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Federated Learning Under Intermittent Client
Availability and Time-Varying
Communication Constraints

Moénica Ribero“”, Haris Vikalo

Abstract—Federated learning systems facilitate the training of
global models across large numbers of distributed edge-devices
with potentially heterogeneous data. Such systems operate in re-
source constrained settings with intermittent client availability
and/or time-varying communication constraints. As a result, the
global models trained by federated learning systems may be biased
towards clients with higher availability. We propose Federated
Averaging Aided by an Adaptive Sampling Technique (F3AST),
an unbiased algorithm that dynamically learns an availability-
dependent client selection strategy which asymptotically minimizes
the impact of client-sampling variance on the global model’s con-
vergence, enhancing performance of federated learning. The pro-
posed algorithm is tested in a variety of settings for intermittently
available clients operating under communication constraints, and
its efficacy demonstrated on synthetic data and realistically feder-
ated benchmarking experiments using CIFAR100 and Shakespeare
datasets. We report up to 186% and 8% accuracy improvements
over FEDAVG, and 8% and 7% over FEDADAMon CIFAR100 and
Shakespeare, respectively.

Index Terms—Edge learning, distributed learning, federated
learning, resource management, communication efficiency.

I. INTRODUCTION

EDERATED learning (FL) has emerged as an attractive
framework in edge learning to train models when the data
is distributed among edge devices and must remain local due to
resource constraints and/or privacy concerns. The edge-device
networks in FL could comprise millions of clients [1] whose
feedback might include model updates that are on the order of
100 Mb. For example, neural network for image recognition
tasks VGG-16 [2] has 160 M parameters and weights resulting
in updates of size 526Mb when using 32 b encoding.
In the original Federated Averaging algorithm (FEDAVG) [3],
as well as more recent approaches including SCAFFOLD [4],
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Federated Adaptive Optimization [5], FEDDYN [6] and Fed-
Prox [7], a server selects a random subset of clients and which
will participate in updating a global model by training on local
data. The server aggregates the clients’ updates to produce a new
global model, broadcasts it to the clients, and a new round of
training begins; this procedure is repeated until convergence.
The potentially large amount of communication between the
clients and the server makes sub-selection policies that reduce
data traffic imperative. Additionally, one might want to judi-
ciously account for differences in clients’ availability patterns.
Such patterns reflect inherent biases that may adversely affect
learning goals, e.g., some devices may be more willing to par-
ticipate as they may be less energy or bandwidth constrained.
Indeed, one of the biggest gaps between theory and practice
of FL is due to biases in sampling of edge-devices resulting
from heterogeneous, possibly stochastic, on-and-off availability
and communication constraints [1], [8], [9]. For example, in
cross-device settings including mobile device systems [3], a vast
number of client devices [10] with limited communication and
power resources [1] intermittently connects to a central server
to help optimize a global objective. Existing FL algorithms
typically ignore intermittency and assume that the participating
client devices are always available and thus can be tasked with
performing a model update at any time [3], [6], [11], [12]. If not
addressed by the system design, time-varying communication
constraints and intermittent client availability (due to battery
and other device-specific limitations) may cause significant
degradation of the learned model performance [8], [11], [13].
To illustrate the potential severity of the problem described
above, and preview the contributions of this paper, consider
the following simple example. Let ¢; and cy be two clients
with distinct data distributions. A server aims to optimize the
function F(w) = p; F1(w) + p2Fa(w) over RP, where Fy and
F5 denote the loss functions at clients ¢ and ca, respectively,
and for simplicity p; = pa = 1/2. We shall consider a model for
the clients’ intermittent availability characterized by the joint
distributions given in Table I, where A; is a binary random
variable indicating whether client ¢; is available. In this model,
clients’ availabilities in a given round are independent, with
P(A; =1) =0.375 while P(A2 = 1) = 0.8. Note the client
availabilities are assumed to be independent across rounds.
Suppose there is a communication constraint which restricts
the server to sampling at most a single client each round. The
server must thus choose a possibly client state dependent policy
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TABLE I
CLIENT AVAILABILITY MODEL: THE AVAILABILITY IS INDEPENDENT ACROSS
TIME AND CLIENTS

A =1 A2 =0 Marginal
A =1 0.3 0.075 0.375
A1 =0 0.5 0.125 0.625
Marginal 0.8 0.2
r2
® [deal rate

(33

Fig. 1. The region of achievable long-term participation rates under the client
availability model in Table L.

for selecting the clients in each round. Each such policy would
achieve certain long-term client participation rates across the
rounds, denoted r = (71, 7). For example, under the model in
Table I, the set of achievable long-term participation rates across
all possible policies is given by the region R; shown in Fig.
1. Given the communication constraints, it is not possible to
achieve the full client participation rates of r = (1, 1) because
clients are not always available and we can only sample one
client in each round. However, r® = (0.375,0) is achievable
by using the state-dependent deterministic policy which selects
c1 whenever ¢, is available and never selects co. Alternatively,
r® = (0.375,0.5) is also achievable by selecting ¢; whenever ¢;
is available, and c5 when only ¢ is available. A naive selection
policy that samples from available clients with probability pro-
portional to p; = % in hope of achieving “ideal” participation

rate (%7 %) [12] would actually result in client ¢; participating
at a rate of
P(A;=A4,=1
r¢ = P(A; =1, A5 = 0) + % = 0.225.

Analogously, the long-term participation rate of client ¢ under
the same naive selection policy is r§ = 0.65.

As demonstrated in Section III (Theorem III.5), improper
choice of the long-term participation rate r injects bias and vari-
ance into the global model. Therefore, selecting an “appropriate”
rate is of fundamental importance; yet, as illustrated above,
intermittent client availability and communication constraints
present several previously overlooked challenges: (i) determin-
ing the long-term participationrate r* € R whichis bestin terms
of its impact on the convergence of federated learning, and (ii)
design of a client selection policy that achieves rate r*. These
are particularly demanding because the (possibly correlated)
clients’ availability patterns are unknown and, therefore, R is
unknown.

The main contribution of this paper is learning to sample
clients in large edge-device FL networks with heterogeneously
distributed data and intermittent client availability. In particular
we introduce F3AST, a federated learning algorithm that also
learns how to adapt its client sampling strategy to unknown client
availability statistics and adapts to time-varying communication

constraints. F3ASTis shown to be asymptotically optimal (see
Theorem II1.3) as its long-term participation rate converges to
the value minimizing a bound on the global model variance over
the space of achievable rates. Remarkably, F3AsTaccomplishes
this with no prior knowledge of the communication constraints
or clients’ availability models. To our knowledge, this is the first
work to formally address client intermittency and system capac-
ity variability in federated learning with data-heterogeneity, and
the first work to propose a method to learn how to select clients
while pursuing a shared (global) model within the federated
learning framework.

Extensive experimentation on realistic tasks and data.
F3ASTis tested on three benchmark datasets: (i) Synthetic(1,1)
[14], a widely used heterogeneous synthetic dataset for soft-
max regression [7]; (ii) a realistically federated version of CI-
FARI100 [5]; and (iii) Shakespeare [3]. We demonstrate that in
learning highly non-linear models F3ASTexhibits more stable
convergence and considerably higher accuracy than state-of-
art algorithms. Moreover, F3AST’s selection and aggregation
method is readily combined with the existing optimization tech-
niques designed to address system’s constraints, allowing those
methods to take advantage of F3AST’s policies: experiments
confirm that incorporating F3AsTreduces bias of algorithms that
do not compensate for client selection uncertainties, and demon-
strate much more stable descent trajectories to the optimum even
in highly time-varying environments.

II. BACKGROUND AND RELATED WORK
A. Federated Learning

Given a set i/ with N clients, each having nj, data samples, a
federated learning system is concerned with solving

min By p[Fy(W)], ey
weR?

where Fj,(w) = E¢p, [fix(W;&)] denotes the loss function of
client k£ and P is the distribution over users. The generalized
FEDAVG algorithm, FEDOPT [5], interactively learns the global
model by randomly selecting at time ¢ a subset of clients S; to
locally optimize their objective function' starting from the initial

model W, and communicate their updates vt,:rl to the server.

Then, the server aggregates the received updates (vi'')ics,
to produce the global update A**! and generate a new global
model W'*!. For the remainder of the paper we refer to the
process of going from W' to W' as a (single) round of FL.
The process is repeated with the aim of finding accurate global
model. Heterogeneity due to generally non-i.i.d. and unbalanced
data available to different clients emerges as one of the main
challenges in federated learning, and thus the choice of a client
sampling scheme heavily impacts convergence of the global
model. Several authors have addressed this problem, proposing
different optimizers [5] and client sampling strategies [11], [12],
but all showed convergence (or near convergence) only under
the strong assumption of being able to sample any client at any
time. A technique that deals with heterogeneity by allowing each
client to learn a personalized model was proposed in [15].

'E.g., the original FEDAVG algorithm coordinates E epochs over training data.

Authorized licensed use limited to: University of Texas at Austin. Downloaded on March 19,2023 at 16:29:04 UTC from IEEE Xplore. Restrictions apply.



100 IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. 17, NO. 1, JANUARY 2023

Several approaches to addressing communication constraints
in FL systems have recently been proposed in literature, includ-
ing strategies aiming to reduce client communication rate via
model compression [16], [17], [18], [19], [20], [21]. These are
orthogonal to our work since we focus on settings where the
clients are intermittently available.

a) Client availability: We assume that, at any time, the set
of available clients is random and non-empty, and that the
constraint on the number of clients selected to train and provide
model updates to the server generally varies over time. Note
that, in such scenarios, applying recent stateful optimization
techniques such as SCAFFOLD [4] and FEDDYN [6] is challenging
due to hardware constraints and high number of participating
devices [9]. Prior work has investigated client availability un-
der restrictive conditions such as block-cyclic data characteris-
tics [8], [11], assumed i.i.d. availability across clients that act
as stragglers [7], or produced biased models [22]. However,
availability is much more difficult to model in practice. Although
certain patterns such as day/night are cyclic, there also exist
various other non-cyclic client or cluster-specific patterns that
affect some clients more than others, including access to a power
source and the available communication bandwidth.

B. Client Sampling and Averaging

Since the number of clients in federated learning systems can
be extremely large [23], [24], only a relatively small subset of
them is tasked with training in each round. Data heterogeneity
and communication constraints have inspired several strategies
for selecting clients from the available pool. Some of those
techniques take into account the proportion of data at each client,
which we denote by p [12]. Alternative strategies apply active
learning ideas to client selection and select those that are more
promising according to some metric, e.g., choose clients with
the largest magnitude of the updates [13], [25], [26], [27], [28]
or those with the highest loss [11].

Another line of related prior work has been focused on investi-
gating model aggregation strategies. In [13], the authors assume
that stochastic optimization updates approximately follow a
stationary stochastic process, and cast the model aggregation
as an estimation problem. An alternative aggregation strategy
is to form an unweighted average of the updates [11]; however,
this leads to a biased model and large variance. Other approaches
trade communication and memory for stable convergence [4],
or replace missing updates with the previous model [26], [27].
In the centralized setting, importance sampling has been used to
optimally aggregate SGD updates [29], [28].

Previous works on client sampling in FL systems do not
provide formal convergence guarantees for settings where the
clients are intermittently available. Work in [8], [11] study
effects of cyclically alternating client availability and propose
a sampling strategy empirically shown to improve over ran-
dom sampling; however, the resulting models may be biased
and their performance under non-cyclic availability patterns is
unclear.

Alternatively, asynchronous methods address client selection
under system heterogeneity with a fixed selection policy de-
termined by clients training speed: updates are incorporated
individually as they arrive at the server [30] or, when there are
privacy concerns, they are aggregated in buffers [31].

III. METHODS

In this section we present and analyze a novel framework
for selecting and aggregating intermittently available clients in
federated learning systems that operate under time-varying com-
munication constraints. In such settings, the contribution each
client makes to the federated averaging process depends on how
often the client is selected to provide an update —i.e., on the long-
term client participation rate. We start by characterizing the
set R of achievable long-term client participation rates subject
to communication and client availability constraints. Then, we
introduce F3AST,an algorithm that dynamically learns clients’
long-term participation rate and improves the convergence of
federated learning by reducing the model bias and minimizing
variance introduced by sampling intermittently available clients.
The omitted proofs can be found in the appendix.

A. Preliminaries

Communication constraints and intermittent client availabil-
ity: Consider a FL system in which a random subset of clients
A isavailable/responsive attime t; here (A1, Ay, ... ) = (Ay):
form a discrete-time stochastic process with a finite state space
A =24 je., the collection of all possible subsets of the set of
users /. Communication constraints restrict the possible subsets
of clients that can be chosen to participate during a training
round; we let C; denote the (random) collection of the available
clients sets that meet communication constraints at time ¢ and
denote its state space by C; given A, = A, arealization C, = C
corresponds to a collection of subsets of A, i.e., C' C 24, For
convenience, in the remainder of the paper we refer to C; as the
system configuration.

To illustrate the use of the introduced notation, consider the
communication-constrained setting where the number of clients
allowed to participate in training round ¢ is no more than (possi-
bly random) K. Given a realization of the set of clients available
at time t, A; = A, and the aforementioned communications
constraint K; = k € N, the collection of feasible client sample
sets S that the server may choose to include in the training round
is

C={ScA:|S <k}

If the communication constraints are not time-varying, i.e., if
K = k almost surely for all ¢, we are back in the traditional
FEDAVG cross-device setting.

Assumption 1: The sequence of random collections of feasi-
ble client sampling sets (C;); forms a discrete-time irreducible
Markov chain with a finite state space C C 2“ and a stationary
distribution 7 = (7(C), C € C).

Assumption 1 significantly relaxes assumptions typically
made when analyzing convergence of state-of-the-art FL algo-
rithms, e.g., the much stronger assumptions of all users having
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unlimited availability [3], [4], [6], [7], [32], [33] or a deter-
ministic block-cyclic availability [8]. Assumption 1 captures
various realistic settings including that of home devices avail-
able with a given probability - not necessarily uniform across
clients - throughout the day. Our experimental results showcase
that in several realistic settings which meet Assumption 1, our
method provides significant performance improvements while
other techniques fail to adapt to unknown availability models.

b) Static configuration-dependent client sampling policies:
Communication constraints and intermittent client availability
restrict the space of admissible long-term client participation
rates. Indeed, it is unrealistic to expect being able to sample an
arbitrary collection of £ clients at time ¢ with pre-specified prob-
abilities P = (p; : i =1...N) since some of those %k clients
may be unavailable, and/or time horizon is not long enough to
achieve certain rate (see examples in Section I). To character-
ize achievable long-term participation rates we introduce the
following concepts.

Recall that for a given configuration of communication con-
straints and client availabilities there exists an associated collec-
tion of feasible client sample sets C' that a sampling policy can
choose from. We define a static configuration-dependent client
sampling policy as follows.

DefinitionI1l.1: ForeachC,let fc, s > 0denote the probabil-
ity of selecting the subset of clients S € C, where > "¢ fc,5 =
1. If we denote fc = (fc,5,5 € C), then f:= (fc,C €C)
specifies a static configuration-dependent sampling policy se-
lecting clients over different communication/availability con-
figurations.

Let F denote the set of possible static configuration-
dependent client sampling policies. Under the above model, the
long-term client participation rate can be expressed as

rf = Z?T(C) Z fc,s]ls> @

ceC SeC

where 1 is an /N-dimensional binary indicator vector whose
ith entry is 1 if the it" client is in S, and is 0 otherwise. One can
interpret the i*” component of vector r/ as the fraction of time
the i*” client is selected by the server.

Finally, we define the long-term client participation rate re-
gion as the set of all possible long-term participation rate vectors
vl ie, R :={xf|f e F}.

Lemma II1.2: The long-term client participation rate re-
gion R = {rf|f € F} is a subset of the simplex in the N-
dimensional Euclidean space, and a closed convex set.

Proof: The lemma follows from the fact that R is a linear
image of all possible f, a closed bounded convex set. R defines
the region of achievable participation rates. We rely on this
lemma to prove convergence of our algorithm to the optimal
rate in Theorem III.3. |

B. F3AST: Minimizing the Sampling Variance

Here we formally introduce an algorithm that learns a client
selection policy which ensures that the resulting long-term client

participation rate converges to a value minimizing

h_y B& client availability is
H(r) := ) positively correlated, 3)
. 7& otherwise,

where positive correlation between availability of clients ¢ and
7 implies that an event of client ¢ being available increases the
probability of client j being available. Whether client availability
is positively correlated or not depends on application domain;
if the nature of availability correlation is unknown, minimizing
> f—: remains a meaningful option since this objective provides
abound on the variance in all cases. It is readily shown that H (r)
bounds the variance induced in the global model by the selection
policy with rate r. For the ease of exposition we postpone that
discussion to Section III-B2 in favor of first presenting our
proposed algorithm.

F3AsT(Federated Averaging Aided by an Adaptive Sampling
Technique), is presented as Algorithm 1. Formally, F3ASTaims
to find a configuration-dependent client sampling strategy frsasr
such that its long-term client participation rate rgzgr approxi-
mates the optimal achievable strategy r* € argmin, 5 H (r). To
accomplish this, F3ASTfirst initializes r(0) arbitrarily (line 1).
At each round ¢, with C; = (Y, selecting set S € C; implies a
contribution to the participation rate of 1 for every client k € S.
Whether or not selecting set .S brings 7(¢) closer to r* can
be computed by estimating the marginal utility of S using the
gradient of H(r). Thus, we select S; (line 5) as

Sy € arg max —VH(x(t)) 1s. 4
€y

In general, (4) is a combinatorial optimization problem; in the
federated learning systems with a time-varying bound on the
number of clients K that can be selected (K; > 0), (4) reduces
to the discrete optimization problem of greedily selecting K,
available clients with the largest entries of —V H (r(t)). Opti-
mality of the greedy approach follows because the objective is
an additive set function.

Next, the rate is updated to reflect the selection made in the
latest iteration of the sampling scheme. This is done by forming
an exponentially smoothed average of the past sampling rates
(line 6),

r(t+1) = (1= pB)r(t) + Bls, )

where 5 > 0 is a fixed small parameter, set to 5 = O(1/T)
for convergence purposes. After having selected clients Sy, the
server broadcasts the current model and the selected clients
perform local updates using a local optimization procedure
CLIENTOPT(W!). Finally, the server uses r(t) to produce an
unbiased global model w'*! with estimator A**! (lines 9-10).

a) Beyond FEDAVG: F3AsTmodifies two crucial steps in FE-
DAVG: client sampling and model updates aggregation. This
makes it suitable to work in combination with other FL algo-
rithms like SCAFFOLD [4], AFL [33], FEDPROX [7], FEDDYN [6],
and more generally FEDOPT [5]. These methods’ theoretical
guarantees are provided under the “all clients are available”
assumption, implying that they assume an unrealistic fixed
sampling policy which introduces bias to the model. Our proof
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Algorithm 1: F3AST: Federated Averaging Aided by an
Adaptive Sampling Technique

Input: Server parameters: learning rate schedule {n;}7_,,
the number of global rounds 7', the number of clients
per round K, the number of client local updates F,

8 =0(1/T)
Output: Global model w
1: initialize Wy € RP? arbitrarily, initialize r(0) arbitrarily

2: fort=1—Tdo

3 (C; <« feasible client sets at time ¢

4 S; € argming_, VH (r¢)1s

5 r(t)=(1-P)r(t—-1)+plg

6: for Clients k € Sy, in parallel do

7: vi T < CLIENTOPT(W!, E steps, ;)

8 end for

9

0

1

t+1 Pk t+1
AT =D ks, T Vi

wit! « SERVEROPT(W!, AlT1)
end for

extends to those settings by modifying accordingly sampling
and aggregation to the asymptotically learned r as long as the
{5-norms of clients’ model updates are uniformly bounded — an
assumption already made by the above methods.

1) Asymptotic Optimality

Below we show that as 3 | 0, the selection policy rate con-
verges to the value that optimizes H (r) and, therefore, reduces
the model variance. To this end, consider the discrete time
Markov process S”(t) = (r?(t), C;) indexed by the value of
(3 defined in Eq. (5), with 5 | 0 along sequence B = {3, } jen.
S#(0) and the probability law of C; describing the availability
model are fixed for all 8 € B. The speed of convergence is
discussed in the appendix.

Theorem I11.3: Letr” (t) be the rate determined by Algorithm
1.Let V C ]Rf be a bounded set, € > 0, and let r* denote the
minimizer of the variance function H (r) over R. Then for 7" >
0, depending on € and V/,

lim P[||r?(t) — r*|| > ¢] = 0.

su
810 P

r8(0)eVt>T/ B

2) Bounding the Global Model Variance

We start by analyzing a fixed arbitrary stochastic policy f*
achieving rate r and use the result to demonstrate that H(r)
reflects the model variance induced by f*. Let us introduce
several assumptions regarding clients’ loss functions Fj(w) =
E¢op, [fr(w;€)],1 < k < N;these assumptions are commonly
encountered in the federated learning literature [11], [12].

Assumption 2. [Smoothness and strong convexity]:
Fi,..,Fy are L—smooth and p—strongly convex
functions, meaning that for all v and w, Fg(v)<

Fy(w)+ VE (W) (v—w)+L|lv—w[3 and Fy(v)>
Fi(w) + VE,(w)T (v — w) + £||v — w||3, respectively.

Assumption 3: [Bounded variance]: Let & be a data
point that client k£ samples from distribution Dj. Then
Ee, [|Vfu(w.&) ~ VE(W)[3] < o2,k =1,....N.

Assumption 4: [Bounded stochastic gradients] The expected
norm of the stochastic gradients of f}, is uniformly bounded, i.e.,
]EENDkH'vfk(W?f)”%] <G*k=1,..,N.

Assumption 2 holds in a number of scenarios of interest,
including ¢»-regularized linear and logistic regression, and clas-
sification with softmax function. Assumptions 3 and 4 are com-
mon in state-of-the-art distributed learning literature [34], [35],
[36], [37]. Note that while we rely on the above assumptions
when analyzing the performance, experimental results demon-
strate that our sampling techniques work very well in more
general settings involving highly non-linear models such as
convolutional and recurrent neural networks trained on realistic
datasets.

The following lemma introduces and analyzes o2 (f*), the
client sampling variance under sampling policy f*.

Lemma I11.4: Suppose Assumptions 1-4 hold. Let r € R be
an achievable long-term client participation rate under the sys-
tem configuration determined by distribution 7, and f* denote
a static configuration-dependent selection policy achieving r.
Define the client sampling variance o2( f*) := %Egt [|At —

¥![|?] where ¥ = S, pp v} is the update at time ¢ with full
client participation. Then

N
ﬁumﬂﬁ@<zﬁ—g. (6)

k=1

Furthermore, if client availabilities are uncorrelated or nega-
tively correlated, then there exists a policy f” such that

N o N
2(£7) < 4E2G2 Pk 2 7
of (f) SAEPG? 3 TE+ ) pk (7

k=1 k=1
Theorem III.5: Instate the settings of Lemma IIl.4. Let
w* denote the solution to the optimization problem (1), and
L, = O(1). Define v = max{8%,E}, and assume learning
ﬁ. Then by setting CLIENTOPT to SGD and
SERVEROPT(W', At*1) = w! + A'*!, the model W produced

with policy f* after T steps satisfies

rate 1y =

E[F(w!)] - F*=0 (|[lwi —w

1

(TE +
N

+> paj + 60 +8(E — 1)°G* + a%(ff)>> ,
k=1

(®)

where ' = F* — Zszl prFy denotes the local-global objec-

tive gapz, F* and F}; are the minimum values of F' and F},

respectively, and or(r) (Lemma II1.4) captures the variance
induced by client sampling.

2Local-global objective gap quantifies data heterogeneity: for i.i.d. data, I' —
0 as the number of samples grows, while a large I indicates a high degree of
heterogeneity [11], [12].
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Remark 111.6: Proof of Theorem IIL.5 follows the line of
argument similar to that in the analysis of FL algorithms conver-
gence [5], [12], [35]. The first term in the parenthesis in eq. (8)
captures the effect of initialization, while the second term reflects
the variance of stochastic gradients. The remaining terms are tied
to the inherent challenges of data heterogeneity in FL.

From static to dynamic policies: Aiming to circumvent the
requirement for having access to (generally unavailable) system
configuration information that applies to static selection policies,
we proceed by combining expressions (6) and (7) (ignoring
constant terms) to define

]

k

N
Ek’:l T

client availability is

H(r) := positively correlated,

Sy f—% otherwise.

Minimizing H (r) over r reduces the upper bound on the model
variance stated in Lemma IIL.4. It follows from (2) that r;, < 1,
and thus it can readily be shown that 7, = 1 for all £ minimizes
H(r) over [0,1]". However, it is possible that for a given
configuration of the system this long-term client participation
rateisnotachievable,i.e., 1 ¢ R (the set of feasible r’s defined in
Lemma III.2). Recalling the example in Section I, minimization
of H(r) over R is also difficult because it requires knowledge of
the achievable long-term client participation rate region R, de-
termined by the distribution 7 defined in Assumption 1. Finally,
even if R is known, the resulting policy f* will likely be client
and set dependent, thus rendering the problem challenging due
to an exponential number of variables and unknown parame-
ters. These are precisely the obstacles that F3ASTovercomes by
learning a selection policy which is asymptotically optimal in
terms of minimizing H (r), and guaranteeing convergence to a
long-term participation rate minimizing H (r) over R.

Rapid mixing time: Convergence rate of r(¢) — r* depends on
the properties of the Markov chain specified by the availability
process. Concretely, we have the following known theorem (see,
e.g., [38] for a proof and details).

Theorem II1.7. [Convergence Theorem]: Let P be the tran-
sition matrix of a system configuration satisfying Assumption
1 with stationary distribution 7. Then there exists a constant
a € (0,1) and C' > 0 such that

max ||P*(C, ) — n||rv < Cal.
cecC

The above result shows that in practice one needs ty > %
iterations to achieve a stationary rate r up to an error € to the
stationary distribution. Further, even if the rate is not constant
during the early iterations, this result demonstrates that after a

burn-in the rate will stabilize and the asymptotic convergence
rate of O(1/TE) will not be affected.

IV. EXPERIMENTS

a) Datasets and models: We test our model on three well-
known federated datasets. First, a synthetic heterogenous dataset
Synthetic(1,1) for softmax regression, introduced in [14] and
widely used in the FL community [7], [11], [12]. Second, a
recurrent neural network with 1 M parameters for the next

TABLE II

DATASETS
Dataset Users  Samples
Synthetic 100 60 K
CIFAR100 500 50 K
Shakespeare 715 16 K

character prediction task on the Shakespeare dataset [3], a lan-
guage modelling dataset with 725 clients, each one a different
speaking role in each play from the collective works of William
Shakespeare. Third, CIFAR100 with the partition introduced
in [5], utilizing Latent Dirichlet Allocation in order to gener-
ate a realistic heterogenous distribution. We train ResNet-18,
replacing batch with group normalization, a modification that
has shown improvements in federated settings [39]. Our code
is available on Github®. Number of clients and total number of
samples is summarized in Table II.

b) Availability models: We perform tests on five realistic avail-
ability models described below. To our knowledge, there exist
no public databases with real availability patterns; Smartphone’s
model [1] is inspired by realistic data. All models are motivated
by practical federated learning systems:

1) Always: Baseline model, clients are always available.

2) Scarce: Independent and homogeneous availability across

clients and time with probability ¢ = 0.2.

3) Home-devices: Independent availability across clients and
time with probability g, = T}/ B, where T, ~ lognormal
and B = maxy, 1},.

4) Smartphones: Sine-modulated Home-devices model,
Gkt = ftqr, where ¢ is defined in the Home-devices
model and f; denotes a sinusoidal time-dependent avail-
ability (see [1]).

5) Uneven: Each client’s availability is inversely proportional
to its dataset size, qx o< 1/pg.

We split each client’s dataset into training and validation sets.
We assume the distribution P over users is determined by the
fraction of data they possess. In the following, we first fix the
communication constraint to select K’ = 10 clients in each round
and compare different methods across availability models. We
then proceed by exploring the effect of varying K. We include
further details on the experimental setup in Appendix C-A. We
implement our models using the Tensorflow-Federated API [40].

¢) Baselines: First, we compare our algorithm with two
availability-agnostic methods: (i) FEDAVG, a standard baseline,
and (ii) FEDADAM, which achieves state-of the-art performance
in the considered benchmark tasks [5]. Both methods sample
available clients with normalized probabilities py, but FEDAVG
uses SGD as the server optimizer while FEDADAMuses Adam.
For a fair comparison, we implement both methods and compare
with their availability-aware versions wherein we incorporate
our proposed sampling and aggregation step.

Second, we test against a state-of-the-art algorithm, Power-
of-Choice (POC) [11], a method that, although agnostic to the

3[Online]. Available: https://github.com/mriberodiaz/f3ast
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Fig. 2.

Test per-sample accuracy (averaged over three runs) for different client sampling and aggregation schemes under HomeDevice availability model. We

observe that F3AsTconsistently outperforms FEDAVG and POC. Further, F3ASTstabilizes while FEDAVG and POCare unable to adapt to the time-varying environment.

TABLE III
TEST SAMPLE ACCURACY OF ALL METHODS, AND RELATIVE IMPROVEMENTS OF F3ASTOVER FEDAVG AND F3AST+ ADAM OVER FEDADAM, FOR DIFFERENT
AVAILABILITY MODELS (COLUMNS) ON CIFAR100 (1000 ROUNDS) AND SHAKESPEARE (500 ROUNDS)

Availability models

Always Scarce HomeDevice Uneven SmartPhones
FEDAVG 0.141 0.096 0.111 0.072 0.142
F3AST 0.198 (+40%)  0.201 (+109%)  0.208 (+87%)  0.206 (+186%)  0.201 (+42%)
CIFAR100 FEDADAM 0.262 0.288 0.302 0.282 0.298
F3AST + Adam  0.271 (+3%) 0.308 (+7%) 0.324 (+7%) 0.281 (0%) 0.320 (+7%)
PoC 0.101 0.115 0.139 0.111 0.069
FEDAVG 0.54 0.549 0.522 0.540 0.538
F3AST 0.569 (+5%) 0.555 (+1%) 0.568 (+9%) 0.556 (+3%) 0.570 (+6%)
Shakespeare ~ FEDADAM 0.536 0.541 0.520 0.557 0.520
F3AST + Adam  0.549 (+2%) 0.551 (+2%) 0.566 (+9%) 0.557 (0%) 0.551 (+6%)
PoC 0.554 0.555 0.496 0.555 0.535

availability model, can work in conjuction with client unavail-
ability. In POC, the server at time ¢ samples d clients from the
available set C; without replacement, choosing client k& with
probability py. The d clients receive the current model w, and
inform the server about their current loss F(W?). The server
then selects for training the top M clients with the highest loss.

We do not compare our method with stateful techniques
(ScAFFOLD, FEDDYN) since they are not applicable in the cross-
device federated settings [10].

To evaluate performance of the algorithms, we compute the
loss and accuracy using per-test-sample averages (the average
is taken over individual data points).

A. Numerical Results

1) Accuracy: We first show the convergence of F3ASTon the
three datasets with Home-devices availability model, a setting
that fits Assumption 1 and is realistic in FL (note that the
synthetic dataset satisfies all assumptions from Section III).
Corroborating expectations of the impact of the de-biasing step
introduced by F3AST, Fig. 2 shows that F3ASTachieves higher
accuracy than FEDAVG and POCon all datasets (the correspond-
ing loss plot can be found in Section C). Moreover, after the first
100 iterations, F3ASTstabilizes on Shakespeare and Synthetic
datasets, and follows a more stable learning trajectory, illustrat-
ing its variance reduction advantage, unlike the two baselines

that have high variability due to time-varying client availability.
The sharp drop in Shakespeare is caused by sampling a client
misaligned due to the heterogenous nature of the data; this has
been reported in [41]. We show an average over three runs
in Section C. We observe a similar behaviour on CIFAR100:
F3AsTachieves almost a 200% improvement in the average
accuracy over the last 100 rounds, and has a much more stable
behaviour. The stagnation of FEDAVG and PoCat higher loss
models confirms that naive averaging introduces bias to the
model, hindering convergence.

Table IIT shows the final accuracy of algorithms under diverse
availability models defined in Section IV-2a (1000 rounds on
CIFAR100 and 500 rounds on Shakespeare*). F3ASTeffectively
improves the accuracy of FEDAVG over both datasets and for
all availability models. It also improves FEDADAMfor all but the
Uneven model where the accuracy remains the same although the
loss value is lower (Table IV). F3ASTis particularly successful in
difficult settings, e.g. Scarce and Uneven, where a small number
of clients is available for training and where the client availability
is inversely proportional to the amount of data clients hold —
there, F3ASTis able to maintain performance similar to the setting
where all clients are available. Meanwhile, the performance of
both FEDAVG and PoCdeteriorates. FEDADAMis able to maintain

“4Higher accuracy values on CIFAR100 could be obtained by running exper-
iments for 10,000+ rounds
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TABLE IV
SAMPLE LOSS OF ALL METHODS, AND RELATIVE IMPROVEMENTS OF F3ASTOVER FEDAVG AND F3AST+ ADAM OVER FEDADAM, FOR DIFFERENT
AVAILABILITY MODELS (COLUMNS) ON CIFAR100 (1000 ROUNDS) AND SHAKESPEARE (500 ROUNDS)

Availability model

Always Scarce HomeDevice  Uneven SmartPhones
FEDAVG 4.42 4.77 4.74 5.29 4.28
F3AsT 4.20 (-5%) 4.18 (-12%)  4.14 (-13%) 4.17 (-21%) 4.15 (-3%)
CIFAR100 FEDADAM 3.74 3.65 3.50 3.67 3.55
F3AST + Adam  3.69 (-1%) 3.61 (-1%) 3.45 (-1%) 3.66 (-0.5%) 3.46 (-2%)
PoC 4.90 4.84 4.63 4.86 5.42
FEDAVG 1.24 1.15 1.36 1.17 1.22
F3AsT 110 (-11%) 113 (-1%) 1.10 (-19%) 1.13 (-3%) 1.10 (-10%)
Shakespeare ~ FEDADAM 1.27 1.23 1.40 1.12 1.36
F3AST + Adam  1.18 (-8%) 1.19 (-3%) 1.11 (-21%) 111 (-1%) 1.18 (-13%)
PoC 1.13 1.13 1.74 1.13 1.24
CIFAR100 Shak e Synthetic
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Fig. 3.

Test per-sample loss of different algorithms over all data sets. In all cases F3ASTconverges to a model with smaller objective value. Furthermore,

F3AsTstabilizes while FEDAVG and POCare not able to adapt to the time-varying environment.

Accuracy
o
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Fig. 4.
F3AsTand competing methods widens.

performance in the Uneven model where momentum may help
with biased updates, but deteriorates in all other settings.
Finally, we note that F3AST achieves greater performance im-
provements in experiments on CIFAR100 than on Shakespeare.
This is expected since, by design, F3ASTprovides more advan-
tage in data heterogeneous settings where biased sampling may
have a major detrimental effect on the performance/convergence
of FL. Conversely, in the homogeneous settings, selecting one
client more often than others does not affect the objective
function because users are basically interchangeable. Both CI-
FAR100 and Shakespeare datasets are heterogeneous but there is
considerably more heterogeneity in the federation of CIFAR100
where different users possess different, disjoint, categories in
their local datasets. In contrast, Shakespeare is a next-word-

200
Round

200 300 400 500

Round

300 400 500 0 100

Impact of varying communication constraint K in the Synthetic(1,1) dataset experiments. As the number of sampled clients increases, the gap between

prediction task where most clients have access to all the “cate-
gories” (words, in this case); while each client/character has a
unique distribution over words, the common (English) language
binds them together.

2) Loss and Accuracy Values Under Independent Availability
Model: Fig. 3 shows that F3ASTexhibits a much more stable
convergence for all data sets and achieves a smaller loss value.

B. Varying the Communication Constraint

Fig. 4 shows the test accuracy during training for the
three algorithms (F3AST, FEDAVG and POC). We observe
that F3AsTachieves equal or higher performance than com-
peting methods across all communication levels. Note that
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PoCstagnates at a similar accuracy in all cases; we believe this is
due to the inherent bias in the algorithm due to top-k loss based
sampling, as reported by the authors. It is possible that certain
groups of clients are never selected by this policy. It is interesting
to note that the gap between F3AsTand two baselines widens as
the number of selected clients increases. Indeed, as the num-
ber of users grow, a configuration-dependent policy becomes
much harder to facilitate since the number of possible selections
grows exponentially with K. Nevertheless, the greedy nature of
F3asTallows it to keep selecting the set of users that maximizes
marginal utility and achieves a balanced sampling rate under the
availability model. The other two policies, however, do not track
previous selections of users and thus may end up over-selecting
available users rather than exploring the full pool of devices.

V. CONCLUSION

We presented F3AST, an algorithm for learning in federated
systems that operate under communication constraints and ser-
vice intermittently available clients. We demonstrated that the
algorithm achieves accuracy superior to state-of-the-art feder-
ated learning techniques, and exhibits resilience in challenging
system settings. Future work includes studies of the setting
where the clients are grouped in clusters/classes, and exploring
a wider range of communication constraints.

APPENDICES

APPENDIX A
NOTATION AND DEFINITIONS

For clarity, frequently used symbols are summarized in
Table V below .

The generalized FEDAVG assumes the server sends to clients
in S; at time ¢ an initial model W'. For ¢t =0,...,T; the
clients locally initialize w,(f’o) + w1 and take F steps of SGD
producing the sequence (w,(:’l))fzo. Formally, let 51(:’1) be the
mini-batch for client % at time 7 in round ¢; for each client &k, we
can then define the local model w,(:’z) and local update v} as

W}(€t+1,¢)
w i=0
wi Y S VR ), e (B
t+1 (t+1,E) _
vy W) —w.
Here w;, 69) tracks local models of client k at round ¢ and iter-

ation 7, and v}, is the local update of client k at the end of round
t. Following distributed optimization standard techniques [12],
[35], we define the sequences

t+1
E PeVy
D;
sap
Ti

€St
Wt+1 :Wt + At+17

Zt+l — wt 4 vt

At+1 _

C))

APPENDIX B
PROOFS

This section provides proofs of the lemmas and theorems
omitted from the main document.

A. Proof of Theorem II1.5

Proof of Theorem III.5 follows standard optimization
proofs [5], [12], [35]. Our technical contribution comes from
using a sampling policy with arbitrary sampling rate r, showing
global update A'*! is unbiased (Lemma B.1), and computing
the incurred variance of such sampling policy and aggregation
step (Lemma III.4). This last step is of particular interest and
challenging due to the unknown system configuration, and the
importance sampling multiplicative terms.

Lemma B.1 (Unbiased update): Suppose Assumption 1
holds. Let r € R be an achievable sampling rate, and f” be a
state-dependent static policy achieving rate r. Fix W' € R” Let

(VZ-H)N denote updates of clients starting from model w'. Let

Vit = S prvit! let S be the client set selected by policy
J" at time ¢ and At — > kes Bvith. Then Eg[AM!] =
vitL,

Proof: Recall that at any given time ¢ we pick S € C} for
some C; € C according to f7, 5. Using the definition of 7 and

I

s [A™] = [ Zp’“ t“!CH (10)
kesS
=Y w(C chszpk . (11)
ceC seC keS
:Z ZfCS TVZH Lipesy, (12)
ceC seC k=1

where the last step replaces the sum over S by the sum over all
clients but adding the indicator function over S. Reorganizing,

At+1 Zpk t+1 <Z 7'&'(0) Z fg’S]l{kGS}> )

ceC SeC
(13)

Here the term in parenthesis is, by definition (Eq. (2)), r%, then

N » N
_E: k o t+1 _}: J_ ottl
= Vk T = ijtJrl =V .
Tk
k=1 k=1

]
We proceed by introducing a key lemma derived in [12],
characterizing convergence for the full client participation case,
and then utilize it to prove Theorem IIL.5.
Notice that the learning rate depends on round ¢,£ = 0,...,T
and epochi, i =1,..., F.
Lemma B.2:
—w < - w[%

E[|[w"*" (1 =0, gy ) E[|[W'

+ ¢, ) Vary, (14)
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TABLE V
FREQUENTLY USED SYMBOLS
Symbol Definition
u Set of all users
N = U] Total number of clients
Ky Number of clients sampled at round ¢
T Total number of rounds
me Number of available clients at time ¢
(Ay) availability stochastic process
(Ce)e feasible client sets stochastic process
St Set of clients participating at round ¢
(-) Stationary distribution of availability and communication constraint process.
r Client sampling rate
fr Configuration-dependent client sampling policy
At Pseudo-gradient for server optimizer: aggregates updates of participating clients at round ¢
wt Global model at beginning of round ¢
wfjl Local model at the end of round ¢ at client k
vZ’H Local update at the end of round ¢ at client k
Vi =Epop [vf +1} = Zﬁ;l pkvf "1 Expected global update at the end of round ¢ under desired distripution 7
zt Tl =wt vt Desired global model at the end of round ¢
where = |[wH -2 4 2 - w2
N A A
1 2
Var; = Y pjoj + 6LT + 8(E — 1)°G*.
P +2(wit — T g Wy (15)

Proof: This result follows from the first part of Theorem 1
in [12], showing the convergence of FEDAVG with full client
participation (i.e., no client sampling).

Theorem (Theorem IIL5): Instate the settings of Lemma
II.4. Let w* denote the solution to the optimization problem
(1), and L, = O(1). Define v = max{Sﬁ,E}, and assume
learning rate 7 ;) = m Then by setting CLIENTOPT

to SGD and SERVEROPT(W!, At+1l) = w! + A1 the model
w! produced by Algorithm 1 with policy f* satisfies

1

meﬁw4”=0(,¢\W—w*2

N
+Y pio} + 6L +8(E —1)°G?
k=1

+07(f7)))

where ' = F* — Zszl pr Fy denotes the local-global objective
gap’, F* and F} are the minimum values of F" and Fy, respec-
tively, and o2.(f7) (Lemma IIL.4) captures the variance induced
by client sampling.

a) A brief outline of the upcoming proof: We start by ex-
panding |[w!*! — w*||?, a term that measures the distance to
the optimum, and bound it by the term characterizing conver-
gence of the full participation scheme [7] plus an additional
variance term emerging due to client sampling (computed in
Lemma B.5). We then invoke a standard inductive argument
to express ||[wit! — w*||? in terms of ||[W' — w*||? and, noting
smoothness, finally bound E[F'(w)] — F*.

Proof:

||Wt+1 _ W*HQ —_ ||Wt+1 _ Zt—o—l _|_2t+l _ W*HQ
SLocal-global objective gap quantifies data heterogeneity: fori.i.d. data, I' —

0 as the number of samples grows, while a large I" indicates a high degree of
heterogeneity [11], [12].

As

Based on Lemma B.1, we know A!T! is unbiased, thus
E[AM] = vi+L,
We use this fact to prove that A3 = 0 as follows:

]E[<Wt+1 _ Zt+1,it+1 o W*)] _
E wa £ AR gt gt gt W*>]

—F [<At+1 _ g+l gt _ W*ﬂ
0

Now, A; can be bounded using Lemma III.4, since
[W =22 = (! AT — (% + P =
||At+1 —Vt'HHQ.

Define

N
Var; = Y piop + 60 + 8(E — 1)°G?,
k=1

1

Vary := o7 (f*) = E [[[AM — v H117]

s, )

Then by replacing Lemmas B.2 and B.5 in (15) we have that
E[[W ! —wl* < (1=, mm)E|W' —w|>

+ n(?t_’E)(Varl + Vary).

Thanks to Lemma B.1, we find a similar expression to the
one in [12], but with different constants coming from different
client sampling variance in Lemma III.4. The rest of the proof
then follows standard techniques, e.g., see [12]. We repeat those
steps for the sake of completeness.

Let 8 > i, v > 0, and define 7, ;) such that

_ 8
= -DETi+
Ny < min{;, 77} and 1,1 < 200,
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As a standard technique, we show by induction in ¢ that
E[|w! — w*|? < where

'y+tE"

B%(Var; + Vary) 1 w2
W,(Hl)llw - w7}

This holds for t = 1 trivially, from the definition of v. Now
assume the claim holds for ¢; starting from the above equation,
we have that

v = max{

E||Wt+1

w2 < (1 =g, mywE|[W" —w?

+ n(Qt’E) (Var; + Vars)

< (1 _Br v
- tb+v) tE + v
B%(Var; + Vary)
(tE 4 v)?

tE+~v—FE

= am a7

|:[32(V3I1 + VE].I'Q)
(tE+7v)?
v
< _
“tE+~y+FE
v

TET DR "

where (16) follows by induction step and definition of 7 g,
(17) from adding and substracting (tEEfvy)z’ and the last step by
noticing that

tE+~v—E
(tE+7)2

(16)

Pu—F |
(tE + )2

(tE+~v—-E)tE++v+E)
(tE+7)2(tE+~+ E)
1
< —.
TtE+y+E
Finally, by smoothness of F',

L
ngwmtwﬂﬁ<

E[F(wW")] — (19)

+tE’

Setting f = =, k = TL and 7 = max{8x, F} — 1, and using

Lemma B.5 to compute Var,, we obtain the desired result. Wl

B. Proof of Lemma II1.4: Bounded Client Sampling Variance

For clarity of the proof of Lemma III.4, we first introduce the
following lemma on the inner product of local models.
Lemma B.3: At round ¢ for any pair of clients ¢ and 7,
E [(v v >] < 4E2G27](2t7E),

79 ]

(20)

where the expectation is taken over the samples in local SGD
steps.
Proof: Recall that v! represents the user i’s update after

training locally for E epochs starting with model W'~ !. Then,
. 2
IVH? = [lwy® = wi Z Mo V(Wi &)

YON? < A, ) E2G?,

E-1
SEY il Vi(w
where we used the Jensen inequality and the fact that 7, ) is de-
creasing (i.e., 7,0y < 21(t,¢) for £ < E). Now, since (v, v§> <
maxy, || vL||?, the result follows. [ ]
Next, we define the random vector X* € {0, 1}* that indi-
cates which clients are selected, and specify its moments.
LemmaB.4: Let X* € {0, 1} be such thatits i** component
takes on value X7 = 1 if client ¢ is selected at time ¢, and 0
otherwise. Let X denote the covariance matrix of X*. Then
E[X] = rand Var(X;) = r;(1 — r;).
Proof: This follows trivially from the observation that X is
a Bernoulli random variable with parameter r;. ]
Lemma B.5: Letr € R be an achievable sampling rate, f*
denote a static configuration-dependent sampling policy achiev-
ing r, and X" the corresponding selection random vector with

covariance 3. Then fort =1,...,7T,
1 _ 1
ot (f7) = E[|A" =¥'|°] = 5—Tr(Y,Y/3),
(t.E) UITw:)
2D
where vector £-v is the k™ row of matrix Y; € RY*P.
Proof: Below || - || denotes the /,—norm. Using the variance
formula and that E[A!] = ¥v' by Lemma B.1,
Es [|A* = ¥'°] = E [|A"°] - [I¥]. 22)
Let us focus on the first term:
2
E[AY2) = 32 7(0) 3 fos |3 i
cec SeC kes
Pipj
=2 (O fos 3 T vivy)
ceC SeC i jES

N
=22 7O
ij=1CeC

DiDPj
Z fcs#(vi,vjﬂlies]ljes
SeC v

Png

N
=Y > 71O fes vz,vj>X X;.

i,j=1CeC SeC

From the defition of 'Y, and by reorganizing,
E [|A"°] =E [XTY: Y/ X].
Introducing B = YfY s

meXX

=D b (S +rry)

E [|A")%] = byE [XiX]]

2]

(23)

=> BX]; +r"Br
%

= Tr(Y: YL E) + [V (24)

where Eq. 23 follows by the covariance formula and Eq. 24
follows due to cancellation in denominator of B = Y, Y . After
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combining this with (22), the term [|¥!||? cancels and we obtain
the desired result. |
Lemma (Lemma I11.4) Suppose Assumptions 1-4 hold. Let
r € R be an achievable sampling rate under the system con-
figuration determined by distribution 7, and f* denote a static
configuration-dependent sampling policy achieving r.

Define the client sampling variance o2 (f*) := W%E s, [||AT —
t

¥!||2] where ¥ = ", ppv/F is the update at time ¢ with full
client participation. Then

N
o2(fF) < AB2G2 (Z %: - 1) .
k=1

Furthermore, if client availabilities are uncorrelated or nega-
tively correlated, then there exists a policy f” such that

N 5 N
r p
i <at (S5 452
k=1 k=1

Proof: For the first part, taking expectation over the indepen-
dent local SGD sampling and over the random set of clients
S’

(25)

(26)

Pk
E[|A")?] =E HZ |21
L keS
PiPj, ¢+ ¢
=F
P (v )

i,j€S

N
DiDJ + ..
- JZ1 TiTjE [< Vis J>] P(i,j€S)

N 9
< 4E2G2n (Z p—; P(ieS)
i T

+Z Z pzijzyeS)

i=1 j=1,j%1

Given that P(i,j € S) < P(i € S) and that P(i € S) =7,

E [|lA")7]

< 4BGR )

<AE*Gn, (

Z prJP(J €59)
1,5#1

i=1 " 11J Tl

Therefore,

E [|A* =¥]7] =E [Ja")*] - [¥"]

N
< AB2CP}, ) (Zfl - 1) :
i=1 "

and the result follows.
For the second part of the lemma, consider a policy f with
rate r that at time ¢ selects S as

S —VH(r)-1
tearggéac)f VH(r)

Let uy denote the k-th largest utility value, where the indi-
vidual utilities are defined by vector —V H (r). W.l.o.g. assume
u; < u; if i < j, and let Ay, be the (random) number of users 4
with the utility less than wug. Let K be a bound on the set size
S. Let 1, j be two users, ¢ < j; then u; < u;. Now, since i, j are
uncorrelated or negatively correlated, P(,j are available) <
P(j is available) P (i is available). Therefore,

P(j € Sli € S) = P(jis available) P(A;, — 1 < K)
< P(j is available) P(A;, < K) = P(j € S).

Note that from the definition of conditional probability, it follows
that the sampling is also uncorrelated since

P(i,jeS)=PliecS)P(jeSliel) =
=E [X;]E [X]]

P(ie S)P(j €S)

=Tir;.

Therefore, we have that 3;; = E[X,;X;] — E[X;]E[X,] =
P(i,j € S) —r;rj <0.From Eq. 23, we have that

Tr(YYTS) = ) B (v vl s

J
Tiri
ij 7

since 3;; < 0fori # j,

Te(YYTS) = pzpf viS,

22, 2 v Pib;
<4FE°G N, B) Z TiQE“ + Z s Xij
i i i#i !

2
p
<SAEPGn gy Y (i1 —r)

<AB2GPp, ) <Z =g Zm) ,

where the first inequality follows from Lemma B.3 and break-
ing the sum on diagonal and non diagonal terms. The second
inequality follows by dropping negative terms and replacing the
variance value ¥;; = r;(1 — r;) for X; (Lemma B.4), while the
last one follows simply by expanding the previous term. |

C. Proof of Theorem II1.3

Theorem (Theorem I11.3): Let v” (t) be defined by Algorithm
1, following equations (4) and (5). Let V' C Rf be a bounded
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set, € > 0, and let r* denote the minimizer of the variance
2

function H(r) = > )_; 1:—: over R. Then for T" > 0, depending

onecandV,

lim sup P[||rP(t) —7*|| > ¢] = 0.

BIO r8(0)evit>T/B

Proof: Our proof follows the stochastic approximation analy-
sisin [43] thatestablishes an attraction property for Fluid Sample
Paths (FSPs), which are limiting trajectories of the generalized
versions of the processes considered in our manuscript. The idea
behind the proof is that as ¢ grows, we can study the limiting
trajectories (i.e., FSPs) z = (z(t),t > 0) of the process r(t/(3).
Since —H (r) is a convex function, it follows from Theorem
4 in [43] that for an arbitrary initial state 2:(0), 2(t) — r* as
t — 00. More concretely, from Theorem 3 in [43] it follows that
as 31 0, a limit of sequence {r”} considered in Section III of
our paper is a process with sample paths being FSPs = with
probability 1.

Assume V C [0,a]V such that a >, where fi=
maxcec,ses ﬁ Let € >0 and 0 > 0. By the above result
on FSPs (i.e., by Theorem 4 in [43]), we can find T large
enough such that ||z (¢) — r*|| < e uniformly for ¢ in the interval
[T, T + 6]. Combining this result with the continuous mapping
theorem [44], we obtain

lim sup P l|lx(t) —r*|| > €] =0.

sup
B=08cy

te[T,T+4]

Also, notice that forall ¢, 7 (¢) < max{fi, r (0)} element-wise,
where [i = maxcec,ses ﬁ by construction. Then forany 7 > 0
we can re-start the process, implying

lim sup sup P =0

sup
B=0,.8cy 720

telr+T,7+T+4]

[l(t) — 7| > €
and thus establishing the desired result.

APPENDIX C
EXPERIMENTS DETAILS

a) Hyperparameter tuning: We set the learning rate on Shake-
speare and CIFAR100 according to the optimal values found
in [5]. For the synthetic dataset we use the learning rate tuned
in [7], n = 0.01. For Shakespeare we use mini-batches of size 4,
and mini-batches of size 20 for the remaining datasets. Following
literature, in all the experiments we use 5 = O(1/T) = 0.001.

b) Machines: We ran our experiments on AMD Vega 20
(ROCm) cards. One rounds of training in Fig. 1 require 8 GPU
seconds for CIFAR100, 67 GPU seconds for Shakespeare, and
0.57 GPU seconds for Synthetic(1,1).

c) Synthetic dataset: We generate this data by taking 10*
samples X; € R1%0 ~ A(0, I199). Moreover, we generate 3 ~
N (0, I10) and, finally, set labels y; = round(X; 3). The sam-
ples are split evenly among 100 clients.

d) Skakespeare: Each client’s dataset is restricted to have at
most 128 sentences, and is split into training and validation sets.
Following the previous work with this dataset [5], we use a
build vocabulary with 86 characters contained in the text, and 4

characters representing padding, out-of-vocabulary, beginning,
and end of line tokens. We use padding and truncation to enforce
20 word sentences, and represent them with index sequences
corresponding to the vocabulary words, out of vocabulary words,
beginning and end of sentences.

A. Models

We train a recursive neural network for the next character
prediction that first embeds characters into an 8-dimensional
space, followed by 2 LSTMs and finally a dense layer. ResNet-
18 architecture can be found in [45], where we replace batch
normalization by group normalization [46] as in [5].

B. Availability Models

For the Home-devices model t;, ~ lognormal(0,0.5), while
for the Smartphones t), ~ lognormal(0,0.25). The sine wave
is defined by f(¢) = 0.4sin(¢) + 0.5 and we sample at times
t=20forj=1,...,24.
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