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High Resolution MIMO Radar Sensing
With Compressive Illuminations

Nithin Sugavanam , Siddharth Baskar, and Emre Ertin

Abstract—We present a compressive radar design that combines
multitone linear frequency modulated (LFM) waveforms in the
transmitter with a classical stretch processor and sub-Nyquist
sampling in the receiver. The proposed compressive illumination
scheme has fewer random elements resulting in reduced storage
and complexity for implementation and calibration than previ-
ously proposed compressive radar designs based on stochastic
waveforms. We analyze this illumination scheme for the task of
a joint range-angle of arrival estimation in the multi-input and
multi-output (MIMO) radar system. We present recovery guaran-
tees for the proposed illumination technique. We show that for a
sufficiently large number of modulating tones, the system achieves
high-resolution in range and successfully recovers the range and
angle-of-arrival of targets in a sparse scene. Furthermore, we
demonstrate the stability of recovery of targets in range and angle
of arrival domain in the continuum. Finally, we present simulation
results to illustrate the recovery performance as a function of
system parameters.

Index Terms—Compressive sensing, mutual coherence,
restricted isometry property, structured measurement matrix,
linear frequency modulated waveform, radar.

I. INTRODUCTION

RADAR imaging systems acquire information about the
scene of interest by transmitting pulsed waveforms and

analyzing the received backscatter energy to estimate the range,
angle of arrival, Doppler velocity, and scattering coefficient of
the reflectors in the scene. These range profiles from multiple
pulses and multiple antenna elements can be processed jointly
to solve many inference tasks, including detection, tracking,
and classification [1]–[4]. We analyze a coherent MIMO radar
system with closely separated antennas. The angle of arrival of
each scattering center in the scene is approximately the same
for all phase-centers. The main advantage of coherent MIMO
radar is its ability to synthesize a sizable virtual array with fewer
antenna elements for improved spatial processing. Additionally,
MIMO radar systems with multiple transmit and receive ele-
ments employing independentwaveformson transmitter provide
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Fig. 1. Effect of stretch processing, which transforms the task of delay esti-
mation to a task of spectral estimation.

spatial processing gains by exploiting the diversity of channels
between the target and radar [5], [6]. This work estimates the
range, angle of arrival, and scattering-coefficient of reflectors in
the scene using a MIMO radar system withNT transmitters and
NR receivers. The ith transmitter utilizes amodulated wideband
pulse si(t) of bandwidth B and pulse duration τ . By assuming
that the support of the observed delays are known to lie on
an interval Tu (termed as range swath in radar literature), the
received signal at receiver r can be expressed as

yr(t) =
K∑

k=1

NT∑

i=1

αR(θ̄k, r)αT (θ̄k, i)si(t− ∆̄k)x̄k + wl(t),

where wl(t) is the additive receiver noise, ∆̄k is the round-trip
delay time, xk is the complex scattering coefficient of kth target,
and αR(θ̄k, r) and αT (θ̄k, i) is the array factor for the rth

receiver and the ith transmitter, which is a function of the angle
of arrival θ̄k. Conventionally, matched filtering is performed to
estimate the unknown parameters associated with the targets in
the scene.However, thematchedfilter’s implementation requires
Nyquist rate sampling, which is proportional to the bandwidth
of the transmitted signal. This sampling rate severely limits the
resolution and dynamic range of the Analog to Digital Converter
(ADC) needed for direct digital implementation of the radar
since the resolution of the ADC is inversely proportional to the
maximumsampling rate [7].Stretch processing is an approxima-
tion of the matched filter that can be implemented in the analog
domain for the case of linear frequency modulated waveform
(LFM) denoted by s(t) = exp(jBt2/τ). This approximation of
matched filter is implemented by mixing the received signal
with a reference LFM waveform using an analog mixer, and
subsequently, low-pass filtering themixer output. At the receiver
output, the waveform delayed by ∆ appears as a sinusoidal
tone whose frequency is given by B∆ as shown in Fig. 1.
Stretch processing [1], [8] can result in a substantial reduction
in sampling rate for the ADC used in the receiver if the delay
support Tu is smaller than the pulse length τ . Furthermore, the
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received signal at the stretch processor’s output can be written
as y(t) =

∑K
k=1 x̄k exp(jB∆̄kt/τ) + w(t).

A. Prior Work

Compressive sensing’s (CS) success in solving inverse prob-
lems relies on establishing recovery guarantees on the mea-
surement operator and developing tractable and efficient re-
covery algorithms. The two forms of recovery guarantees in
the literature are known as uniform and non-uniform recovery
guarantees. Uniform guarantees imply the successful recovery
of allK-sparse vectors for any realization of the system param-
eters chosen at random. Such guarantees rely on the restrictive
isometry property (RIP). If the sensing operator satisfies the RIP
property of order 2K, given by δ2K ≤ δ ≈

√
2− 1 with high

probability then allK-sparse vectors are successfully recovered,
with a reconstruction error of an oracle estimator that knows
the support of the sparse vector or the support of K largest
elements [9], [10] up to a logarithmic factor of the size of
the search space. Non-uniform guarantees imply that almost all
system realizations recover a fixedK-sparse vector successfully.
These guarantees impose conditions on the spectral norm, and
mutual coherence of the measurement operator for successful
recovery of a K-sparse vector [11]. Furthermore, there are
numerous tractable algorithms,with provable performance guar-
antees, that is based on convex relaxation on the discretized
space [12], [13], or the continuous parameter space in [14], [15],
or greedymethods [16], [17] and data-drivenmethods that utilize
unrolled networks [18]–[20] to solve the linear inverse problem.
Motivated by these advances, compressed sensing techniques
have been applied to a variety of problems in radar signal
processing [21]–[23]. Next, we discuss existing architectures
in the literature that solve the radar imaging problem.
Xampling Based radar: The problem of range profile es-

timation [24] is solved using filter-banks to acquire low-rate
sub-Nyquist samples. A parallel research thrust [25] provided an
average case recovery guarantee for the problem of the angle of
arrival estimation with randomly located antenna elements, un-
der the idealized assumption of orthogonality between received
waveform from different range bins. Furthermore, frequency
division multiple access based waveforms with sub-Nyquist
sampling strategies in fast and slow-time are employed in [26]–
[29] for estimating the range, angle of arrival and velocity. The
Xampling framework [27], [30] has also been implemented
as a practical system in [31]. These systems require multiple
channels per receiver that perform filtering and analog com-
pression and with individual ADCs for each channel to acquire
the resultant Fourier coefficients. Alternatively, a single ADC
per receiver channel with foldable multi-band sampler ADC
utilizing carefully chosen frequency bands at transmitter to
recover the Fourier coefficients from sub-Nyquist sampling has
been also analyzed. This approach leads to a drastic increase
in the complexity of receiver design with a system employing
multiple transmitters and receivers.
Stepped frequency radar: The problem of waveform design

using frequency hopping codes for estimation in range, velocity,
and angle domain is solved in [32] using mutual coherence as
the objective. A similar guarantee for successful estimation of
range, angle of arrival, and velocity using stepped frequency

multi-pulse MIMO radar in each transmitter has been presented
in [33], [34]. The problem of sub-sampling in array elements
is also posed as a matrix completion problem in the grid-less
estimation setting in [35], [36] and a condition is established
on the number of antenna elements that need to be observed
to recover the entire low-rank data matrix. Random frequency-
agile radar [37], [38] utilizes a random sequence of frequency
steps over a coherent processing interval (CPI) to estimate the
range and velocity of targets. The work in [37] formulates the
problem of designing the frequency codes such that the lower
bound on the Mean square error is minimized. The recovery
guarantees for successful recovery from M possible frequency

steps transmitted overN pulses is established asO(
√

M
log(MN) )

targets is presented in [38]. This guarantee is further refined [39]
to guarantee successful recovery of O( M

N log(MN) ) targets. Fre-
quency agile radar framework has been utilized in a phased-
array radar [40]. The system employs transmit and receive
beam-forming to solve the range, angle of arrival, and velocity
estimation. Sparse stepped frequency radar with Doppler di-
vision multiplexing for range, velocity, azimuth, and elevation
estimation using sparse 2D arrays [41] has been proposed for
automotive radar applications. A reduced coherent processing
interval is considered in [42] without any deterioration in the
recovery guarantee. Step-frequency-radar systems have a short
unambiguous rangeRu = c

2∆F governed by the frequency step
size∆F , a condition exacerbated by sparse sampling schemes.
In addition, range gating is impractical for many domains as
it needs to be implemented using ultra-fast switches in the time
domain. As a result, step frequency radars are reserved for short-
range applications such as level gauging, ground-penetrating
radar, and instrumentation. Finally, the standard single local
oscillator implementation requires the pulse (frequency step)
repetition interval to be larger than the round-trip time between
the radar platform and the scene center. As a result, long-range
radar systems for search, detection, and tracking do not utilize
step-frequency designs.
Stochastic waveform based radar: The conditions for suc-

cessful recovery of target parameters for single pulse systems
utilizing stochastic waveforms are established in [43]. These
results are extended to single pulsemultiple transmit and receive
system for range, Doppler-velocity and azimuth estimation and
target detection in [44]–[47]. A common approach based on
stochastic waveforms [48] in the time domain and [49] in the fre-
quency domain have been implemented and analyzed. Baraniuk
et al. in [50] have shown that random matrices with i.i.d entries
from either Gaussian or sub-Gaussian probability distribution
satisfy the RIP condition, such that for any δ ∈ [0, 1] δK ≤ δ
if number of measurements M ∼ O(K log(N/K)). Although
these unstructured random matrices have remarkable recovery
guarantees, they do not represent any practical measurement
scheme,which leads us to consider classical linear time-invariant
(LTI) systems. This constraint leads to a structured matrix of
either a partial or sub-sampled Toeplitz or circulant matrix.
The RIP condition of order K for partial Toeplitz matrices in
the context of channel estimation was established by Haupt
et al. in [51]. They showed that if the number of measurements
M ∼ O(K2logN), then δK ≤ δ. This quadratic scaling ofmea-
surements with respect to sparsity was improved in [49], [52],
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[53]. Romberg in [49] considered an active imaging system that
used waveform with a random symmetric frequency spectrum
and acquired compressed measurements using random sub-
sampler or random demodulator at the receiver to estimate the
sparse scene. The resultant system is a randomly sub-sampled
circulant matrix representing the convolution and compression
process. It is shown that for a given sparsity level K, the
condition that δ2K ≤ δ is satisfied if the number of measure-
mentsM ≥ α6δ−2 min(K(logN)6, (K logN)2), where α6 >
0 is a universal constant independent of the size of problem
and δ. This result was extended by Rauhut et al. in [52].
They consider a deterministically sampled random waveform
in the time domain with samples following Rademacher dis-
tribution, which is modeled as a sub-sampled Toeplitz or Cir-
culant matrix with entries sampled from Rademacher distribu-
tion. It was shown that for a given sparsity level K, δK ≤ δ
with high probability if the number of measurements M ≥
α7 max(δ−1(K logN)3/2, δ−2K(logN logK)2), where α7 is
a universal constant. In the subsequent work by Krahmer et al.
in [53], the relation between sparsity level and the number of
measurements is improved, and more general random variables
are considered, such as vectors following sub-Gaussian distri-
bution to generate the Toeplitz or Circulant matrix. It is shown
that, for a given sparsity levelK the condition δK ≤ δ is satisfied
if the number of measurements M ≥ α8δ−2K(logK logN)2,
where the constant α8 is a function of only the sub-Gaussian
norm of the random variables generating the matrix. The mea-
surement operator generated from these systems guarantees
successful recovery at the expense of increased design complex-
ities. The memory requirements for generating and storing these
waveforms are largely due to the high bandwidth requirements.
In addition, the peak to average power ratio (PAPR) of these
waveforms is large, leading to non-linearity in the operation of
the power amplifiers required in practical systems.
Random demodulator based radar: The random demodulator

(RD) involves modulation of the received wide-band signal with
pseudo-random sequences followed by a low-pass filter or an
integrator to obtain low-rate sub-Nyquist samples. Such systems
also guarantee the successful recovery of multi-tone spectra
with high probability. This waveform system [54] has also
been implemented in practice in [55]. Generating and mixing
with pseudo-random sequences at high rates is a challenging
task and leads to signal-dependent uncertainties due to timing
imperfections as studied in [56], [57].

B. Contributions

There is a vast bodyof literature on sparse recovery algorithms
for radar detection and estimation problems. In contrast, much
less attention has been devoted to the design frameworks for
compressive sensing systems for Radar with provable perfor-
mance, with the notable exception of the seminal Xampling
framework discussed in prior work. However, the performance
of the algorithmicwork is critically dependent on the availability
of sub-Nyquist samples from a well-conditioned sensing op-
erator realizable in hardware. This work aims to fill this gap
by introducing an alternative novel compressive radar sensing
framework with many implementation advantages making it
suitable for long-range, high power radar systems deployed for

TABLE I
INDEX OF NOTATIONS AND TERMS

search, detection, and tracking. The proposed waveforms de-
rived from the LFMwaveform is derived from a chirp waveform
that sweeps a bandwidth of β < B. This compressive radar
structure termed compressive illumination was first proposed
in [62]. This work utilized a linear combination of sinusoids
to modulate an LFM waveform with randomly selected center
frequencies at the transmitter while maintaining the simple
standard stretch processing receiver structure. We observe that
under the proposed compressive sensor design, each delayed
copy of the transmitted waveform is mapped to a multi-tone
spectra with a known structure. We show that this known multi-
tone frequency structure enables recovery of range profile from
aliased time samples with provable guarantees complementing
previous work with a single transmitter and receiver [63], [64]
which has shown good empirical performance using simulations
and practical implementation in [65]. In our earlier work, we
established thatO(K2 log(N))measurements recover the range
and scattering coefficient of K dominant scattering centers.
Additionally, the number of modulating tones needs to scale in
proportion to the size of the search space. In thiswork, we extend
this approach to a MIMO setup. We establish that by scaling the
number of transmitters NT , the number of modulating tones
scale as O( N

NT
), and enable the estimation of range and angle

of arrival.! Theoretical uniformand non-uniformguarantees:The sys-
tem proposed in this work achieves near-optimal scaling
in the number of measurements up to an additional log-
arithmic factor for non-uniform guarantees as shown in
Table III. We also established that for the sensing scheme
to satisfy RIP of order K, we need O(Kδ−2 log(N/K))
measurements.
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TABLE II
MEASURES THAT CHARACTERIZE SENSING MATRICES

TABLE III
SUPPORT RECOVERY GUARANTEES FOR DIFFERENT SENSING MATRICES

! Ease of calibration: The key advantage of the proposed
radar system is 2Nc parameters that denote the phase and
frequencies of the modulating waveforms that need to be
stored. The transmitter has low memory requirements for
waveform generation because the modulating tones are
generated using a direct digital synthesizer. Typically the
mismatches in waveforms with a significant number of
parameters complicate the calibration process. In our case,
the phase mismatches in the transmit and receive channels
lead to false-positive detections.We formulated and solved
the phase calibration problem in [66] to jointly calibrate
the phase mismatches and estimate the range and angle of
arrival of targets. Furthermore, a transmitter using a single
Linear frequency-modulated waveform sweeping a band-
width B to improve the range-resolution is impaired by
non-linearity in the sweep [67], [68]. These non-linearities
cause degradation in range-resolution [69]. These non-
linearities are typically corrected by using pre-distortion
techniques. On the contrary, the proposed system sweeps
a smaller bandwidth β, which minimizes the effects of
non-linearity in a sweep on system performance.! Reduced complexity of receiver with low-sampling rate
ADC: The stretch-processor is an analog approximation
of the matched filtering. Even though the stretch processor
uses a single LFM waveform with bandwidth B, unam-
biguous delay swath Tu and pulse duration τ lead to a
reduction in sampling rate given by Fs =

BTu
τ . In case of

long-range surveillance and imaging [70], Tu
τ = 0.3, there-

fore the sampling rate is Fs = 0.3B, which is significantly
large. We utilize uniform sampling ADCs operating at a
low sampling rate Fs = β Tu

τ since that is the bandwidth
of the possible beat frequencies due to a single modulated
waveform. This bandwidth β can be chosen to scale with
the scene’s complexity, thereby reducing the sampling rate
of the system.

Table II summarizes the characteristics of some well-studied
random sensing schemes as well as our proposed scheme. Ta-
ble III summarizes the support recovery guarantees for these

random sensing schemes as well as our proposed scheme. The
rest of the paper is organized as follows, Section II states the
signal model, Section III states the main recovery guarantee,
Section V provides simulation verification of our theoretical
results.

II. SYSTEM MODEL

A. System Setup

We consider NT transmitters and NR collocated receivers
that function as a MIMO radar system. This system employs
the compressive illumination framework proposed in [62], [64],
and [71], which is extended to the case of multiple transmitters
and receivers for estimating the target range and angle of arrival.
The transmitter antenna elements are placed with a spacing of
dT = 0.5 and the receiver antenna elements are placed with a
spacing of dR = 0.5NT relative to the wavelength λc = c/fc of
the carrier signal. We obtain the virtual array with an aperture
length (NTNR − 1)λc/2 meter, where c is the velocity of light
in vacuum, and fc is the carrier frequency. The process used
to generate the transmitted signal is shown in Fig. 3. We dis-
cretize the frequency range [0, B] intoN frequencies f1, . . . , fN ,
where N = Btu, tu is the unambiguous time interval, B is the
system bandwidth, and fnc = fc +

ncB
N . A subset of NcNT

tones are chosen at random from these N possible frequencies,
where Nc is the number of modulating tones used in each
transmitter. The chosen tones are used for modulating the LFM
waveform with bandwidth β ( B, using the Single Side-Band
(SSB) modulation technique as shown in Fig. 3. We simplify
this selection model for analysis by consideringN independent
indicator random variables γ̂nc ∈ {0, 1} following a Bernoulli
distribution with

γ̂nc =

{
1 with probability NcNT /N

0 with probability 1−NcNT /N

to select the tones that modulate the LFM waveform such
that NcNT waveforms are selected on an average. Each
chosen LFM waveform is scaled by an independent and
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identically distributed complex exponential with a uniformly
distributed phase such that the probability density function
fΦ(φnc) = 1/(2π),φnc ∈ [0, 2π]. We define the sequence of
random variables {ĉ1, . . . , ĉN} that model this selection process
where

ĉnc = γ̂nc exp(jΦnc). (1)

Each selected waveform is assigned to one of the NT trans-
mitters using a deterministic rule. The transmitted signal from
the transmitter i can be written as

si(t) =
N∑

nc=1

ĉnc

exp
(
j2π

[
fnct+

β
2τ t

2
])

√
NcNT

rect

(
t− τ

2

τ

)
,

where rect((t− τ
2 )/τ) = 1 if t ∈ (0, τ) and 0 otherwise. The

received signal at receiver r due to a scattering center located at
a round-trip delay of∆ ∈ [0, tu] and angle of arrival θ̄ ∈ [0, 2π]
is given by

rxr(t) =
N∑

nc=1

ĉncx
exp

(
j2π

[
fnc(t−∆) + β

2τ (t−∆)2
])

√
NcNT

exp

(
j2π

fc
c
sin(θ̄) (λcdT ξ(nc) + λcdRr)

)
rect

(
t− τ

2

τ

)
,

where ξ(nc) is the index of the transmitter assigned to the carrier
fnc . The angle of arrival is denoted by θ = sin(θ̄) ∈ [−1, 1].
After stretch processing the signal is given by

yr(t) =
N∑

nc=1

ĉncx
exp

(
j2π

[
−fnc∆+

(
fnc −

β
τ ∆

)
t
])

√
NcNT

exp (j2πθ (dT ξ(nc) + dRr)) rect

(
t− τ

2

τ

)
. (2)

Fig. 4 shows the stretch processing operation implemented at a
particular receiver. The sampling rate at the receiver after stretch
processing is Fs = βtu/τ , which leads toM = βtu samples at
stretch processor output at each receiver. Since the sampling rate
is much lower than the Nyquist rate required for the modulating
tones, the multi-tone frequency spectrum corresponding to a
target with a delay of ∆ aliases to the range [−Fs/2, Fs/2].
In the following sections, we show that the delay and angle
of arrival of a sparse set of targets can be uniquely recovered
if a sufficient number of modulating tones are utilized in the
transmitter. The mth sample yr(m) at the stretch processor at
receiver r due to a target with round-trip delay of∆ ∈ [0, tu] and
an angle of arrival θ ∈ [0, 2π] with amplitude x ∈ C is given by

yr(m) =
N∑

nc=1

ĉnc exp (−j2πfnc∆)αR(θ; r)
αT (θ; ξ(nc))x√
NTNRNcM

exp

(
j2π

(
fnc −

β∆

τ

)
m

Fs

)
+ wr,m,

αT (θ; ξ(nc)) = exp (j2πdT ξ(nc)θ) ,

αR(θ; r) = exp (j2πdRrθ) ,

where wr,m is the mth noise sample at receiver r, αR(θ; r)
is the array steering parameter corresponding to receiver r,

and αT (θ; ξ(nc)) is the steering parameter corresponding to
the chosen transmitter specified by the rule ξ(nc) for the nc

th

waveform. We present the recovery guarantees for the proposed
system by discretizing the range-angle of arrival space. We also
present an algorithm that recovers the range and angle of arrival
of a sparse set of targets in the continuum in section IV. The
unambiguous interval from [0, tu] is discretized at a resolution
of 1/B corresponding to the resolution achieved by a system
employing a signal of bandwidth B resulting inN = Btu bins.
Each delay bin is denoted as ∆n = n/B, n = 0, 1, . . . , N − 1.
The angle of arrival characterized by cos θ ∈ [−1, 1] is parti-
tioned into Nθ = NTNR grids. Each angle bin is denoted as

θv ∈ {2v/ (NTNR) |v = −NTNR/2, . . . , NTNR/2− 1} .

The receiver and transmitter steering vectors as function of
the angle of arrival θv are defined as

αR(θv) =
[
1 · · · exp

(
jd̄R(NR − 1)θv

)]T
, and

αT(θv) =
[
1 · · · exp

(
jd̄T (NT − 1)θv

)]T
,

respectively, where d̄R = 2πdR, and d̄T = 2πdT . The normal-
ized sample at the stretch processor output yr(m) at receiver r
due to the targets in the region of interest is given by

yr(m) =

v=NT NR
n=N−1∑

v=1
n=0

nc=N∑

nc=1

ĉncαR(θv; r)
αT (θv; ξ(nc))x(v, n)√

NTNRNcM

exp (−j2πfnc∆n) exp

(
j2πm

Fs

(
fnc −

β∆n

τ

))
+ wr,m,

where r = 1, . . . , NR, m = 0, · · ·M − 1, and xv,n ∈ C is the
scattering coefficient at range bin n and angle of arrival bin
v. The concatenated output from all the NR receivers can be
compactly written as

y = Ax+w, (3)

where the signal is given by

y = [y1 · · ·yNR ]
T ,yr = [yr(0) · · · yr(M − 1)]T ∈ CM .

w = [w1 · · ·wNR ]
T ,wr = [wr,0 · · ·wr,M−1]

T ∈ CM

is the zero mean additive white Complex Gaussian noise with
variance σ2, and x ∈ CNNTNR contains the complex scattering
amplitudes associatedwith targets at all possible grid locations in
the range-angle domain. The sensing matrix A ∈ CNRM×NθN

can be expressed as a series of deterministic matrices with
random coefficients as follows

A =
N∑

nc=1

ĉnc (ᾱRᾱT(ξ(nc)))⊗
(
HncĀDnc

)
,

where, ᾱR =
√

1/ (NRNT )
[
αR(θ1) · · · αR(θNθ )

]

ᾱT(ξ(nc)) = diag
(
exp

(
jd̄T ξ(nc)θ1 · · · exp

(
jd̄T ξ(nc)θNθ

)))

(4)

for nc = 0, . . . , N − 1. ᾱR ∈ CNR×Nθ is the matrix consisting
of receiver steering vectors for all the bins of angle of arrival,
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Fig. 2. Block diagram of the transmitter and receiver. The Direct digital
synthesizer (DDS) generates modulating sinusoidal tones used for modulating
the LFM signal. The power combiner (Power Comb) is used to generate the
multi-tone signal and modulated with the LFM signal using a single-sideband
modulation technique using the low-pass filter (LPF). The receiver consists of a
low noise amplifier and it is mixed with the reference LFM signal to obtain the
multi-tone signal and filtered using the band-pass filter (BPF) to sample using a
low-rate ADC.

Fig. 3. Spectra of the transmitted signal obtained by Single side-band (SSB)
modulation of the chirp waveform with center frequency fc, and bandwidth β
with sinusoidal signalswhose frequencies are chosen at randomover a frequency
range of [0, B] such that each transmitter utilizes 1 modulating tone.

⊗ represents the Kronecker product and ᾱT(ξ(i)) ∈ CNθ×Nθ

is the diagonal matrix with diagonal elements as the ξ(nc)
transmitter’s component of the steering vector for all the angle
bins. The individual components are as follows

Ā =
1√
MNc

[
Ā(0) · · · Ā(N − 1)

]

Ā(n) =
[
1 exp

(
−2πj n

N

)
· · · exp

(
−2πj n(M−1

N )
)]T

Dnc = diag
[
1 exp

(
−j2π nc

N

)
· · · exp

(
−j2π nc(N−1)

N

)]

Hnc = diag
[
1 exp

(
j2π nc

M

)
· · · exp

(
j2π nc(M−1)

M

)]

(5)

where Ā ∈ CM×N are the samples from tones that correspond
to each delay bin generated as a result of the de-chirping process
in case of a single transmitter and receiver system employing an
LFMwaveformwith bandwidthβHz,Hnc ∈ CM×M is the shift
in frequency due to thenc

thmodulating tone, andDnc ∈ CN×N

contains the phase term associated with different delay bins due
to the nc

th modulating tone.
Each column of the sensing matrix A can be written as

A(n, v) = (αR(θv)⊗ (EnFGn)) ĉ(v) (6)

ĉnc(v) = ĉncαT (θv; ξ(nc)) (7)

where n = 0, . . . , N − 1, v = 0, . . . , Nθ − 1. The individual
terms are

En = diag
[
1 exp

(
−j2π n

N

)
· · · exp

(
−j2π n(M−1)

N

)]

Fig. 4. The figure illustrates the structure of the received signal due to a single
scattering center located with range c∆/2 and angle θ. The stretch processing
at the receiver utilizes the transmitted LFM waveform prior to modulation. The
effect of this operation recovers the modulating tones, shown in solid lines in the
frequency domain, which are further modulated by a complex exponential with
a frequency that depends on the range of the scattering center. The sampling
rate is set as Fs = βτ/tu, which leads to an aliased spectrum shown in dashed
lines.

F =
1√
MNc

[
F(0) · · · F(N − 1)

]

F(nc) =
[
1 exp

(
2πj nc

M

)
· · · exp

(
2πj nc(M−1

M )
)]T

,

Gn = diag
[
1 exp

(
−j2π n

N

)
· · exp

(
−j2π n(N−1)

N

)]
,

and ĉ(v) = [ĉ0(v) · · · ĉN−1(v)]T ∈ CN is the random vector
with independent components that selects the modulating wave-
form.

B. Target Model

We consider the statistical model studied in [44] for the sparse
range profile of targets. We assume that the targets are located at
theNNθ = NNRNT discrete locations corresponding to differ-
ent delay bins and angle bins. The support of the K-sparse range
profile is chosen uniformly from all possible subsets of sizeK.
The complex amplitude of the non-zero component is assumed
to have an arbitrary magnitude and uniformly distributed phase
in [0, 2π]. We also empirically study the performance of the
proposed illumination system for targets not located on the grid.
For the off-grid problem, we assume a minimum separation
between the targets in the delay and angle of arrival domain,
which is chosen based on the system resolution in each domain.
The minimum separation used in the simulation studies for
the delay domain is mini,j |∆i −∆j | > 2/B, and the angle of
arrival domain ismini,j |cos θi − cos θj | ≥ 2/NTNR.
Clutter Model: The sparsity assumption on the scattering

centers is valid for the application problem of surface/naval
early warning radar. The radar is typically used in surveying air
traffic. The clutter signal is usually stationary in this scenario,
which can be separated by coherently integrating acrossmultiple
pulses. Simple moving target indication (MTI) processing steps
such as 2 pulse or 3 pulseMTI cancellers can be used to suppress
stationary clutter [1]. Alternatively, Doppler filtering or Doppler
Focusing can be used to separate scattering centers based on
Doppler velocity [27]. Further analysis is required on the ambi-
guity function [72], [73] to establish recovery guarantees, which
is robust to the clutter signal component.
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C. Problem Statement

Given a sparse scene with targets following the statistical
model discussed in previous section, and measurement scheme
in (3) with M ( NNθ and sparsity level K ( NNθ, the goal
of compressed sensing [74] is to recover the sparse or com-
pressible vector x using minimum number of measurements in
y constructed using random linear projections A. The search
for the sparsest solution can be formulated as an optimization
problem given below minx ‖x‖0, subject to ‖Ax− y‖2 ≤ η,
where η2 is the noise variance. This problem is NP-hard and
hence, intractable as shown in [75], and many approximate
solutions have been found. One particular solution is to use the
convex relaxation technique to modify the objective as an -1
norm minimization instead of the non-convex -0 norm, which is
given by,

min
x

‖x‖1 subject to ‖Ax− y‖2 ≤ η. (8)

This approach has been shown to recover sparse or compress-
ible vectors successfully [10], [76] given that the sub-matrices
formed by columns of the sensing matrix are well-conditioned.
Our analysis is based on LASSO [13], which is a related method
that solves the optimization problem in (8). It has been shown
in [11] that for an appropriate choice of λ and conditions on
measurement matrix are satisfied, then the support of the solu-
tion of the below-mentioned optimization problem coincides
with the support of the solution of the intractable problem,
minx λ‖x‖1 + 1

2‖Ax− y‖22. In this paper, we show that the
measurement model formulated in (4) satisfies the conditions
on mutual coherence given in [11]. Next, we find a bound on
the sparsity level of range profile, which guarantees successful
support recovery of almost all sparse signals using LASSO with
high probability from noisy measurements. Finally, we also
provide an estimate of the number of measurements required
for the operator representing our scheme to satisfy the restricted
isometry property (RIP) of orderK.We consider the space of K-
sparse vector x ∈ CNNθ where ‖x‖2 ≤ 1 denoted by DK,NNθ .
The RIP condition of orderK is true if the following condition is
true for x ∈ DK,NNθ , (1− δ)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δ)‖x‖22.
Equivalently, the condition can be stated as

δK = sup
x∈DK,NNθ

∣∣∣‖Ax‖22 − ‖x‖2
∣∣∣ . (9)

In this paper, we bound the random variable δK using the
theory for bounding stochastic processes [77] adapted to the CS
setting in [46], [53]. The next section presents the main results
of our analysis.

III. RECOVERY GUARANTEES

The following theorems state the recovery guarantee for the
proposed MIMO radar system.
Theorem 1: Consider a compressive MIMO radar sys-

tem with the measurement model y = Ax+w, where A ∈
CNRM×NRNTN is defined in (4) such that the target scene
x is drawn from a K-sparse model with complex un-
known amplitudes and observed in i.i.d. noise process w ∼
CN (0,σ2I). The support of the targets in the scene can
be recovered using a LASSO estimator with arbitrarily high

probability for a system using M samples at each re-
ceiver and Nc ∼ O(N/NT ) tones at each transmitter with
M ∼ O(log3(NNRNT )), if the target scene consists of K
targets with K ∼ O(NRM/ log2(2NNRNT )) of mini-
mum amplitude

min
k∈S

|xk| >
8√
1− ε

σ
√
2 log (NNRNT ), (10)

As the number of tones employed in modulating the chirp
waveform exceeds Nc ≥ 4 log(NNRNT +MNR)/(9NT )
shown in Lemma 1 the operator norm of the sensing scheme
is bounded with high probability. Furthermore, if the number
of tones scales Nc = O)( N

NT
), the scaling factor associated

with the mutual coherence can be controlled as shown in
Lemma 3. The condition on mutual coherence is required for
the application of the recovery results in [11].
Theorem 2: For the measurement matrix A given in (4) and

any δ ∈ [0, 1], the RIP condition in (9) as δK(A) ≤ δ is satisfied
with high probability if the number of measurements M per
receiver satisfies the condition M ≥ δ−2K log(NRNTN

K )

IV. OFF-GRID RECOVERY ALGORITHM

Next, we consider targets that lie in the continuous range and
angle-of-arrival domain. The key objective of this section is to
analyze the stability of the system to off-grid targets.We evaluate
the performance of the system by utilizing an off-grid algorithm
proposed in [78]. We evaluate the performance of our proposed
system by extending the algorithm We define the parameter
space Ω = {(∆, θ)|∆ ∈ (0, tu), θ ∈ (−1, 1)} The samples at
the stretch processor’s output at receiver k due to a target with a
time of arrival given by∆ and angle of arrival θ as stated in (11).
For a scene containing K scattering centers, the measurements
are given by

y =
K∑

k=1

xkΨ (∆k, θk) +w,

Ψ (∆k, θk) =
N∑

nc=1

ĉnc exp (−jφnc)αT (θk; ξ(nc))αR (θk)

⊗ exp

(
j2π

[
fnc

(
m

Fs
−∆k

)
+

β∆km

τFs

])
(11)

where fnc is the frequency of the modulating tone utilized in
transmitter v, w ∼ CN (0,σ2

nI) is the receiver noise following
a complex Gaussian distribution, xk are the complex scattering
coefficients, ∆k, θk are the delay and angle of arrival for each
scattering center,m = [0, 1, . . . ,M − 1] denote the M time
samples at each receiver, andΨ is the known structured response
parametrized by the time and angle of arrival of the scattering
center due to the proposed illumination scheme. We utilize the
differentiability of themeasurementmodel in the unknown range
of the targets in the scene and adopt the method proposed in [78]
to solve the sparse estimation problem in the continuum defined
by

min
x(Ω)

∥∥∥∥y −
∫

Ω
Ψ(Ω)dx(Ω)

∥∥∥∥
2

subject to ‖x(Ω)‖TV < τ,
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where x(Ω) is a sparse discrete measure on the parameter space
Ω, ‖x(Ω)‖TV is the counterpart of -1 norm over the continuum.
Algorithm 1 provides the details of the method used to solve
the estimation problem with sparsity constraints. The method
first selects the most explanatory choice of parameters in the
parameter space using the residual as shown in (12). Next, the
weights and the support are refined jointly. This non-convex
problem of jointly estimating the weights and the parameters is
solved by an alternating minimization approach. The weights
are estimated by solving the finite-dimensional problem on
the detected support set by enforcing the -1 constraint on the
weights. The support set is pruned such that only non-zero points
in the support set are retained. Next, the support set is refined
using the gradient information with the steepest descent method
with line search. We consider the convergence condition as a
combination of the residual error and the reduction in the loss
function.

Algorithm 1: Alternating descent conditional gradient
method [78].

Input: y, τ , Ψ, ∇Θ∈ΩΨ, Ω, and Kmax.
Return: complex weights x, delay and angle of arrival of
scattering centers {θ,∆} ∈ Ω.
Initialize k = 0, support set S = {∅}
while (Convergence condition is not satisfied or
k ≤ Kmax)

Residual: rk = y −
k−1∑

i=1

Ψ(∆k, θk)xk,

Gradient of loss function: gk(rk) = ∇r

(
0.5 ‖rk‖22

)

{∆k, θk} = arg max{∆,θ}∈Ω |〈Ψ (∆, θ),gk〉| ,

S = S
⋃

{∆k, θk} (12)

while (Convergence condition)

Compute weights: arg min x
‖x‖1≤τ

‖ΨSx− y‖2

Prune Support: If |xk| = 0 S = S \ {∆k, θk}

Refine support: S = S −∇S ‖ΨSx− y‖2

end
k = |S|

end

Convergence analysis and complexity: The optimization
procedure has a sub-linear rate of convergence as shown in [78],
[79], such that the number of iterations is given by O(1/ε̄),
where ε̄ refers to the required error tolerance. This guarantee is
slower compared to the O(1/

√
ε̄) for on-grid algorithms such

as Fast iterative shrinkage-thresholding algorithm (FISTA) [80].
An alternative method that formulates the off-grid sparse esti-
mation problem using particles and gradient-descent has been
proposed in [81]. Although the proposed method has local
linear convergence given by O(log(1/ε̄)) but the problem is
still non-convex and further analysis is required for stability
to additive noise. More recently, data-driven models [18]–[20]

that unroll the optimization iterations. These methods also have
linear convergence rates given byO(log(1/ε̄))but the stability to
off-grid targets is not investigated. The fundamental resolution
of the system is controlled by the Rayleigh length, which is a
function of the system parameters such as bandwidth, total array
aperture length [82]. The super-resolution of targets are typically
achieved by over-discretizing the search grid and utilizing the
Rayleigh length to obtain efficient numerical algorithms [83].
Additionally, prior information on the non-zero locations in the
search space has been utilized to super-resolve target locations
using reweighted methods [84]–[86] that iteratively refine the
parameter estimates. These numerical techniques can be utilized
with our measurements using the forward-operator to super-
resolve targets iteratively.

V. SIMULATION RESULTS

In this section we conduct simulation studies to study the
performance of the proposed compressive radar sensor as a
function of system parameters. Fixed parameters of the simula-
tions areBandwidthB = 500MHz, unambiguous range Interval
[0,100]m, Number of Range Bins N = 334 and pulse duration
τ = 6.86× 10−5s.

A. Effect of Multi-Tones on Mutual Coherence

We first study increasing the number of tones in a single
transmitter and receiver. We compare the proposed illumination
scheme with a uniformly sub-sampled Toeplitz matrix with
independent and identical elements sampled from a complex
standard normal distribution. The Toeplitz sensing matrix rep-
resents the impulse response of the linear time-invariant sys-
tem with a randomly distributed waveform with independent
entries as input. We also compare it with the mutual coherence
of Xampling based sub-Nyquist radar that utilizes Direct Fast
Fourier transform (FFT) sampling presented in [27] described by
the equation (15) for range estimation. The bandwidth of each
sub-band is 25MHz. The frequency-agile radar [38] is also
compared for both range estimation and range-Doppler velocity
estimation. The forward operator used is derived from16 in [38].
We compare the mutual coherence with the range dictionary,
assuming the doppler bin is known as apriori and the mutual co-
herence for the joint range andDoppler velocity dictionary. From
Fig. 5(a), we observe that the coherence of a system employing
a single tone is high for lower sampling rates. Increasing the
number of tones improves themutual coherence as the number of
modulating tones increases, the mutual coherence of the system
converges inmean to themutual coherence of structured random
Toeplitz matrix. The mutual coherence of the Xampling based
sub-Nyquist radar and we observe that for smaller sub-sampling
factor β

B < 0.5 has higher mutual coherence compared to our
system because of the structured block-wise Fourier samples.
When the Doppler velocity is known, the frequency-agile radar
has a similar mutual coherence as the non-uniformly sampled
Fourier operator. For the case of unknown range-doppler, the
measurement operator has a similar mutual coherence to our
waveform.
Next,we compare the coherenceof the proposed systemwith a

multiple-input system with a single receiver employing samples
from a Gaussian distribution, which leads to a partial block
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Fig. 5. Fig. 5(a) illustrates the mutual coherence of a single transmit and a single receiver system as a function of sub-sampling ratio β
B = M/N as the number of

chirpsNc is increased along with the mutual coherence of the uniformly sub-sampled random Toeplitz matrix, Sub-Nyquist radar system based on Xampling [27]
and the frequency agile radar utilizing randomized frequency step [38]. Fig. 5(b) illustrates the mutual coherence of multiple transmit system with single receiver
as a function of number of transmitters NT as number of chirps Nc is increased along with the mutual coherence of the random block Toeplitz matrix and the
sub-Nyquist radar applied to a multiple transmit and single receive radar system [31]. The under-sampling ratioM/N is set as 0.3.

Fig. 6. Fig. 6(a), 6(b) illustrate the probability of reconstruction error is below 10−5 in the noiseless setting as a function of sub-sampling and sparsity ratio for
the multi-tone LFM system. Fig. 6(d) shows the performance for the system employing Gaussian samples as waveform and Fig. 6(c) illustrates .

Toeplitz measurement matrix with random Gaussian entries.
We fix the sub-sampling factor of β

B = M
N = 0.3 to assess the

mutual coherence as the number of transmitters grows. FromFig.
5(b), we can see that as the number of transmitters and modulat-
ing tones increase, the randomness in the waveform increases,
and hence the mutual coherence of the system approaches that
of a system employing random waveform with independent
samples from the Gaussian distribution. We also compare the
mutual coherence with Sub-Nyquist radar [31] operating in
Mode 1 such that there is no spatial compression. Our prosed
system has a lower mutual coherence than the Xampling system
as the number of tones utilized per transmitter increases for the
range and angle of arrival estimation.

B. On-Grid Recovery

Estimation performance: In this section, we consider a single
transmit/receive system and evaluate the ability of the system
to estimate the scattering coefficients using Mean squared error
as the performance criterion. First, we consider the noiseless
case and evaluate the performance of the proposed waveform,
a system employing a waveform with Gaussian entries denoted
by the Toeplitz matrix and a sub-Nyquist based radar system
reconstruction error as a performance criterion. In Figs. 6(a)
6(b), 6(c), 6(d) the probability of successful recovery (defined
as reconstruction error< 10−5) is shown as a function of sparsity
ratio (the ratio of number of targets in the scene to number
of measurements K

M ) and sub-sampling ratio ( βB = M
N ). We
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Fig. 7. Fig. 7(a),7(b) and 7(c) illustrate the mean squared error as a function of the signal to noise ratio (SNR) for different sub-sampling factors of β
B =

0.1, 0.2, 0.3, respectively with number of transmitters NT = 16, and number of receiversNR = 8. The sparsity ratio of the scene is fixed at K
M = 0.1 for these

simulations.

observe that for a sufficiently high number of modulating tones,
the performance characterized by the phase transition diagram 6
is similar to that of a system employing stochastic waveforms
on transmit. Furthermore, we also show that as the number of
modulating tones increases, our system can recover the scatter-
ing coefficients of the targets at a higher sparsity ratio for each
sub-sampling ratio β

B < 0.5 compared to the sub-Nyquist radar
system.
Next, we consider a multiple transmit/ receive system with

NT = 16 and NR = 8 to evaluate the performance of our pro-
posed system and a system that utilizes samples from a Gaus-
sian distribution modeled as a block-Toeplitz matrix used for
estimating the scattering coefficients in range-angle of arrival
domain. We denote the Signal to noise ratio measure as the
post-integration SNR after the stretch processing step, which is
the analog domain approximation of the matched filtering. The
SNR relationship is given by

SNR(dB) = 10 log10 SPower − 10 log10 NPower

+ 10 log10 PStretch,

where the signal power is governed by the Radar range equation,
noise power is governed by the system bandwidth and the stretch
processing gain dependes on the bandwidth-time product of the
LFM waveform, which can be stated as

SPower =
PTransGTransGRecλ

2σRCS

(4π)3R4
scene

,

NPower = kBoltzmanB/2T,

PStretch = βτ,

where PTrans is the peak transmitted power, GTrans, GRec

are the transmit and receive antenna gain, σRCS is the radar
cross section of the target and Rscene is the distance be-
tween the radar platform and the scene center. For the choice
of parameters with PTrans = 10 KW, and GTrans(dB) =
20 dB,GRec(dB) = 20 dB and σRCS = 1 and R = 10000 m,
we get an SNR = 15 dB. We vary the SNR for a fixed sparsity
ratio of K

M = 0.1 and compare the system performance for sub-
sampling ratio of β

B = 0.1, 0.2, 0.3 in Fig. 7.We observe that for
the High SNR regime where SNR > 5 dB the performance of
the MIMO system withNc = 1modulating tone per transmitter
converges to the MIMO system with Gaussian samples. For low
SNR regime SNR < 5 dB, the performance improves as the
number of modulating tones per transmitter increases.

Detection performance: Next, we consider noisy measure-
ments to assess the system’s performance and compare it
with a system utilizing a waveform with Gaussian samples.
We first consider a single transmit/receive system and fix the
under-sampling ratio to 0.3. Support recovery performance is
evaluated using the probability of detection and false alarm.
The detection is declared true if the recovered signal at a bin
exceeds the threshold and the target is present at the specified
location. All other detections are declared as false positives.
The receiver operating characteristics (ROC) curve illustrates
the probability of detection and false alarm parametrized by
the threshold. We characterize the performance criterion for
successful support recovery (defined by the area under the curve
(AUC) of ROC exceeding a threshold of 0.99) as a function of
the signal-to-noise ratio (SNR) and sparsity ratio K

M . The results
in Figs. 8(a) to 8(d) illustrate that the successful recovery of
the system improves as the number of tones Nc increases and
converges to the system with Gaussian samples represented by
a Toeplitz matrix. Next, we fix the SNR as 10 dB and study
the criterion for support recovery (defined by the area under
ROC (AUC) exceeding a threshold of 0.9) as the sub-sampling
ratio sparsity levels are varied. The probability of successful
recovery is shown in Figs. 9(a) to 9(d). It can be seen that
the performance of the system approaches the performance
of the system employing waveform with Gaussian samples.
Next, we characterize the performance of the MIMO system for
support recovery using the Receiver operating characteristics
for successful support recovery in Fig. 10. We fix the sparsity
level of the scene to K

M = 0.3 and consider a MIMO system
with NT = 16 transmitters and NR = 8 receivers and vary
the number of modulating tones per transmitter. We set the
sub-sampling ratio asM/N = 0.1, 0.2, 0.3 in Fig. 10(a), 10(b),
and 10(c), respectively. We vary the SNR and compare the AUC
for ROC curve for a system employing random waveform with
samples from a Gaussian distribution. We show that by utilizing
Nc = 1 tone per transmitter, the performance of the proposed
MIMO system converges to the performance of the MIMO
system with Gaussian waveform. We further show the effect
of noise variance on the support recovery guarantee in the form
of a phase transition diagram in Fig. 11, where the criterion used
is even that the area under the ROC curve exceedsAUC > 0.95.
We utilize a sub-sampling factor of β

B = M
N = 0.3. Again, we

observe that a system utilizing a single modulating tone per
transmitter can achieve similar performance to a MIMO system
that employs Gaussian waveform.
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Fig. 8. Fig. 8(a) to 8(d) shows the probability that Area under the curve for Receiver operating characteristic ≥ 0.95 as a function of signal to noise ratio at a
fixed under-sampling ratio β/B = 0.3.

Fig. 9. Fig. 9(a) to 9(d) shows the probability that AUC≥ 0.9 as a function of sub-sampling ratio β/B = M/N for a fixed SNR of 10 dB.

C. Off-Grid Recovery

We consider a single input single output system for estimating
the range and evaluate the performance of the illumination
scheme with off-grid targets. We conduct the simulations with
an under-sampling ratio as M

N = 1/3 and the SNRof 12 dB. The
number of targets in the scene is 20 using the model specified in
section II-B. We compare the performance of the system as the
number of modulating tones is varied using the metrics defined
in [87]. We define the set of true range as T = {ri} ⊂ Ω with
complex scattering coefficients {xi} for i = 1, . . . ,K, whereK
is the number of targets in the scene. We define Nri as the set
of values of range that are in a neighborhood of the true range
ri, such that Nri = {r : |r − ri| ≤ 0.2c/(2B)}. We define the
region of false detections asF = Ω \ {∪iNri}. We consider the
following performance measures to evaluate the estimate {r̂i},
and {x̂i} obtained using the algorithm given by! error due to false detections given bym1 =

∑
r̂i∈F |x̂i|,

! weighted localization error m2 =∑
j

∑
i:r̂i∈Nrj

|x̂i|minr∈T ‖r̂i − r‖2,! approximation error in the scattering coefficients m3 =
maxj |xj −

∑
l:r̂l∈Nrj

x̂l|.
First, we evaluate the resolution performance of the sys-

tem using 2 targets with ranges R1 and R2. The scattering
coefficients are chosen at random from a Complex Gaussian
distribution. The SNR is set as 12 dB. We set the sub-sampling
ratio β

B = 0.3. The distance between the target is increased and
we measure the estimation error for each target denoted by
Error = |R1 − R̂1|+ |R2 − R̂2|. We observe in Fig. 13 that
as the number of tones Nc = 1, 5, 10. As the number of tones
increases the error reduces. We observe that the for Nc = 10,
the error saturates after 0.25 m. The theoretical resolution is
c
2B = 0.3m.We evaluate the performance profile, which is stud-
ied in [87] to compare the various algorithms for recovery. In our
case, we compare the system’s performance for a fixed recovery
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Fig. 10. The number of transmittersNT = 16, and the number of receivers isNR = 8. The sparsity ratio is set as by K
M = 0.3. Receiver operating characteristics

with the sub-sampling factor of β
B = 0.1, 0.2, 0.3 in Fig. 10(a) to 10(c).

Fig. 11. The sub-sampling ratio is set as M/N = 1/3. The number of transmitters and receivers in the system are NT = 16, and NR = 8, respectively. The
probability that AUC under ROC ≥ 0.95 is shown in for the case of system withNc = 1, 5 and Gaussian waveform in Figs. 11(a), 11(b), and 11(c), respectively.

Fig. 12. Performance profile for different number of modulating tones with under-sampling ratio β/B = 1/3,K = 20 and SNR = 12 dB. Figs. 12(a), 12(b),
and 12(c) show the perfomance profile corresponding to metrics indicating the false positives, localization error, and approximation error, respectively.

Fig. 13. The resolution of system is verified using Twotargets with varying
separation. A single transmit/receive systemNc = 1, 5, 10modulating tones is
utilized with SNR=12 dB and sub-sampling ratio β

B = 0.3.

algorithm and vary the number of modulating tones. The set
of tones used is denoted by S = {1, 10, 20}. The performance
profile is evaluated by repeating the experiment for different
realizations of target denoted by the set P . The performance
profile for the system parameter s ∈ S, error metric mi, and

factor η, which specifies the ratio mi(p, s)/mins mi(p, s) is
computed as follows

Ps(η; i) =
card {p ∈ P : mi(p, s) ≤ ηmins mi(p, s)}

card {P} .

The performance profile of system s indicates the number of
realizations such that the errormetricmi(p, s) for the realization
p is within a factor of β from the error metric corresponding to
the best system parameter. Fig. 12 shows the profile evaluated
for all the error metrics computed using 100 target realizations.
We observe that as the number of modulating tones is increased,
the performance improves.

VI. PROOFS

We estimate the tail bounds for mutual coherence and spectral
or operator norm of the measurement matrix to obtain the
non-asymptotic recovery guarantee for our system.Wemake use
of the Matrix Bernstein inequality to bound the operator norm
of the measurement matrix with high probability given in (4).
Complete proofs are presented in [88] and the supplementary
material.
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Lemma 1: The operator norm of the sensing ma-
trix in (4) is bounded with high probability if Nc ≥
4 log(NNRNT +MNR)/(9NT )

‖A‖op ≤ 2

√
NTN

M
log (NRM +NRNTN). (13)

The following results on the Euclidean norm of columns and
the mutual coherence are obtained using concentration inequali-
ties for quadratic formsof randomvectors having a sub-Gaussian
distribution given in [89].
Lemma 2: The minimum of the corollary-Euclidean norm of

any column of A, which is indexed by range bin n angle bin v
is bounded by

∣∣∣∣min
n,v

‖A(n, v)‖22 − 1

∣∣∣∣ ≤ ε (14)

with high probability, where ε ∈ (0, 1) is an arbitrary constant.
Lemma 3: The mutual coherence of the sensing matrix A

scales as

µ (A) ∼ O





√
log(NNRNT

ε )

M



 , (15)

with high probability if Nc = O( N
NT

).
Proof of Theorem 1: Using M ≥ log(NNRNT )3 from

lemma 3, the coherence condition given in [11] is satisfied with
high probability as shown below

µ (A) = O
(

1

log(NNRNT )

)

w.p. p1 ≥ 1− ε− 10N exp
(
−dM ε̄2

)
, (16)

where ε̄ = (ε q∗

(
NcNT

N )
2
q∗ −1

), ε ∈ (0, 1). The measurement matrix

in our analysis is normalized to have unit norm columns to apply
results from [11]. Let D ∈ RNRNTN×NRNTN diagonal matrix
with diagonal entries corresponding to the normof the column of
A given byDi,i = ‖A(ni, vi)‖2. The measurement model can
be modified as y = Âz+w, where Â = AD−1 and z = Dx.
Next, we obtain the probability tail bound for the operator norm
of the measurement matrix Â. Using 1, we have ∀ε > 0, ε ∈
(0, 1), independent of N and M,

P

(∥∥∥Â
∥∥∥
op

≥ 2√
1− ε

√
NTN

M
log (NRM +NRNTN)

)

≤
(

1

NRM +NTNRN

)α1−1

+ 8N exp
(
−dM ε̄2

)
,

where

α1 =
1

1
3

√
1

NTNC
log (NRM +NRNTN) + 1

2

,

NcNT ≥ 4

9
log(NNRNT +MNR), ε̄ =



ε
q∗

(
NcNT

N

) 2
q∗ −1



 .

Therefore,

∥∥∥Â
∥∥∥
op

≤ 2√
1− ε

√
NTN

M
log (NRM +NRNTN)

w.p. p2 ≥ 1−
(

1

NRM +NTNRN

)α1−1

+ 8N exp
(
−dM ε̄2

)
. (17)

Using the support recovery result from [11], the maximum
number of targets that can be successfully detected is Kmax =

c0NRM
log2(NNRNT+MNR)

. Next, we establish that the measurement
matrix does not reduce the absolute value of non-zero entries of
the sparse vector x below the noise level.

P
(
min
i

Di,i |xi| ≤ 8σ
√

2 logN
)
≤ NP

(
Di,i ≤

√
1− ε

)

≤ 8N exp
(
−dM ε̄2

)
.

Therefore, we have

min
i

|zi| ≥ 8σ
√
2 logN

w.p. p3 ≥ 1− 8N exp
(
−dM ε̄2

)
. (18)

We define the following events associated with a realization
of measurement matrixA

Ξ1 : µ (A) = O
(

1

logN

)
,Ξ2 :

∥∥∥Â
∥∥∥
2

op
≤ c0 N

Kmax logN
,

Ξ3 : min
i

|zi| ≥ 8σ
√
2 logN,

Ξ4 : successful support recovery for a fixed sensing matrix.

Let Ξ be the event that the sampled measurement matrix
satisfies the conditions required for successful recovery and
recovers a K-sparse vector x selected from the target model.
This implies

P (Ξ) ≥ P (Ξ4 | Ξ1 ∩ Ξ2 ∩ Ξ3)

(1− P (Ξc
1)− P (Ξc

2)− P (Ξc
3)). (19)

Using result from [11] for P (Ξ4 | Ξ1 ∩ Ξ2 ∩ Ξ3),(17), (18) and
(16) in (19), we deduce that successful support recovery is
guaranteed with high probability.
The conditions required for RIP of order K to hold are

obtained next. We reformulate the system model presented in
(3) and (4) by re-scaling the random variables to normalize the
variance as follows

A =
N∑

nc=1

ĉnc

√
NcNT

N
(ᾱRᾱT(ξ(nc)))⊗

(
HncĀDnc

)
,

A =
N∑

nc=1

cncAnc ,

Anc =

√
NcNT

N
(ᾱRᾱT(ξ(nc)))⊗

(
HncĀDnc

)
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where cnc =
√

N
NcNT

ĉnc such that E(|cnc |2) = 1. We define
the set

DK,NNθ =
{
x ∈ CNNθ : ‖x‖0 = K, ‖x‖22 ≤ 1

}
.

For a K-sparse vector x ∈ DK,NNθ , we have

Ax = Vxc,

where Vx = [A1x A2x · · · ANx] ∈ CMNR×N and c ∈
CN is the vector comprised of the normalized random variables
that select the waveforms.
Lemma 4: Given the measurement operator A and any x ∈

DK,NNθ we have E(‖Ax‖2) = ‖x‖2.
Lemma 4 implies that the RIP constant of orderK in (9) can

be expressed as a second order chaos process in the random
vector c as follows

δK = sup
x∈DK,NNθ

∣∣∣‖Ax‖22 − ‖x‖22
∣∣∣

= sup
x∈DK,NNθ

∣∣∣‖Vxc‖22 −E
(
‖Vxc‖22

)∣∣∣ . (20)

Therefore, we derive the concentration inequality for the RIP
constant using the result in Theorem 3, which was first estab-
lished in [53]. We define the following terms that are essential
components in the result

T = {Vx = [A1x · · ·ANx] : x ∈ DK,NNθ} ,

dF (T) = sup
Vx∈T

‖Vx‖F , dop(T) = sup
Vx∈T

‖Vx‖op ,

γ2
(
T, ‖.‖op

)
≤ C

∫ dop(T)

0

√
log

(
N

(
T, ‖.‖op , u

))
du,

where γ2(T, ‖.‖op) is the Talgrand’s chaining functional,
which is upper bounded by Dudley’s entropy integral [53],
N(T, ‖.‖op, u) is the covering number, which is defined by the
number of balls with distance metric ‖.‖op and radius u required
to cover the set ofmatricesT inducedby the vectorx ∈ DK,NNθ ,
C > 0 is a universal constant, and log(N(T, ‖.‖op, u)) is defined
as themetric entropy. The following lemmaderives the estimates
for the above defined quantities.
Lemma 5: For the set of matrices T, we have dF (T) =

1, dop(T) ≤
√

K
M , γ2(T, ‖.‖op) ≤ C1

√
K
M (

√
log( eNNθ

K )), for
some universal constant C1 > 0.
Theorem 3: Let T = {Vx : x ∈ DK,NNθ} be a

set of matrices, and let c be a random vector
whose entries cj are independent, mean-zero, vari-
ance 1, and L-subgaussian random variables. Set
E = γ2(T, ‖.‖op)(γ2(T, ‖.‖op) + dF (T)) + dF (T)dop(T ),
V = dop(T)(γ2(T, ‖.‖op) + dF (T)), U = d2op(T). Then
for t > 0, P (supVx∈T |‖Vxc‖22 −E(‖Vxc‖22)| > ε1E + t)

≤ exp(−ε2 min( t2

V 2 ,
t
U )). The constants ε1, ε2 depend only on

L.
Proof is given in Theorem 3.2 in [53].
Proof of Theorem 2: Let the restricted isometry constant of

orderK be δK for the measurement operator, which is obtained
in (20). We can obtain the tail bounds on δK using the results

from Lemma 5 in Theorem 3 as follows

P (δK ≥ ε1E + t)

= P

(
sup

x∈DK,NNθ

∣∣∣‖Vxc‖22 −E
(
‖Vxc‖22

)∣∣∣ ≥ ε1E + t

)

≤ exp

(
−ε2 min

(
t2

V 2
,
t

U

))
≤ η1,

where ε1, ε2, E, U, V are defined in Theorem 3, and η1 ∈ [0, 1]
is a bound on the tail probability. The constants E,U, V for the
measurement operator is given by

E ≤ C2
1
K

M

(
log

(
eNNθ

K

))
+ C1

√
K

M

(√

log

(
eNNθ

K

))

+

√
K

M

≤ C2
2
K

M

(
log

(
eNNθ

K

))
+ C2

√
K

M

(√

log

(
eNNθ

K

))

If the number of measurements per receiver M >

2C2
2δ

2

ε21
K log( εNNθ

K ), thenE ≤ δ2

4ε21
+ δ

2ε1
≤ cδ

2ε1
. Given the con-

dition on the number of measurements, the RIP constant δK is
bounded as follows using t = δ

2

P (δK ≥ ε1E + t) = P (δK ≥ δ)

≤ exp

(
−ε2

4

(
M2 log

(
eNNθ

K

)

K2
δ2
))

This relation establishes the condition the number of mea-
surements required per receiver M for the constant δK to be
bounded with high probability.

VII. CONCLUSION

In this work, we have presented a compressive acquisition
scheme for high-resolution radar sensing. We show that the pro-
posed system comprising multi-tone LFM transmit waveforms
and uniformly subsampled stretch processor results in a struc-
tured random sensing matrix with provable recovery guarantees
for delay and angle of arrival estimation in sparse scenes. The
recovery guarantees for the proposed compressive illumination
scheme are comparable to that of random Toeplitz matrices with
amuch larger number of random elements. The proposed system
is well matched to practical implementation utilizing a small
number of random parameters and uniform sampling ADCs on
receive. Our simulation show targets both on and off the grid can
be detected using sparsity regularized recovery algorithms. A
potential direction for future research is to investigate the effect
of basis mismatch [90] due to targets not located on the grid
locations and extend the theoretical guarantees to off the grid
compressed sensing framework proposed in [14], [87] based on
the generalization of notion of sparsity in an infinite dictionary
setting [91]. We plan to investigate the effect of clutter by
extending the analysis to amulti-pulse systemand characterizing
the ambiguity function.
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