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Abstract

The ever-increasing demand for novel materials with superior properties inspires retrofitting
traditional research paradigms in the era of artificial intelligence and automation. An autonomous
experimental platform (AEP) has emerged as an exciting research frontier that achieves full
autonomy via integrating data-driven algorithms such as machine learning (ML) with experimental
automation in the material development loop from synthesis, characterization, and analysis, to
decision making. In this review, we started with a primer to describe how to develop data-driven
algorithms for solving material problems. Then, we systematically summarized recent progress on
automated material synthesis, ML-enabled data analysis, and decision-making. Finally, we
discussed challenges and opportunities in an endeavor to develop the next-generation AEPs for
ultimately realizing an autonomous or self-driving laboratory. This review will provide insights

for researchers aiming to learn the frontier of ML in materials and deploy AEPs in their labs for

accelerating material development.
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1. Introduction

There is an ever-increasing demand for developing advanced materials with superior
properties, which requires extensive investment in research.[1-4] The development process is still
largely performed by well-trained and skilled scientists in a structured laboratory set, which is a
paradigm that has little evolved over the last several decades.[4-6] Although guided by domain
knowledge and explicit physical rules, this process is still a trial-and-error one, which is quite
laborious and time-intensive.[5] For example, the filament of incandescent light bulbs was
screened from roughly 6000 materials by Thomas Edison and his coworkers.[7] Another example
is the discovery of an optimum catalyst for ammonia synthesis, which was conducted by Mittasch
and his colleagues in the early 20™ century.[8] Moreover, reproducibility and unintentional bias
could exist due to unnecessary human interventions. These issues and challenges lead to a
development pace greatly falling behind the one demanded by manufacturers and consumers who
face a complicated and volatile market. Thus, revolutionizing the current research paradigm into a
new one for accelerating material development has become a compelling goal in the field.

Experimental automation with aid of advanced scientific instruments and statistical
techniques for automatically screening candidates has attracted enormous interest. It has been
adopted in both academy and industry, especially in the field of pharmaceuticals and organic
chemistry.[9-20] Automation, which is good at performing consistent tasks, can enormously
increase the throughput of materials and chemicals to be studied. Furthermore, it frees the
researchers from tedious and repetitive tasks, thus allowing them to investigate more innovative
and complex problems than ever before. Nevertheless, there still exist some challenges to taking
automation to the next level of autonomy. First, analysis of big characterization data from

spectroscopies and microscopies falls behind the data collection rate. Second, heavy dependency



on experts to optimize enormous reaction and chemical spaces undoubtedly lower the exploration
efficiency. In each experiment iteration, a new set of reaction and chemical spaces should be
decided according to the results obtained from the previous iteration. In a traditional automation
setup, such a decision is still made by researchers, thus potentially causing bias and errors. Third,
given that the exploration space is enormous and in the high dimension, it is still impossible and
impractical for the automated robots to enumerate all combinations, because it would generate too
enormous amounts of data to be processed for establishing the synthesis-structure-property
relationship. Thus, intelligent data analysis and decision-making algorithms are much needed to
drive autonomous experiments, forming the basis for developing an autonomous experimentation
platform (AEP).

Recently, machine learning (ML), especially deep learning (DL),[21] has made a giant leap
in the fields of computer vision,[22-24] autonomous driving,[25, 26] speech recognition,[27, 28]
recommending systems,[29, 30] games,[31-33] protein folding,[34, 35] and biomedical
imaging,[36] to name a few. Distinguished from traditional physics-based modeling, ML is usually
called “learned from data” due to its ability to learn the hidden knowledge from the data and predict
results from unseen data without applying explicit formulas/equations. These recent breakthroughs
mainly benefit from three significant advances, i.e., available big data, powerful computational
capacity, and advanced algorithms.[37] Over the past few years, the academy has envisioned the
implementation of ML in the field of materials science and chemistry for
physicochemical/mechanical properties prediction,[38-41] quantifying the processing-structure-
property relationship,[42-44] guiding materials synthesis,[45-50] synthesis planning,[51-55] and
analyzing characterization data.[56-62]

By integrating ML with automation, the AEP, a newly emerging research paradigm, has shown



great potential in accelerating material development by an order of magnitude.[63-74] The AEP
can greatly reduce the total number of experiments needed for discovery via actively exploring
chemical and reaction spaces.[63, 64] This new ML-enabled research paradigm has greatly
shortened the time of material development and fully embraced the vision of autonomy.[69, 74,
75] To determine how an automated apparatus should perform the next-iteration experiment, the
ML algorithms, instead of the intuition from the skilled experts, make decisions via exploring all
collected reaction and characterization data, thus closing the loop by the autonomous iteration
thereof. Publications related to topics of automated and autonomous experiments in materials and
chemical science have dramatically grown since 2010, and this trend is projected to continue in
decades to come.

To reflect this trend, several review papers have been recently published as listed in Table
1.[1-3, 5, 6, 14, 60, 76-96] Lapkin and his coworkers have summarized recent advances in
techniques and methods that enable closed-loop material development.[76] Buonassisi et al.
focused the review on the convergence of high-performance computing, automation, and ML
models.[5] Aspuru-Guzik and his coworkers illustrated their perspectives on Al-driven high-
throughput virtual screening, automated synthesis planning, automated laboratories, and ML
algorithms toward autonomous materials discovery.[79] Jensen’s group summarized two main
aspects of autonomous discovery.[1, 2] In the first aspect, they defined three broad categories
followed by illustration of substantial progress in them. In the second aspect, they proposed a few
possible research directions in processing complex data, building empirical models, automating
validation and feedback, selecting experiments, and evaluating the performance. Although these
reviews have provided invaluable information, there still lacks a comprehensive review that

summarizes the recent progress and future trend of autonomous experiments from the perspectives



of how ML algorithms tackle the specific challenges imposed by essential components of an AEP.

Table 1. List of recent reviews on autonomous and automated experiments in materials science,

organic chemistry, and drug discovery.

Year Topic Ref.
2015 Automatic discovery and optimization Lapkin et al.[76]
Smart automation Aspuru-Guzik et al.[3]
2018 Designing algorithms Cronin et al.[77]
Automation, ML, and computing Buonassisi et al.[5]
Bioactive molecular discovery and automation Nelson et al.[14]
Automated and autonomous workflow Gregoire et al.[78]
2019 Self-driving laboratories Aspuru-Guzik et al.[79]
Autonomous molecular design Saikin et al.[80]
Search algorithm and automation Cronin et al.[6]
Autonomous discovery, machine learning, challenges, and chemical space Jensen et al.[1, 2]
The Chemputer Cronin et al.[81]
Materials acceleration platforms Aspuru-Guzik et al.[82]
2020 Autonomous intelligent agents Aykol et al.[83]
Autonomous robotic experimentation, modular microfluidic reactors Abolhasani et al.[84]
Automated synthesis and software Hao et al.[85]
Microfluidic synthesis, semiconductor materials, and artificial intelligence Abolhasani et al.[86]
Shape of chemical data Jacqueline M. Cole[87]
Automation, ML, and high-throughput experimentation Jensen et al.[88]
Automated continuous synthesis and optimization Jensen et al.[89]
Synthesis planning, Al, and automation Engkvist et al.[90]
Digital transformation, artificial intelligence, and automation Schubert et al.[91]
Automated experimentation, data science, and chemistry Hein et al.[92]
2021 | Automated/autonomous experiment, machine learning, and electron/scanning Kalinin et al.[60]
probe microscopy
Automation, data-driven approach, and polymer therapeutics Gormley et al.[93]
Automated robotic platform, machine learning, and formulations Lapkin et al.[94]
Autonomous experimentation, Al Maruyama et al.[95]
Automated synthesis, chemical informatics, digital chemistry, and data Cronin et al.[96]
standards

This review is written to fill this gap. The scope of this review is summarized in Figure 1. It
starts with a section describing an ML primer for beginners to understand the field. This section
briefly introduces the concepts, categories, workflow, and evaluation metrics for the ML models.
Specially, we discuss the challenge of data scarcity in materials/manufacturing domains and

summarize a few methodologies to tackle it. Then the review is followed by showing how the ML



algorithms can promote the AEP development from the three essential components of the AEP.
Specifically, to begin with, three types of automated experimentation platforms for material
synthesis and characterization are discussed. Then, on-the-fly data analysis with the aid of the ML
algorithms is summarized. After that, decision-making enabled by the data-driven algorithms to
close the loop is reviewed. In each section, a few representative case studies are discussed to
exemplify recent successes in advancing the AEP development. This review highlights the roles of
ML in leveraging decades of progress in automation for accelerating material discovery and
minimizing human intervention and biases. Finally, ongoing challenges, possible solutions, and
future trends to move the research in AEPs forward are discussed and foreseen. We expect that this
review will serve as a guideline for beginners to understand the basic principles of the data-driven
algorithms and how they can be applied to develop AEPs for applications in materials science and

chemistry as well as inspirs experts in the field to explore new frontiers.
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Figure 1. Flowchart showing a fully autonomous experimental platform for the development of
novel materials. Search Space: Reproduced with permission from Ref.[97], Copyright 2021
American Chemical Society. Data Analysis: Reproduced with permission from Ref.[63],
Copyright 2018 Springer Nature; Ref.[98], Copyright 2020 American Chemical Society; Ref.[99],
Copyright 2020 Royal Society of Chemistry; Ref.[59], Copyright 2020 American Chemical
Society; Ref.[100], Copyright 2021 American Chemical Society; Ref.[101], Copyright 2017
American Chemical Society. Decision Making: Reproduced with permission from Ref.[102],

Copyright 2021 American Chemical Society.



2. A Primer for Developing Data-Driven Algorithms

Data-driven algorithms including ML/DL, the focus of this review, can evaluate or predict
the targets/goals from the input features.[37] Particularly, recent breakthroughs in DL have
revolutionized the applications in image and speech recognition,[21] which has also created new
possibilities for drug discovery,[103] biology,[35, 104, 105] chemistry[52, 54, 106-108] and
materials science.[105, 109-111] In this section, we focus on fundamental concepts of ML/DL and
discuss how to implement them in the physical and chemical domains. For detailed information,
we recommend a few resources,[112-116] some of which have been targeted especially for
materials science. Useful textbooks written by professional ML/DL researchers include Pattern
Recognition and Machine Learning, Hands-on Machine Learning with Scikit-Learn, Keras and
TensorFlow, Deep Learning, and Deep Learning with Python. In addition, a variety of online
tutorials (YouTube, Coursera, Udacity, Udemy, Khan Academy, and Towards Data Science) and
lectures are publicly available for beginners to have a basic overview and learn from scratch. A
prerequisite for developing the ML/DL models is to master a programming language such as
Python (widely used for most ML/DL projects) and useful libraries including Pandas (data
manipulation with integrated indexing), NumPy (array type elements and the respective math),
Matplotlib or Seaborn (data visualization), scikit-image (image processing), OpenCV (image and
video processing), and Scikit-Learn (a versatile and powerful ML library). For those working on
DL projects, it is necessary to master at least one DL framework such as Keras, TensorFlow,

PyTorch, and MXNET. Table 2 summarizes some useful textbooks and links for mastering ML

and DL.
Table 2. A list of resources for mastering ML and DL.
Content Textbook URL
Mathematics | Linear Algebra Done Right I}ltltg_si/l/l(;gl(;._séprmger.com/book/lO. 1007/978-3-




Linear Algebra and Its Applications

https://www.pearson.com/us/higher-
education/product/Lay-Linear-Algebra-and-Its-
Applications-5th-Edition/9780321982384.html

Mathematics for Machine Learning

https://mml-book.github.io/

Python

Python Crash Course

https://nostarch.com/pythoncrashcourse2e

Learn Python Programming

https://www.packtpub.com/product/learn-
python-programming-third-
edition/9781801815093

Think Python

https://www.oreilly.com/library/view/think-
python-2nd/9781491939406/

Data science

Python for Data Analysis

https://www.oreilly.com/library/view/python-
for-data/9781491957653/

Data Science from Scratch

https://www.oreilly.com/library/view/data-
science-from/9781492041122/

Python Data Science Handbook

https://www.oreilly.com/library/view/python-
data-science/9781491912126/

ML/DL

Introduction to Machine Learning with Python

https://www.oreilly.com/library/view/introducti
on-to-machine/9781449369880/

Hands-on Machine Learning with Scikit-
Learn, Keras, and TensorFlow

https://www.oreilly.com/library/view/hands-on-
machine-learning/9781492032632/

Pattern Recognition and Machine Learning

https://www.springer.com/gp/book/9780387310
732

Machine Learning with Python Cookbook

https://www.oreilly.com/library/view/machine-
learning-with/9781491989371/

Python Machine Learning

https://www.packtpub.com/product/python-
machine-learning-third-edition/9781789955750

Mastering Machine Learning Algorithms

https://www.packtpub.com/product/mastering-
machine-learning-algorithms-second-
edition/9781838820299

Deep Learning

https://mitpress.mit.edu/books/deep-learning

Deep Learning with Python

https://www.manning.com/books/deep-learning-
with-python-second-edition

Deep Learning from Scratch

https://www.oreilly.com/library/view/deep-
learning-from/9781492041405/

Grokking Deep Learning

https://www.manning.com/books/grokking-
deep-
learning?gclid=CjOKCQjwtMCKBhDAARIsA
G-
2Eu8cXUUIAuAs8Ddtkk77u7SV85DtUSufEH
84wTvtmr2-KvI2qJ 3b04aAnJKEALw wcB

Practical Deep Learning

https://nostarch.com/practical-deep-learning-
python

Deep Learning with TensorFlow 2 and Keras

https://www.packtpub.com/product/deep-
learning-with-tensorflow-2-and-keras-second-
edition/9781838823412

Hands-On Deep Learning Algorithms with
Python

https://www.packtpub.com/product/hands-on-
deep-learning-algorithms-with-
python/9781789344158

Advanced Deep Learning with Python

https://www.packtpub.com/product/advanced-
deep-learning-with-python/9781789956177

Libraries

Pandas

https://pandas.pydata.org/

Numpy

https://numpy.org/



https://www.oreilly.com/library/view/introduction-to-machine/9781449369880/
https://www.oreilly.com/library/view/introduction-to-machine/9781449369880/
https://www.oreilly.com/library/view/hands-on-machine-learning/9781492032632/
https://www.oreilly.com/library/view/hands-on-machine-learning/9781492032632/
https://mitpress.mit.edu/books/deep-learning

Matplotlib https://matplotlib.org/
Seaborn https://seaborn.pydata.org/
Scikit-image https://scikit-image.org/
OpenCV https://opencv.org/
Scikit-Learn https://scikit-learn.org/stable/
Keras https://keras.io/
Frameworks Tensorflow https://www.tensorflow.org/
PyTorch https://pytorch.org/
MXNET https://mxnet.apache.org/versions/1.8.0/

2.1 Introduction of Machine Learning Algorithms
Based on the amount of supervision in training (Figure 2), ML can be categorized into
supervised learning,[108, 110, 111, 117, 118] unsupervised learning,[119-121], and semi-
supervised learning.[122-125] If the model training fully relies on labeled data, it is called
supervised learning (Figure 2a), which is commonly used in materials science. According to the
types of labels, supervised learning can be used for performing classification and regression
tasks. A classification task refers to the situation in which the models are trained with lots of
input parameters while their corresponding output classes are represented by discrete values. A
regression task is to predict a target numeric value such as conductivity, product yield, and
adsorption capacity of the materials when given a set of inputs. In contrast, unsupervised
learning is mainly used to seek and deduce potential connections of samples among unlabeled
data, which consists of two common methods, i.e., dimensional reduction or data clustering
(Figure 2b). Dimension reduction involves mapping a high-dimension data matrix to a low-
dimension one while preserving information contained in the original data. Main approaches to
reducing dimensions include principal component analysis (PCA),[126, 127] singular value
decomposition (SVD),[128] Isometric feature mapping (Isomap),[129] Kernel PCA,[130] and t-

distributed stochastic neighbor embedding (t-SNE).[131] Clustering is a task of first calculating
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https://scikit-learn.org/stable/

the similarities of all samples based on specific metrics, and then assigning them to different
groups according to their similarities. K-means[132] and K-Medoids[133] are the two most
popular clustering techniques. Semi-supervised learning is the best choice to deal with the
situation where there is limited labeled data but plenty of unlabeled data. In semi-supervised
learning, an ML model is first trained based on the labeled data, which is then used for predicting
the unlabeled data (denoted as pseudo labels). Finally, the ML model is retrained with both the

labeled and pseudo data (Figure 2c¢).
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Figure 2. Schematic of three ML categories: (a) supervised learning (regression and classification),

(b) unsupervised learning (dimension reduction and clustering), and (c) semi-supervised learning.
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Choosing the right ML algorithm is a crucial step toward building an accurate and robust
model for solving a material-related problem.[134] Currently, the widely used ML algorithms
include k-nearest neighbors (KNN, Figure 3a),[135] support vector machine (SVM, Figure
3b),[136, 137] decision tree (DT, Figure 3¢),[ 138] random forest (RF),[139] multilayer perceptron
(MLP, Figure 3c¢),[140] naive Bayes (NB),[141], logistic regression (LR),[142] and gradient
boosting-based models including eXtreme Gradient Boosting (XGBoost),[143, 144] adaptive
boosting.[145] These traditional ML algorithms are trained on relatively small datasets (< 10%) and
can predict the targets with satisfactory performance over many material problems.

However, there still exist some materials-related problems that cannot be well solved through
these traditional ML algorithms. These problems come from three main scenarios. The first one is
related to the highly data-intensive problems, which contain millions or even billions of training
datasets, e.g., computational or characterization data. The second one involves dealing with
enormous fingerprints, e.g., de novo drug or molecule design. The third one is related to image
segmentation and text mining from materials literature. The DL algorithms[21] including
generative adversarial network (GAN, Figure 3e),[146] variational autoencoder (VAE, Figure
3f),[147] recurrent neural network (RNN, left panel of Figure 3g),[148] and long short-term
memory (LSTM, the right panel of Figure 3g),[149] graph neural network (GNN, Figure 3h),[150]
and bidirectional encoder representation (BERT)[151] have offered new possible solutions to the

aforementioned problems.
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Figure 3. Schematic of widely used ML and DL algorithms: (a) k-nearest neighbors (KNN), (b)
support vector machine (SVM), (c) decision tree (DT), (d) multilayer perceptron (MLP), (e)
generative adversarial networks (GAN), (f) variational autoencoder (VAE), (g) recurrent neural

network (RNN) and long-short term memory (LSTM), and (h) graph neural network (GNN).

Based on the criterion of whether the ML models can learn dynamically from a stream of
incoming data, they can be also classified into two main categories.[152] One is static learning,
also called batch learning, where all datasets are available before training the models. The other is
active learning (AL) or called online/sequential learning, where datasets are fed sequentially to
train the models.[153-163] AL trains the models by the streamed experimental data, thus the
models can be dynamically updated to reduce the number of needed experiments. AL is well suited
for developing AEPs since it can achieve optimal properties with fewer experimental
iterations.[63-75, 164-170] When applied to materials simulation, AL is also beneficial in greatly

reducing the computational cost.[110, 154, 156, 171]
13



AL is mainly implemented by Bayesian optimization (BO) and reinforcement learning (RL)
algorithms. BO, a global optimization algorithm, is an adaptive approach for optimizing the
expensive-to-evaluate objective functions.[172-174] BO utilizes a surrogate model (or belief
model) for capturing the relationship between inputs and results, and an acquisition function (or
decision policy) for selecting the optimum candidate for the next iteration of operation.[173-175]
With the aid of advanced surrogate models and acquisition functions, BO is versatile to tackle
various optimization problems like catalytic activity,[157, 176, 177], molecule design,[171] and
structure/property prediction.[178-180] Distinguished from BO, RL is a reward-based learning
approach that learns how to map situations to actions in an environment for maximizing the
reward.[181] In the iteration, an agent acts to change its state simultaneously interacting with the
environment. RL has been implemented in several applications such as molecule/drug design,[182-

186] reaction synthesis planning,[51, 187-189] and novel material generation.[190]

2.2 Workflow of Constructing ML/DL Models
2.2.1 Data Collection

Figure 4 shows a typical workflow for constructing ML/DL models, including data collection,
data preprocessing, model training, and evaluation. The first step is to collect data, from which the
hidden knowledge can be extracted or learned by the ML/DL models. Quality, quantity, and
diversity of the data largely determine the predictive accuracy, robustness, and generality of the

developed ML/DL models.
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Figure 4. Workflow of building ML/DL models.

Commonly, three primary sources can be used to collect the training data. The first one is the
historical data from the lab notebooks[45, 48, 191] or literature.[192, 193] The second one is from
open database in the repository websites such as the International Union of Crystallography (IUCr,
XRD), International Centre for Diffraction Data (ICDD), National Institute of Standard
Technology (IR and MS), Crystallography Open Database (COD)[194] and RRUFF as well as
theoretical computational databases such as AFLOW,[195] Materials Project,[196] OQMD,[197]
MatNvai,[198] and NOMAD.[199] Table 3 summarizes these websites. The collected datasets
contain data related to physicochemical properties (molecular weight, specific surface area, and
melting point), reaction conditions (temperature, pressure, and time), and fingerprints or segments
describing the structure information of molecules. These data can be discrete for performing
classification tasks or continuous for performing regression tasks. The third data source is from in-
situ experimentation where the new data is collected. It should be noted that bias could exist in

these data sources. For instance, in the materials science field, data is preferably collected from
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the literature that is published in high-impact journals. Or the human researchers may largely

determine the diversity and quality of the collected data.

Table 3. List of open data sources for materials.

Name Full name Data URL Ref.
COD Crystallography Open XRD http://www.crystallography.net/co [194]
Database d/
[UCr International Union of XRD https://www.iucr.org/resources/da
Crystallography ta/databases
International Centre .
ICDD for Diffraction Data XRD https://www.icdd.com/
cSD Cambridge Structural XRD h‘Ftps://Www.ccdc.cam.ac.uk/solut
Database ions/csd-core/components/csd/
https://www.fiz-
Inorganic Crystal karlsruhe.de/en/produkte-und-
ICSD Structure Database XRD dienstleistungen/inorganic-
crystal-structure-database-icsd
National Institute of .
NIST Standard Technology Raman, FTIR, MS https://www.nist.gov/
RRUFF Raman, XRD, IR https://rruff.info/
AFLOW Automgtlc-FLOW for | Theoretical cqmpound http://aflowlib.org/ [195]
Materials Discovery properties
Materials Inorganic compounds ) . .
Project properties https://www.materialsproject.org/ | [196]
Open Quantum )
OQMD Materials Database Crystal structures http://oqmd.org/ [197]
Polymer, inorganic and
. NIMS Materials metallic materials, . .
MatNavi Database computational Electronic https://mits.nims.go.jp/en/ [198]
Structure
NOMAD Novql Materials Computational materials https://nomad-lab.eu/ [199]
Discovery
Materials, surfaces,
and adsorbates (nitrogen,
0C20 Open Catalyst 2020 carbon, and oxygen https://opencatalystproject.org/ | [200]
chemistries)
GDB-13 Combinatorially generated | . /o 4b unibe.ch/downloads/
library
ZINCI15 Commercially available http://zinc15.docking.org
compounds
GDB-17 Combinatorially generated | /. /o 4b unibe.ch/downloads/
library
Stable small CHONHF
QM9 organic molecules taken http://quantum-
from GDB-17 with machine.org/datasets/
properties calculated
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from ab initio density
functional theory

2.2.2 Data Preprocessing

After the data collection, data preprocessing is the next important step to process the
information related to the hypothesized problem and convert them into quantifiable data that can
be read by a computer. Typical tasks of data preprocessing include (1) representing categorical
data, molecules, text, and images; (2) removing duplication and noise; (3) handling missing data
points; and (4) scaling features from unstructured raw data.

Representing categorical/text/image data. To represent categorical data, one-hot encoding
can be implemented, which creates a binary column for each category.[201] If this category
appears in the input, it is coded as 1. Otherwise, it is coded as 0. For example, three alcohols, i.e.,
methanol, ethanol, and propanol, are used as solvents in a reaction. To represent them using one-
hot encoding, methanol, ethanol, and propanol are coded as [1 0 0], [0 1 0], and [0 O 1], respectively.
To convert the text features into a set of representative numerical data, the term frequency-inverse
document frequency (TF-IDF),[202] a technique of data encoding, is used to take each snippet of
text, count the occurrences of each word within it, weight the word counts by a measure of how
often they appear in the documents and present the results in a table. Pixel values of images can
be directly used to encode the image data.

Removing duplication and noise. Duplication is a row where each value in each column is the
same as another row. These duplications may appear in both training and testing datasets after data
splitting, resulting in an optimistically biased performance of the model for the unseen data. Thus,
they must be removed in the data preprocessing step. Noise is another concern that could make

two patterns from two different structures have lower signal-to-noise ratios.[203] This may lead to
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poor classification accuracy due to the loss of distinguished peak characteristics. To remove the
noise and enhance signal-to-noise ratios, several smoothing strategies can be implemented
including the Savitzky-Golay filter,[204] Fourier transformations,[205] and penalized likelihood
estimation.[206] VAE has shown promise in automatically reconstructing spectra by removing
noise and unwanted spectral artifacts.[207]

Handling missing values. In some situations, features and labels are missing regardless of
whether they happen at random or not. Most ML algorithms cannot be successfully trained by
datasets with the missing values. A straightforward way is to discard these observations that
contain one or more missing values, which can be quickly implemented using NumPy or Pandas.
However, directly deleting the observations may introduce bias into the data, thus resulting in some
unobserved systematic effects. Another way is to fill these missing values with substitute ones by
imputation. Imputation of missing values is implemented using various strategies such as replacing
the missing values with the mean, median, or mode of the column and using matrix completion to
impute the missing values with the observed elements.[115]

Scaling features. ML algorithms do not perform properly when some features have different
scales of their absolute values, which may cause an over-weight of the features with relatively
large values. For instance, in a reaction, the volume of solvent ranges from 1 to 1000 mL, while
the molar ratios of two chemicals range from 0 to 1. If these values were directly fed into some
distance-based algorithms such as KNN, k-means, and SVM, the molar ratio would have a much
smaller weight in the prediction outcomes than the solvent would do. Implementation of feature
scaling balances the weights of these features, leading to more robust models and better prediction
accuracies. For some ML algorithms like LR and MLP which use gradient descent for model

training, the feature scaling would make the models converge much faster. The third benefit of
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implementing the feature scaling is that the coefficient can be appropriately penalized if
regularization is a part of the loss function.

Two common approaches, i.e., normalization and standardization, can be used to make the
features have the same scale.[48] Normalization subtracts the minimum and divides by the
difference between maximum and minimum, while standardization first subtracts the mean value.
The result is then divided by the standard deviation to make the distribution have unit variance.
Unlike normalization, standardization is much less affected by outliers, thus resulting in a more

robust and generalizable ML model.

2.2.3 Model Training

Data splitting. To avoid overfitting and increase model robustness and generalization,[48] the
dataset is usually split into training and testing ones with a given ratio (typically 0.7, 0.75, 0.8, and
0.85). To train ML models with large training data (> 10%), the splitting ratios among the training,
validation, and testing can be 0.90, 0.05, and 0.05. The training and validation datasets are used
for training and evaluating the ML models, respectively, while the testing dataset is set aside as
never-seen data to evaluate the performance of the ML models.

Cross-validation (CV). A k-fold (k is usually set to 5 or 10) cross-validation technique is
usually implemented to afford the ML models with high robustness and generalizability.[48] In a
5-fold cross-validation, the training data is split into five groups, one of which is used to evaluate
the model trained on the remaining four datasets. Evaluation of the trained model is based on an
unseen testing dataset.

Hyperparameter tuning. Hyperparameters are the parameters that must be set before training

ML/DL models. They can either configure the ML/DL models through hyperparameters like the
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number of trees in a decision tree, the number of layers, and the learning rate in a neural network
or minimize the loss function by tuning the types of activation functions and optimizer in a neural
network, the kernel types in SVM.[208] As a critical and cumbersome task in training the ML/DL
models,[209] hyperparameter tuning examines different combinations of hyperparameters to get
optimal results.[48] Manual tuning is a traditional way that manually fiddles with the
hyperparameters until obtaining satisfactory results. However, it is tedious and is ineffective for
many problems arising from the non-convex models, nonlinear hyperparameter interactions, and
high dimensionality. Hence, automated hyperparameter optimization (HPO) has become a
promising technique that automatically explores the hyperparameters to find the optimal
performance. HPO has the advantages such as reducing the required human efforts, improving the
performance of ML/DL models, enhancing reproducibility and fairness, lowering the technical
threshold, and accelerating the training speed.[208, 209] To perform HPO, the methods like grid
search and random search are widely implemented. The grid search evaluates the Cartesian product
of hyperparameters,[210] while the random search chooses random combinations of
hyperparameters.[211]. To avoid many unnecessary evaluations, BO selects combinations of the
hyperparameters based on previous evaluation results.[212] Open source Python libraries
including Hyperopt,[213] Talos,[214] Spearmint,[173] Autotune,[215] SMAC,[216] and
Vizier[217] have been developed to meet the demand for performing automated HPO. To further
automated the end-to-end ML/DL pipelines for freeing experts from the tedious HPS tasks and
making ML accessible to non-experts, automated ML (AutoML) frameworks have emerged. These
off-the-shelf frameworks include AutoWEKA,[218] Auto-Sklearn 2.0,[219] AutoKeras,[220]
Auto-Pytorch,[221] H20 AutoML,[222], and TPOT.[223]

2.2.4 Evaluation Metrics

20



Classification. Several metrics including accuracy, precision, recall, F score, true positive
rate, and false positive rate can be used to evaluate the performance of the ML models. Below are

the formulas used to calculate them.

TP+TN
Accuracy = (D)
TP+ FP+TN + FN
Precision = L (2)
TP+ FP
Recall=L (3)
TP+ FN
F =2x Precision x Recall 4)
Precision + Recall
PR=—1F (5)
TP+ FN
FPR=—1T (6)
FP+TN

where TP, FP, TN, and FN represent the number of true positives, the number of false positives,
the number of true negatives, and the number of false negatives. F| score represents the harmonic
mean of precision and recall. Precision and recall are used to plot precision-recall curves at
different threshold settings, while TPR and FPR are used to plot the receiver operating
characteristic (ROC) curves at various decision thresholds. The area under the ROC curve (AUC)
can be used to measure how well the ML model distinguishes different classes.

Regression. Root-mean-square error (RMSE), coefficient of determination (7*) and mean

absolute error (MAE) are three main metrics used to evaluate a regression ML model.
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where Vpred, Virue, Ymean, and n refer to the predicted value, true value, mean value, and the number

of samples, respectively.

2.3 Challenge and Solutions of Data Scarcity in Physical Domains

Acquiring sufficient data is always a prerequisite for building robust and generalizable ML/DL
models. However, it is time- and cost-intensive, particularly in experimental materials science.
Training the ML/DL models with limited data may lead to overfitting of the models. To overcome
the issue of data scarcity, some powerful methodologies including data augmentation by wrapping
and oversampling techniques, dimension transformation, transfer learning, and data compression
can be applied.

Data augmentation by wrapping. The data wrapping technique is usually implemented for
generating more training data from the existing data.[56, 58] For example, one-dimension (1D)
spectroscopic data can be augmented by random peak elimination, peak scaling, pattern shifting,
and noise addition.[56, 224] For peak elimination, a range of specific numbers can be randomly
replaced with zero. The peak intensities can be scaled by a factor at the predefined periodic length.
To do pattern shifting, the entire spectra are red-shifted (increase in the wavelength) or blue-shifted
(decrease in the wavelength) with a given value. To add noise addition to each spectrum, Gaussian
noise with a zero mean and variance equal to 0.00001 or white noise can be applied.[224] Through

these steps, the spectra can be largely augmented as defined.
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The two-dimension (2D) microscopic data can be augmented via several random
transformations that yield believable images. Trained with these images the DL models can be
exposed to more aspects of the data and be more generalizable. Typically, examples of
augmentation techniques include geometric transformation, color space transformation, noise
injection, random erasing, and kernel filters. The geometric transformation consists of rotation,
flipping, coupling, translation, vertical and horizontal shifting, channel shifting, and shearing.[225]
The color space transformation, also known as photometric transformation, can be done via
splicing individual RGB color matrices, setting certain max/min pixel values, and decreasing or
increasing the pixel values by a constant value.[226, 227] Random erasing sets the values of an n
x m patch that are randomly selected from an image to be either 0 s, 255 s, mean pixel values, or
other random values.[228] The Kernel filtering sets the pixel values of an n x n sliding matrix
using a Gaussian blur filter or a high contrast vertical/horizontal edge filter.[229] As no new
information is produced from data augmentation, eliminating the overfitting is still almost
impossible.

Data augmentation by oversampling. Unlike the data augmentation by wrapping that
manipulates existing instances, the data augmentation by oversampling generates synthetic
instances that are added to the training datasets. There are already several oversampling techniques,
e.g., mixing images, augmenting features, transferring neural style, and implementing GAN. The
technique of mixing images averages the pixel values of the images after randomly cropping, and
flipping, and then assigns the new images in the same way as the originally selected images.[230]
The feature augmentation works by first mapping the images into low-dimensional representations,
also known as features which are then augmented by methods such as adding random noise.[231]

The neural transfer method applies the style of a reference image to a target image via the
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sequential representation while preserving the original content of the target image.[232, 233]
Augmentation by GAN applies the probability distribution learned from training images to
generate new artificial images, which show high diversity but low correlation, thus are statistically
indistinguishable from the original ones.[146, 234]

Dimension transformation. Though data augmentation of 1D vector data like XRD, Raman,
and FTIR improves the predictive accuracy, it still suffers from several problems. First, the
presence of noise and background signals in these spectra leads to a higher false-positive rate and
a low detection accuracy of the true peaks. Though a few noise removal and smoothing algorithms
are available, the results are not consistent.[235] Second, some temporal correlations across
frequencies of the IR and Raman spectra could not be captured using 1D CNNs, resulting in lower
prediction accuracy. Encoding 1D spectra to 2D images using data transformation functions has
been a practical approach to solving these problems.[236-238]

Several techniques including Gramian Angular Field (GAF),[236] continuous wavelet
transformation (CWT)[237] scalogram, spectral short-time Fourier transform (SSTFT),[239, 240]
spectra recurrence plot (SRP), and spectral Markov transition field (SMTF)[238] have been
successfully implemented to encode 1D vector of spectra to 2D vector of images. These
transformed images are used to train transferred models, leading to a higher predictive accuracy
than the models trained directly from the spectra. GAF can represent time series in polar
coordinates via encoding the intensity as the angular cosine and the time stamp as the radius. Then,
various operations can be implemented to transform these angles into symmetric matrices. GAF
has several advantages such as preserving the temporal dependency. CWT is another
transformation function that can capture characteristic frequencies of the signal.[241] Due to the

continuous transformation at every scale, CWT makes the information present in the peak shape
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and peak composition more visible and easier to be interpreted.[242] It is demonstrated that the
implementation of CWT not only implicitly removes the baseline but also promotes the detection
of peaks in the spectra. In addition, with the transformed 2D images, existing CNN models can be
transferred for learning less available data, resulting in improved predictive accuracy.[237] SSTFT
can convert Raman spectra into 2D spectrograms via Fourier transformation, which confers much
discriminatory information and removes redundant features.[239] SRP can convert the spectra
based on the internal structure of the wavenumber, while SMTF does the conversion based on the
position information of the wavenumber.[238]

Transfer Learning. Transferring learning (TL) of a pre-trained network is another common
and highly effective approach to solving the issue of data scarcity. Recently, a variety of pre-trained
networks such as VGG19,[243] ResNet152 V2,[244] Inception V3,[245] Inception-ResNet,[246]
Xception,[247] DenseNet201,[248] and EfficientNetB7[249] are publicly available. They are
typically trained by very large image databases. For instance, ImageNet is trained by 14 million
labeled images from 1000 object classes.[250] Thus, they can be transferred as effective generic
models for applications in the physical domains.

There are two common approaches to performing TL in the pre-trained networks: feature
extraction and fine-tuning. Feature extraction effectively extracts new features from data using
representations learned from the model. Training is done via freezing convolutional layers of the
pre-trained network while unfreezing the fully connected layers or called the classifier. The reasons
why feature extraction can improve the training accuracy are as follows. First, the representations
learned from the convolutional layers are generic and reusable, while the representations learned
from the classifier are related to the set of classes. Second, local information of an object that

appears in the data is lost in the classifier while such information remains in the convolutional

25



layers. Fine-tuning is a training procedure that unfreezes the first few convolutional layers while
jointly training the newly added fully connected layers. The last few convolutional layers encode
more generic, reusable, and specialized features.

Data Compression. Material characterization is crucial to understanding the structures,
properties, and performances of the target materials. The collected data is usually in high-
resolution and contains enriched information. However, the large data size delays data acquisition
and increases the storage and communication burden, thus increasing the cost of data collection
and analysis. While most data contains redundant information, they can be discarded with almost
no perceptual information loss.[251] A method of directly sampling the compressed
representations rather than the complete raw data may promote the efficacy of AEPs.

Compressed sensing (CS), a new data technique, has been demonstrated as a practical solution
for directly collecting data in a form of compressed representation.[252] Instead of acquiring data
and then post-eliminating redundancy using various compression schemes, CS allows the
researchers to collect useful data from real-time experiments. CS can improve data sampling and
acquisition rates and reduce the communication burden. Moreover, it allows the usage of low-
quality and low-resolution data for training models with high prediction accuracy. To significantly
improve the sparsity level of the recovered vectors and compression ratios, physics-based
compressive sensing (PCBS), which uses domain knowledge and physical models to define the
transformation and sparse vectors in CS, was proposed to monitor the temperature and melting of

metals in additive manufacturing.[253]

3. Essential Components of an AEP

In this section, we will introduce the research progress and efforts made in AEPs with a focus
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on how data-driven algorithms, especially ML/DL, can be implemented and/or integrated with the
systems. Accordingly, we consider the three essential components that consist of an AEP for
realizing a closed-loop self-driving lab. They include (1) automated experimentations, (2) on-the-
fly data analysis, and (3) decision making.[68, 69, 74, 75]

First, an automated synthesis/processing platform is made of easily controllable and
programmable equipment for automatically synthesizing materials of interest in a high-throughput
manner. Despite various types of platforms, continuous flow reactors, desktop robots, and mobile
robots have been mostly deployed in AEPs. In-situ and on-site characterization equipment—
including spectroscopies such as UV-Vis/Infrared (IR)/photoluminescence (PL), gas
chromatography-mass spectroscopy (GC-MS), liquid chromatography-mass spectroscopy (LC-
MS), high-performance liquid chromatography (HPLC), nuclear magnetic resonance (NMR),
electron paramagnetic resonance (EPR), as well as microscopies like atom force microscopy
(AFM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), scanning
probe microscopy (SPM), scanning tunnel microscopy (STM), scanning transmission electron
microscopy (STEM), piezo-response force microscopy (PFM), optical microscopy (OM), and
digital imaging—can be integrated within the synthesis/processing platforms to characterize
structures and properties of materials or classify the reaction results. Second, the on-the-fly data
analysis with the aid of ML/DL can automatically process raw data to qualify or quantify the
outcomes such as microstructures, product yield, catalytic activity, and reaction kinetics. It can
undoubtedly accelerate the development pace and provide real-time feedback for the following
decision-making step. In this section, we focus on two types of data, i.e., spectroscopic data
collected from LC-MS,[62, 98, 254, 255] GC-MS,[256-258] NMR,[57, 63, 259, 260] IR,[99, 261,

262] XRD,[56, 58, 203, 263-265] and microscopic data collected from AFM,[266-268] SEM,[117,
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269-271] TEM,[272-274] SPM,[275-279] STM,[ 118, 280, 281] STEM,[282-287] PFM,[288-290]
OM,[59, 61, 291] and digital imaging.[100] Last but not the least, intelligent decision-making
algorithms can actively learn from previous experimental outcomes to suggest a new set of reaction
parameters for the next iteration of the experiments. Herein, four widely investigated decision-
making algorithms, namely BO, RL, Evolutionary Algorithm (EA), and Random Goal Exploration
Algorithm (RGEA), are discussed. Distinguished from brute-force search of the exploration space
adopted by high-throughput workflows,[292] the intelligent decision-making algorithms are
devoted to finding a shortened path to a global optimal. They not only ensure the accelerated
discovery of novel materials with superior properties but also minimize human effort and lower

the cost.

3.1 Automated Experimentations

In a traditional chemical reaction procedure, reactors such as flask, beaker, vial, and autoclave
are commonly used under the guidance of the design of experiment (DoE). The products are
collected via washing, centrifuging, and drying, followed by physicochemical characterization and
performance evaluation. Though it has promoted scientific progress for centuries, this type of
research paradigm has its intrinsic disadvantages. For instance, it is time- and cost-intensive, and
imprecise, thus limiting the ability for rapid materials discovery. To remain competitive and deliver
the expected benefit, efficient algorithms must be deployed to optimize the processes. With the
advances in hardware and software, the focus of the academy and industry has gradually switched
to automation or so-called high-throughput experimentation (HTE). HTE can conduct parallel
experiments (from a hundred to tens of thousands) that combine reaction variables such as solvents,

reactants, molar ratios of compositions, and temperatures. In addition to HTE for reactions, many
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high-throughput characterization tools have been developed for online monitoring. Ever since the
first demonstration of complete automation for molecule synthesis in the 1960s-1970s,[293-295]
a few research groups such as Lauterbach,[296-299] and M. Ahamdi[300, 301] have made
remarkable success in the field of pharmaceutical, organic chemical and DNA-sequencing
industries in the past half-century. Nowadays, automation is expanding to the field of materials
science.

A combinatorial approach, a watershed for accelerating materials discovery, development,
and optimization, refers to parallelly synthesizing and characterizing many compounds in a matrix
form for rapidly investigating the large compositional and structural landscapes. This field is
pioneered by X. Xiang,[302, 303] I. Takeuchi,[304-308] J. Gregoire,[309-314] H. Christen,[315,
316] P. Rack[317-319], T. Unold,[320-322] to name a few. Meanwhile, the discovery of novel
materials has changed radically with the introduction of HTE enabled by liquid handling robots
(Chemspeed, Tecan, Hamilton, Hudson, Sartorius, Gilson, ThermoFisher, INTEGRA, Opentrons,
and Andrew Alliance).

Herein, we review three main types of automated experimental platforms for THE:
continuous flow reactors (CFRs),[11, 63, 67, 68, 70, 71, 73, 170, 323-343] desktop robots,[17, 66,
69, 74, 75, 164-169, 300, 344-351] and mobile robots.[64, 352-355] Table 4 shows the detailed
comparison of these three types of platforms in terms of their application scenarios, deployment
sizes, throughput, cost, and efforts to deploy.

Table 4. Comparison among three types of automated experimental platforms

No Types Scenario Size Throughput Cost Effort
Continuous Molecules, nanoparticles, . Low
! Flow Reactors drugs, polymers Small Medium ~10K Low
Molecules, nanoparticles, Medium
2 | Desktop Robots drugs, polymers, thin films, Medium High Medium
4 . 10K~100K
single crystals, solids
3 | Mobile Robot All Large Low High High
obots g 0 ~100K g
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3.1.1 Continuous Flow Reactors

Restrained by limited heat and mass transfer, traditional reactors such as beakers, flasks, and
autoclaves usually suffer from significant batch-to-batch variability and generate unexpected
byproducts. Hence, it is not appropriate for accurate investigation of reaction kinetics when dealing
with process-dependent organic/inorganic materials synthesis, which requires fast, reproducible,
and controlled reactions enabled by the rapid heat and mass transport.[84, 356]

In recent years, CFRs, where reactants are continuously fed, have achieved enormous
progress in producing fine chemicals and specialty materials (Figure 5a).[356-361] They have the
following advantages. First, they enable fast mass transport for efficient reactant mixing as channel
miniaturization leads to large and well-defined interfacial areas in CFRs. This prevents the
formation of byproducts generated from localized concentration gradients. Second, efficient heat
transfer is realized due to the small channel diameters in CFRs. This advantage can largely avoid
locally hot spots and byproduct formation. Third, the usage of both solvents and reactants can be
reduced. Reactions in traditional reactors require from milliliters to liters of reactants and solvents,
while they can be largely minimized to a few microliters or even nanoliters for the same reactions.
Fourth, CFRs have shown the capacity to substantially increase reaction selectivity and
reproducibility. Fifth, CFRs can be modularized for sequential reaction, filtering, and extraction
all in one continuously streamlined flow process. Last but not the least, CFRs can increase
operating safety. Due to the automated operation and less usage of reactants, it makes the research
procedure much safer when handling hazardous, toxic, or even radioactive chemicals.

A typical CFR has the following essential components: 1) precursor formulation modules
including a precursor stock and micromixer; 2) tubes (plastic or stainless steel) equipped with

heating units such as an oil bath and a heating coil if necessary; 3) separators for purification and
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collection. They are easy and favorable to be integrated with many in-situ or in-line analytical
instruments. The integration enables real-time monitoring and analysis of reaction outcomes. It
allows the researchers to efficiently explore chemical space and easily extend the systems with
increased complexity.

Case studies. Cronin and his coworkers designed and built a synthesis robot based on CFRs
for fully autonomous organic compound synthesis (Figure 5b).[63] All the reactors were
connected via syringe pumps and switch valves. To determine the reaction results, real-time
analytic tools including NMR, MS, and ATR-IR systems were integrated. The collected data was
real-time analyzed and then fed into an optimization algorithm for decision making. Four new
reactions were discovered through the chemical robot. Abolhasani et al. developed a fully
autonomous CFR named Artificial Chemist for raid synthesis of perovskite quantum dots (QDs)
(Figure 5c¢).[68] The Artificial Chemist consists of three main modules, i.e., a precursor
formulation module, a flow reaction module, and an in-situ QD characterization module. To enable
in situ monitoring, a flow cell with reduced path length was designed and integrated into the CFR
for recoding PL and UV-Vis spectra. By a multivariate process optimization algorithm, this
Artificial Chemist can synthesize QDs with target optoelectronic properties even without prior
knowledge about the QD synthesis. Just recently, Reis and his colleagues built a CFR robot capable
of polymerizing multiple samples simultaneously (Figure 5d).[325] A droplet-based flow system
was employed for high-throughput polymer synthesis.[362] The polymer properties can be
optimized over their compositions, molar masses, and dispersity. In this CFR robot, a few '°F MRI

copolymer agents with high imaging sensitivities were discovered.
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Figure 5. (A) Scheme showing reaction workflow in a continuous-flow reactor (CRF) based AEP.
(B) Schematics (Left) and Photograph (Right) of a chemical robot based on a CFR. Reproduced
with permission from Ref.[63], Copyright 2018 Springer Nature. (C) Schematics of an Artificial
Chemist for autonomous synthetic path discovery and optimization of colloidal QDs. Reproduced
with permission from Ref.[68], Copyright 2020 Wiley. (D) Schematic of a CFR for autonomous
polymer synthesis. Reproduced with permission from Ref.[325], Copyright 2021 America

Chemical Society.

CFRs are usually designed for the synthesis of specific materials. To increase their agility,
modularizing them for new projects is an efficient way. Several groups have made a great
contribution to modulating CFRs for conducting new reactions without redesigning the system.
Jensen and Jamison et al. developed a compact, fully integrated, and easily reconfigurable platform
for automatically optimizing a wide range of chemical reactions (Figure 6a and b).[341] Six
available modules were designed for plug-and-play operations. Meanwhile, characterization
instruments including HPLC, MS, and vibrational spectroscopies were integrated for real-time

monitoring. Cronin and his coworkers designed an automated modular synthesis platform, called
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Chemputer, to synthesize the organic compounds with minimal human intervention (Figure
6¢,d).[67] The platform has a backbone structure that enables facile switching of modules for
routine synthesis tasks such as heating or phase separation. The backbone has a six-port valve that
connects pumps to the modules so reagents or reaction mixtures can flow to the appropriate module.
Three drugs including diphenhydramine hydrochloride, rufinamide, and sildenafil were
synthesized in 38-100 hours with yields comparable to the reported ones by traditional batch

synthesis ways.
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Figure 6. (a) Schematics and (b) photograph of a plug-and-play, reconfigurable, continuous-flow
chemical synthesis system. Reproduced with permission from Ref.[341], Copyright 2018 AAAS.
(c) Schematics and (d) photograph of the Chemputer setup. Reproduced with permission from Ref.

[67], Copyright 2019 AAAS.

Although CFRs have shown numerous benefits in material synthesis, they face challenges that
deter their widespread applications in large-scale materials, pharmaceutical, fine, and specialty

chemical production. The first challenge is how to prevent the formation of solid precipitates in
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these cases that use solid and/or high-viscosity liquid.[363, 364] The solid formation accumulates
fouling in channels, leading to blockage, which not only causes fluctuation of the flow velocity
but also induces a major setback when optimizing the reaction parameters. To effectively
circumvent the fouling, feasible approaches such as the use of dilute liquid,[365] tubes with larger
diameters,[366] a micro-flow focusing technique,[367] multiphase systems[368, 369], and
ultrasound acoustic irradiation can be implemented.[370, 371] In addition, the use of solid in
reactions can cause clogging. To alleviate this problem, several strategies can be implemented, i.e.,
adding magnetic/mechanical stirring in the feeding system,[372] introducing continuously stirred
tank reactors,[373] and coating packed column reactors with heterogeneous catalysts.[374] The
second challenge is how to integrate in-line purification for obtaining the desired high-purity
products. Purification not only helps to determine the yield but also mitigates the side effect of the
by-products on the subsequent reactions. The viability of in-line purification techniques such as
liquid-liquid extraction,[375, 376] micro-distillation,[377] micro-crystallization,[378] and free-
flow electrophoresis[379] have been investigated. The third challenge is the relatively higher cost
needed to build CFRs compared with the traditional batch reactors.[380] The commercially
available syringe pumps, rotary valves, various reactors, and multichannel connectors are the
components that cost the most in building the CFRs. A few research groups are devoted to
developing affordable devices via assembling necessitate components with 3D printed parts,[381-

386] greatly reducing the deployment cost.

3.1.2 Desktop Robots
Though CFRs have provided a promising way for experimental automation, they still lack

enough agility when participating in various types of chemical reactions. Because agile chemical
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synthesis calls for a redesign of a synthetic route, interchange of different chemicals, selection of
appropriate reactors with suitable sizes, reassembly of different hardware, and optimization of the
whole process. For example, lots of enzymes used in pharmaceutical products should be well
stored and prepared just before the reactions. Desktop robots with ingenious arms possess great
advantages for mixing, processing emulsions, and handling chemical solid and liquid (Figure 7a).
The application of desktop robots in the field of life science and drug discovery has been a
tremendous success. An early demonstration of the desktop robots for biomedical research came
from a group of scientists at Aberystwyth University.[387-392] They built two prototype robots:
Adam and Eve. Adam was designed to test genes and enzyme functions, while Eve was devoted
to screening and designing drugs of interest. Implementation of desktop robots in developing novel
materials has also been demonstrated by different research groups.

Case studies. Cronin et al. designed and constructed a droplet-generating desktop robot named
“Dropfactory”, a robust platform with easy maintenance, for investigating droplet behaviors
(Figure 7b).[75] Dropfactory has three main mechanisms: an XYZ CNC frame that provides both
the structural support and the motion, working stations that perform only one task at each running,
and two Geneva wheels that move containers from one station to the others. Dynamics of the oil-
in-water droplets including movement, division, fusion, and chemotaxis were recorded using a
commercial camera to construct promised protocell models. All operations including mixing,
droplet placing, recording, cleaning, and drying were parallelly performed for 300 experiments per
day in full autonomy, showing 6 times increase in throughput compared with their previously
developed non-autonomous platform.[393, 394] Based on their previous work,[341] Jensen and
his coworkers integrated a six-axis robotic arm with modularized CFRs to develop an automated

and scalable synthesis of organic compounds (Figure 7¢).[66] This robotic arm allowed automatic
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and on-demand selection of modules from storage locations and arranged them in a required
reaction sequence suggested by Al planning algorithms for investigating the amide coupling and
reduction reactions. This reconfigurable platform yielded the target compounds at a high rate of
100 mg/h. Besides successful demonstration of synthesizing 15 drug or drug-like molecules, it can
back-to-back synthesize complex molecules. A collaborative team led by Aspuru-Guzik, Hein, and
Berlinguette designed and built an “Ada” desktop robot that was capable of autonomously
synthesizing, processing, and characterizing organic thin films (Figure 7d).[74] This robot
consists of 1) a robotic arm for handling vials and slides, 2) a weigh scale for preparing precursors,
3) a spin coater for thin-film coating, and 4) a furnace for thin-film annealing, 5) a camera for dark-
field imaging, 6) a four-point probe unit for electrical conductance measurement, and 7) an
ultraviolet-visible-near-infrared (UV-Vis-NIR) spectrometer for recording spectra. Thin films were
automatically prepared with the recommended chemical compositions and processing conditions
by the Al optimization algorithms. From the measured absorbance and electrical conductance, the
pseudomobility, which is proportional to the hole mobility, of the thin film materials was derived
as the optimization target of the Al algorithms. Finally, maximum pseudomobility of thin-film

materials with value of 750 s was successfully screened out within 30 hours.
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Figure 7. (a) Schematic showing a role of a desktop robot in an AEP. (b) Schematic of a high-
throughput droplet-generation robot named ‘“Dropfactory”. Reproduced under a Creative
Commons Attribution License 4.0 (CC BY) from Ref.[75], Copyright 2020 AAAS. (c) Photograph
of a reconfigurable flow chemistry platform enabled by a desktop robot for performing multistep
chemical synthesis. Reproduced with permission from Ref.[66], Copyright 2019 AAAS. (d)
Schematic of an “Ada” self-driving laboratory for fabrication and characterization of thin-film
materials. Reproduced under a Creative Commons Attribution License 4.0 (CC BY) from Ref.[74],

Copyright 2020 AAAS.

3.1.3 Mobile Robots

Lots of synthesis and characterization instruments are spatially big and functionally complex.
In some cases, they require special working environments, e.g., isolation of UV, noise, and
vibration. Thus, they are often distributed in different locations, making the direct integration into
a single platform often impractical. In this case, realizing full autonomy would demand a mobile

robot that can serve as an operator like a human researcher. Recent advances in industrial robots
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produced by KUKA, Fanuc, ABB, and Yaskawa have inspired much interest in exploring their
applications in autonomous laboratories for material and chemical development.[352-354] A
mobile robot with a built-in scheduling software can physically move among different components
of a synthesis lab to perform tasks like handling chemicals (solid and solvent) from cabinets to
synthesis stations (dissolution, distillation, and centrifuge) and characterization stations (HPLC,
LC-MS, UV-Vis and GC) without human invention (Figure 8a).[64, 355] This mobile robot can
realize unmanned intelligent labs, showing superiority to humans in consistence, efficiency,
flexibility, and dealing with toxic and explosive chemicals/gases.

Case studies. In 2018, Li et al. proposed an authentic intelligent robot for use in a chemistry
laboratory (AIR-Chem), which automatically executed the synthesis of inorganic perovskite
quantum dots (IPQDs) (Figure 8b).[355] AIR-Chem consists of an automated guided vehicle
(AGV) and a real-time computer vision (CV) system. The AGV can navigate the chemical cabinets
and conduct IPQD synthesis experiments with the aid of CV. The embedded CV integrated with a
PL device can monitor the IPQD growth in real time. In another recent work, a commercially
available mobile robot was used to replace a human researcher in conducting experiments (Figure
8¢).[64] Using laser scanning and touch as the feedback medium, the robot chemist can move
freely and accurately in a standard laboratory under a dark environment, which is required for
handling light-sensitive chemicals or photochemical reactions. In addition, it can work
continuously except for charging, which takes ~2.4 h per day. Compared with other automated
platforms that only handle liquid, it can accurately and reliably dispense both solid and liquid. As
a demonstration, it was used to search for efficient photocatalysts for hydrogen production from
water. Without any instruction from human researchers and prior knowledge, it synthesized and

tested the catalysts, and then obtained an optimized recipe from a ten-variable reaction space in
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just 8 days. It is worth mentioning that unlike the previously reported flow synthesis-based robotic
platforms upon which many modules are customized, in this work, all the stations except the
capping and photolysis stations are commercially available. Thus, no hardware modification is

needed.
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Figure 8. (a) Schematics showing a role of a mobile robot in performing experiments. (b)
Schematics showing components of AIR-Chem and their functionalities. Reproduced with
permission from Ref.[355], Copyright 2018 American Chemical Society. (¢) Photographs showing
a Kuka mobile robot handling samples for synthesis and characterization. Reproduced with

permission from Ref.[64], Copyright 2020 Springer Nature.

Similarly, the deployment of desktop and mobile robots in labs also faces grand challenges.
First, high cost and long investment time remain the biggest constraints.[395-398] The cost
associated with a liquid handling robot, robotic arm, and mobile platform is still an important
factor for large-scale applications in the lab. It is also a time-consuming process to develop the

software to execute commands and communicate among different hardware. To mitigate these
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issues, hardware with affordable prices and open-source software is highly desired. The second
challenge is associated with precise and repetitive positioning and fine manipulation of both
desktop and mobile robots after a long-time operation.[64] Unlike the CFRs that liquids flow
through the tubes, robots should allow 1) the fine manipulations, such as placement of vials,
substrates, and tips, measurement of solid and liquid, and on/off of specific instruments, and 2)
precise and repetitive positioning among various experimental stations in the labs. To alleviate
these concerns, touch-sensitive multiple points calibration, and advanced sensing techniques of
using laser and radar for robotic navigation can be implemented. The third challenge arises from
the capability of the currently available robots to work only in a structured environment, where a
spatial arrangement is organized and determined, making the robots less adaptive to emergent
situations. In the future, advances in collaborative robots, and human-robot interactions would

make these commercial robots more applicable in AEPs.

3.2 On-the-fly Data Analysis

After the collection of characterization data, a subsequent step is to analyze them followed by
presenting and visualizing the results for decision making. The ever-increasing acquisition rate
from real-time experiments by modern instruments leads to an exponential increase in data size.[5]
However, data analysis typically requires domain knowledge, costing an expert much time and
effort to process, interpret, and convert the data. To make the best use of the fast acquisition rate,
it is necessary to boost the speed and efficiency of data analysis. Recently, ML has been deeply
integrated into the characterization instruments for achieving the on-the-fly data analysis. This
aspect of the analytic workflow focuses on spectroscopic data from LC-MS,[62, 98, 254, 255] GC-

MS,[256-258] NMR,[57, 63, 259, 260] IR,[99, 261, 262] XRD,[56, 58, 263-265, 399] and
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microscopic data from AFM,[266-268] SEM,[117, 269-271] TEM,[272-274] SPM,[275-279]

STM,[118, 280, 281] STEM,[282-287] PFM,[288-290] OM,[59, 61, 291] and digital imaging.[100]
A few reviews summarize recent progress in the application of DL for microscopic data

analysis.[60, 400, 401] Herein, we focus our review on a general procedure of on-the-fly data

analysis of both spectroscopic and microscopic data, and discuss how to extract insightful

information for new knowledge generation, which can be used to achieve predefined targets, such

as establishing a processing-structure-property relationship.[402]

3.2.1 Spectroscopic Data Analysis

Data preprocessing. Usually, spectra collected from different equipment and/or by different
operators contain different amounts of data points. For most of the ML/DL models, the input
vectors should possess the same length. To convert the raw spectrum data to a vector of a specific
length within a given range, the interpolation is usually first implemented.[56, 58, 224] In addition,
the data is usually normalized to the range between 0 and 1 to make the data on the same scale for
better comparison. In the case of experimental spectra containing much background noise,
Savitzky-Golay filtering and polynomial fitting techniques can be applied to smooth the spectra
and correct the baseline, respectively.[403] More information about the spectra data preprocessing
can be referred to in the previous section.

Case studies. Grand et al. trained an SVM model to classify NMR and IR spectra of reactive
and non-reactive mixtures (Figure 9a).[63] These data were manually labeled by domain experts.
The model trained on 72 datasets afforded an accuracy of 86%. This well-trained SVM model was
then used for real-time distinguishing the spectra of the starting materials from those of the final
products. Finally, the difference between the two types of spectra was registered as reactivity hits

to classify reactive and non-reactive outcomes. In another work, an algorithm named peakonly,
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consisting of two CNN models, was developed to detect true positive peaks of raw LC-MS spectra
(Figure 9b).[98] The first one was used to classify the regions of interest (ROI) into three
categories (noise, peaks, and uncertain peaks), while the second one was used to output the area
of the detected peaks. Peakonly shows superior performance in labeling the true positive peaks
with a precision of 97 %. To capture temporal correlations, Zinchik and his colleagues used GAF
to encode the 1D mid-infrared (MIR) spectra to 2D matrices for training a CNN model (Figure
9¢).[236] To reduce the dimension of the input GAF matrices, a piecewise aggregate
approximation (PAA) technique was used. The results showed that the CNN model reached an
overall classification accuracy of ~100% at a much faster prediction rate than the model trained
directly with 1D data.

Tremendous progress has been recently made in the application of ML/DL models in
analyzing XRD, Raman, and FTIR spectra. Buonassisi et al. proposed a CNN model to predict
crystallographic space groups of XRD patterns of perovskite thin films.[56] Data was augmented
from the theoretic spectra to overcome the issue of scarcity in experimental data. To validate its
effectiveness, they integrated the CNN model with high-throughput synthesis to accelerate the
development of perovskite-inspired materials.[263] Such an integrated approach achieved a
classification accuracy of 90% and a classification speed of > 10 times faster than manual analysis.
Recently, our group trained a CNN model from theoretical XRD patterns combined with very
limited experimental spectra.[58] Rather than classifying the materials into crystallographic space
groups, this CNN model enables rapid identification of individual metal-organic framework
(MOF). It affords a prediction accuracy of 96.7% for the top-5 ranking among > 1000 MOFs. Fan
and his colleagues developed a novel approach of DL-based component identification (DeepCID)

to identify the presence of species in mixtures from Raman spectra.[404] The well-trained

42



DeepCID exhibits a prediction accuracy of 98.8% for 167 compounds and 99.5% for 160

compounds with significantly lower false-positive rates.
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Figure 9. (a) Schematic showing workflow and results of an SVM classifier for reaction outcome
detection from NMR spectra. Reproduced with permission from Ref.[63], Copyright 2018
Springer Nature. (b) The architecture of the peakonly model for peak classification and integration.
Reproduced with permission from Ref.[98], Copyright 2020 American Chemical Society. (c)
Workflow of a CNN framework for classifying different types of plastic using a GAF

transformation method. Reproduced with permission from Ref.[236], Copyright 2021 American

Chemical Society.

3.2.2 Microscopic Data Analysis

Microscopic images taken on advanced instruments such as SEM, TEM, and STM have been
widely used to retrieve the relationship between microstructures and properties.[405, 406]
Analyzing these microscopy images includes tasks of segmenting areas of interest such as defects
and phases and determining the thickness and number of layers. However, such a manual workflow
is tedious and time-consuming. In addition, some important information hidden in the image data
may be missing due to intrinsic limitations of the equipment or unintentional ignorance of human
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researchers. In contrast, the DL models such as DenseNet,[407] ShuffleNet,[408, 409], and Mask
R-CNN[410] were proved to perform better tasks like image recognition, segmentation,
reconstruction of missing information, and retrofitting new information from the images.

Data preprocessing. Data preprocessing is usually needed before training DL models for
analyzing microscopic data. Preprocessing includes fixing constant aspect ratios, scaling, and
normalizing values, reducing dimensions, sharpening white-black contrast, and filtering image
noise. Fixing the aspect ratios ensures that the input images are square and cropped properly as
presumed by the CNNs.[411] Normalization is essential to afford the same data structure for each
image.[412, 413] It includes rescaling, standardization, and stretching. Rescaling is to rescale the
images to smaller ones. For example, an image with 256 x 256 pixels was rescaled to the one with
128 x 128 pixels.[414] Rescaling also increases training speed and inference. The CNNs converge
faster with the aid of normalization. Dimension reduction is to collapse multiple channels of an
RGB image into a single grayscale channel when the CNNs are dimensionally invariant.[415]
White-black sharpening can avoid gradient vanishing by enhancing the features, while filtering
helps to remove the noise.[416]

Case studies. Segmentation of microscopy images helps to analyze the objects or features of
the images.[417] For example, the shapes and size distribution of nanoparticles would be outlined
and calculated from the segmented SEM images.[409] There are two main categories of image
segmentation, i.e., semantic segmentation and instance segmentation. The former assigns each part
of an image a label after the image is partitioned into semantically meaningful parts, while the
latter would exhaustively identify each instance of a class in the image. Dong et al. developed a
multimodal multiclass segmentation model (DALM) for determining the number of layers in 2D

materials, i.e., MoS; flakes (Figure 10a).[59] To increase the prediction accuracy, the RGB images

44



were merged with the hyperspectral images to train the DALM, which showed a higher prediction
accuracy than those trained with only RGB images. It also exhibited satisfactory robustness even
if the images showed high illumination and contrast variations. Besides the image segmentation,
the DL models can also predict the reaction outcomes from the collected in-situ images. Sargent
and coworkers developed a CNN model based on VGGNet for classifying the images taken from
reactors into two categories: (1) bad crystals or no crystals, and (2) good crystals (Figure 10b).[100]

Investigation of adatom-adatom and adatom-substrate interactions is beneficial for
understanding the physical and chemical reactivity of novel materials. STM and AFM can be used
to visualize structures of the surface atoms, which makes the correlation between the structures
and the surface properties easier. Kalinin et al. proposed an ML-based algorithm to seamlessly
transform STM images to atomic coordinates of surface and adatoms (Figure 10c¢).[282] They
used Co3Sn2S; as a model material to demonstrate a family member of Shandite AsM2X> crystal.
They have a rhombohedral structure, which shows a CoSn Kagome lattice sandwiched by the S
and Sn layers. A series of STEM images were analyzed using Laplacian of the Gaussian filter in
the scikit-image library[418] to reconstruct the coordinates of the surface atoms. To match the
experimental observations with the ones derived from a lattice Hamiltonian model, BO was further
implemented to minimize the statistical errors in distances.

Though providing high-resolution imaging with enriched information, high-does electron
beams of the electron microscopy may cause devastating damage to samples such as nano-
catalysts[419] and biological samples.[420] Reducing the beam dose may mitigate this issue while
scarifying the image quality. The CS technique has been an alternative strategy for collecting the
images with reduced doses, acquisition time, and data volume. Browning and coworkers developed

CS via the Bayesian dictionary learning as a low-dose acquisition method to obtain high-resolution
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STEM images (Figure 10d).[421] With only 20 % of the pixels sampled from the real image of
the ZSM-5 zeolite catalyst, the reconstructed images maintained high image quality. This approach
not only automatically reduces the beam doses and variances caused by noise, but also increases
the acquisition rate. In his follow-up work, Browning proposed an efficient sparse sampling
strategy that randomly samples only a few rows of the pixels as the electron beam moves along
the scanning direction.[422] This approach accelerates the acquisition rate and lowers the electron
beam by a factor of > 5 times. In 2018, Browning developed a deliberately sub-sampling method
that showed a much higher acquisition rate of the STEM images than conventional low-dose
methods do.[423] This method acquires STEM images of ZnSe at least an order of magnitude
faster and reduces data storage and communication. When integrated with an adaptive sampling

strategy, this method shows a significant increase in the rate, speed, and sensitivity of images.
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Figure 10. (a) Schematic showing a workflow of using DALM for mapping the atomic layer of
2D materials. Reproduced with permission from Ref.[59], Copyright 2020 American Chemical
Society. (b) A workflow showing a CNN model for crystal formation prediction. Reproduced with
permission from Ref.[100], Copyright 2020 Elsevier. (c) Bayesian learning of adatom interactions
from STM images. Reproduced with permission from Ref.[282], Copyright 2021 American
Chemical Society. (d) CS reconstructed a STEM image of the ZSM-5 zeolite catalyst. Real image
(Left), 20 % sampled image (middle) and reconstructed image (right). Reproduced with permission

from Ref.[421], Copyright 2014 Oxford University Press.

3.3 Decision-making Algorithms

Materials discovery can be considered as an optimization process in which input parameters
must be tuned to reach a global optimal. In many applications of autonomous experiments, the
objective functions are “black boxes”, meaning that there are no specific functions that can define
the objectives. Exhaustive or brute-force search is a general problem-solving method, while it is
only suitable for problems with inexpensive and easily parallelized experiments within a relatively
small chemical space. It is powerless when the chemical space is enormous.[424] Hence,
intelligent decision-making algorithms are needed to efficiently explore the chemical space and
save cost and time.[1, 95, 102] They can suggest optimum candidates based on the previous
observations, thus avoiding redundant or biased evaluations. Also, they can help to maximize the
yield of the product by adjusting a synthetic procedure or tuning the structure of a material to
realize desired properties. Here, we focus on widely investigated decision-making algorithms, i.e.,
BO, RL, evolutionary algorithm (EA), Stable Noisy Optimization and Brach and FIT (SNOBFIT),

and curiosity algorithm (CA), as summarized in Table 5.
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Table 5. Examples of decision-making algorithms for autonomous experiments.

Algorithms Components
# of Model Surrogate Acquisiti Task Ref.
N on
objectives Model .
Function
GP EI Sf&ntzf:s the toughness of additively manufactured [69]
Classical BO
GP UCB |Optimize the growth rates of carbon nanotubes [425]
Dragonfly GP ELPI/ Optimize the battery electrolyte [73]
UCB/TS
Optimize the pseudomobility of thin-film materials | [74]
S00 Phoenics BNN ES Improve t.he efficiency of quaternary organic [165]
photovoltaic blends
Screen hydrogen evolution photocatalyst [64]
Optimize stereoselective Suzuki-Miyaura coupling [167]
reactions
Gryffin BNN ES Optlml;e the synthesis of o-xylenyl adducts of
BO Buckminsterfullerene 426)
Design the redox-active materials for non-aqueous
flow batteries
Optimize parameters for real-time reaction
monitoring ~ of  High-Performance  Liquid
Chimera BNN ES Chromatography (HPLC) [427]
Inverse design of efficient excitation energy
transport (EET)
BO NNE UEII?IZ”EI/ Optimize the synthesis of perovskite quantum dots | [68]
MOO Optimize SyAr and N-benzylation reactions [428]
TSEMO GP  |TS-EHVI Opt'lmlze Sogogashlra reaf:tlon anfi multiple-step [429]
Claisen-Schmidt condensation reaction
Screen the formulated products [347]
GP-qEHVI GP QEHVI Optimize the electrical conductivity of metallic [169]
films
GP-TS GP TS Optimize the mechanical performance of polymers |[430]
Model Policy function Task
Optimize Pomeranz-Fritsch, Friedldnder, Ribose
DRO RNN synthesis, and reaction between DCIP and AA [188]
RL Optimize the synthesis of silver nanoparticles
RL CNN Optimize the synthesis of MoS; [187]
SNOBFIT-RL CNN Opt1mlz§ the circular dichroism signal of [71]
perovskites
Model Task
GA/RF Optimize the growth rates of CNTs [431]
EA GA/RF Optimize the crystallinity of MOFs [46]
GA Qulde the synthesis of gold nanoparticles with [432]
different shapes
Others SNOBFIT Optimize the synthesis of EGFR kinase inhibitor [433]

AZD9291
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Optimize the yields of organic products [341]
CA Explore the droplet behaviors [75]
Note: BO: Bayesian optimization, SOO: single-objective optimization, MOO: multi-objective
optimization, EI: expected improvement, PI: probability of improvement, EHVI: expected
hypervolume improvement, TS: Thompson sampling, UCB: upper confidence bound, BNN:
Bayesian neural network, EPLT: pure exploration, TSEMO: Thompson Sampling Efficient Multi-
objective Optimization, RL: reinforcement learning, DRO: deep reaction optimizer, RNN:
recurrent neural network, SNOBFIT: Stable Noisy Optimization by Branch and FIT.EA:
evolutionary algorithm, RF: random forest, EA: evolutionary algorithm, GA: genetic algorithm,
CA: curiosity algorithm.

3.3.1 Bayesian Optimization (BO)

BO is well suitable for solving black-box optimization problems because it has no prior
assumption of any functional form (Figure 11a).[102, 173, 434] To implement this task, BO needs
a surrogate model and an acquisition function. The surrogate model approximates the expensive
objective function, while the acquisition function calculates a criterion that indicates how desirable
it is to sample the next candidate. There are several choices of surrogate models such as
probabilistic ones, e.g., Gaussian process (GP),[347, 430, 435-437] sparse pseudoinput GP
(SPGP),[438, 439] and sparse spectrum GP (SSGP),[440] or non-probabilistic ones, e.g., Bayesian
neural networks (BNNs)[441, 442] and RF.[216, 443] Choices of the acquisition functions include
pure exploration (EPLT), expected improvement (EI),[444] probability of improvement (PI),[445]
maximum variance (MV), upper confidence bound (UCB),[446] Thompson sampling (TS),[447]
entropy search (ES),[448, 449] and knowledge gradient (KG).[450]

BO has the following advantages. First, Bo enables to search for the candidates actively and
efficiently with an optimal property given a predefined task. It can greatly reduce the number of
experiments to be evaluated. Second, BO is noise-tolerant since it can introduce noise when
calculating the covariance. Third, BO can balance the trade-off between the exploitation of the

best local optima and the exploration of high uncertainty to allow for the determination of the
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global optima. These advantages make BO well suitable for AEPs.

Case studies. Gongora et al. proposed a Bayesian Experimental Autonomous Researcher
(BEAR) to identify the optimal toughness of additively manufactured structures (Figure 11b).[69]
BEAR utilizes GP as the surrogate model and EI to select the optimal design parameters for the
next experiment. BEAR enables to identify high-performing structures within 100 experimental
iterations. In comparison with the grid search strategy, BEAR reduces the number of experiments
by 60-fold. Maruyama and his colleagues incorporated BO in an Autonomous REsearch System
(ARES)[431, 451] to optimize the growth rate of carbon nanotubes (CNTs) (Figure 11¢).[425] BO
successfully improves the growth rate by a factor of 8 in comparison to that of a seed dataset within
~ 100 experiments. Dave and coworkers integrated Dragonfly, a BO software package, with a
robotic platform to autonomously optimize battery electrolytes (Figure 11d).[73] Dragonfly
implements an adaptive sampling strategy that actively learns which one of the four acquisition
functions (EI, PI, UCB, and TS), performs the best during each optimization cycle. In only 40
hours, Dragonfly screens out a mixed anion sodium electrolyte that has a potential window of ~
3.0 V. Takeuchi et al. developed a Closed-loop, Autonomous system for Materials Exploration and
Optimization (CAMEO) to synthesize the Ge-Sb-Te alloy with a maximum bandgap (Figure
11e).[65] To minimize the experimental iterations, they first used the raw ellipsometry spectra of
Fe-Ga-Pd to train the CAMEO model. CAMEO can make use of the phase distribution information
learned from the Fe-Ga-Pd alloy to identify the optimal candidate for Ge-Sb-Te within 35
experimental iterations, which is superior to the classical Gaussian process-upper confidence

bound (GP-UCB) algorithm.
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Figure 11. (a) Schematics of BO. Reproduced with permission from Ref.[102], Copyright 2021
American Chemical Society. (b) Evolution of the performance of the mechanical structures
obtained from BEAR. Reproduced under a Creative Commons Attribution License 4.0 (CC BY)
from Ref.[69], Copyright 2020 AAAS. (c) Evolution of the growth rates of CNTs obtained from
BO. Reproduced under a Creative Commons Attribution 4.0 International License from Ref. [425],

Copyright 2020 Springer Nature. (d) Evolution of the potential window of sodium ions electrolytes
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obtained from Dragonfly. Reproduced with permission from Ref.[73], Copyright 2020 Elsevier.
(e) Evolution of the phases of solid-state materials obtained from CAMEO. Reproduced with

permission from Ref.[65], Copyright 2020 AAAS.

Due to their inherent sequential characteristics and heavy computational load, typical BO
approaches can be costly for applications in AEPs. To tackle these problems, Aspuru-Guzik and
coworkers developed a Probabilistic Harvard Optimizer Exploring Non-Intuitive Complex
Surfaces (Phoenics) algorithm (Figure 12a).[452] Phoenics employs BNN to estimate the
objective function, resulting in reduced training time. Phoenics formulates an inexpensive
acquisition function that allows the batch evaluations to be run in parallel. Aspuru-Guzik et al. also
developed Gryftin to optimize the problems that involve categorical inputs, which were relaxed
into the continuous ones using categorical kernel density (Figure 12b).[453] Fruitful achievements
have been realized via deploying Phoenics and Gryffin in ChemOS[454, 455] for performing
autonomous experiments in optimizing the pseudomobility of thin-film materials (Figure 12c¢),[74]
improving quaternary organic photovoltaic (OPV) blends,[165] screening optimal photocatalysts
for hydrogen evolution (Figure 12d),[64] optimizing stereoselective Suzuki-Miyaura coupling
reactions (Figure 12e),[167] optimizing the synthesis of o-xylenyl adducts of
Buckminsterfullerene, and designing the redox active materials for non-aqueous flow

batteries.[426]
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Figure 12. (a) Schematics of Phoenics for optimizing continuous parameters. Reproduced with
permission from Ref.[452], Copyright 2018 American Chemical Society. (b) Schematics of Gryffin
for optimizing categorical inputs. Reproduced with permission from Ref.[453], Copyright 2021

AIP Publishing. (c) Evolution of the pseudomobilty of thin-film materials obtained from Phoenics.
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Reproduced under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC)
from Ref.[74], Copyright 2020 AAAS. (d) Evolution of hydrogen evolution performance obtained
from Phoenics. Reproduced with permission from Ref.[64], Copyright 2020 Springer Nature. (c)
Process optimization of Suzuki-Miyaura coupling reactions by Phoenics and Gryffin. Reproduced

with permission from Ref.[167], Copyright 2021 Springer Nature.

The abovementioned studies are mainly focused on single-objective optimization (SOO), e.g.,
yield, growth rate, and yield strength, while many cases involve multi-objective optimization
(MOO), where optimizing one objective usually results in penalizing the others.[435] Unlike SOO,
the solution of MOO is not a single point in the design space, but rather consists of a set of points,
named the Pareto set. The optimal points derived from the corresponding objective function are
named the Pareto front.[456] Two main approaches can be implemented to solve the MOO
problems: transforming multiple objectives into one objective and identifying a Pareto front that
trades off among the multiple objectives.

Aspuru-Guzik proposed Chimera as a generalized approach for MOO, where multi-objectives
were converted to a single one using a concept of a priori scalarized with the lexicographic
approaches (Figure 13a).[427] To avoid degradation of the objectives, Chimera strictly follows
the predefined hierarchy. The hierarchy can construct a single objective function, which shapes a
response surface that can be optimized by SOO algorithms. Chimera was successfully
demonstrated in two different cases. The first case was to optimize parameters for realizing three
objectives: maximizing the response of High-Performance Liquid Chromatography (HPLC),
reducing the sampling volume, and minimizing the overall running time. The second case was

about the inverse design of efficient excitation energy transport (EET) for realizing three objectives:
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maximizing the transferring efficiency and total distance and minimizing the energy gradient. The
results showed that Chimera achieved the goal by following the defined hierarchy. To
simultaneously optimize the objectives of the improved photoluminescence quantum yield
(PLQY), desired peak emission energy (Ep), and emission linewidth (Erwnm) of halides produced
by the Artificial Chemist, Abolhasani and coworkers developed an ensemble neural network
(NNE)-based BO algorithm (Figure 13b).[68] NNE, the surrogate model, was trained to map the
five input reaction conditions to the three objectives, which were further converted into a single
quality metric using an objective function Z for the subsequent optimization. Then, combined with
three different acquisition functions, i.e., UCB, EI, and EPLT, respectively, NNE was used to build
three corresponding BO algorithms: NNE-UCB, NNE-EI, and NNE-EPLT. Among them, NNE-
UCB showed the fast convergence of Z value as the increase of the experimental iterations.
Although NNE-EPLT performed the worst, if it was pre-trained with the collected data, it also
identified the optimal synthesis conditions.

Lapkin et al. proposed a Thompson Sampling Efficient Multi-objective Optimization
(TSEMO) algorithm to simultaneously optimize the multiple objectives.[435] TSEMO builds an
independent GP surrogate model for each objective and identifies a set of new evaluation points
from the Pareto set with the maximum hypervolume at each iteration. TSEMO has advantages
such as no requirement of prior knowledge, reduced hypervolume calculations, the capability of
handling noise, and batch-sequential design, making it have performance comparable to Pareto
Efficient Global Optimization (ParEGO), Expected Hypervolume Improvement (EHI), and Non-
dominated Sorting Genetic Algorithm II (NSGA-II). Thus, it has been widely applied to optimize
materials synthesis.[327, 347, 428, 429, 457-459] Lapkin and coworkers incorporated TSEMO

with a continuous flow reactor (CFR) for the automated optimization of four exemplar chemical
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reactions.[428, 429] Several conflicting objectives, i.e., maximizing spacetime yield (STY) vs
minimizing E-factor, impurity, and ingredients, were simultaneously optimized. TSEMO fast
converged to output the Pareto front within a minimized number of experiments. In his latest work,
Lapkin et al. proposed a pipeline consisting of TSEMO and a Bayesian classifier in conjunction
with a robotic experimental platform for screening the formulated products (Figure 13b).[347]
They targeted four optimization objectives of high stability, low turbidity, honey-like viscosity,
and low-cost precursors. A naive Bayes algorithm was developed to classify the new evaluation
points chosen by TSEMO based on the objective of stability while saving time and cost of the
precursors. With the aid of two desktop robots, nine formulated recipes that are easily implemented
and cost-effective were successfully screened out within 15 working days.

MacLeod et al. implemented a posteriori MOO algorithm to identify the Pareto front between
the electrical conductivity of palladium films and their processing temperatures in a self-driving
laboratory (Figure 13c¢).[169] This MOO algorithm used GP and g-Expected Hypervolume
Improvement (gEHVI) as the surrogate model and the acquisition function, respectively. gEHVI
can identify the Pareto front in a few experimental iterations.[460] In comparison with the other
acquisition functions, qEHVI is superior in many ways such as parallelization, a constrained
evaluation that excludes impossible or impractical data points, and efficient and effective
optimization via auto-differentiation.[460] With the aid of qEHVI, the self-driving laboratory
discovered new synthesis conditions that yielded uniform palladium films with moderate
conductivity but processed at a lower temperature. Erps and his colleagues coupled a MOO
algorithm with a 3D printer to optimize the mechanical performance of polymers that were
produced from inks consisting of six primary photocurable monomers (Figure 13d and 13e).[430]

Using the data collected by the Thompson sampling strategy, the algorithm simultaneously
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optimized three conflicting objectives of toughness, compression modulus, and strength. The

MOO algorithm uncovered 12 optimal formulations after 30 experimental iterations, where the

hypervolume indicator was increased by a factor of 1.65.
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Figure 13. (a) Schematics of Chimera for MOO. Reproduced with permission from Ref.[427],
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Copyright 2018 Royal Chemical Society. (b) The evolution of the Z value obtained from a few
optimization algorithms. Reproduced with permission from Ref.[68], Copyright 2020 Wiley. (c)
TSEMO for optimizing formulated products. Reproduced with permission from Ref.[347],
Copyright 2022 Springer Nature. (d) gEHVI for optimizing the synthesis conditions of metallic
films with quadruplicate. Reproduced with permission from Ref.[169], Copyright 2022 Springer
Nature. (e) GP-TS for optimizing the mechanical performance of the 3D printed polymer. (f) A
hypervolume evolution plot showing improvement of the Pareto front over iterations. Reproduced

with permission from Ref.[430], Copyright 2021 AAAS.

3.3.2 Reinforcement Learning (RL)

RL is widely used to solve dynamic decision problems. It makes the sequential actions
possible in a prescribed environment and estimates the statistical relationship between the actions
and their possible outcomes to maximize the cumulative reward.[182] Mathematically, RL uses a
Markov decision process defined by a set of states (S), a set of actions (4), a probability of
transition from the state (s) to (s’) under action a, Pa(s, s'), and a reward function (R). In the case
of reaction optimization, S'is the set of all possible experimental conditions, 4 is a set of all possible
changes made to the experimental conditions, and r is the desired reaction outcome. Reward
function (R) is applied to map a certain experimental condition (s) to a reaction outcome (7). Also,
P, defines the probability of transition of the experimental conditions by applying change a, given
the inaccuracy in operating equipment. The purpose of RL is to learn an optimal policy that
maximizes the reward function. The policy function maps the current and previous experimental
conditions to the next ones. Due to the new advances in the DL algorithms and the availability of

big data, deep reinforcement learning (DRL) is developed for solving many materials-related
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dynamic decision-making problems.

Case studies. Zhou et al. developed a Deep Reaction Optimizer (DRO) to optimize a series
of chemical reactions (Figure 14a).[188] DRO uses an RNN as the policy function to deicide the
next reaction (action) that would realize an improved yield (reward) for the chemical reaction
(environment). DRO reduces the number of reaction steps by 71 % and finds the optimal conditions
for four real microdroplet reactions within 30 min. DRO also shows superior performance to other
black-box optimization algorithms in optimizing the synthesis of silver nanoparticles (Figure 14b).
Moreover, it can learn hidden information from both similar and dissimilar reactions for
understanding the microdroplet reaction mechanism. Rajak et al. implemented a RL algorithm to
identify the optimal synthesis of MoS: via a simulated Neural Autoregressive Density Estimator-
Chemical Vapor Deposition (NADE-CVD) platform (Figure 14¢).[187] The RL agent learns the
policy for designing the optimal synthesis conditions via a policy gradient algorithm as informed
by the NADE-CVD simulation results. The proposed RL algorithm prefers to synthesize MoS>
with more 2H phase than that of MoS: generated by the random search method (Figure 14d). Li
et al. employed a SNOBFIT-based RL algorithm to optimize the circular dichroism (CD) signal
from the CsPbBr3; nanocrystals produced by a Materials Acceleration Operating System In Cloud
(MAOSIC) platform (Figure 14e).[71] SNOBFIT is well suitable for screening and optimizing
chemical reactions because it can search randomly in the global region while applying the gradient
descent method in a local region.[461] RL maps a set of actions and receives a reward based on
the differences between the experimental and the targeted outcomes. Their policy function directs
the local optimization toward the optimal conditions while searching for unexplored regions to
obtain the global optima. Significant improvement in the CD signal was successfully achieved

within 250 experimental iterations.
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3.3.3 Evolutionary Algorithm (EA)

An evolutionary algorithm (EA), a population-based metaheuristic optimization algorithm,
iteratively selects the optimal candidates with the highest-ranking scores of defined properties.[462,
463] EA does not make any assumptions about the nature of the fitness landscape, thus making it
generic in solving optimization problems across many areas such as drug discovery, molecule
design, and materials science. There are various EAs including genetic algorithm (GA),[464-466]
particle swarm optimization (PSO),[467-469] ant colony optimization (ACO),[470, 471] and
evolutionary programming (EP).[472-474]

Among these EAs, GA is the dominant one in materials science and has achieved enormous
progress in exploring large chemical spaces for materials development (Figure 15a). GA first
creates the initial population of individuals from chromosomes by a random process or by
incorporating prior knowledge. Chromosomes are a set of genes represented by a string/sequence,
and genes are the input variables represented in a binary format (0 or 1). Then, a fitness function
ranks the fitness of individual candidates among a population. Then the top-ranked ones are
selected as the parents for subsequent crossover and mutation operations to create a new generation.
The crossover changes the subsequence between two parents at a random locus, while the mutation
randomly flips some bits of individual parents based on the probability. The operation of GA
terminates when either the properties of individuals exceed the threshold or the iteration cycles
reach the set number of generations.[102, 463, 475] GA has shown applications in designing
polymers with desired glass transition temperatures,[476] semiconducting polymers for
OPVs,[477] polymer dielectrics,[478] and MOFs for carbon capture.[479] It is also applied in
AEPs.[46, 431, 432]

Case studies. Maruyama and coworkers combined GA and RF as an Al experimental planner
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to optimize the growth rates of CNTs (Figure 15b).[431] GA guided exploration of the search
space, while RF recommended the reaction conditions that resulted in high growth rates. The
growth rates of CNTs gradually converged after > 600 experiments were performed. To optimize
the crystallinity of MOFs, Moosavi and his colleagues adopted the same strategy to explore the
search space by a robotic platform (Figure 15¢).[46] A gradual converge in the crystallinity was
observed after three generations of 90 experiments. Salley et al. used GA to guide the synthesis of
gold nanoparticles with different shapes in an autonomous robotic platform (Figure 15d).[432]
GA recommended experimental parameters for the next generation after analyzing previous results
of UV-Vis spectra. The fitness factor for three different shapes (spheres, rods, and octahedrons)
finally converged to higher values with the evolution of the generations. In addition to the well-

known sphere and rod shapes, GA also discovered a complex octahedron shape.
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Figure 15. (a) Schematic of a typical GA. Reproduced with permission from Ref.[102], Copyright
2021 American Chemical Society. (b) Evolution of the growth rates of CNTs by GA/RF.
Reproduced with permission from Ref.[431], Copyright 2016 Springer Nature. (c) Evolution of
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the crystallinity of MOFs by GA/RF. Reproduced with permission from Ref.[46], Copyright 2019
Springer Nature. (d) Evolution of the fitness function of gold nanoparticles with octahedron shape

by GA. Reproduced with permission from Ref.[432], Copyright 2020 Springer Nature.

3.3.4 Other Decision-Making Algorithms

SNOBFIT. SNOBFIT, a global optimization algorithm, includes a constraint and a fit function
that fits polynomials to the obtained experimental data for identifying the multiple optima.[480]
SNOBFIT has a higher chance of finding the global optima than that of finding the local optima
since it generates a set of experimental variables widely distributed across the search space.
Moreover, SNOBFIT can avoid false optimization directions due to its ability to take the
experimental noise into account. Hence, SNOBFIT has achieved much progress in optimizing
chemical reactions. Bourne et al. incorporated SNOBFIT with CFR to automatically optimize the
synthesis of EGFR kinase inhibitor AZD9291 (Figure 16a).[433] SNOBFIT successfully
synthesized AZD9291 at a yield of 89% within 42 experimental iterations. Jensen and coworkers
applied SNOBFIT to optimize the yield of organic products from 3-5 manipulated variables
(temperatures, flowrates, and catalyst mass) in a reconfigurable CFR (Figure 16b).[341] The yield
successfully converged to the optimal values within 30-45 experimental iterations.

Curiosity Algorithm (CA). CA, the simplest random goal exploration algorithm,[481] can
actively and autonomously choose the candidates that maximize the number of new and
reproducible observations (Figure 16¢). Rather than optimizing the target properties chosen by the
user with prior knowledge, CA focuses on exploration with goals randomly chosen from
observation space. CA starts with a random observation with defined experimental parameters.

Then it uses the data collected from the previous experiments to build a regression model, which
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recommends the parameters from the search space to reach the target. Grizou and coworkers
applied CA in a robotic platform to autonomously explore droplet behaviors.[75] The search space
consisted of the mixture ratios of four oils, while the observation space was defined as the speed
of droplets and the number of divisions. Under the same conditions, CA explored 3.3 times more
search space and identified more extreme cases of the droplet behaviors—showing obvious

response to a slight change in temperature—than the random search method did (Figure 16b).
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Figure 16. (a) SNOBFIT for optimizing AZD9291. Reproduced with permission from Ref.[433],
Copyright 2016 Royal Society of Chemistry. (b) SNOBFIT for optimizing the reaction conditions
of Buchwald-Hartwig amination. Reproduced with permission from Ref.[341], Copyright 2018
AAAS. (c) Schematic of a CA algorithm. (d) Comparison of the explored space over CA against

the random search. Reproduced under a Creative Commons Attribution License 4.0 (CC BY) from

Ref.[75], Copyright 2020 AAAS.
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3.3.5 New Advances in Decision-Making Algorithms

These state-of-the-art decision-making algorithms have shown promising applications in
AEPs. However, due to the inherently agnostic treatment of the objectives, they tend to become
intractable when (a) the high-dimensional search space leads to too many iterations to reach the
optimal properties; (b) the trivial or sluggish progress persists after many iterations or even no
convergence occurs at end of the experiment; (c) further analysis is required to illustrate the
experimental trends. To tackle these challenges, several reach groups including Buonassisi,[482-
484] Kalinin,[485, 486] Kusne,[65, 487-490] Ghiringhelli,[491-494] and Lipson[495] have made
new advances in embedding prior knowledge and implementing feature selection in the algorithm
development.

The first approach of embedding the prior knowledge into the optimization procedure
presents several benefits compared to these algorithms that solely decide the next iteration
experiment via mapping the reaction variables to the results. First, it can greatly increase the
efficiency in optimizing the explored search space. Second, it can enhance the researchers’
confidence in identification of the global optimum. Third, it helps researchers understand the
mechanisms. The prior knowledge can be obtained from several sources such as explicit
physicochemical equations, theoretical simulations, archived experimental results, and expert
intuitions and insights and then be applied to the decision-making algorithms.[496] Buonassisi and
coworkers designed a two-step BO framework that embeds domain knowledge to optimize the
growth conditions of photovoltaics (Figure 17a-b).[482] The first Bayesian interference network
maps the process conditions (e.g. growth temperature) to the materials descriptors, while the

second neural network as a surrogate model links the materials descriptors with the device
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performance parameters (Figure 17a). This BO framework improves the efficiency of the solar
cells by 6.5% compared to a gird search method (Figure 17b). Kusne and his colleagues designed
a physics-informed Bayesian AL framework in Autonomous Neutron Diffraction Explorer
(ANDIE) to autonomously control neuron diffraction experiments with a goal of reducing the
operation time[487] Three physics based models, the Weiss equation, the first-order model, and
the Ising model, were incorporated into a Markov Chain Monte Carlo (MCMC) framework to
capture uncertainty and restrict the analysis results. ANDIE reduces the number of the neuron
diffraction measurements by a factor of ~ 5 for identifying Tn of both MnO and Fei.o9Te. Ziatdinov
and Kalinin et al. designed structured GP (sGP) in an AL framework for exploring phase transitions
of Sm-doped BiFeOs using piezoresponse force microscopy (Figure 17¢).[497] They included
both the statistical descriptors such as latent variables and the physics-informed descriptors like
conductivity and polarization of the materials in the framework, which showed improved
performance in determining the models of the hysteresis loop behavior. Buonassisi et al.
incorporated a probabilistic constraint that was derived from the experimental results into the
acquisition function of BO (Figure 17d).[484] Such an experimental constraint excluded the
perovskites whose compositions are susceptible to phase segregation. In another work, Buonassisi
et al. reported a data fusion approach that integrated high-throughput degradation tests with
theoretical simulations for identifying the most stable perovskites (Figure 17e).[483] Aspuru-
Guzik updated Gryffin by including the known experimental and design constraints.[426] These
constraints were formulated in the acquisition function by the gradient-based and the hill-climbing-
based approaches or the GA algorithm. This updated Gryffin showed superior performance on two
practical and simulated chemical reactions to those of the random search method and GA.

The second approach is to implement feature selection, which chooses the most informative
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variables to reduce the dimensions of the search space. The CS technique has been one of the
feature selection approaches. Ghiringhelli and coworkers proposed a CS-based Sure Independence
Screening and Sparsifying Operators (SISSO) method to identify low-dimensional variables that
predicted material properties.[493] The sure independence screening technique selectes a subset
of variables, which is further reduced by a sparsifying operator. SISSO showed superior
performance to those of Least Absolute Shrinkage and Selection Operator (LASSO),[498]
orthogonal matching pursuit (OMP),[499] and EUREQA,[495] and was also benchmarked in
predicting the ground-state enthalpies of theoretically octet binary materials and classifying metals

and insulators.
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Figure 17. (a) Workflow of a two-step BO network. (b) Comparison of photovoltaic efficiency
obtained from the BO net and the random search method. Reproduced with permission from
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materials via incorporating physics-informed descriptors. Reproduced with permission from
Ref.[497], Copyright 2022 Wiley. (d) Schematic of probabilistic constraints for the acquisition
function of BO from experimental data. Reproduced with permission from Ref.[484], Copyright
2022 Elsevier. (e) Closed-loop optimization of halide perovskite stability with data fusion from

DFT calculations. Reproduced with permission from Ref. [483], Copyright 2022 Elsevier.

4. Challenges and Future Directions

Despite much progress, the research in AEPs for materials development is still in its fancy
stage. Much effort is required to solve some key challenges. Herein, we put forward some of them
as well as potential solutions, from which the future trend is envisioned. As summarized in Figure
18, we envision a future self-driving laboratory that can perform de novo material design enabled
by physics informed ML/DL models trained by computation and prior knowledge extracted from
literature and open databases, and then synthesize and characterize target materials by the robots
and the data-driven optimization algorithms under the guidance of researchers and be digitalized

by a digital twin (DT) for scalable manufacturing.
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Figure 18. A future trend of AEPs enabled by big data, physics-based computations and Al

algorithms, human-machine interactions, and digital/cyber manufacturing methodologies.

4.1 Data Standardization and Sharing

Big data and Al have been referred to as the basis of both the “fourth paradigm of science”
and the “fourth industrial revolution”. They have greatly passivated various domains at an
astounding pace.[500, 501] Over the past two decades, we have seen the availability of several
public databases containing millions of biological assay results, such as ChEMBL[502] and
PubChem.[503] They have provided data for training the ML/DL models to predict a variety of
biological activities or physical properties of molecules. Nevertheless, proper scientific data
stewardship and management are much needed to make data searchable, accessible, interoperable,

and reusable to the public.[504] Data should also follow the simple ALCOA (Attributable, Legible,
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Contemporaneous, Original, and Accurate) principles by US FDA guidance. Such guidelines
should be updated appropriately.[S05] In the next decades, there will be a trend of standardizing
the experimental and computational data for widespread sharing. Data standardization and sharing
can also improve research reproducibility.[506, 507] For instance, recording lab details in an
electronic lab notebook (ELN) is a promising way in materials science, chemistry, and biology[508]
since it improves data acquisition, archiving, accessibility, sharing, and real-time data presentation.
Currently, PerkinElmer E-Notebook, Evernote,[509] Microsoft OneNote,[510] and Google
Docs[511] have been explored. With a predefined framework by researchers, text, images, audio
and video can be fused for recording at the point of creation and then be used for future data mining.
Moreover, the wide availability of the ELN in smartphones, tablets, and smartwatches makes data

sharing easy among different stakeholders and through repository websites such as GitHub.

4.2 Text Mining for Knowledge Extraction

A major obstacle to implementing ML/DL for materials discovery is the lack of large publicly
available and structured data. Although scientific data is available in literature, patents, and
handbooks, manually mining them for extracting hidden information is very challenging.[512]
Recent advances in natural language processing (NLP) enable the automatic mining of text, tables,
and images from various data sources.[513-515] Several research groups led by Cole,[516-522]
Olivetti,[523-526] Ceder,[123, 527-531] Schwaller,[120] and Jain[119, 532] have conducted NLP-
driven automatic text mining and achieved great progress.

Integration of text mining in AEPs for guiding chemical synthesis starts to emerge, which
may become a promising research field. A computer-aided synthesis planning (CASP) algorithm

takes the target molecules as input and recommends chemically feasible reaction steps to
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synthesize the molecules. Jensen’s group proposed an automated system for knowledge-based
continuous organic synthesis (ASKCOS) that extracts knowledge from millions of reactions stored
in the U.S. Patent and Trademark Office (USPTO) or tabulated in Reaxys.[66] ASKCOS is an
open-source software and can do retrosynthetic planning, reaction condition recommendation, and
pathway evaluation. After that, experienced chemists can refine the recipes for the automatic
synthesis platforms to perform the experiments. Cronin’s group devoted their efforts to digitizing
published reaction protocols with NLP, named as SynthReader. With the Chemical Description
Language (XDL), they standardized description of the synthesis procedures for easy execution by
the robots.[323, 331, 533, 534] We expect that the new transformers in NLP, e.g., BERT,[151]
Transformer-XL,[535] XLNet,[536] RoBERTa,[537] and generative pretrained transformer
(GPT)[538] would promote the development of a future AEP that can automatically mine the

literature and execute experiments.

4.3 Incorporation of Inverse Materials Design with AEPs

Due to an enormous chemical space, even high-throughput screening is often powerless.[82,
539] Inverse design starts with target properties and proceeds toward desired structures, which is
also called the de novo materials discovery. VAE,[540, 541] GAN,[182, 542, 543], and hybrid
models[544] have been widely used for this purpose. Combined with RL[182, 545] and BO,[97]
these generative models can generate candidates with target properties. For instance, Yao et al.
demonstrated a VAE-based autonomous materials discovery platform for inverse design of
reticular materials.[546]

Both BO and GA algorithms show poor scalability when the search space exceeds the

limit.[547] To tackle this problem, Monte Carlo tree search (MCTS), a powerful global
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optimization method, has found widespread applications in materials science such as screening Si-
Ge alloy with high thermal conductivity, planning the synthesis of organic molecules, predicting
the partition coefficient of organic molecules.[31, 51, 548, 549] For instance, Patra and coworkers
developed an inverse design framework by combining MCTS with MD simulations as to identify
sequence-specific copolymers that lead to interfacial energy between two immiscible
homopolymers. Though the search space varies from 2!° (1024) to 23° (~ 1 billion), the MCTS-
MD framework showed excellent performance in identifying target sequences within a few
hundred evaluations.[550] We expect that incoperation of the decision-making algorithms with the
generative algorithms in an AEP can greatly shrink the initial search space for the AEP to design,

plan, execute, and analyze the hypothesized experiments.

4.4 Interpretability of ML/DL Models

Distinguished from chemical/physical simulations that relied on explicit formulas, the ML/DL
models provide impressive prediction power by learning knowledge from data. However, the
black-box nature of ML/DL models makes them difficult to be explained or interpreted, which may
impose an obstacle for widely deploying AEPs.[551] Developing strategies to demystify the inner
working mechanism of these ML/DL models has become a compelling research task. The
interpretable ML/DL models have three major advantages including troubleshooting, novel
insights, and trust.[552] First, the interpretability improves the understanding of the prediction
mechanism of the ML/DL models. Second, it can help the researchers quickly identify the errors
or biases happening in the training process. Third, the interpretability improves the trustworthiness
of the ML/DL models.

Interpretation of the ML/DL models can be empowered by the intrinsic characteristics of the
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models or performed by the post-hoc interpretability techniques.[552-554] The intrinsic or model-
based interpretability is inherited in the structures of ML/DL models. There are two ways of
building intrinsically interpretable models.[555] The first is to add interpretability constraints by
enforcing sparsity[556] and imposing semantic monotonicity.[557] The second is to use
interpretable models such as a decision tree, rule-based model, or a linear model.[558, 559]

The post-hoc interpretability refers to illuminating the parameters or representation in an
intuitive way that can be understood by researchers, which can be realized by three main strategies.
The first strategy is to permutate feature importance for doing model-agnostic explanation, which
calculates how the accuracy varies as a permutation of the values of a specific feature.[48, 560]
The second strategy is to calculate the accuracy gain or feature coverage in tree-based ensemble
models such as RF and XGBoost. The accuracy gain removes a new split to a branch of a feature,
resulting in poor predictive accuracy. The feature coverage calculates the relative quantity of
observations related to a feature. The third strategy is to visualize the intermediate or last layers of
CNN models, which helps researchers understand the representation captured by the neurons.[56,
58] In the future, new advances in data visualization techniques or models/architectures, e.g., the
physics-informed ML/DL models, will push the research in improving the model interpretability

to a higher level.

4.5 Human-in-Loop AEPs

Currently, the involvement of researchers in AEPs is desired while remaining a challenge.
Communication between researchers and machines is crucial to complementing the capabilities of
data-driven algorithms with human expertise to realize a human-in-loop AEP. They usually lack

generalizability when applied to real-world problems even after being trained by large-scaled data.
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In contrast, human researchers have intuition and are better at learning unexpected events and
knowledge from small data than a machine. Thus, involving human intelligence in the loop of
AEPs can maximize the chance of obtaining the global optimum via intuitively understanding the
most promising regions of the design space. Such a human-in-loop AEP is particularly desired due
to the higher interpretability, better detection of failures/errors, and easier bug-fixing, improved
generalizability and robustness of AEPs in practical applications.

The involvement of humans in AEPs can be done through data visualization, real-time
updating optimization algorithms, and executing new commands remotely. The data visualization
reduces the dimensions of the data for better visualization by humans. There are several data
visualization techniques such as principal component analysis (PCA), t-distributed stochastic
neighbor embedding (t-SNE), uniform manifold approximation and projection (UMAP), and
Isomap. They transform data into visual contexts such as graphs and maps, thus helping researchers
to visualize the search space topology and partial dependencies of performance over the reaction
parameters. Researchers can better localize the regions that show a higher chance of finding
promising performance or target properties. Researchers can infer the robots to explore promising
regions. The data visualization can also leverage the trust in ML/DL models and correct the
optimization direction in time. To interact with the algorithms and facilitate the communication
between researchers and platforms, Aspuru-Guzik and his coworker developed a software package
named ChemOS.[454, 455] As a key component, the communication module was realized using
common social media platforms such as Twitter, Gmail, and Slack. According to the optimization
trend, the human researchers can advise the machines to adjust initial conditions or change search

domains so that the machines can achieve the global optimum with a reduced number of iterations.
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4.6 Digitalization of AEPs
Virtual lab. Virtual reality (VR), a classical immersive technology, has achieved much

progress over the past decade.[561] Previously, VR mainly focuses on video game entertainment
via generating 3D hologram-like objects in artificial environments to allow players to interact with
the virtual objects. Recently, VR is gaining increasing attention from materials scientists. Zhu et
al. built a Materials Acceleration Operation System (MAOS) for realizing the “on-demand”
synthesis of quantum dots.[562] The MAOS has a customed interface, UI-VR (user interface and
virtual reality, an isomorphic reflection of the real lab) to interact with MAOS. Communicating
with reality via a 5G network through the TCP protocol, the UI-VR interface allows the researchers
to control a virtual robot in the lab.

Cloud Lab. To enable the collaboration of researchers across the world through remote control,
a cloud lab has been proposed.[71, 335, 345, 563, 564] A cloud lab integrates robotic platforms,
cloud servers, sensing devices, communication tools, and managing software. Ley and his
coworkers demonstrated the ability to automate the optimization and synthesis of pharmaceutical
agents through operations in could.[564] In their work, the servers were operated in Japan, while
devices and chemicals were located in Cambridge, UK, and the operation commands were
delivered from Los Angeles, USA. Such a Cloud lab not only demonstrates the possibility of
remote operation of experiments but also avoids machine redundancy since the system can be
rapidly modified for new experiments.

Digital Twin. Digital Twin (DT), initially introduced in 2003,[565] has been one of the most
promising technologies for realizing smart manufacturing and Industry 4.0.[566] Through
seamless data transmission between the physical and virtual world, DT allows researchers to

monitor, understand, and optimize the functions of all involved physical entities.[567]
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Combination of DT and AEPs would enable the integration of major physical components for
evolving the properties in a tractable numerical framework. Such a combination has several
advantages including (i) further minimizing optimization iterations, (i1) shortening the search path

to global optimization, and (iii) better understanding the optimization mechanism.

5. Conclusions

AEPs are poised to develop new materials with target properties or to search for parameters
that realize improved efficiency under constraints of budget and time. In this review, we
systematically summarize the recent progress on AEPs toward autonomous laboratories. This
review first describes the fundamentals, concepts, and workflow of Al algorithms, then, how these
Al algorithms advance three essential components of an AEP. Each section starts with a brief
introduction of background and summary of methodologies followed by non-exhaustive examples.

We also outline future research directions that may lead to scientific and technological
breakthroughs in AEPs. They include advances in data sharing, text mining, explainable ML/DL
models, de novo materials discovery, human-in-loop AEPs, and digitalization of AEPs. We expect
that these new advances could push the research in AEPs to a new height and catalyze novel
materials discovery at a record development pace. We believe that this review would meet the

needs of both beginners in the field and experts who aim to pursue new research frontiers.
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