall by
using the 3D ruler in Google earth pro and calculated the
flood depth according to ratio. However, for Fig 4, there is no
3D model ofthe building. As such, we had to use the altitude
difference of the ground and the top of the wall in google
street view, which may compromise the result accuracy. The
result is shown in table 2.

4. CONCLUSION AND FUTURE WORK

This work proposed a new method to estimate the flood
depth, which provides a more precise result than many other
existed researches. The pre- and post-flood buildings in
images were collected from LBNSs and Google Street View
and extracted for flood depth estimation. Due to the different
positions and angles from which the building was mostly
captured, these pair images need to be rectified by the
Uncalibrated Stereo Image Rectification algorithm [14],
which in tumn requires using SIFT to get feature points,
applying FlannBased Matcher to get feature points matches,
and then filtering the matches with specific distance ratio
[18]. Then, we can calculate the height ratio of the building
above the flood water in the rectified image pair, and the
value of flood depth was accurately derived (TABLE 2).
However, this research has several limitations, which indicate
future research directions. For example, as mentioned above,
due to the shortcomings of the current training dataset (i.e.,

Cityscape [15]), we manually labeled the masks of buildings
for this experiment. We will build a new dataset to help train
the model automatically.
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