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Abstract

Most existing criteria derived from progenitor properties of core-collapse supernovae are not very accurate in
predicting explosion outcomes. We present a novel look at identifying the explosion outcome of core-collapse
supernovae using a machine-learning approach. Informed by a sample of 100 2D axisymmetric supernova
simulations evolved with FORNAX, we train and evaluate a random forest classifier as an explosion predictor.
Furthermore, we examine physics-based feature sets including the compactness parameter, the Ertl condition, and a
newly developed set that characterizes the silicon/oxygen interface. With over 1500 supernovae progenitors from
9-27 M., we additionally train an autoencoder to extract physics-agnostic features directly from the progenitor
density profiles. We find that the density profiles alone contain meaningful information regarding their
explodability. Both the silicon/oxygen and autoencoder features predict the explosion outcome with ~90%
accuracy. In anticipation of much larger multidimensional simulation sets, we identify future directions in which
machine-learning applications will be useful beyond the explosion outcome prediction.

Unified Astronomy Thesaurus concepts: Core-collapse supernovae (304); Astronomy data analysis (1858);
Astrostatistics techniques (1886); Classification (1907); Random Forests (1935); Convolutional neural net-

works (1938)

1. Introduction

Machine learning (ML) has become an integral part of
astrophysics research in the recent decade (Ball & Brun-
ner 2010; Ivezi¢ et al 2014; Fluke & Jacobs 2020). In essence,
ML systems are computational tools that are efficient in
assimilating complex probability distributions. These distribu-
tions are ubiquitous in both observational and theoretical
astronomy. For example, characteristic separation of data
samples in the image domain has facilitated reliable classifica-
tion of galaxies (Aniyan & Thorat 2017; Cheng et al. 2020).
Similar success has been achieved in the time domain for
variable star classification (Naul et al. 2018; van Roestel et al.
2021). In addition, identification of outliers from data clusters
of known types, a technique known as novelty or anomaly
detection, enables the discovery of previously unknown objects
and new classes of objects (Tsang & Schultz 2019; Williamson
et al. 2019; Villar et al. 2020; Ishida et al. 2021; Malanchev
et al. 2021; Bengyat & Gal-Yam 2022).

Beyond classification and detection, one can regard multi-
physics simulation products themselves as the complex
distributions to be learned. Emulations of computationally
costly simulations can be generated quickly by sampling new
data points in the latent spaces that are trained to embody the
fully-fledged simulations (Caldeira et al. 2019; Mustafa et al.
2019; Vogl et al. 2020; Horowitz et al. 2021). Moreover, ML
systems are powerful tools for parameter inference, connecting
observables to physical parameters that are oftentimes
degenerate (Ksoll et al. 2020; Villanueva-Domingo et al.
2022; Villanueva-Domingo & Villaescusa-Navarro 2022).

Original content from this work may be used under the terms

BY of the Creative Commons Attribution 4.0 licence. Any further
distribution of this work must maintain attribution to the author(s) and the title
of the work, journal citation and DOI.

Parameters can even be distributions themselves, e.g., the
equation of state of neutron stars (Krastev 2022), the tensor
closure for neutrino transport (Harada et al. 2022), and
turbulence closures for subgrid modeling (Karpov et al. 2022).

However, entirely lacking is the application of ML
techniques to predicting core-collapse supernovae (CCSNe)
explosion outcomes. CCSNe simulations are computationally
expensive endeavors in both human and machine terms, and
thus are a ripe opportunity for ML application. The explosion
mechanism of CCSNe through the neutrino-heating mechanism
has been studied as a computational problem for more than half
a century (Colgate & White 1966; Bethe & Wilson 1985),
through both detailed computational simulations and much
cruder prescriptive methods (e.g., imposing a thermal bomb,
driving a piston, or other rudimentary prescriptions). Only in
the last decade have multidimensional simulations become the
mainstay, with various groups performing scores of two-
dimensional axisymmetric computations and tens of 3D
simulations. Though population suites of CCSNe have been
evolved in 2D (Ertl et al. 2016; Summa et al. 2016; Radice
et al. 2017; Burrows et al. 2018; Vartanyan et al. 2018;
Burrows & Vartanyan 2021; Kuroda et al. 2022) and, more
selectively, 3D (O’Connor & Couch 2018a; Summa et al. 2018;
Burrows et al. 2019; Glas et al. 2019; Nagakura et al. 2019;
Vartanyan et al. 2019; Kuroda et al. 2020; Burrows et al. 2020;
Obergaulinger & Aloy 2021; Vartanyan et al. 2022), develop-
ing hundreds, let alone thousands, of 3D simulations may not
be feasible in the coming decade.

To circumvent this limitation, and in order to explore the
explosion landscape by progenitor for final explosion energies,
observational signatures, and nucleosynthetic compositions,
various groups have developed CCSNe population studies
using simplified prescriptions in reduced dimensions. Different
such approaches include analytical approximations of
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protoneutron star cooling (Ugliano et al. 2012), PUSH (Perego
et al. 2015; Curtis et al. 2021), simple pistons (Sukhbold et al.
2016), and spherically symmetric turbulence models (STIR;
Mabanta et al. 2019; Couch et al. 2020), often calibrated to
SN1987a and the Crab and comparing the derived explosion
outcomes with various formulated predictions (e.g., the
antesonic condition, Pejcha & Thompson 2012; Raives et al.
2018; the Ertl criterion, Ertl et al. 2016; a semianalytical pre-
SN parameterization, Miiller et al. 2016a).

These methods rely on simplifying approximations for both
explosion modeling and explosion prediction. In light of this,
the motivation of our paper is to present a summary overview
of potential ML approaches to CCSNe outcome prediction as a
proof of concept of the eventual goal—developing ML
techniques, trained on the results of extant multidimensional
simulations, to predict explosion outcomes while circumvent-
ing costly detailed simulations. Our intent here is not to be
comprehensive, but rather to present a sample of the applicable
methods and to galvanize the use of these techniques more
broadly in the community. We wish to highlight the versatility
and potential future use of ML, and identify potential
difficulties and obstacles.

In Section 2, we describe our methodology including the
simulated data set (Section 2.1), the various physics-based
explosion conditions (Section 2.2), an unsupervised feature
extraction approach used to derive physics-agnostic explosion
criteria (Section 2.3), a baseline random forest (RF) classifier
used as an explosion outcome predictor (Section 2.4), and a
semisupervised label propagation approach (Section 2.5). In
Section 3, we present the results comparing the accuracy of the
various features in predicting explosion outcomes. We
summarize our conclusions in Section 4 and identify future
directions in Section 5.

2. Methods

Our goal is to survey various machine-learning approaches
in tandem with a selection of explosion criteria to study their
value in predicting explosion outcomes ab initio. These
explosion outcome predictors are trained and tested on a suite
of 100 2D axisymmetric CCSNe simulations run with the
radiation-hydrodynamic code FORNAX. FORNAX (Skinner
et al. 2019) is a multidimensional, multigroup code constructed
to study CCSNe. It features an M1 solver (Vaytet et al. 2011)
for neutrino transport with detailed neutrino microphysics and
an approximation to general relativity (Marek et al. 2006).

2.1. Data Sets

We selected a subset of 100 initial progenitor models from 9
—26.99 M, to evolve in 2D-axisymmetry (D. Vartanyan et al.
2022, in preparation) using FORNAX for typically 1 s after core
bounce to ascertain their explodability (discussed in more detail
in Wang et al. 2022). These models were evolved with neutrino
heating as the explosion mechanism, absent rotation, and
magnetic fields. The models had a resolution of 1024 x 256 in
r, 8 with outer radii extending from 30,000 km for the lower-
mass stellar progenitors and to 100,000 km for the most-
massive progenitors. These models were chosen to be
representative as much as possible of the Salpeter initial mass
function. They were selected to span broadly the distribution in
density profiles, compositional interfaces, compactness, and
tg/M, (discussed below). We categorize explosion as a
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runaway shock radius within the simulation time. Of the 100
models, 64 exploded, and 36 did not. A runaway shock radius
is not a guarantee of explosion, as that depends on unbinding
the stellar envelope, which can having binding energies of a
few tenths of a Bethe exterior to the simulation grid. Resolving
this requires late-time simulations. Indeed, in Burrows &
Vartanyan (2021), a subset of the progenitors studied were
evolved out to approximately 4 s after bounce, and models that
had runaway shock radii there all resulted in net explosions that
unbound the entire envelope and yielded up to several Bethe of
explosion energies. These 100 models with known explosion
outcomes based on the 2D simulations will be referred to as the
labeled data set. Our 100 models were selected from the newest
stellar progenitor models in Sukhbold et al. (2016, 2018). The
compilation contains 12 progenitors in the mass range of
9—11.75 M, in increments of 0.25 M, (from Sukhbold et al.
2016), and 1500 progenitors in the range of 12—26.99 M, in
increments of 0.01 M., for a grand total of 1512 stellar
progenitors. The 1412 progenitor models that were not evolved
in FORNAX, and therefore do not have known explosion
outcomes, are referred to as the unlabeled data set. All the
models studied were evolved as single-star progenitors, absent
binary effects. We note that we are limited by the data set size
of this ML exercise, as well as by the complexity of the
physical phase space explored.

2.2. Physics-based Features

Due to the limited number and high dimensionality of the
progenitor models, explosion outcome predictors in the form of
binary classifiers cannot be well trained using the raw stellar
profiles as inputs. Instead, parameters of much lower dimen-
sion, known as features, are obtained to represent the
distinctive characteristics of the models in a process known
as feature extraction. Multiple attempts have been made to
identify such explosion conditions, often ab initio, that can
serve to predict CCSNe outcomes (e.g., O’Connor & Ott 2011;
Pejcha & Thompson 2012; Dolence et al. 2015; Miiller et al.
2016a; Ertl et al. 2016; Summa et al. 2018; Gogilashvili &
Murphy 2022). These derive in heritage from some variation on
the concept of a critical condition (Burrows & Goshy 1993),
which suggests a relation between neutrino luminosity and
mass accretion at the shock, above which unabated shock
expansion concludes in explosion. Below, we summarize three
types of explosion metrics whose utility in predicting explosion
outcomes we explore with our ML approaches. We focus on
compactness and the Ertl condition because of their widespread
use, their relative simplicity, and their ab initio nature. We also
target an additional feature—the role of the silicon—oxygen
compositional interface.

2.2.1. Compactness

The compactness parameter characterizes the core structure
and is defined as (O’Connor & Ott 2011):

M/M,

= (1)
R(M) /1000 km

Eu
where the subscript M denotes the interior mass coordinate at
which the compactness parameter is evaluated. For our
purposes, we evaluate the compactness parameter &;;s at
M =1.75 M, generally encompassing the Si/O interface for
many the progenitor models. The compactness is often used as



THE ASTROPHYSICAL JOURNAL LETTERS, 937:L15 (10pp), 2022 September 20

0.8
0.6/
0 P
0.4 g5
YV, ?«x
0.2
x  Non-exploding
0.0! Exploding
10 15 20 25

Model ZAMS Mass (M)

Tsang, Vartanyan, & Burrows

0.20

0.15{

<t

30.10¢

0.05; 7 « Non-exploding |

Exploding
0.1 0.2 0.3 0.4
Myps

Figure 1. The compactness &; 75 vs. ZAMS mass (left) and the Ertl parameterization (right) for the 100 labeled models evolved in 2D. Blue crosses indicate
nonexploding models, and orange crosses exploding models. The putative separation curve in the Ertl parameterization does not separate explosion outcomes reliably,
with exploding models both above and below the line, although nonexploding models are almost entirely below the line (Wang et al. 2022). Note the clustering of
nonexploding models in both figures, particularly between 12 and 15 M., with different outcomes vis-d-vis explosion for a given physical parameter (see also
Sukhbold et al. 2018), perhaps indicative of a third dimension necessary to break the degeneracy.

an ab initio explosion condition because it depends only on the
progenitor properties. While higher compactness is correlated
with higher luminosities, accretion rates, and remnant masses
(O’Connor & Ott 2013), compactness does not readily lend
itself as an explosion condition, and suggestions that explosion
is inhibited above a certain compactness parameter are false
(Burrows et al. 2020; with the exception that massive models
may initially drive a successful shock, but then later implode
into a black hole due to the large gravitational binding energy).
We plot in the left panel of Figure 1 the distribution of
compactness versus the zero-age main-sequence (ZAMS) mass
of the labeled data set, with exploding models indicated in
orange and nonexploding in blue. For most progenitors the
mass at which &, is calculated usually encompasses the Si/O
interface entropy and density jump, and this is discussed below.

2.2.2. Ertl Parameter

The Ertl condition for explosion (Ertl et al. 2016) is another
ab initio explosion condition. It identifies a py and piy X My
space, where (14 is a measure of the slope of the mass density at
an entropy of 4 (per baryon per Boltzmann’s constant) and M,
is the interior mass at that entropy. This approximately
corresponds to the location of an entropy/density jump at the
Si/O interface. The Ertl condition purports to be a statement of
criticality, with 4 and py X M4 relating indirectly to L, and M,
the neutrino luminosity and the mass accretion rate. We show
in the right panel of Figure 1 the Ertl curve suggested to
separate explosion and nonexplosion, overplotted with the
results of our 100 2D simulations (see also Wang et al. 2022).
We note the poor agreement between our simulation results and
the Ertl prediction, and comment on this more in Section 3.

2.2.3. Si/O Interface Parameters

Lastly, we posit a physically motivated explosion condition
that looks at prominent density interfaces (often the Si/O
interface; Wang et al. 2022) whose accretion by the shock
surface can revive a stalled shock into successful explosion
(Fryer 1999; Sukhbold et al. 2016; Burrows et al. 2018; Ott

et al. 2018; Vartanyan et al. 2018; Burrows et al. 2019;
Vartanyan et al. 2021; Burrows & Vartanyan 2021; Boccioli
et al. 2022). A sharp drop in density translates into an
immediate drop in ram pressure at the shock surface upon
encountering this interface, whereas the accretion-powered
luminosity interior to the shock is sustained for an advective
timescale (Wang et al. 2022). This drop in ram pressure, while
maintaining a higher luminosity, promotes explosion and may
be key to explosion for massive stars. Lower-mass models of
~9—10 M. may explode simply on the virtue of their very
steep density profiles. We identify the location in mass
coordinate Ms;o and the magnitude of the density jump across
such interfaces Aps;o in all 1512 models in the full progenitor
data set. For each of the models studied here, we identified the
Si/O or other prominent interface by looking for the steepest
drop in density in the stellar progenitor profile exterior to the
iron core. The stellar density may drop by as much as 2—3
times over less than 0.01 M.

The extraction of the interface features can be complicated
by the presence of multiple, fragmented burning shells (see also
Vartanyan et al. 2021; Laplace et al. 2021 for a similar
conclusion regarding the density profiles of binary stars).
Sukhbold et al. (2018) identify multiple burning shells during
late-stage stellar evolution, where the physics is poorly
resolved and the results prone to stochasticity (see also Wang
et al. 2022). Merging of the two shells into a single steeper
shell will produce a more prominent density drop conducive to
successful core-collapse explosions. We plot in Figure 2 the
Si/O interface mass coordinate versus the magnitude of the
density drop from the labeled data set. We see a nonuniform
distribution of both compactness (in Figure 1) and the Si/O
interface with clustering and multiple branches (see also Miiller
et al. 2016a; Sukhbold et al. 2018; Wang et al. 2022), as well as
multivalued outcomes (explosion and not) in a small range of
the plotted phase space. Using the Si/O interface yields a
clearer delineation between explosion and nonexplosion than
compactness, but in both cases we see degeneracy in the
outcome for the given putative explosion criteria.
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Figure 2. The Si/O interface parameter distribution of the 100 labeled models
evolved in 2D. Blue crosses indicate exploding models, and orange crosses
nonexploding models. Note the clumping in phase space for weaker interfaces
located deeper in.

2.3. Unsupervised Feature Extraction

The physics-based feature sets described in Section 2.2 are
not always very effective. Modern autoencoder neural network
architectures offer an alternate data-driven, physics-agnostic
approach to extracting relevant features in an unsupervised
manner. Autoencoders consist of two main components: an
encoder and a decoder. The encoder is designed to take an
input vector and convert it into a feature vector of much lower
dimension. The decoder, on the other hand, attempts to
reconstruct the input from the feature vector. By training the
encoder—decoder pair to match the input and the reconstruction,
the autoencoder learns to capture the important information in
the input without human intervention. Example usage in
astronomy includes variable star (Naul et al. 2018; Tsang &
Schultz 2019) and galaxy (Portillo et al. 2020) classification,
anomaly detection for supernova light curves (Villar et al.
2020), detection of strong lensing features in images (Cheng
et al. 2020), and the denoising of radio images (Gheller &
Vazza 2022). Autoencoders essentially serve as an apparatus
for data compression, allowing ML systems to operate more
effectively on the much-lighter-weight feature vectors rather
than the raw inputs.

Here, we explore the application of autoencoders to
extracting representative features directly from the density
profiles of the stellar progenitor models. To this end, we
implement a basic autoencoder network in PYTORCH (Paszke
et al. 2019). We adopt three 1D convolutional layers (CONV1D)
as the main components of the encoder. The convolutional
layers are designed to preserve the spatial information of the
mass distribution in the stellar density profiles. The decoder is
constructed using three corresponding CONVTRANSPOSEID
layers. The hyperbolic tangent function (tanh) is used as the
nonlinear activation function after each CONVID and CON-
VTRANSPOSEID layer. After passing through the encoder’s
final layer, the resultant vector is commonly known as the
embedding, which is of much smaller dimension than the input
sequence. The embedding vectors can be regarded as the
reduced-dimension feature vectors that can be used for other
downstream tasks. By construction, the tanh activation function
produces embedding vectors z € [—1, 1]%, where d. is the
embedding dimension. In our case study, we focus on the
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explosion outcome prediction task, which is set up as binary
classification. The autoencoder architecture is presented in the
schematic diagram in Figure 3.

To explore the learning capacity of the autoencoder, we vary
the dimension of the embedding vector by adjusting the strides
of the convolutional layers, covering embedding dimensions of
d, =2 to 32 in factors of 2. The number of total trainable
parameters (weights and biases) depends solely on the kernel
and filter sizes. Since we do not vary those network parameters,
the autoencoders we use in this work contain a constant number
of trainable parameters of 106. The kernel size, stride, and the
breakdown of the number of parameters in each layer can be
found annotated in Figure 3. We keep the network size to a
minimum to highlight the utility of a simple autoencoder.

We use the 1412 unlabeled models as the training set of the
autoencoder models. In other words, the autoencoder is only
tasked to learn the representation of the density profiles without
regard to their explodability. We truncate the density profiles
and consider only mass coordinates between M, = 1 M, and
M. =2.3 M. Interior to M;,, matter collapses onto the
protoneutron star and lies interior to the stalled shock surface.
On the high mass end, it is rare for relevant interfaces in the
studied ZAMS distribution to exist beyond Mp,, and still
accrete on relevant timescales for neutrino-driven CCSNe. The
density profiles of the KEPLER models with different ZAMS
masses (Sukhbold et al. 2016, 2018) used as FORNAX
supernova progenitors vary in grid resolution between My,
and M., ranging typically from 800 to 1200 zones. To
standardize the dimension of the input profiles, we interpolate
and rebin the logarithm of the truncated density profiles onto a
uniform linear mass grid with N,, = 128 points. The reduced
dimension of 128 is adequate in capturing the sharp jumps in
density in the progenitor density profiles (see the solid lines in
the top panels of Figure 4). To isolate trends, we subtract the
means from the profile segments and normalize them
independently. Mathematically, for each progenitor, the
normalized density profiles take the form

)’C\m - (-xm - <xm>)/(max(xm) - min(xm)), (2)
where m is the integer index of the uniform mass grid,
Xm = logy(p,,) is the logarithmic mass density of the mth mass
bin, and (- ) denotes the mean value over the mass grid. The
128-dimension density profile segments {%,} are used as
inputs to the autoencoders. By rescaling and normalizing the
density profiles, we set up the autoencoder to focus on the
shape and omit the absolute scale of the density profiles.
Similar to Wang et al. (2022), we gathered that the change in
density /ram pressure is more relevant for the explosion
outcome than the absolute density value. Mean squared error
(MSE) between the input and the reconstructed density profiles
{Xn} is used as the loss function for train-
ing: Lag = Zm()?m - im)z/Nnr

Weights of the convolutional layers are initialized using the
kaiming_normal_ initializer (He et al. 2015) in PYTORCH.
Biases are initialized as zeros. Optimization is done using the
ADAM optimizer (Kingma & Ba 2014). Training is conducted
with a constant batch size of 100 and a learning rate of 10~ for
500 epochs. Since our key goal is to present the utility of
physics-agnostic features, we did not perform a systematic
hyperparameter study to optimize the autoencoder. Due to the
limited size of the labeled data set, we also did not attempt to
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Figure 3. Schematic diagram of the autoencoder’s neural network architecture. It employs three basic CONVID layers as the encoder, converting the input density
profile sequence {X,} into the reduced-dimension embedding vector z. The decoder similarly utilizes three CONVTRANSPOSEID layers, trained to produce a
reconstruction of the input density profile {&,,}. The hyperparameters, number of trainable parameters, and the dimension for each layer are annotated.

train the autoencoder simultaneously with a binary classifier for
explosion outcome prediction. These will be instructive follow-
up studies when more comprehensive data sets are available.

2.4. Classifier Training

Using the features obtained in Sections 2.2 and 2.3, we train
explosion outcome predictors in the form of binary classifiers.
We adopt the SKLEARN implementation of RANDOMFOREST-
CLASSIFIER as a common classifier baseline. During training,
we adopt a five-fold, 80/20 split to divide the labeled data set
(with 100 models) into training and testing sets. The training/
testing partitions are generated using the STRATIFIEDKFOLD
function of the SKLEARN package. A constant seed is used for
the five-fold random split, resulting in the same partitions of
training/testing data across classifiers trained with different
feature sets. To allow fair comparisons between classifiers
trained with different feature sets, we use a relatively simple RF
setup with fixed parameters of n_estimators=>5,
criterion= ‘gini’, max_depth = 3,
min_smaple_leaf=2, and max_features= ‘sqrt’.
The RF classifiers therefore all have a fixed number of five
decision trees. With the feature sets we explored in Section 3.2,
our RF parameters lead to about 7—10 nodes per tree
partitioning the feature spaces, or about 35-50 total nodes.
We use the accuracy, precision, recall, and the F1 score to
assess the performance of the classifiers.

2.5. Semisupervised Learning with Label Propagation

During training, classifiers often require sufficiently large
data sets to sample the distributions of various object classes in
the feature space. Labeled data sets, in our case multi-
dimensional simulations, are costly to produce both in
computer and human hours. Alternately, unlabeled data sets,
in our application 1D progenitor models, are usually much
cheaper to obtain. Semisupervised learning is a hybrid
approach devised to use a limited sample of labeled data to
assign mock labels to a larger, unlabeled data set based on
some distance metrics in the feature space. The hope is that by

propagating the labels to the larger unlabeled data set and
incorporating it in training, the classifier can better learn the
data distribution and achieve higher overall prediction
accuracy.

Semisupervised approaches rely on a key presumption that
the distributions of different classes are continuous, i.e., data
samples close together in the feature space are likely to be of
the same class. However, as we have seen in Figures 1 and 2,
there are complex branches and overlaps associated with
degeneracy and/or modeling stochasticity. Nevertheless, in this
paper we attempt the label propagation technique to probe the
potential utility of semisupervised learning approaches in
improving explosion outcome prediction.

The procedure of our label propagation study is as follows.
With each feature set selection and in each cross-validation
split, we repeat the RF classifier training described in
Section 2.4 after (i) randomly removing 50% or 75% of the
known explosion outcomes in the training split (sized 80) and
(ii) relabeling them based on the distances to their neighbors
whose explosion outcomes are retained. In other words, we
pretend that our labeled data set is 50%/75% smaller than it is
and allow the label propagation algorithm to re-create a 80-
model training set for the RF classifier. Evaluation of prediction
performance is still done using the 20-model testing splits.

We employ the LABELSPREADING model in SKLEARN for
this task. Fundamentally, LABELSPREADING works by building
a fully connected graph connecting all the data samples and
propagating labels based on the pairwise distances. To limit the
scope of this exercise, we adopt a constant set of label
propagation parameters. In particular, we use the K-nearest
neighbor kernel as the distance metric (kernel = * ‘knn’ ')
with n_neighbors=5. A soft clamping factor of
alpha=0.1 is used to allow the algorithm to change at
most 10% of the retained labels from the samples to account for
the stochasticity in the explosion simulations. Pseudo-labels are
assigned to the samples with their explosion outcomes removed
via the transduction_ operation.
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Figure 4. Top: examples of the input (solid) and the reconstructed (dotted) density profiles to and from the autoencoders with embedding dimensions of 2 (left) and 8
(right). Blue (orange) curves correspond to exploding (nonexploding) models. The profiles are plotted with consecutive vertical offsets of 0.1 for better visualization.
Bottom: the reconstruction error (reconstruction — input) of the normalized density profile by the autoencoders with embedding dimensions of 2 (left) and 8 (right).
The vertical axis denotes the ZAMS mass of all 100 models in the labeled data set. The fiducial model can encode density profiles with errors of <0.05.

3. Results
3.1. Autoencoder Performance

Even with the highly limited number of only 106 trainable
parameters, the autoencoders with different embedding dimen-
sions converge efficiently to an MSE loss of 10~*~107 within
less than 50 epochs. To visualize the representation perfor-
mance of the autoencoders, we compare examples of the input
and the reconstructed density profiles in the top panels of
Figure 4. With d, =2, the reconstructed profiles miss some of
the sharper interface transitions, but trace the overall trends of
the profiles quite well. With d, > 8, the density profiles are all
well captured by the autoencoders. In the bottom panels of
Figure 4, we show the (reconstruction — input) error from all
the 100 models in the labeled data set. The maximum error is
about 0.1 for the autoencoder with an embedding size of d, =2,
whereas for d, =8 the typical deviations are less than about
0.05. We emphasize that the representation performance of the
autoencoder architecture can likely be improved or fine-tuned
with a more thorough study. To establish the efficacy of the
physics-agnostic features, we choose d,=8 as the fiducial
autoencoder and report the prediction performance in the next
section.

Table 1
Table Summarizing the Performance Scores of Explosion Outcome Prediction
Using Different Feature Sets

Features Accuracy Precision Recall F1 Score
(%) O 0.68£0.12 0.68+0.13 0.69+0.13 0.67£0.12
175 0.83+0.08 0.84+0.06 0864006 0.83+0.07
4, Majiy 0.70 £0.09 0.69£0.08 0.69 £0.08 0.69 £ 0.08
Msio, Apsio 0.89+0.10 0.89+0.09 0914008 0.89+0.10
Autoencoder 0.774+0.07 0.79+£0.07 0.754+0.07 0.74 £0.07
(dz =2)
Autoencoder 0.84 £0.06 0.84+0.07 0.83+£0.06 0.83£0.06
d:=8)

Note. Each row corresponds to a different selection of feature parameter(s)
used in the training and evaluation of the classifiers. Errors shown are the
standard deviations of the respective scores

3.2. Explosion Outcome Prediction

We choose four sets of physics-based features for the
explosion outcome prediction task, as listed in the left column
of Table 1. The first feature set ({(x,,), o,) are the mean and
standard deviation of the truncated logarithmic density profiles,
representing the most basic summary statistics of the density
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profiles. The remaining three sets correspond to the physics-
based features described in Section 2.2.

We train and evaluate a series of RF classifiers using our
labeled data set. Performance scores are listed in Table 1 with
the errors denoting the standard deviations over the five cross-
validation splits. We find that our Si/O interface parameter set
provides the best prediction of explosion outcomes, with a
prediction accuracy of 0.89. By comparison, &5 yields an
accuracy of 0.83 and the Ertl condition 0.70. Due to the limited
size of the labeled set, there are ~10% fluctuations in the
performance scores between different cross-validation splits as
well as among repetitions of the RF training (from the
randomness in tree building). However, the general trend of
performance with different feature sets is robust.

The embedding feature vector extracted by the fiducial
autoencoder gives a prediction accuracy of 0.84, comparable to
both the Si/O interface and the compactness parameter. Even
with a reduced embedding dimension of d,=2, the auto-
encoder feature vector still outperforms the Ertl parameters. It
highlights that features obtained from the density profiles via an
unsupervised, physics-agnostic manner can offer classification
performance competitive with physics-based features. To
examine whether retaining the absolute scale of density may
impact prediction performance, we have trained a control
classifier with mean densities appended to the autoencoder
features and found negligible difference.

Identifying a prominent Si/O interface can be difficult,
particularly with low-mass models, perhaps explaining some of
the misclassifications. We find that stars between 12 and 15 M,
lack prominent Si/O interfaces and tend to be more difficult to
explode. According to Sukhbold et al. (2018), stars in this
range may have multiple smaller, fragmented interfaces as well.
We emphasize that our conclusion depends sensitively on both
the progenitor profile and the neutrino microphysics included
(see, for instance, Burrows et al. 2019). Regardless, multiple
studies have found that models generally within this mass
range are less likely to explode (Summa et al. 2016; O’Connor
& Couch 2018b; Vartanyan et al. 2018; Burrows et al.
2019, 2019; Burrows & Vartanyan 2021; Wang et al. 2022).

The accuracy of the compactness parameter is surprising at
first sight, given that studies have found no simple correlation
between compactness and the explosion outcome (Burrows
et al. 2020; Burrows & Vartanyan 2021). Indeed, we see no
monotonic dependence of the explosion outcome on compact-
ness in Figure 1. Rather, the RF classifier here identifies the
nonlinear mapping between compactness and the explosion
outcome from the training samples. Such a nonlinear depend-
ence of the explosion outcome is suggestive of additional
underlying physics that is not captured by the compactness
parameter, perhaps in the nuances of the density profile.

Regardless of the metric used, we find predictive accuracy
above 70%, indicating that all the metrics considered contain
some physical information about the explosion outcome. The
Ertl parameter just underperforms compared to simply using
only the density and its standard deviation. While both the Ertl
parameter and compactness contain information about the
density of the progenitor, the former may obfuscate it through
analytical complication, while the latter, which performs better,
is oversimplified. Categorizing the density profile through
prominent interfaces seems to be the best approach thus far to
predicting explosion outcomes.

Tsang, Vartanyan, & Burrows

3.3. Utility of Label Propagation

Table 2 summarizes the results of the label propagation
study. Unsurprisingly, classifiers trained with fewer labeled
samples tend to have poorer prediction performance across
feature sets. Even with 75% of the labeled training samples
dropped, i.e., only with 20 training samples, the classifiers can
still preserve reasonable prediction accuracy scores of about
0.6-0.8 (the “no LP” columns). This suggests that the feature
spaces we investigated can be sampled reasonably well with
about 20-40 models, and that most of the misclassifications
reside in the overlaps of branches that may be resolved by
additional training samples.

Label propagation offers only marginal improvements of a
few percentage points across different feature sets. In some
cases, e.g., with & 75 and autoencoder features of embedding
dimension d,=2, label propagation can even diminish
prediction performance. Such reduction in accuracy can be
understood again by the complex discontinuities in the feature
spaces and the stochasticity in modeling. With a small number
of training samples, the classifiers can sometimes be misled by
a single training sample to misclassify large parts of the feature
space. With a much larger data set, the overlapping outcome
branches will be better distinguished. We expect label
propagation to be more effective in improving prediction
accuracy with feature spaces that are smoother and less
susceptible to model stochasticity. The unsupervised approach
of feature extraction holds promise in uncovering such feature
spaces.

4. Conclusions

We explored the utility of a machine-learning framework in
predicting the explosion outcomes of massive stars based on
their 1D progenitor models. We trained and evaluated a basic
RF classifier as an explosion predictor using both physics-
based and physics-agnostic features. In particular, we investi-
gated the commonly used compactness parameter and Ertl
conditions, a new feature set that quantifies the location and the
extent of the density drop at the silicon/oxygen interface, and
autoencoder features generated from the progenitor density
profiles in an unsupervised manner. Applied to a set of 100 2D
radiation hydrodynamical FORNAX simulations, we found that
the new silicon/oxygen interface feature set has the best
predictive power, with an accuracy of ~90%, outperforming
the compactness and the Ertl condition. More importantly,
using the physics-agnostic autoencoder features, we obtained a
predictive accuracy of =~84%, second only to the silicon/
oxygen interface features.

The competitive predictive performance of the autoencoder
features revealed that the density profiles alone contain
meaningful information about the explodability of the stellar
progenitors. It suggests that exploration of the clusters and
branches in the reduced-dimension embedding space holds
promise in uncovering the underlying progenitor properties that
foreshadow explosions. With more multidimensional explosion
simulations in the near future, we expect the unsupervised
approach to representing progenitor models to be profitable in
the task of identifying more robust explosion physics.

5. Caveats and Future Prospects

The conclusions cited here assume neutrino heating as the
dominant explosion mechanism, as is well understood to be the
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Table 2
Table Comparing the Accuracy Scores of Different Feature Sets with 50% or 75% of the Labels Dropped in the RF Classifier Training Set

50% Dropped 75% Dropped

Features Fully Supervised
No LP LP No LP LP

(Xm)s Ox 0.68 £0.12 0.65 +0.14 0.71 £ 0.14 0.61 £+ 0.06 0.63 £+ 0.08
&7 0.83 +£0.08 0.81 + 0.07 0.78 + 0.07 0.77 £ 0.10 0.74 £ 0.12
fta, Moty 0.70 + 0.09 0.68 +0.11 0.67 £+ 0.08 0.62 £ 0.08 0.65 £+ 0.04
Msio, Apsio 0.89 +0.10 0.84 + 0.07 0.89 £+ 0.09 0.82 £+ 0.07 0.84 +0.12
Autoencoder (d, = 2) 0.77 £ 0.07 0.76 + 0.04 0.72 £ 0.07 0.71 £+ 0.09 0.69 £ 0.06
Autoencoder (d, = 8) 0.84 £ 0.06 0.74 £0.15 0.83 +0.09 0.71 £ 0.10 0.73 £+ 0.06

Note. The “Fully Supervised” column corresponds to the accuracy using the full labeled training sets (Table 1). The “no LP” columns list the prediction performance
trained directly from the reduced-size training set, while the “LP” columns show the performance with label propagation applied to the samples with the labels

dropped.

case for the majority of garden-variety CCSNe. Intrinsically,
the explosion outcome depends on various physical uncertain-
ties such as microphysics, progenitor structure, convection, and
nuclear burning rates. At the simulation level, a confluence of
factors may also come into play, e.g., details of the code,
simulation dimensions, and stochasticity. To properly char-
acterize the explosion outcomes of populations of massive
stars, careful cross-checking with different sets of supernova
simulations will be required. Going beyond a binary depiction
of explosion outcomes, future studies may start charting the
explosion probability in different feature spaces using ensem-
bles of simulations. Our model suite can be extended to include
additional physics, including magnetorotational effects, for
instance, to capture more of the physical parameter space yet
unexplored in CCSNe simulations.

Importantly, the stellar progenitors used were all spherically
symmetric, 1D models. Only recently (Miiller et al. 2016b;
Yoshida et al. 2019; Zha et al. 2019; Fields &
Couch 2020, 2021; Fields 2022) have multidimensional
progenitor models become available for simulation (Miiller
et al. 2018, 2019; Vartanyan et al. 2022; Zha et al. 2022).
CCSNe simulations are sensitive to the ambient perturbations
in the progenitor model (see, e.g., Burrows et al. 2019). The
structure of the prominent compositional interfaces, and hence
the explosion outcome, morphology, and nucleosynthetic
yields, will differ between 3D and 1D progenitor models.

The relevant physical parameter space for the explosion
outcome is both very large and poorly constrained. Even the
presence of a strong interface is difficult to resolve, and
sometimes absent, in many progenitors. Additional constraints,
perhaps involving the Helium core mass or some other
characterization of the density profile (Sukhbold et al. 2018;
Wang et al. 2022) is needed to break the degeneracy in
predicting explosion outcomes. We focused exclusively on the
density profile when computing both the physics-based and
physics-agnostic autoencoder features, but we could expand the
feature sets to include also the temperature, electron-fraction,
and/or entropy profiles, etc. from the progenitor stellar models.
For example, multiple profiles can be readily incorporated as
different input channels in the autoencoder architecture. Our
main goal is to demonstrate the usefulness of the unsupervised
feature extraction approach. We therefore did not conduct a
thorough hyperparameter study for the autoencoder architec-
ture. Exploring the utility of transformers (Vaswani et al.
2017), another neural network architecture that is effective in
representing sequential data, will also be a promising future
direction.

Furthermore, our data set was limited in size. We selected
from approximately 1500 progenitor models and trained on 100
axisymmetric 2D simulations. Although the explosion outcome
does not seem to differ greatly between 2D and 3D simulations
(Vartanyan et al. 2019; Burrows & Vartanyan 2021), a
significantly larger catalog of simulations, even in axisymme-
try, would better populate the distribution of density profiles by
progenitor, perhaps better resolving the clustering and outcome
branches (Miiller et al. 2016a; Sukhbold et al. 2018) seen in the
different phase spaces explored here. At the very least, we
would need tenfold more simulations (thousands), even in 2D,
to have a more balanced and comprehensive data set. Yet even
with the limited data set and our simple approach in both
identifying a physical criterion of interest and apposite ML
techniques, we were able to obtain promising results.

Machine-learning applications are not limited to a simple
binary determination of explosion outcomes. Regression
models can enable the prediction of explosion diagnostics,
such as the energy and ejecta composition, for a given physical
setup and progenitor model. Inverse modeling can facilitate the
reconstruction of progenitor properties from observables. Data
transformation and image segmentation, which have already
seen some use categorizing observations, can be used to
characterize morphological features of supernova remnants,
such as nickel bullets and voids/clustering in the ejecta, which,
jointly with inverse modeling, can characterize the structure of
the stellar progenitor and its evolutionary history. Machine-
learning techniques provide an invaluable perspective from
which to map the initial stellar mass function to the distribution
of residues, i.e., black holes and neutron stars (partitioned
between failed and successful supernovae), and are exquisitely
suitable for the upcoming era of all-sky surveys. The effort here
presents a first step in this direction.
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