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ABSTRACT 

 

Flood damage accurate assessment, such as flood depth, is 

very helpful for disaster relief. However, most of existing  

methods have some limitations, either the expensive data 

requirement (e.g., hydrological observations), or only 

producing a rough assessment with location-based social 

network (LBSN) data. To obtain an accurate and real-time 

flood damage assessment, this paper firstly collects pairs of 

pre- and post-flood images for the same location from LBSNs  

and Google Street View respectively. Next, buildings were 

segmented in images using machine learning methods (e.g., 

Mask R-CNN). Finally, the rectifying and building height 

extraction were developed to calculate the accurate value of 

the flood depth by comparing the paired images . The method 

was evaluated by using the real datasets generated from flood 

disasters in Japan and US. Experiment results show that the 

proposed method provides an accurate and real-time flood 

disaster assessment. 
Index Terms—Damage assessment, Flood impact  

assessment, social media, machine learning, computer vision 

 

 

1. INTRODUCTION 

 

While disasters come in many forms, flooding is one of the 

most increasingly frequent natural disasters. This is because 

the flood disasters can be raised along with many other 

different disasters (e.g., tsunamis and earthquakes), other 

than only heavy rainfall and river erosion. The flood disasters 

can cause the loss both in economy and humans’ lives. As the 

most frequent natural disaster, flooding accounts for more 

than 75% of federally declared disasters in the US [1]. Global 

flood losses are projected to reach $52 billion by 2050, up 

from $6 billion in 2005 [2]. Flood impact assessment, 

including identification of inundation extent and depth, is 

critical in both real-time and longer-term applications [3]. For 

example, such assessments can be used to calibrate and 

validate the models used for floodplain mapping (e.g., 

FEMA’s RiskMAP program) and to help with allocating 

post-disaster infrastructure reconstruction resources. 

“Traditional” assessment of flood depth and extent requires 

highly trained domain experts, who visually inspect damages, 

high water marks, etc. [4], or intensive manual annotation of 

remotely-sensed images to train classification models for 

identifying damaged features [5] [6] [7]. 

In particular, hydraulic simulation models have been 

developed to estimate the inundation level or flood water 

depth [8]. However, these models require careful calibration 

using expensive stream gage observations, which are often 

sparsely distributed over a flooding area and fail to estimate 

flood water depth with high spatial resolution [1] [9]. As an 

alternative, computer vision techniques have recently been 

applied for flood area detection and water level measurement 

with images of flooding “scenes” recorded by cameras [10] 

[11]. However, such models are often case-by-case efforts 

with “handcrafted” input features, leading to poor 

generalizability. Additionally, these techniques cannot easily 

assimilate large-scale datasets, such as crowdsourced images 

(e.g., photos from location-based social networks [LBSN]). 

To our best knowledge, few studies have investigated 

flood disaster accurate assessment methods using LBSN 

based images for a specified area. For example, Meng et al.  

investigated the flood depth estimation based on state-of-the-

art deep learning technique and publicly available camera 

images from the Internet and social media [12]. Specifically , 

human objects are detected and segmented from flooded 

images with Mask R-CNN [13] to infer the floodwater depth. 

However, this method with human objects as reference can 

hardly measure the flood more than the height of a human 

object (i.e., 2 meters).  

To overcome the above limitations, this study proposes a 

real-time method of flood disaster assessment based on the 

real-time analysis and comparison from images between 

LBSN and Google Street View and uses buildings as 

reference objects. The method was evaluated with the real 

datasets related to flood disasters in Japan and US. 

Experiment results show that this method provides an 

accurate and real-time flood disaster assessment. Major 

contributions of this study include the following: 

(1) The proposed method rectifies the raw image data by 

leveraging Uncalibrated Stereo Image Rectification [14] 

collected from LBSN and Google Street View and generates 

a pair of pre- and post-disaster images related to flood disaster 

for the same location. This enables to make the real-time 

comparison between a pair of images. (2) The values of flood 
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depth computed by comparing from image pair for flood 

disaster assessment demonstrate the superiority of our model 

with respect to accuracy and real-time performance.  

 

2. METHODLOGY 

 

2.1. Data Collection 

 

This paper develops a workflow of flood depth estimation 

based on camera photos and machine learning techniques 

using buildings as reference. Within this framework, the 

flooded building photos (i.e., post-flood photos; Fig 1a) from 

news and social media (e.g., twitter) are first collected. Then, 

the exact location information of each building is extracted 

from geo-tags (i.e., coordinates) attached each photo or by 

natural language processing techniques  through analyzing 

descriptive information (e.g., the text or the name) of the 

photos. Next, with the location information, we collected the 

pre-flood photo of the same building from Google street view 

(Fig 1b). Note the photos are selected based on the 

availability of location information, image quality, and 

obstacles (e.g., trees) in front of the buildings. In particular, 

only photos with location information are selected. Also, 

since the image quality will affect the feature extraction and 

feature matches between the post- and pre- flood photos, 

images with low quality (i.e overexposure or low resolution) 

are discarded. Moreover, if the building is partially blocked 

by obstacles, the building segmentation algorithm (i.e., Mask 

R-CNN; [13]) may fail to get the accurate mask of the 

building. Even with those restrictions, our method is still 

applicable for large-scale flood depth estimation as a large 

number of photos could be taken from different angles by the 

citizens during a disaster. Besides, to derive the depth of flood 

of an area, it is not necessary to calculate the flood depth of 

each building of that area, only a few buildings are sufficient. 

 

2.2. Building Segmentation  

 

Next, Mask R-CNN [13] is designed to segment the buildings 

in the photos. However, it is difficult to find a suitable dataset 

for training the Mask R-CNN [13]. The building images in 

most training datasets are remote sensing images instead of 

street view images. While this paper uses the Cityscape 

dataset [15], the training result is not ideal even though 

various hyperparameter (e.g., model training epochs and 

learning rate) tuning strategies are tested. Indeed, Cityscape 

dataset provides a great result in detecting certain objects 

(e.g., cars). However, it does not work well for building 

detection due to several reasons: (1) Many obstacles (trees, 

and billboards) can block the buildings; (2) The labelling  

quality of the building cannot be guaranteed, leading to the 

loss of some general building structure features (e.g., wall, 

corner, roof), and therefore some masks of building will not 

even be detected. To improve the model segmentation result, 

the authors relabeled 500 of those training data. While the 

result was improved, it is still not accurate enough with a 

small sample size. As such, for the experiment purpose, we 

manually labeled several building masks (e.g., Fig 2), which 

in turn were used for subsequent water depth inference steps 

(Section 2.3 – 2.4). Nevertheless, we will focus on optimizing  

the image segmentation for a further improved result in future 

work (Section 4). 

 
Fig 1. Flood Image pair in Japan: post-flood image in Japan collected from 
Twitter (a), and corresponding pre-flooded image collected from Google 

street view (b). 

 
Fig 2. Manually labeled mask of building in Fig 1. 

 

2.3. Uncalibrated Stereo Image Rectification 

 

Due to the compared images were taken by different cameras 

at different positions and different angles, it is necessary to 

rectify them to the same angle to make them comparable. 

Specifically, SIFT algorithm [16] proposed by Lowe is used 

to collect feature points. Compared to other algorithms, SIFT 

is slow but more precise and it is scale-invariant. In other 

words, it is robust in changes like affine distortion or change 

in 3D viewpoints. After detecting the feature points and 

creating descriptor, we use FlannBasedMatcher [17] to 

compute matched features. However, there are lots of miss 

matches in the results. Correspondingly, Lowe proposed a 

filter algorithm using a distance ratio test to eliminate false 

matches [16]. If the distance ratio between two nearest 

matches of a considered key point is below a threshold, it is 

treated as a good match [18]. The higher the ratio is, the more 

matches the filter algorithm keeps, but with the lower 

accuracy. After filtering, we used those matched feature 

points to compute the fundamental matrix for image 

rectification [14]. With matched feature points and 

fundamental matrix as parameters for the Uncalibrated stereo 

image rectification algorithm [14], we get the two 

rectification homography matrix and put them in 

cv.initUndistortRectifyMap function to get two mapping 

matrices for each image. Each mapping matrix maps each 

image’s original x or y coordinate to new coordinate. With 

those mapping matrices, we remap the images and obtain the 

rectification result, making two images under the same scale 

and thus comparable (Fig 3).  



 
Fig 3. Rectified Images of Fig 1. filtered by a distance ratio of 0.68 using 

Lowe filter algorithm. 

Due to different conditions that the pictures were taken, 

some images need to be preprocessed before moving to the 

SIFT step. For example, the flood images are often taken on 

cloudy day (Fig 4a), whereas Google street view images were 

usually taken full of sunshine (Fig 4b). This can highly 

influence the feature point detection and matching, leading to 

inaccurate results. Herein, we used a Light averaging method 

[19] by dividing the blocks into size of 16*16 and calculated 

the average light, to compensate for dark areas and darken 

bright areas, and then used Gauss Blur at the end to smooth 

the image. Fig 5a and 5b are the corresponding result after 

pre-processing images in Fig 4. The rectified results (Fig 5c 

and 5d) demonstrate that pre-processing works quite well. 

However, due to many differences mentioned above in the 

pre- and post-flood image pairs, the feature points match of 

some image pairs will still not be as perfect as two images 

taken by the same camera at nearly the same time even after 

preprocessing. As stated in data collect section, we will 

discard those problematic data.  

 

 
Fig 4. Image pair with light difference: (a) The post-flood image of the 

building after flood collected from News, and (b) The corresponding pre-
flood image collected from Google street view. 

Since the extracted building masks (e.g., Fig 2) share the 

same location of the original images  (e.g., Fig 1 and 4), 

applying the same remapping function on these masks can 

also derive the rectified mask of each building object (e.g., 

Fig 6) on the rectified images (e.g., Fig 5).  

 

2.4. Building Height Extraction  

 

The last step is to calculate the ratio of height of the 

building of pre- and post-flood images. Here, we used some 

vertical lines of the mask of the building (red lines in Fig 7) 

as the height of the building. Those vertical lines are usually 

formed by connecting the top and bottom corner of the 

building. To get the vertical lines, we first use canny edge 

detector ([20]; cv.Canny) to get the edges of rectified masks 

and then use Hough transform ([21]; cv.HoughLinesP) to get 

the line segments of the edges. Next, we can calculate the 

angle of each line segment and only keeps vertical lines as 

final result.  

 
Fig 5. Corresponding images after preprocessing and then rectification: (a) 
The post-flood image after light average method, (b) The pre-flood image 
after light average method, and (c) and (d) are rectified (a) and (b).  

 
Fig 6. Corresponding mask after rectification. (a) and (b) are corresponding 
to Fig 1a and 1b, and (c) and (d) corresponding to rectified Fig 4a. and 4b. 

 
Fig 7. Corresponding result after Hough Transform of Fig 6c and 6d 

 
Fig 8. The reference to calculate the real above water ratio for the 

buildings in Fig 1 (left: square windows as reference) and Fig 4 

(right: wall texture as reference) 
 

3. EXPERIMENT RESULT 

 

The experiment results in table 1 indicate that when using 

Lowe algorithm to get inliers, the best parameter to get the 

largest number of matches with the highest accuracy of the 

matches is 0.68 or 0.67. Therefore, we will make the average 

of those two rates to get the final ratio of the building above 

the floodwater. 

 



TABLE 1.  DETECTED LENGTH (LEN) OF LINES 

AND ABOVE WATER RATIOS 

 

TABLE 2. ABOVE WATER RATIO TO FLOOD 

DEPTH 
Fi

g 

Avg 

ratio 

Real 

ratio 

Wall 

height (m) 

Estimate 

height (m) 

Real height (m) 

1 0.845 0.839 6.17 0.955 0.995 

4 0.763 0.769~
0.808 

3 0.710 0.577~0.692 
 

The real ratio of the flooding (i.e., ground truth) is 

calculated through manually referencing key features of two 

buildings, for example, the square windows and billboard  

above the flood water (Fig 8a) or the texture of the wall (Fig  

8b). Specifically, we calculated the height of the wall by 

using the 3D ruler in Google earth pro and calculated the 

flood depth according to ratio. However, for Fig 4, there is no 

3D model of the building. As such, we had to use the altitude 

difference of the ground and the top of the wall in google 

street view, which may compromise the result accuracy. The 

result is shown in table 2. 
 

4. CONCLUS ION AND FUTURE WORK. 

 

This work proposed a new method to estimate the flood 

depth, which provides a more precise result than many other 

existed researches. The pre- and post-flood buildings in 

images were collected from LBNSs and Google Street View 

and extracted for flood depth estimation. Due to the different 

positions and angles  from which the building was mostly 

captured, these pair images need to be rectified by the 

Uncalibrated Stereo Image Rectification algorithm [14], 

which in turn requires using SIFT to get feature points, 

applying FlannBased Matcher to get feature points matches, 

and then filtering the matches with specific distance ratio 

[18]. Then, we can calculate the height ratio of the building 

above the flood water in the rectified image pair, and the 

value of flood depth was accurately derived (TABLE 2). 

However, this research has several limitations, which indicate 

future research directions. For example, as mentioned above, 

due to the shortcomings of the current training dataset (i.e., 

Cityscape [15]), we manually labeled the masks of buildings 

for this experiment. We will build a new dataset to help train 

the model automatically. 
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