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Abstract 

The ever-increasing demand for novel materials with superior properties inspires retrofitting 

traditional research paradigms in the era of artificial intelligence and automation. An autonomous 

experimental platform (AEP) has emerged as an exciting research frontier that achieves full 

autonomy via integrating data-driven algorithms such as machine learning (ML) with experimental 

automation in the material development loop from synthesis, characterization, and analysis, to 

decision making. In this review, we started with a primer to describe how to develop data-driven 

algorithms for solving material problems. Then, we systematically summarized recent progress on 

automated material synthesis, ML-enabled data analysis, and decision-making. Finally, we 

discussed challenges and opportunities in an endeavor to develop the next-generation AEPs for 

ultimately realizing an autonomous or self-driving laboratory. This review will provide insights 

for researchers aiming to learn the frontier of ML in materials and deploy AEPs in their labs for 

accelerating material development.  
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materials science  



 

2 

 

1. Introduction 

There is an ever-increasing demand for developing advanced materials with superior 

properties, which requires extensive investment in research.[1-4] The development process is still 

largely performed by well-trained and skilled scientists in a structured laboratory set, which is a 

paradigm that has little evolved over the last several decades.[4-6] Although guided by domain 

knowledge and explicit physical rules, this process is still a trial-and-error one, which is quite 

laborious and time-intensive.[5] For example, the filament of incandescent light bulbs was 

screened from roughly 6000 materials by Thomas Edison and his coworkers.[7] Another example 

is the discovery of an optimum catalyst for ammonia synthesis, which was conducted by Mittasch 

and his colleagues in the early 20th century.[8] Moreover, reproducibility and unintentional bias 

could exist due to unnecessary human interventions. These issues and challenges lead to a 

development pace greatly falling behind the one demanded by manufacturers and consumers who 

face a complicated and volatile market. Thus, revolutionizing the current research paradigm into a 

new one for accelerating material development has become a compelling goal in the field.  

Experimental automation with aid of advanced scientific instruments and statistical 

techniques for automatically screening candidates has attracted enormous interest. It has been 

adopted in both academy and industry, especially in the field of pharmaceuticals and organic 

chemistry.[9-20] Automation, which is good at performing consistent tasks, can enormously 

increase the throughput of materials and chemicals to be studied. Furthermore, it frees the 

researchers from tedious and repetitive tasks, thus allowing them to investigate more innovative 

and complex problems than ever before. Nevertheless, there still exist some challenges to taking 

automation to the next level of autonomy. First, analysis of big characterization data from 

spectroscopies and microscopies falls behind the data collection rate. Second, heavy dependency 
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on experts to optimize enormous reaction and chemical spaces undoubtedly lower the exploration 

efficiency. In each experiment iteration, a new set of reaction and chemical spaces should be 

decided according to the results obtained from the previous iteration. In a traditional automation 

setup, such a decision is still made by researchers, thus potentially causing bias and errors. Third, 

given that the exploration space is enormous and in the high dimension, it is still impossible and 

impractical for the automated robots to enumerate all combinations, because it would generate too 

enormous amounts of data to be processed for establishing the synthesis-structure-property 

relationship. Thus, intelligent data analysis and decision-making algorithms are much needed to 

drive autonomous experiments, forming the basis for developing an autonomous experimentation 

platform (AEP). 

Recently, machine learning (ML), especially deep learning (DL),[21] has made a giant leap 

in the fields of computer vision,[22-24] autonomous driving,[25, 26] speech recognition,[27, 28] 

recommending systems,[29, 30] games,[31-33] protein folding,[34, 35] and biomedical 

imaging,[36] to name a few. Distinguished from traditional physics-based modeling, ML is usually 

called “learned from data” due to its ability to learn the hidden knowledge from the data and predict 

results from unseen data without applying explicit formulas/equations. These recent breakthroughs 

mainly benefit from three significant advances, i.e., available big data, powerful computational 

capacity, and advanced algorithms.[37] Over the past few years, the academy has envisioned the 

implementation of ML in the field of materials science and chemistry for 

physicochemical/mechanical properties prediction,[38-41] quantifying the processing-structure-

property relationship,[42-44] guiding materials synthesis,[45-50] synthesis planning,[51-55] and 

analyzing characterization data.[56-62]  

By integrating ML with automation, the AEP, a newly emerging research paradigm, has shown 
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great potential in accelerating material development by an order of magnitude.[63-74] The AEP 

can greatly reduce the total number of experiments needed for discovery via actively exploring 

chemical and reaction spaces.[63, 64] This new ML-enabled research paradigm has greatly 

shortened the time of material development and fully embraced the vision of autonomy.[69, 74, 

75] To determine how an automated apparatus should perform the next-iteration experiment, the 

ML algorithms, instead of the intuition from the skilled experts, make decisions via exploring all 

collected reaction and characterization data, thus closing the loop by the autonomous iteration 

thereof. Publications related to topics of automated and autonomous experiments in materials and 

chemical science have dramatically grown since 2010, and this trend is projected to continue in 

decades to come.  

To reflect this trend, several review papers have been recently published as listed in Table 

1.[1-3, 5, 6, 14, 60, 76-96] Lapkin and his coworkers have summarized recent advances in 

techniques and methods that enable closed-loop material development.[76] Buonassisi et al. 

focused the review on the convergence of high-performance computing, automation, and ML 

models.[5] Aspuru-Guzik and his coworkers illustrated their perspectives on AI-driven high-

throughput virtual screening, automated synthesis planning, automated laboratories, and ML 

algorithms toward autonomous materials discovery.[79] Jensen’s group summarized two main 

aspects of autonomous discovery.[1, 2] In the first aspect, they defined three broad categories 

followed by illustration of substantial progress in them. In the second aspect, they proposed a few 

possible research directions in processing complex data, building empirical models, automating 

validation and feedback, selecting experiments, and evaluating the performance. Although these 

reviews have provided invaluable information, there still lacks a comprehensive review that 

summarizes the recent progress and future trend of autonomous experiments from the perspectives 
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of how ML algorithms tackle the specific challenges imposed by essential components of an AEP.  

 

Table 1. List of recent reviews on autonomous and automated experiments in materials science, 

organic chemistry, and drug discovery. 

Year Topic Ref. 

2015 Automatic discovery and optimization Lapkin et al.[76]  

2018 

Smart automation Aspuru-Guzik et al.[3] 

Designing algorithms Cronin et al.[77]  

Automation, ML, and computing Buonassisi et al.[5] 

Bioactive molecular discovery and automation Nelson et al.[14] 

2019 

Automated and autonomous workflow Gregoire et al.[78] 

Self-driving laboratories Aspuru-Guzik et al.[79] 

Autonomous molecular design Saikin et al.[80] 

Search algorithm and automation Cronin et al.[6] 

2020 

Autonomous discovery, machine learning, challenges, and chemical space Jensen et al.[1, 2] 

The Chemputer Cronin et al.[81] 

Materials acceleration platforms Aspuru-Guzik et al.[82] 

Autonomous intelligent agents Aykol et al.[83] 

Autonomous robotic experimentation, modular microfluidic reactors Abolhasani et al.[84] 

Automated synthesis and software Hao et al.[85] 

Microfluidic synthesis, semiconductor materials, and artificial intelligence Abolhasani et al.[86] 

2021 

Shape of chemical data Jacqueline M. Cole[87] 

Automation, ML, and high-throughput experimentation Jensen et al.[88] 

Automated continuous synthesis and optimization Jensen et al.[89] 

Synthesis planning, AI, and automation Engkvist et al.[90] 

Digital transformation, artificial intelligence, and automation Schubert et al.[91] 

Automated experimentation, data science, and chemistry Hein et al.[92] 

Automated/autonomous experiment, machine learning, and electron/scanning 

probe microscopy 
Kalinin et al.[60] 

Automation, data-driven approach, and polymer therapeutics Gormley et al.[93] 

Automated robotic platform, machine learning, and formulations Lapkin et al.[94] 

Autonomous experimentation, AI Maruyama et al.[95] 

Automated synthesis, chemical informatics, digital chemistry, and data 

standards  
Cronin et al.[96]  

 

This review is written to fill this gap. The scope of this review is summarized in Figure 1. It 

starts with a section describing an ML primer for beginners to understand the field. This section 

briefly introduces the concepts, categories, workflow, and evaluation metrics for the ML models. 

Specially, we discuss the challenge of data scarcity in materials/manufacturing domains and 

summarize a few methodologies to tackle it. Then the review is followed by showing how the ML 



 

6 

 

algorithms can promote the AEP development from the three essential components of the AEP. 

Specifically, to begin with, three types of automated experimentation platforms for material 

synthesis and characterization are discussed. Then, on-the-fly data analysis with the aid of the ML 

algorithms is summarized. After that, decision-making enabled by the data-driven algorithms to 

close the loop is reviewed. In each section, a few representative case studies are discussed to 

exemplify recent successes in advancing the AEP development. This review highlights the roles of 

ML in leveraging decades of progress in automation for accelerating material discovery and 

minimizing human intervention and biases. Finally, ongoing challenges, possible solutions, and 

future trends to move the research in AEPs forward are discussed and foreseen. We expect that this 

review will serve as a guideline for beginners to understand the basic principles of the data-driven 

algorithms and how they can be applied to develop AEPs for applications in materials science and 

chemistry as well as inspirs experts in the field to explore new frontiers. 
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Figure 1. Flowchart showing a fully autonomous experimental platform for the development of 

novel materials. Search Space: Reproduced with permission from Ref.[97], Copyright 2021 

American Chemical Society. Data Analysis: Reproduced with permission from Ref.[63], 

Copyright 2018 Springer Nature; Ref.[98], Copyright 2020 American Chemical Society; Ref.[99], 

Copyright 2020 Royal Society of Chemistry; Ref.[59], Copyright 2020 American Chemical 

Society; Ref.[100], Copyright 2021 American Chemical Society; Ref.[101], Copyright 2017 

American Chemical Society. Decision Making: Reproduced with permission from Ref.[102], 

Copyright 2021 American Chemical Society. 
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2. A Primer for Developing Data-Driven Algorithms 

Data-driven algorithms including ML/DL, the focus of this review, can evaluate or predict 

the targets/goals from the input features.[37] Particularly, recent breakthroughs in DL have 

revolutionized the applications in image and speech recognition,[21] which has also created new 

possibilities for drug discovery,[103] biology,[35, 104, 105] chemistry[52, 54, 106-108] and 

materials science.[105, 109-111] In this section, we focus on fundamental concepts of ML/DL and 

discuss how to implement them in the physical and chemical domains. For detailed information, 

we recommend a few resources,[112-116] some of which have been targeted especially for 

materials science. Useful textbooks written by professional ML/DL researchers include Pattern 

Recognition and Machine Learning, Hands-on Machine Learning with Scikit-Learn, Keras and 

TensorFlow, Deep Learning, and Deep Learning with Python. In addition, a variety of online 

tutorials (YouTube, Coursera, Udacity, Udemy, Khan Academy, and Towards Data Science) and 

lectures are publicly available for beginners to have a basic overview and learn from scratch. A 

prerequisite for developing the ML/DL models is to master a programming language such as 

Python (widely used for most ML/DL projects) and useful libraries including Pandas (data 

manipulation with integrated indexing), NumPy (array type elements and the respective math), 

Matplotlib or Seaborn (data visualization), scikit-image (image processing), OpenCV (image and 

video processing), and Scikit-Learn (a versatile and powerful ML library). For those working on 

DL projects, it is necessary to master at least one DL framework such as Keras, TensorFlow, 

PyTorch, and MXNET. Table 2 summarizes some useful textbooks and links for mastering ML 

and DL. 

Table 2. A list of resources for mastering ML and DL. 

Content Textbook URL 

Mathematics Linear Algebra Done Right 
https://link.springer.com/book/10.1007/978-3-

319-11080-6 
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Linear Algebra and Its Applications 

https://www.pearson.com/us/higher-

education/product/Lay-Linear-Algebra-and-Its-

Applications-5th-Edition/9780321982384.html 

Mathematics for Machine Learning https://mml-book.github.io/ 

Python 

Python Crash Course https://nostarch.com/pythoncrashcourse2e 

Learn Python Programming 

https://www.packtpub.com/product/learn-

python-programming-third-

edition/9781801815093 

Think Python 
https://www.oreilly.com/library/view/think-

python-2nd/9781491939406/ 

Data science 

Python for Data Analysis 
https://www.oreilly.com/library/view/python-

for-data/9781491957653/ 

Data Science from Scratch 
https://www.oreilly.com/library/view/data-

science-from/9781492041122/ 

Python Data Science Handbook 
https://www.oreilly.com/library/view/python-

data-science/9781491912126/ 

ML/DL 

Introduction to Machine Learning with Python 
https://www.oreilly.com/library/view/introducti

on-to-machine/9781449369880/ 

Hands-on Machine Learning with Scikit-

Learn, Keras, and TensorFlow 

https://www.oreilly.com/library/view/hands-on-

machine-learning/9781492032632/ 

Pattern Recognition and Machine Learning 
https://www.springer.com/gp/book/9780387310

732 

Machine Learning with Python Cookbook 
https://www.oreilly.com/library/view/machine-

learning-with/9781491989371/ 

Python Machine Learning 
https://www.packtpub.com/product/python-

machine-learning-third-edition/9781789955750 

Mastering Machine Learning Algorithms 

https://www.packtpub.com/product/mastering-

machine-learning-algorithms-second-

edition/9781838820299 

Deep Learning https://mitpress.mit.edu/books/deep-learning 

Deep Learning with Python 
https://www.manning.com/books/deep-learning-

with-python-second-edition 

Deep Learning from Scratch 
https://www.oreilly.com/library/view/deep-

learning-from/9781492041405/ 

Grokking Deep Learning 

https://www.manning.com/books/grokking-

deep-

learning?gclid=Cj0KCQjwtMCKBhDAARIsA

G-

2Eu8cXUUIAuAs8Ddtkk77u7SV85DtUSufEH

84wTvtmr2-KvI2qJ_3b04aAnJKEALw_wcB 

Practical Deep Learning 
https://nostarch.com/practical-deep-learning-

python 

Deep Learning with TensorFlow 2 and Keras 

https://www.packtpub.com/product/deep-

learning-with-tensorflow-2-and-keras-second-

edition/9781838823412 

Hands-On Deep Learning Algorithms with 

Python 

https://www.packtpub.com/product/hands-on-

deep-learning-algorithms-with-

python/9781789344158 

Advanced Deep Learning with Python 
https://www.packtpub.com/product/advanced-

deep-learning-with-python/9781789956177 

Libraries 
Pandas https://pandas.pydata.org/ 

Numpy https://numpy.org/ 

https://www.oreilly.com/library/view/introduction-to-machine/9781449369880/
https://www.oreilly.com/library/view/introduction-to-machine/9781449369880/
https://www.oreilly.com/library/view/hands-on-machine-learning/9781492032632/
https://www.oreilly.com/library/view/hands-on-machine-learning/9781492032632/
https://mitpress.mit.edu/books/deep-learning
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Matplotlib https://matplotlib.org/ 

Seaborn https://seaborn.pydata.org/ 

Scikit-image https://scikit-image.org/ 

OpenCV https://opencv.org/ 

Scikit-Learn https://scikit-learn.org/stable/ 

Frameworks 

Keras https://keras.io/ 

Tensorflow https://www.tensorflow.org/ 

PyTorch https://pytorch.org/ 

MXNET https://mxnet.apache.org/versions/1.8.0/ 

 

2.1 Introduction of Machine Learning Algorithms 

 Based on the amount of supervision in training (Figure 2), ML can be categorized into 

supervised learning,[108, 110, 111, 117, 118] unsupervised learning,[119-121], and semi-

supervised learning.[122-125] If the model training fully relies on labeled data, it is called 

supervised learning (Figure 2a), which is commonly used in materials science. According to the 

types of labels, supervised learning can be used for performing classification and regression 

tasks. A classification task refers to the situation in which the models are trained with lots of 

input parameters while their corresponding output classes are represented by discrete values. A 

regression task is to predict a target numeric value such as conductivity, product yield, and 

adsorption capacity of the materials when given a set of inputs. In contrast, unsupervised 

learning is mainly used to seek and deduce potential connections of samples among unlabeled 

data, which consists of two common methods, i.e., dimensional reduction or data clustering 

(Figure 2b). Dimension reduction involves mapping a high-dimension data matrix to a low-

dimension one while preserving information contained in the original data. Main approaches to 

reducing dimensions include principal component analysis (PCA),[126, 127] singular value 

decomposition (SVD),[128] Isometric feature mapping (Isomap),[129] Kernel PCA,[130] and t-

distributed stochastic neighbor embedding (t-SNE).[131] Clustering is a task of first calculating 

https://scikit-learn.org/stable/
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the similarities of all samples based on specific metrics, and then assigning them to different 

groups according to their similarities. K-means[132] and K-Medoids[133] are the two most 

popular clustering techniques. Semi-supervised learning is the best choice to deal with the 

situation where there is limited labeled data but plenty of unlabeled data. In semi-supervised 

learning, an ML model is first trained based on the labeled data, which is then used for predicting 

the unlabeled data (denoted as pseudo labels). Finally, the ML model is retrained with both the 

labeled and pseudo data (Figure 2c).

 

Figure 2. Schematic of three ML categories: (a) supervised learning (regression and classification), 

(b) unsupervised learning (dimension reduction and clustering), and (c) semi-supervised learning.  
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     Choosing the right ML algorithm is a crucial step toward building an accurate and robust 

model for solving a material-related problem.[134] Currently, the widely used ML algorithms 

include k-nearest neighbors (KNN, Figure 3a),[135] support vector machine (SVM, Figure 

3b),[136, 137] decision tree (DT, Figure 3c),[138] random forest (RF),[139] multilayer perceptron 

(MLP, Figure 3c),[140] naïve Bayes (NB),[141], logistic regression (LR),[142] and gradient 

boosting-based models including eXtreme Gradient Boosting (XGBoost),[143, 144] adaptive 

boosting.[145] These traditional ML algorithms are trained on relatively small datasets (< 104) and 

can predict the targets with satisfactory performance over many material problems. 

However, there still exist some materials-related problems that cannot be well solved through 

these traditional ML algorithms. These problems come from three main scenarios. The first one is 

related to the highly data-intensive problems, which contain millions or even billions of training 

datasets, e.g., computational or characterization data. The second one involves dealing with 

enormous fingerprints, e.g., de novo drug or molecule design. The third one is related to image 

segmentation and text mining from materials literature. The DL algorithms[21] including 

generative adversarial network (GAN, Figure 3e),[146] variational autoencoder (VAE, Figure 

3f),[147] recurrent neural network (RNN, left panel of Figure 3g),[148] and long short-term 

memory (LSTM, the right panel of Figure 3g),[149] graph neural network (GNN, Figure 3h),[150] 

and bidirectional encoder representation (BERT)[151] have offered new possible solutions to the 

aforementioned problems.  



 

13 

 

  

Figure 3. Schematic of widely used ML and DL algorithms: (a) k-nearest neighbors (KNN), (b) 

support vector machine (SVM), (c) decision tree (DT), (d) multilayer perceptron (MLP), (e) 

generative adversarial networks (GAN), (f) variational autoencoder (VAE), (g) recurrent neural 

network (RNN) and long-short term memory (LSTM), and (h) graph neural network (GNN). 

 

Based on the criterion of whether the ML models can learn dynamically from a stream of 

incoming data, they can be also classified into two main categories.[152] One is static learning, 

also called batch learning, where all datasets are available before training the models. The other is 

active learning (AL) or called online/sequential learning, where datasets are fed sequentially to 

train the models.[153-163] AL trains the models by the streamed experimental data, thus the 

models can be dynamically updated to reduce the number of needed experiments. AL is well suited 

for developing AEPs since it can achieve optimal properties with fewer experimental 

iterations.[63-75, 164-170] When applied to materials simulation, AL is also beneficial in greatly 

reducing the computational cost.[110, 154, 156, 171] 
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AL is mainly implemented by Bayesian optimization (BO) and reinforcement learning (RL) 

algorithms. BO, a global optimization algorithm, is an adaptive approach for optimizing the 

expensive-to-evaluate objective functions.[172-174] BO utilizes a surrogate model (or belief 

model) for capturing the relationship between inputs and results, and an acquisition function (or 

decision policy) for selecting the optimum candidate for the next iteration of operation.[173-175] 

With the aid of advanced surrogate models and acquisition functions, BO is versatile to tackle 

various optimization problems like catalytic activity,[157, 176, 177], molecule design,[171] and 

structure/property prediction.[178-180] Distinguished from BO, RL is a reward-based learning 

approach that learns how to map situations to actions in an environment for maximizing the 

reward.[181] In the iteration, an agent acts to change its state simultaneously interacting with the 

environment. RL has been implemented in several applications such as molecule/drug design,[182-

186] reaction synthesis planning,[51, 187-189] and novel material generation.[190] 

 

2.2 Workflow of Constructing ML/DL Models 

2.2.1 Data Collection 

Figure 4 shows a typical workflow for constructing ML/DL models, including data collection, 

data preprocessing, model training, and evaluation. The first step is to collect data, from which the 

hidden knowledge can be extracted or learned by the ML/DL models. Quality, quantity, and 

diversity of the data largely determine the predictive accuracy, robustness, and generality of the 

developed ML/DL models. 
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Figure 4. Workflow of building ML/DL models.  

 

Commonly, three primary sources can be used to collect the training data. The first one is the 

historical data from the lab notebooks[45, 48, 191] or literature.[192, 193] The second one is from 

open database in the repository websites such as the International Union of Crystallography (IUCr, 

XRD), International Centre for Diffraction Data (ICDD), National Institute of Standard 

Technology (IR and MS), Crystallography Open Database (COD)[194] and RRUFF as well as 

theoretical computational databases such as AFLOW,[195] Materials Project,[196] OQMD,[197] 

MatNvai,[198] and NOMAD.[199] Table 3 summarizes these websites. The collected datasets 

contain data related to physicochemical properties (molecular weight, specific surface area, and 

melting point), reaction conditions (temperature, pressure, and time), and fingerprints or segments 

describing the structure information of molecules. These data can be discrete for performing 

classification tasks or continuous for performing regression tasks. The third data source is from in-

situ experimentation where the new data is collected. It should be noted that bias could exist in 

these data sources. For instance, in the materials science field, data is preferably collected from 
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the literature that is published in high-impact journals. Or the human researchers may largely 

determine the diversity and quality of the collected data.  

Table 3. List of open data sources for materials. 

Name Full name Data URL Ref. 

COD 
Crystallography Open 

Database 
XRD 

http://www.crystallography.net/co

d/ 
[194] 

IUCr 
International Union of 

Crystallography 
XRD 

https://www.iucr.org/resources/da

ta/databases 
 

ICDD 
International Centre 

for Diffraction Data 
XRD https://www.icdd.com/  

CSD 
Cambridge Structural 

Database 
XRD 

https://www.ccdc.cam.ac.uk/solut

ions/csd-core/components/csd/ 
 

ICSD 
Inorganic Crystal 

Structure Database 
XRD 

https://www.fiz-

karlsruhe.de/en/produkte-und-

dienstleistungen/inorganic-

crystal-structure-database-icsd 

 

NIST 
National Institute of 

Standard Technology 
Raman, FTIR, MS https://www.nist.gov/  

RRUFF  Raman, XRD, IR https://rruff.info/  

AFLOW 
Automatic-FLOW for 

Materials Discovery 

Theoretical compound 

properties 
http://aflowlib.org/ [195] 

Materials 

Project 
 

Inorganic compounds 

properties 
https://www.materialsproject.org/ [196] 

OQMD 
Open Quantum 

Materials Database 
Crystal structures http://oqmd.org/ [197] 

MatNavi 
NIMS Materials 

Database 

Polymer, inorganic and 

metallic materials, 

computational Electronic 

Structure 

https://mits.nims.go.jp/en/ [198] 

NOMAD 
Novel Materials 

Discovery 
Computational materials https://nomad-lab.eu/ [199] 

OC20 Open Catalyst 2020 

Materials, surfaces, 

and adsorbates (nitrogen, 

carbon, and oxygen 

chemistries) 

 

https://opencatalystproject.org/ [200] 

GDB-13  
Combinatorially generated 

library 
http://gdb.unibe.ch/downloads/  

ZINC15  
Commercially available 

compounds 
http://zinc15.docking.org  

GDB-17  
Combinatorially generated 

library 
http://gdb.unibe.ch/downloads/  

QM9  

Stable small CHONHF 

organic molecules taken 

from GDB-17 with 

properties calculated 

http://quantum-

machine.org/datasets/  
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from ab initio density 

functional theory 

 

2.2.2 Data Preprocessing 

After the data collection, data preprocessing is the next important step to process the 

information related to the hypothesized problem and convert them into quantifiable data that can 

be read by a computer. Typical tasks of data preprocessing include (1) representing categorical 

data, molecules, text, and images; (2) removing duplication and noise; (3) handling missing data 

points; and (4) scaling features from unstructured raw data.  

Representing categorical/text/image data. To represent categorical data, one-hot encoding 

can be implemented, which creates a binary column for each category.[201] If this category 

appears in the input, it is coded as 1. Otherwise, it is coded as 0. For example, three alcohols, i.e., 

methanol, ethanol, and propanol, are used as solvents in a reaction. To represent them using one-

hot encoding, methanol, ethanol, and propanol are coded as [1 0 0], [0 1 0], and [0 0 1], respectively. 

To convert the text features into a set of representative numerical data, the term frequency-inverse 

document frequency (TF-IDF),[202] a technique of data encoding, is used to take each snippet of 

text, count the occurrences of each word within it, weight the word counts by a measure of how 

often they appear in the documents and present the results in a table. Pixel values of images can 

be directly used to encode the image data.  

Removing duplication and noise. Duplication is a row where each value in each column is the 

same as another row. These duplications may appear in both training and testing datasets after data 

splitting, resulting in an optimistically biased performance of the model for the unseen data. Thus, 

they must be removed in the data preprocessing step. Noise is another concern that could make 

two patterns from two different structures have lower signal-to-noise ratios.[203] This may lead to  
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poor classification accuracy due to the loss of distinguished peak characteristics. To remove the 

noise and enhance signal-to-noise ratios, several smoothing strategies can be implemented 

including the Savitzky-Golay filter,[204] Fourier transformations,[205] and penalized likelihood 

estimation.[206] VAE has shown promise in automatically reconstructing spectra by removing 

noise and unwanted spectral artifacts.[207] 

Handling missing values. In some situations, features and labels are missing regardless of 

whether they happen at random or not. Most ML algorithms cannot be successfully trained by 

datasets with the missing values. A straightforward way is to discard these observations that 

contain one or more missing values, which can be quickly implemented using NumPy or Pandas. 

However, directly deleting the observations may introduce bias into the data, thus resulting in some 

unobserved systematic effects. Another way is to fill these missing values with substitute ones by 

imputation. Imputation of missing values is implemented using various strategies such as replacing 

the missing values with the mean, median, or mode of the column and using matrix completion to 

impute the missing values with the observed elements.[115]  

Scaling features. ML algorithms do not perform properly when some features have different 

scales of their absolute values, which may cause an over-weight of the features with relatively 

large values. For instance, in a reaction, the volume of solvent ranges from 1 to 1000 mL, while 

the molar ratios of two chemicals range from 0 to 1. If these values were directly fed into some 

distance-based algorithms such as KNN, k-means, and SVM, the molar ratio would have a much 

smaller weight in the prediction outcomes than the solvent would do. Implementation of feature 

scaling balances the weights of these features, leading to more robust models and better prediction 

accuracies. For some ML algorithms like LR and MLP which use gradient descent for model 

training, the feature scaling would make the models converge much faster. The third benefit of 
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implementing the feature scaling is that the coefficient can be appropriately penalized if 

regularization is a part of the loss function.   

Two common approaches, i.e., normalization and standardization, can be used to make the 

features have the same scale.[48] Normalization subtracts the minimum and divides by the 

difference between maximum and minimum, while standardization first subtracts the mean value. 

The result is then divided by the standard deviation to make the distribution have unit variance. 

Unlike normalization, standardization is much less affected by outliers, thus resulting in a more 

robust and generalizable ML model.  

 

2.2.3 Model Training 

Data splitting. To avoid overfitting and increase model robustness and generalization,[48] the 

dataset is usually split into training and testing ones with a given ratio (typically 0.7, 0.75, 0.8, and 

0.85). To train ML models with large training data (> 104), the splitting ratios among the training, 

validation, and testing can be 0.90, 0.05, and 0.05. The training and validation datasets are used 

for training and evaluating the ML models, respectively, while the testing dataset is set aside as 

never-seen data to evaluate the performance of the ML models. 

Cross-validation (CV). A k-fold (k is usually set to 5 or 10) cross-validation technique is 

usually implemented to afford the ML models with high robustness and generalizability.[48] In a 

5-fold cross-validation, the training data is split into five groups, one of which is used to evaluate 

the model trained on the remaining four datasets. Evaluation of the trained model is based on an 

unseen testing dataset. 

Hyperparameter tuning. Hyperparameters are the parameters that must be set before training 

ML/DL models. They can either configure the ML/DL models through hyperparameters like the 
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number of trees in a decision tree, the number of layers, and the learning rate in a neural network 

or minimize the loss function by tuning the types of activation functions and optimizer in a neural 

network, the kernel types in SVM.[208] As a critical and cumbersome task in training the ML/DL 

models,[209] hyperparameter tuning examines different combinations of hyperparameters to get 

optimal results.[48] Manual tuning is a traditional way that manually fiddles with the 

hyperparameters until obtaining satisfactory results. However, it is tedious and is ineffective for 

many problems arising from the non-convex models, nonlinear hyperparameter interactions, and 

high dimensionality. Hence,  automated hyperparameter optimization (HPO) has become a 

promising technique that automatically explores the hyperparameters to find the optimal 

performance. HPO has the advantages such as reducing the required human efforts, improving the 

performance of ML/DL models, enhancing reproducibility and fairness, lowering the technical 

threshold, and accelerating the training speed.[208, 209] To perform HPO, the methods like grid 

search and random search are widely implemented. The grid search evaluates the Cartesian product 

of hyperparameters,[210] while the random search chooses random combinations of 

hyperparameters.[211]. To avoid many unnecessary evaluations, BO selects combinations of the 

hyperparameters based on previous evaluation results.[212] Open source Python libraries 

including Hyperopt,[213] Talos,[214] Spearmint,[173] Autotune,[215] SMAC,[216] and 

Vizier[217] have been developed to meet the demand for performing automated HPO. To further 

automated the end-to-end ML/DL pipelines for freeing experts from the tedious HPS tasks and 

making ML accessible to non-experts, automated ML (AutoML) frameworks have emerged. These 

off-the-shelf frameworks include AutoWEKA,[218] Auto-Sklearn 2.0,[219] AutoKeras,[220] 

Auto-Pytorch,[221] H2O AutoML,[222], and TPOT.[223] 

2.2.4 Evaluation Metrics 
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Classification. Several metrics including accuracy, precision, recall, F1 score, true positive 

rate, and false positive rate can be used to evaluate the performance of the ML models. Below are 

the formulas used to calculate them. 
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where TP, FP, TN, and FN represent the number of true positives, the number of false positives, 

the number of true negatives, and the number of false negatives. F1 score represents the harmonic 

mean of precision and recall. Precision and recall are used to plot precision-recall curves at 

different threshold settings, while TPR and FPR are used to plot the receiver operating 

characteristic (ROC) curves at various decision thresholds. The area under the ROC curve (AUC) 

can be used to measure how well the ML model distinguishes different classes. 

Regression. Root-mean-square error (RMSE), coefficient of determination (r2) and mean 

absolute error (MAE) are three main metrics used to evaluate a regression ML model.  
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where ypred, ytrue, ymean, and n refer to the predicted value, true value, mean value, and the number 

of samples, respectively. 

 

2.3 Challenge and Solutions of Data Scarcity in Physical Domains 

Acquiring sufficient data is always a prerequisite for building robust and generalizable ML/DL 

models. However, it is time- and cost-intensive, particularly in experimental materials science. 

Training the ML/DL models with limited data may lead to overfitting of the models. To overcome 

the issue of data scarcity, some powerful methodologies including data augmentation by wrapping 

and oversampling techniques, dimension transformation, transfer learning, and data compression 

can be applied. 

Data augmentation by wrapping. The data wrapping technique is usually implemented for 

generating more training data from the existing data.[56, 58] For example, one-dimension (1D) 

spectroscopic data can be augmented by random peak elimination, peak scaling, pattern shifting, 

and noise addition.[56, 224] For peak elimination, a range of specific numbers can be randomly 

replaced with zero. The peak intensities can be scaled by a factor at the predefined periodic length. 

To do pattern shifting, the entire spectra are red-shifted (increase in the wavelength) or blue-shifted 

(decrease in the wavelength) with a given value. To add noise addition to each spectrum, Gaussian 

noise with a zero mean and variance equal to 0.00001 or white noise can be applied.[224] Through 

these steps, the spectra can be largely augmented as defined.  
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The two-dimension (2D) microscopic data can be augmented via several random 

transformations that yield believable images. Trained with these images the DL models can be 

exposed to more aspects of the data and be more generalizable. Typically, examples of 

augmentation techniques include geometric transformation, color space transformation, noise 

injection, random erasing, and kernel filters. The geometric transformation consists of rotation, 

flipping, coupling, translation, vertical and horizontal shifting, channel shifting, and shearing.[225] 

The color space transformation, also known as photometric transformation, can be done via 

splicing individual RGB color matrices, setting certain max/min pixel values, and decreasing or 

increasing the pixel values by a constant value.[226, 227] Random erasing sets the values of an n 

× m patch that are randomly selected from an image to be either 0 s, 255 s, mean pixel values, or 

other random values.[228] The Kernel filtering sets the pixel values of an n × n sliding matrix 

using a Gaussian blur filter or a high contrast vertical/horizontal edge filter.[229] As no new 

information is produced from data augmentation, eliminating the overfitting is still almost 

impossible.  

Data augmentation by oversampling. Unlike the data augmentation by wrapping that 

manipulates existing instances, the data augmentation by oversampling generates synthetic 

instances that are added to the training datasets. There are already several oversampling techniques, 

e.g., mixing images, augmenting features, transferring neural style, and implementing GAN. The 

technique of mixing images averages the pixel values of the images after randomly cropping, and 

flipping, and then assigns the new images in the same way as the originally selected images.[230] 

The feature augmentation works by first mapping the images into low-dimensional representations, 

also known as features which are then augmented by methods such as adding random noise.[231] 

The neural transfer method applies the style of a reference image to a target image via the 
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sequential representation while preserving the original content of the target image.[232, 233] 

Augmentation by GAN applies the probability distribution learned from training images to 

generate new artificial images, which show high diversity but low correlation, thus are statistically 

indistinguishable from the original ones.[146, 234]  

Dimension transformation. Though data augmentation of 1D vector data like XRD, Raman, 

and FTIR improves the predictive accuracy, it still suffers from several problems. First, the 

presence of noise and background signals in these spectra leads to a higher false-positive rate and 

a low detection accuracy of the true peaks. Though a few noise removal and smoothing algorithms 

are available, the results are not consistent.[235] Second, some temporal correlations across 

frequencies of the IR and Raman spectra could not be captured using 1D CNNs, resulting in lower 

prediction accuracy. Encoding 1D spectra to 2D images using data transformation functions has 

been a practical approach to solving these problems.[236-238]   

Several techniques including Gramian Angular Field (GAF),[236] continuous wavelet 

transformation (CWT)[237] scalogram, spectral short-time Fourier transform (SSTFT),[239, 240] 

spectra recurrence plot (SRP), and spectral Markov transition field (SMTF)[238] have been 

successfully implemented to encode 1D vector of spectra to 2D vector of images. These 

transformed images are used to train transferred models, leading to a higher predictive accuracy 

than the models trained directly from the spectra. GAF can represent time series in polar 

coordinates via encoding the intensity as the angular cosine and the time stamp as the radius. Then, 

various operations can be implemented to transform these angles into symmetric matrices. GAF 

has several advantages such as preserving the temporal dependency. CWT is another 

transformation function that can capture characteristic frequencies of the signal.[241] Due to the 

continuous transformation at every scale, CWT makes the information present in the peak shape 
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and peak composition more visible and easier to be interpreted.[242] It is demonstrated that the 

implementation of CWT not only implicitly removes the baseline but also promotes the detection 

of peaks in the spectra. In addition, with the transformed 2D images, existing CNN models can be 

transferred for learning less available data, resulting in improved predictive accuracy.[237] SSTFT 

can convert Raman spectra into 2D spectrograms via Fourier transformation, which confers much 

discriminatory information and removes redundant features.[239] SRP can convert the spectra 

based on the internal structure of the wavenumber, while SMTF does the conversion based on the 

position information of the wavenumber.[238] 

Transfer Learning. Transferring learning (TL) of a pre-trained network is another common 

and highly effective approach to solving the issue of data scarcity. Recently, a variety of pre-trained 

networks such as VGG19,[243] ResNet152 V2,[244] Inception V3,[245] Inception-ResNet,[246] 

Xception,[247] DenseNet201,[248] and EfficientNetB7[249] are publicly available. They are 

typically trained by very large image databases. For instance, ImageNet is trained by 14 million 

labeled images from 1000 object classes.[250] Thus, they can be transferred as effective generic 

models for applications in the physical domains. 

   There are two common approaches to performing TL in the pre-trained networks: feature 

extraction and fine-tuning. Feature extraction effectively extracts new features from data using 

representations learned from the model. Training is done via freezing convolutional layers of the 

pre-trained network while unfreezing the fully connected layers or called the classifier. The reasons 

why feature extraction can improve the training accuracy are as follows. First, the representations 

learned from the convolutional layers are generic and reusable, while the representations learned 

from the classifier are related to the set of classes. Second, local information of an object that 

appears in the data is lost in the classifier while such information remains in the convolutional 
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layers. Fine-tuning is a training procedure that unfreezes the first few convolutional layers while 

jointly training the newly added fully connected layers. The last few convolutional layers encode 

more generic, reusable, and specialized features.  

   Data Compression. Material characterization is crucial to understanding the structures, 

properties, and performances of the target materials. The collected data is usually in high-

resolution and contains enriched information. However, the large data size delays data acquisition 

and increases the storage and communication burden, thus increasing the cost of data collection 

and analysis. While most data contains redundant information, they can be discarded with almost 

no perceptual information loss.[251] A method of directly sampling the compressed 

representations rather than the complete raw data may promote the efficacy of AEPs. 

   Compressed sensing (CS), a new data technique, has been demonstrated as a practical solution 

for directly collecting data in a form of compressed representation.[252] Instead of acquiring data 

and then post-eliminating redundancy using various compression schemes, CS allows the 

researchers to collect useful data from real-time experiments. CS can improve data sampling and 

acquisition rates and reduce the communication burden. Moreover, it allows the usage of low-

quality and low-resolution data for training models with high prediction accuracy. To significantly 

improve the sparsity level of the recovered vectors and compression ratios, physics-based 

compressive sensing (PCBS), which uses domain knowledge and physical models to define the 

transformation and sparse vectors in CS, was proposed to monitor the temperature and melting of 

metals in additive manufacturing.[253]  

 

3. Essential Components of an AEP 

In this section, we will introduce the research progress and efforts made in AEPs with a focus 
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on how data-driven algorithms, especially ML/DL, can be implemented and/or integrated with the 

systems. Accordingly, we consider the three essential components that consist of an AEP for 

realizing a closed-loop self-driving lab. They include (1) automated experimentations, (2) on-the-

fly data analysis, and (3) decision making.[68, 69, 74, 75] 

First, an automated synthesis/processing platform is made of easily controllable and 

programmable equipment for automatically synthesizing materials of interest in a high-throughput 

manner. Despite various types of platforms, continuous flow reactors, desktop robots, and mobile 

robots have been mostly deployed in AEPs. In-situ and on-site characterization equipment—

including spectroscopies such as UV-Vis/Infrared (IR)/photoluminescence (PL), gas 

chromatography-mass spectroscopy (GC-MS), liquid chromatography-mass spectroscopy (LC-

MS), high-performance liquid chromatography (HPLC), nuclear magnetic resonance (NMR), 

electron paramagnetic resonance (EPR), as well as microscopies like atom force microscopy 

(AFM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), scanning 

probe microscopy (SPM), scanning tunnel microscopy (STM), scanning transmission electron 

microscopy (STEM), piezo-response force microscopy (PFM), optical microscopy (OM), and 

digital  imaging—can be integrated within the synthesis/processing platforms to characterize 

structures and properties of materials or classify the reaction results. Second, the on-the-fly data 

analysis with the aid of ML/DL can automatically process raw data to qualify or quantify the 

outcomes such as microstructures, product yield, catalytic activity, and reaction kinetics. It can 

undoubtedly accelerate the development pace and provide real-time feedback for the following 

decision-making step. In this section, we focus on two types of data, i.e., spectroscopic data 

collected from LC-MS,[62, 98, 254, 255] GC-MS,[256-258] NMR,[57, 63, 259, 260] IR,[99, 261, 

262] XRD,[56, 58, 203, 263-265] and microscopic data collected from AFM,[266-268] SEM,[117, 
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269-271] TEM,[272-274] SPM,[275-279] STM,[118, 280, 281] STEM,[282-287] PFM,[288-290] 

OM,[59, 61, 291] and digital imaging.[100] Last but not the least, intelligent decision-making 

algorithms can actively learn from previous experimental outcomes to suggest a new set of reaction 

parameters for the next iteration of the experiments. Herein, four widely investigated decision-

making algorithms, namely BO, RL, Evolutionary Algorithm (EA), and Random Goal Exploration 

Algorithm (RGEA), are discussed. Distinguished from brute-force search of the exploration space 

adopted by high-throughput workflows,[292] the intelligent decision-making algorithms are 

devoted to finding a shortened path to a global optimal. They not only ensure the accelerated 

discovery of novel materials with superior properties but also minimize human effort and lower 

the cost. 

 

3.1 Automated Experimentations 

In a traditional chemical reaction procedure, reactors such as flask, beaker, vial, and autoclave 

are commonly used under the guidance of the design of experiment (DoE). The products are 

collected via washing, centrifuging, and drying, followed by physicochemical characterization and 

performance evaluation. Though it has promoted scientific progress for centuries, this type of 

research paradigm has its intrinsic disadvantages. For instance, it is time- and cost-intensive, and 

imprecise, thus limiting the ability for rapid materials discovery. To remain competitive and deliver 

the expected benefit, efficient algorithms must be deployed to optimize the processes. With the 

advances in hardware and software, the focus of the academy and industry has gradually switched 

to automation or so-called high-throughput experimentation (HTE). HTE can conduct parallel 

experiments (from a hundred to tens of thousands) that combine reaction variables such as solvents, 

reactants, molar ratios of compositions, and temperatures. In addition to HTE for reactions, many 
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high-throughput characterization tools have been developed for online monitoring. Ever since the 

first demonstration of complete automation for molecule synthesis in the 1960s-1970s,[293-295] 

a few research groups such as Lauterbach,[296-299] and M. Ahamdi[300, 301] have made 

remarkable success in the field of pharmaceutical, organic chemical and DNA-sequencing 

industries in the past half-century. Nowadays, automation is expanding to the field of materials 

science.  

A combinatorial approach, a watershed for accelerating materials discovery, development, 

and optimization, refers to parallelly synthesizing and characterizing many compounds in a matrix 

form for rapidly investigating the large compositional and structural landscapes. This field is 

pioneered by X. Xiang,[302, 303] I. Takeuchi,[304-308] J. Gregoire,[309-314] H. Christen,[315, 

316] P. Rack[317-319], T. Unold,[320-322] to name a few. Meanwhile, the discovery of novel 

materials has changed radically with the introduction of HTE enabled by liquid handling robots 

(Chemspeed, Tecan, Hamilton, Hudson, Sartorius, Gilson, ThermoFisher, INTEGRA, Opentrons, 

and Andrew Alliance). 

Herein, we review three main types of automated experimental platforms for THE: 

continuous flow reactors (CFRs),[11, 63, 67, 68, 70, 71, 73, 170, 323-343] desktop robots,[17, 66, 

69, 74, 75, 164-169, 300, 344-351] and mobile robots.[64, 352-355] Table 4 shows the detailed 

comparison of these three types of platforms in terms of their application scenarios, deployment 

sizes, throughput, cost, and efforts to deploy. 

Table 4. Comparison among three types of automated experimental platforms 

No Types Scenario Size Throughput Cost Effort 

1 
Continuous 

Flow Reactors 

Molecules, nanoparticles, 

drugs, polymers 
Small Medium 

Low 

~10K 
Low 

2 Desktop Robots 

Molecules, nanoparticles, 

drugs, polymers, thin films, 

single crystals, solids 

Medium High 
Medium 

10K~100K 
Medium 

3 Mobile Robots All Large Low 
High 

>100K 
High 



 

30 

 

3.1.1 Continuous Flow Reactors 

Restrained by limited heat and mass transfer, traditional reactors such as beakers, flasks, and 

autoclaves usually suffer from significant batch-to-batch variability and generate unexpected 

byproducts. Hence, it is not appropriate for accurate investigation of reaction kinetics when dealing 

with process-dependent organic/inorganic materials synthesis, which requires fast, reproducible, 

and controlled reactions enabled by the rapid heat and mass transport.[84, 356]  

In recent years, CFRs, where reactants are continuously fed, have achieved enormous 

progress in producing fine chemicals and specialty materials (Figure 5a).[356-361] They have the 

following advantages. First, they enable fast mass transport for efficient reactant mixing as channel 

miniaturization leads to large and well-defined interfacial areas in CFRs. This prevents the 

formation of byproducts generated from localized concentration gradients. Second, efficient heat 

transfer is realized due to the small channel diameters in CFRs. This advantage can largely avoid 

locally hot spots and byproduct formation. Third, the usage of both solvents and reactants can be 

reduced. Reactions in traditional reactors require from milliliters to liters of reactants and solvents, 

while they can be largely minimized to a few microliters or even nanoliters for the same reactions. 

Fourth, CFRs have shown the capacity to substantially increase reaction selectivity and 

reproducibility. Fifth, CFRs can be modularized for sequential reaction, filtering, and extraction 

all in one continuously streamlined flow process. Last but not the least, CFRs can increase 

operating safety. Due to the automated operation and less usage of reactants, it makes the research 

procedure much safer when handling hazardous, toxic, or even radioactive chemicals. 

A typical CFR has the following essential components: 1) precursor formulation modules 

including a precursor stock and micromixer; 2) tubes (plastic or stainless steel) equipped with 

heating units such as an oil bath and a heating coil if necessary; 3) separators for purification and 
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collection. They are easy and favorable to be integrated with many in-situ or in-line analytical 

instruments. The integration enables real-time monitoring and analysis of reaction outcomes. It 

allows the researchers to efficiently explore chemical space and easily extend the systems with 

increased complexity.  

Case studies. Cronin and his coworkers designed and built a synthesis robot based on CFRs 

for fully autonomous organic compound synthesis (Figure 5b).[63] All the reactors were 

connected via syringe pumps and switch valves. To determine the reaction results, real-time 

analytic tools including NMR, MS, and ATR-IR systems were integrated. The collected data was 

real-time analyzed and then fed into an optimization algorithm for decision making. Four new 

reactions were discovered through the chemical robot. Abolhasani et al. developed a fully 

autonomous CFR named Artificial Chemist for raid synthesis of perovskite quantum dots (QDs) 

(Figure 5c).[68] The Artificial Chemist consists of three main modules, i.e., a precursor 

formulation module, a flow reaction module, and an in-situ QD characterization module. To enable 

in situ monitoring, a flow cell with reduced path length was designed and integrated into the CFR 

for recoding PL and UV-Vis spectra. By a multivariate process optimization algorithm, this 

Artificial Chemist can synthesize QDs with target optoelectronic properties even without prior 

knowledge about the QD synthesis. Just recently, Reis and his colleagues built a CFR robot capable 

of polymerizing multiple samples simultaneously (Figure 5d).[325] A droplet-based flow system 

was employed for high-throughput polymer synthesis.[362] The polymer properties can be 

optimized over their compositions, molar masses, and dispersity. In this CFR robot, a few 19F MRI 

copolymer agents with high imaging sensitivities were discovered.  
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Figure 5. (A) Scheme showing reaction workflow in a continuous-flow reactor (CRF) based AEP. 

(B) Schematics (Left) and Photograph (Right) of a chemical robot based on a CFR. Reproduced 

with permission from Ref.[63], Copyright 2018 Springer Nature. (C) Schematics of an Artificial 

Chemist for autonomous synthetic path discovery and optimization of colloidal QDs. Reproduced 

with permission from Ref.[68], Copyright 2020 Wiley. (D) Schematic of a CFR for autonomous 

polymer synthesis. Reproduced with permission from Ref.[325], Copyright 2021 America 

Chemical Society.  

 

CFRs are usually designed for the synthesis of specific materials. To increase their agility, 

modularizing them for new projects is an efficient way. Several groups have made a great 

contribution to modulating CFRs for conducting new reactions without redesigning the system. 

Jensen and Jamison et al. developed a compact, fully integrated, and easily reconfigurable platform 

for automatically optimizing a wide range of chemical reactions (Figure 6a and b).[341] Six 

available modules were designed for plug-and-play operations. Meanwhile, characterization 

instruments including HPLC, MS, and vibrational spectroscopies were integrated for real-time 

monitoring. Cronin and his coworkers designed an automated modular synthesis platform, called 
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Chemputer, to synthesize the organic compounds with minimal human intervention (Figure 

6c,d).[67] The platform has a backbone structure that enables facile switching of modules for 

routine synthesis tasks such as heating or phase separation. The backbone has a six-port valve that 

connects pumps to the modules so reagents or reaction mixtures can flow to the appropriate module. 

Three drugs including diphenhydramine hydrochloride, rufinamide, and sildenafil were 

synthesized in 38-100 hours with yields comparable to the reported ones by traditional batch 

synthesis ways.  

  

Figure 6. (a) Schematics and (b) photograph of a plug-and-play, reconfigurable, continuous-flow 

chemical synthesis system. Reproduced with permission from Ref.[341], Copyright 2018 AAAS. 

(c) Schematics and (d) photograph of the Chemputer setup. Reproduced with permission from Ref. 

[67], Copyright 2019 AAAS. 

 

Although CFRs have shown numerous benefits in material synthesis, they face challenges that 

deter their widespread applications in large-scale materials, pharmaceutical, fine, and specialty 

chemical production. The first challenge is how to prevent the formation of solid precipitates in 



 

34 

 

these cases that use solid and/or high-viscosity liquid.[363, 364] The solid formation accumulates 

fouling in channels, leading to blockage, which not only causes fluctuation of the flow velocity 

but also induces a major setback when optimizing the reaction parameters. To effectively 

circumvent the fouling, feasible approaches such as the use of dilute liquid,[365] tubes with larger 

diameters,[366] a micro-flow focusing technique,[367] multiphase systems[368, 369], and 

ultrasound acoustic irradiation can be implemented.[370, 371] In addition, the use of solid in 

reactions can cause clogging. To alleviate this problem, several strategies can be implemented, i.e., 

adding magnetic/mechanical stirring in the feeding system,[372] introducing continuously stirred 

tank reactors,[373] and coating packed column reactors with heterogeneous catalysts.[374] The 

second challenge is how to integrate in-line purification for obtaining the desired high-purity 

products. Purification not only helps to determine the yield but also mitigates the side effect of the 

by-products on the subsequent reactions. The viability of in-line purification techniques such as 

liquid-liquid extraction,[375, 376] micro-distillation,[377] micro-crystallization,[378] and free-

flow electrophoresis[379] have been investigated. The third challenge is the relatively higher cost 

needed to build CFRs compared with the traditional batch reactors.[380] The commercially 

available syringe pumps, rotary valves, various reactors, and multichannel connectors are the 

components that cost the most in building the CFRs. A few research groups are devoted to 

developing affordable devices via assembling necessitate components with 3D printed parts,[381-

386] greatly reducing the deployment cost. 

 

3.1.2 Desktop Robots 

Though CFRs have provided a promising way for experimental automation, they still lack 

enough agility when participating in various types of chemical reactions. Because agile chemical 
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synthesis calls for a redesign of a synthetic route, interchange of different chemicals, selection of 

appropriate reactors with suitable sizes, reassembly of different hardware, and optimization of the 

whole process. For example, lots of enzymes used in pharmaceutical products should be well 

stored and prepared just before the reactions. Desktop robots with ingenious arms possess great 

advantages for mixing, processing emulsions, and handling chemical solid and liquid (Figure 7a). 

The application of desktop robots in the field of life science and drug discovery has been a 

tremendous success. An early demonstration of the desktop robots for biomedical research came 

from a group of scientists at Aberystwyth University.[387-392] They built two prototype robots: 

Adam and Eve. Adam was designed to test genes and enzyme functions, while Eve was devoted 

to screening and designing drugs of interest. Implementation of desktop robots in developing novel 

materials has also been demonstrated by different research groups.  

    Case studies. Cronin et al. designed and constructed a droplet-generating desktop robot named 

“Dropfactory”, a robust platform with easy maintenance, for investigating droplet behaviors 

(Figure 7b).[75] Dropfactory has three main mechanisms: an XYZ CNC frame that provides both 

the structural support and the motion, working stations that perform only one task at each running, 

and two Geneva wheels that move containers from one station to the others. Dynamics of the oil-

in-water droplets including movement, division, fusion, and chemotaxis were recorded using a 

commercial camera to construct promised protocell models. All operations including mixing, 

droplet placing, recording, cleaning, and drying were parallelly performed for 300 experiments per 

day in full autonomy, showing 6 times increase in throughput compared with their previously 

developed non-autonomous platform.[393, 394] Based on their previous work,[341] Jensen and 

his coworkers integrated a six-axis robotic arm with modularized CFRs to develop an automated 

and scalable synthesis of organic compounds (Figure 7c).[66] This robotic arm allowed automatic 
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and on-demand selection of modules from storage locations and arranged them in a required 

reaction sequence suggested by AI planning algorithms for investigating the amide coupling and 

reduction reactions. This reconfigurable platform yielded the target compounds at a high rate of 

100 mg/h. Besides successful demonstration of synthesizing 15 drug or drug-like molecules, it can 

back-to-back synthesize complex molecules. A collaborative team led by Aspuru-Guzik, Hein, and 

Berlinguette designed and built an “Ada” desktop robot that was capable of autonomously 

synthesizing, processing, and characterizing organic thin films (Figure 7d).[74] This robot 

consists of 1) a robotic arm for handling vials and slides, 2) a weigh scale for preparing precursors, 

3) a spin coater for thin-film coating, and 4) a furnace for thin-film annealing, 5) a camera for dark-

field imaging, 6) a four-point probe unit for electrical conductance measurement, and 7) an 

ultraviolet-visible-near-infrared (UV-Vis-NIR) spectrometer for recording spectra. Thin films were 

automatically prepared with the recommended chemical compositions and processing conditions 

by the AI optimization algorithms. From the measured absorbance and electrical conductance, the 

pseudomobility, which is proportional to the hole mobility, of the thin film materials was derived 

as the optimization target of the AI algorithms. Finally, maximum pseudomobility of thin-film 

materials with value of 750 s was successfully screened out within 30 hours. 
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Figure 7. (a) Schematic showing a role of a desktop robot in an AEP. (b) Schematic of a high-

throughput droplet-generation robot named “Dropfactory”. Reproduced under a Creative 

Commons Attribution License 4.0 (CC BY) from Ref.[75], Copyright 2020 AAAS. (c) Photograph 

of a reconfigurable flow chemistry platform enabled by a desktop robot for performing multistep 

chemical synthesis. Reproduced with permission from Ref.[66], Copyright 2019 AAAS. (d) 

Schematic of an “Ada” self-driving laboratory for fabrication and characterization of thin-film 

materials. Reproduced under a Creative Commons Attribution License 4.0 (CC BY) from Ref.[74], 

Copyright 2020 AAAS.  

 

3.1.3 Mobile Robots 

     Lots of synthesis and characterization instruments are spatially big and functionally complex. 

In some cases, they require special working environments, e.g., isolation of UV, noise, and 

vibration. Thus, they are often distributed in different locations, making the direct integration into 

a single platform often impractical. In this case, realizing full autonomy would demand a mobile 

robot that can serve as an operator like a human researcher. Recent advances in industrial robots 
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produced by KUKA, Fanuc, ABB, and Yaskawa have inspired much interest in exploring their 

applications in autonomous laboratories for material and chemical development.[352-354] A 

mobile robot with a built-in scheduling software can physically move among different components 

of a synthesis lab to perform tasks like handling chemicals (solid and solvent) from cabinets to 

synthesis stations (dissolution, distillation, and centrifuge) and characterization stations (HPLC, 

LC-MS, UV-Vis and GC) without human invention (Figure 8a).[64, 355] This mobile robot can 

realize unmanned intelligent labs, showing superiority to humans in consistence, efficiency, 

flexibility, and dealing with toxic and explosive chemicals/gases.  

      Case studies. In 2018, Li et al. proposed an authentic intelligent robot for use in a chemistry 

laboratory (AIR-Chem), which automatically executed the synthesis of inorganic perovskite 

quantum dots (IPQDs) (Figure 8b).[355] AIR-Chem consists of an automated guided vehicle 

(AGV) and a real-time computer vision (CV) system. The AGV can navigate the chemical cabinets 

and conduct IPQD synthesis experiments with the aid of CV. The embedded CV integrated with a 

PL device can monitor the IPQD growth in real time. In another recent work, a commercially 

available mobile robot was used to replace a human researcher in conducting experiments (Figure 

8c).[64] Using laser scanning and touch as the feedback medium, the robot chemist can move 

freely and accurately in a standard laboratory under a dark environment, which is required for 

handling light-sensitive chemicals or photochemical reactions. In addition, it can work 

continuously except for charging, which takes ~2.4 h per day. Compared with other automated 

platforms that only handle liquid, it can accurately and reliably dispense both solid and liquid. As 

a demonstration, it was used to search for efficient photocatalysts for hydrogen production from 

water. Without any instruction from human researchers and prior knowledge, it synthesized and 

tested the catalysts, and then obtained an optimized recipe from a ten-variable reaction space in 
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just 8 days. It is worth mentioning that unlike the previously reported flow synthesis-based robotic 

platforms upon which many modules are customized, in this work, all the stations except the 

capping and photolysis stations are commercially available. Thus, no hardware modification is 

needed. 

 

Figure 8. (a) Schematics showing a role of a mobile robot in performing experiments. (b) 

Schematics showing components of AIR-Chem and their functionalities. Reproduced with 

permission from Ref.[355], Copyright 2018 American Chemical Society. (c) Photographs showing 

a Kuka mobile robot handling samples for synthesis and characterization. Reproduced with 

permission from Ref.[64], Copyright 2020 Springer Nature. 

 

     Similarly, the deployment of desktop and mobile robots in labs also faces grand challenges. 

First, high cost and long investment time remain the biggest constraints.[395-398] The cost 

associated with a liquid handling robot, robotic arm, and mobile platform is still an important 

factor for large-scale applications in the lab. It is also a time-consuming process to develop the 

software to execute commands and communicate among different hardware. To mitigate these 
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issues, hardware with affordable prices and open-source software is highly desired. The second 

challenge is associated with precise and repetitive positioning and fine manipulation of both 

desktop and mobile robots after a long-time operation.[64] Unlike the CFRs that liquids flow 

through the tubes, robots should allow 1) the fine manipulations, such as placement of vials, 

substrates, and tips, measurement of solid and liquid, and on/off of specific instruments, and 2) 

precise and repetitive positioning among various experimental stations in the labs. To alleviate 

these concerns, touch-sensitive multiple points calibration, and advanced sensing techniques of 

using laser and radar for robotic navigation can be implemented. The third challenge arises from 

the capability of the currently available robots to work only in a structured environment, where a 

spatial arrangement is organized and determined, making the robots less adaptive to emergent 

situations. In the future, advances in collaborative robots, and human-robot interactions would 

make these commercial robots more applicable in AEPs. 

 

3.2 On-the-fly Data Analysis 

After the collection of characterization data, a subsequent step is to analyze them followed by 

presenting and visualizing the results for decision making. The ever-increasing acquisition rate 

from real-time experiments by modern instruments leads to an exponential increase in data size.[5] 

However, data analysis typically requires domain knowledge, costing an expert much time and 

effort to process, interpret, and convert the data. To make the best use of the fast acquisition rate, 

it is necessary to boost the speed and efficiency of data analysis. Recently, ML has been deeply 

integrated into the characterization instruments for achieving the on-the-fly data analysis. This 

aspect of the analytic workflow focuses on spectroscopic data from LC-MS,[62, 98, 254, 255] GC-

MS,[256-258] NMR,[57, 63, 259, 260] IR,[99, 261, 262] XRD,[56, 58, 263-265, 399] and 
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microscopic data from AFM,[266-268] SEM,[117, 269-271] TEM,[272-274] SPM,[275-279] 

STM,[118, 280, 281] STEM,[282-287] PFM,[288-290] OM,[59, 61, 291] and digital imaging.[100] 

A few reviews summarize recent progress in the application of DL for microscopic data 

analysis.[60, 400, 401] Herein, we focus our review on a general procedure of on-the-fly data 

analysis of both spectroscopic and microscopic data, and discuss how to extract insightful 

information for new knowledge generation, which can be used to achieve predefined targets, such 

as establishing a processing-structure-property relationship.[402] 

3.2.1 Spectroscopic Data Analysis 

Data preprocessing. Usually, spectra collected from different equipment and/or by different 

operators contain different amounts of data points. For most of the ML/DL models, the input 

vectors should possess the same length. To convert the raw spectrum data to a vector of a specific 

length within a given range, the interpolation is usually first implemented.[56, 58, 224] In addition, 

the data is usually normalized to the range between 0 and 1 to make the data on the same scale for 

better comparison. In the case of experimental spectra containing much background noise, 

Savitzky-Golay filtering and polynomial fitting techniques can be applied to smooth the spectra 

and correct the baseline, respectively.[403] More information about the spectra data preprocessing 

can be referred to in the previous section. 

Case studies. Grand et al. trained an SVM model to classify NMR and IR spectra of reactive 

and non-reactive mixtures (Figure 9a).[63] These data were manually labeled by domain experts. 

The model trained on 72 datasets afforded an accuracy of 86%. This well-trained SVM model was 

then used for real-time distinguishing the spectra of the starting materials from those of the final 

products. Finally, the difference between the two types of spectra was registered as reactivity hits 

to classify reactive and non-reactive outcomes. In another work, an algorithm named peakonly, 
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consisting of two CNN models, was developed to detect true positive peaks of raw LC-MS spectra 

(Figure 9b).[98] The first one was used to classify the regions of interest (ROI) into three 

categories (noise, peaks, and uncertain peaks), while the second one was used to output the area 

of the detected peaks. Peakonly shows superior performance in labeling the true positive peaks 

with a precision of 97 %. To capture temporal correlations, Zinchik and his colleagues used GAF 

to encode the 1D mid-infrared (MIR) spectra to 2D matrices for training a CNN model (Figure 

9c).[236] To reduce the dimension of the input GAF matrices, a piecewise aggregate 

approximation (PAA) technique was used. The results showed that the CNN model reached an 

overall classification accuracy of ~100% at a much faster prediction rate than the model trained 

directly with 1D data.  

Tremendous progress has been recently made in the application of ML/DL models in 

analyzing XRD, Raman, and FTIR spectra. Buonassisi et al. proposed a CNN model to predict 

crystallographic space groups of XRD patterns of perovskite thin films.[56] Data was augmented 

from the theoretic spectra to overcome the issue of scarcity in experimental data. To validate its 

effectiveness, they integrated the CNN model with high-throughput synthesis to accelerate the 

development of perovskite-inspired materials.[263] Such an integrated approach achieved a 

classification accuracy of 90% and a classification speed of > 10 times faster than manual analysis. 

Recently, our group trained a CNN model from theoretical XRD patterns combined with very 

limited experimental spectra.[58] Rather than classifying the materials into crystallographic space 

groups, this CNN model enables rapid identification of individual metal-organic framework 

(MOF). It affords a prediction accuracy of 96.7% for the top-5 ranking among > 1000 MOFs. Fan 

and his colleagues developed a novel approach of DL-based component identification (DeepCID) 

to identify the presence of species in mixtures from Raman spectra.[404] The well-trained 
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DeepCID exhibits a prediction accuracy of 98.8% for 167 compounds and 99.5% for 160 

compounds with significantly lower false-positive rates. 

 

Figure 9. (a) Schematic showing workflow and results of an SVM classifier for reaction outcome 

detection from NMR spectra. Reproduced with permission from Ref.[63], Copyright 2018 

Springer Nature. (b) The architecture of the peakonly model for peak classification and integration. 

Reproduced with permission from Ref.[98], Copyright 2020 American Chemical Society. (c) 

Workflow of a CNN framework for classifying different types of plastic using a GAF 

transformation method. Reproduced with permission from Ref.[236], Copyright 2021 American 

Chemical Society.  

 

3.2.2 Microscopic Data Analysis 

    Microscopic images taken on advanced instruments such as SEM, TEM, and STM have been 

widely used to retrieve the relationship between microstructures and properties.[405, 406] 

Analyzing these microscopy images includes tasks of segmenting areas of interest such as defects 

and phases and determining the thickness and number of layers. However, such a manual workflow 

is tedious and time-consuming. In addition, some important information hidden in the image data 

may be missing due to intrinsic limitations of the equipment or unintentional ignorance of human 
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researchers. In contrast, the DL models such as DenseNet,[407] ShuffleNet,[408, 409], and Mask 

R-CNN[410] were proved to perform better tasks like image recognition, segmentation, 

reconstruction of missing information, and retrofitting new information from the images. 

Data preprocessing. Data preprocessing is usually needed before training DL models for 

analyzing microscopic data. Preprocessing includes fixing constant aspect ratios, scaling, and 

normalizing values, reducing dimensions, sharpening white-black contrast, and filtering image 

noise. Fixing the aspect ratios ensures that the input images are square and cropped properly as 

presumed by the CNNs.[411] Normalization is essential to afford the same data structure for each 

image.[412, 413] It includes rescaling, standardization, and stretching. Rescaling is to rescale the 

images to smaller ones. For example, an image with 256 × 256 pixels was rescaled to the one with 

128 × 128 pixels.[414] Rescaling also increases training speed and inference. The CNNs converge 

faster with the aid of normalization. Dimension reduction is to collapse multiple channels of an 

RGB image into a single grayscale channel when the CNNs are dimensionally invariant.[415] 

White-black sharpening can avoid gradient vanishing by enhancing the features, while filtering 

helps to remove the noise.[416]  

Case studies. Segmentation of microscopy images helps to analyze the objects or features of 

the images.[417] For example, the shapes and size distribution of nanoparticles would be outlined 

and calculated from the segmented SEM images.[409] There are two main categories of image 

segmentation, i.e., semantic segmentation and instance segmentation. The former assigns each part 

of an image a label after the image is partitioned into semantically meaningful parts, while the 

latter would exhaustively identify each instance of a class in the image. Dong et al. developed a 

multimodal multiclass segmentation model (DALM) for determining the number of layers in 2D 

materials, i.e., MoS2 flakes (Figure 10a).[59] To increase the prediction accuracy, the RGB images 
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were merged with the hyperspectral images to train the DALM, which showed a higher prediction 

accuracy than those trained with only RGB images. It also exhibited satisfactory robustness even 

if the images showed high illumination and contrast variations. Besides the image segmentation, 

the DL models can also predict the reaction outcomes from the collected in-situ images. Sargent 

and coworkers developed a CNN model based on VGGNet for classifying the images taken from 

reactors into two categories: (1) bad crystals or no crystals, and (2) good crystals (Figure 10b).[100]  

Investigation of adatom-adatom and adatom-substrate interactions is beneficial for 

understanding the physical and chemical reactivity of novel materials. STM and AFM can be used 

to visualize structures of the surface atoms, which makes the correlation between the structures 

and the surface properties easier. Kalinin et al. proposed an ML-based algorithm to seamlessly 

transform STM images to atomic coordinates of surface and adatoms (Figure 10c).[282] They 

used Co3Sn2S2 as a model material to demonstrate a family member of Shandite A3M2X2 crystal. 

They have a rhombohedral structure, which shows a CoSn Kagome lattice sandwiched by the S 

and Sn layers. A series of STEM images were analyzed using Laplacian of the Gaussian filter in 

the scikit-image library[418] to reconstruct the coordinates of the surface atoms. To match the 

experimental observations with the ones derived from a lattice Hamiltonian model, BO was further 

implemented to minimize the statistical errors in distances.  

Though providing high-resolution imaging with enriched information, high-does electron 

beams of the electron microscopy may cause devastating damage to samples such as nano-

catalysts[419] and biological samples.[420] Reducing the beam dose may mitigate this issue while 

scarifying the image quality. The CS technique has been an alternative strategy for collecting the 

images with reduced doses, acquisition time, and data volume. Browning and coworkers developed 

CS via the Bayesian dictionary learning as a low-dose acquisition method to obtain high-resolution 
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STEM images (Figure 10d).[421] With only 20 % of the pixels sampled from the real image of 

the ZSM-5 zeolite catalyst, the reconstructed images maintained high image quality. This approach 

not only automatically reduces the beam doses and variances caused by noise, but also increases 

the acquisition rate. In his follow-up work, Browning proposed an efficient sparse sampling 

strategy that randomly samples only a few rows of the pixels as the electron beam moves along 

the scanning direction.[422] This approach accelerates the acquisition rate and lowers the electron 

beam by a factor of > 5 times. In 2018, Browning developed a deliberately sub-sampling method 

that showed a much higher acquisition rate of the STEM images than conventional low-dose 

methods do.[423] This method acquires STEM images of ZnSe at least an order of magnitude 

faster and reduces data storage and communication. When integrated with an adaptive sampling 

strategy, this method shows a significant increase in the rate, speed, and sensitivity of images. 



 

47 

 

 



 

48 

 

Figure 10. (a) Schematic showing a workflow of using DALM for mapping the atomic layer of 

2D materials. Reproduced with permission from Ref.[59], Copyright 2020 American Chemical 

Society. (b) A workflow showing a CNN model for crystal formation prediction. Reproduced with 

permission from Ref.[100], Copyright 2020 Elsevier. (c) Bayesian learning of adatom interactions 

from STM images. Reproduced with permission from Ref.[282], Copyright 2021 American 

Chemical Society. (d) CS reconstructed a STEM image of the ZSM-5 zeolite catalyst. Real image 

(Left), 20 % sampled image (middle) and reconstructed image (right). Reproduced with permission 

from Ref.[421], Copyright 2014 Oxford University Press.  

 

3.3 Decision-making Algorithms 

Materials discovery can be considered as an optimization process in which input parameters 

must be tuned to reach a global optimal. In many applications of autonomous experiments, the 

objective functions are “black boxes”, meaning that there are no specific functions that can define 

the objectives. Exhaustive or brute-force search is a general problem-solving method, while it is 

only suitable for problems with inexpensive and easily parallelized experiments within a relatively 

small chemical space. It is powerless when the chemical space is enormous.[424] Hence, 

intelligent decision-making algorithms are needed to efficiently explore the chemical space and 

save cost and time.[1, 95, 102] They can suggest optimum candidates based on the previous 

observations, thus avoiding redundant or biased evaluations. Also, they can help to maximize the 

yield of the product by adjusting a synthetic procedure or tuning the structure of a material to 

realize desired properties. Here, we focus on widely investigated decision-making algorithms, i.e., 

BO, RL, evolutionary algorithm (EA), Stable Noisy Optimization and Brach and FIT (SNOBFIT), 

and curiosity algorithm (CA), as summarized in Table 5.  
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Table 5. Examples of decision-making algorithms for autonomous experiments. 

Algorithms 

Model 

Components 

Task Ref. 

BO 

# of 

objectives 

Surrogate 

Model 

Acquisiti

on 

Function 

SOO 

Classical BO 

GP EI 
Optimize the toughness of additively manufactured 

structures 
[69] 

GP UCB Optimize the growth rates of carbon nanotubes [425] 

Dragonfly GP 
EI/PI/ 

UCB/TS 
Optimize the battery electrolyte [73] 

Phoenics BNN ES 

Optimize the pseudomobility of thin-film materials [74] 

Improve the efficiency of quaternary organic 

photovoltaic blends 
[165] 

Screen hydrogen evolution photocatalyst [64] 

Gryffin BNN ES 

Optimize stereoselective Suzuki-Miyaura coupling 

reactions 
[167] 

Optimize the synthesis of o-xylenyl adducts of 

Buckminsterfullerene 
[426] 

Design the redox-active materials for non-aqueous 

flow batteries 

MOO 

Chimera BNN ES 

Optimize parameters for real-time reaction 

monitoring of High-Performance Liquid 

Chromatography (HPLC) [427] 

Inverse design of efficient excitation energy 

transport (EET) 

BO NNE 
UCB/EI/ 

EPLT 
Optimize the synthesis of perovskite quantum dots [68] 

TSEMO GP TS-EHVI 

Optimize SNAr and N-benzylation reactions [428] 

Optimize Sogogashira reaction and multiple-step 

Claisen-Schmidt condensation reaction 
[429] 

Screen the formulated products [347] 

GP-qEHVI GP qEHVI 
Optimize the electrical conductivity of metallic 

films 
[169] 

GP-TS GP TS Optimize the mechanical performance of polymers [430] 

RL 

Model Policy function Task  

DRO RNN 

Optimize Pomeranz-Fritsch, Friedländer, Ribose 

synthesis, and reaction between DCIP and AA [188] 

Optimize the synthesis of silver nanoparticles 

RL CNN Optimize the synthesis of MoS2 [187] 

SNOBFIT-RL CNN 
Optimize the circular dichroism signal of 

perovskites 
[71] 

EA 

Model Task  

GA/RF Optimize the growth rates of CNTs [431] 

GA/RF Optimize the crystallinity of MOFs [46] 

GA 
Guide the synthesis of gold nanoparticles with 

different shapes 
[432] 

Others SNOBFIT 
Optimize the synthesis of EGFR kinase inhibitor 

AZD9291 
[433] 
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Optimize the yields of organic products [341] 

CA Explore the droplet behaviors [75] 

Note: BO: Bayesian optimization, SOO: single-objective optimization, MOO: multi-objective 

optimization, EI: expected improvement, PI: probability of improvement, EHVI: expected 

hypervolume improvement, TS: Thompson sampling, UCB: upper confidence bound, BNN: 

Bayesian neural network, EPLT: pure exploration, TSEMO: Thompson Sampling Efficient Multi-

objective Optimization, RL: reinforcement learning, DRO: deep reaction optimizer, RNN: 

recurrent neural network, SNOBFIT: Stable Noisy Optimization by Branch and FIT.EA: 

evolutionary algorithm, RF: random forest, EA: evolutionary algorithm, GA: genetic algorithm, 

CA: curiosity algorithm. 

 

3.3.1 Bayesian Optimization (BO) 

BO is well suitable for solving black-box optimization problems because it has no prior 

assumption of any functional form (Figure 11a).[102, 173, 434] To implement this task, BO needs 

a surrogate model and an acquisition function. The surrogate model approximates the expensive 

objective function, while the acquisition function calculates a criterion that indicates how desirable 

it is to sample the next candidate. There are several choices of surrogate models such as 

probabilistic ones, e.g., Gaussian process (GP),[347, 430, 435-437] sparse pseudoinput GP 

(SPGP),[438, 439] and sparse spectrum GP (SSGP),[440] or non-probabilistic ones, e.g., Bayesian 

neural networks (BNNs)[441, 442] and RF.[216, 443] Choices of the acquisition functions include 

pure exploration (EPLT), expected improvement (EI),[444] probability of improvement (PI),[445] 

maximum variance (MV), upper confidence bound (UCB),[446] Thompson sampling (TS),[447] 

entropy search (ES),[448, 449] and knowledge gradient (KG).[450]  

BO has the following advantages. First, Bo enables to search for the candidates actively and 

efficiently with an optimal property given a predefined task. It can greatly reduce the number of 

experiments to be evaluated. Second, BO is noise-tolerant since it can introduce noise when 

calculating the covariance. Third, BO can balance the trade-off between the exploitation of the 

best local optima and the exploration of high uncertainty to allow for the determination of the 
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global optima. These advantages make BO well suitable for AEPs. 

Case studies. Gongora et al. proposed a Bayesian Experimental Autonomous Researcher 

(BEAR) to identify the optimal toughness of additively manufactured structures (Figure 11b).[69] 

BEAR utilizes GP as the surrogate model and EI to select the optimal design parameters for the 

next experiment. BEAR enables to identify high-performing structures within 100 experimental 

iterations. In comparison with the grid search strategy, BEAR reduces the number of experiments 

by 60-fold. Maruyama and his colleagues incorporated BO in an Autonomous REsearch System 

(ARES)[431, 451] to optimize the growth rate of carbon nanotubes (CNTs) (Figure 11c).[425] BO 

successfully improves the growth rate by a factor of 8 in comparison to that of a seed dataset within 

~ 100 experiments. Dave and coworkers integrated Dragonfly, a BO software package, with a 

robotic platform to autonomously optimize battery electrolytes (Figure 11d).[73] Dragonfly 

implements an adaptive sampling strategy that actively learns which one of the four acquisition 

functions (EI, PI, UCB, and TS), performs the best during each optimization cycle. In only 40 

hours, Dragonfly screens out a mixed anion sodium electrolyte that has a potential window of ~ 

3.0 V. Takeuchi et al. developed a Closed-loop, Autonomous system for Materials Exploration and 

Optimization (CAMEO) to synthesize the Ge-Sb-Te alloy with a maximum bandgap (Figure 

11e).[65] To minimize the experimental iterations, they first used the raw ellipsometry spectra of 

Fe-Ga-Pd to train the CAMEO model. CAMEO can make use of the phase distribution information 

learned from the Fe-Ga-Pd alloy to identify the optimal candidate for Ge-Sb-Te within 35 

experimental iterations, which is superior to the classical Gaussian process-upper confidence 

bound (GP-UCB) algorithm. 
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Figure 11. (a) Schematics of BO. Reproduced with permission from Ref.[102], Copyright 2021 

American Chemical Society. (b) Evolution of the performance of the mechanical structures 

obtained from BEAR. Reproduced under a Creative Commons Attribution License 4.0 (CC BY) 

from Ref.[69], Copyright 2020 AAAS. (c) Evolution of the growth rates of CNTs obtained from 

BO. Reproduced under a Creative Commons Attribution 4.0 International License from Ref. [425], 

Copyright 2020 Springer Nature. (d) Evolution of the potential window of sodium ions electrolytes 
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obtained from Dragonfly. Reproduced with permission from Ref.[73], Copyright 2020 Elsevier. 

(e) Evolution of the phases of solid-state materials obtained from CAMEO. Reproduced with 

permission from Ref.[65], Copyright 2020 AAAS. 

  

Due to their inherent sequential characteristics and heavy computational load, typical BO 

approaches can be costly for applications in AEPs. To tackle these problems, Aspuru-Guzik and 

coworkers developed a Probabilistic Harvard Optimizer Exploring Non-Intuitive Complex 

Surfaces (Phoenics) algorithm (Figure 12a).[452] Phoenics employs BNN to estimate the 

objective function, resulting in reduced training time. Phoenics formulates an inexpensive 

acquisition function that allows the batch evaluations to be run in parallel. Aspuru-Guzik et al. also 

developed Gryffin to optimize the problems that involve categorical inputs, which were relaxed 

into the continuous ones using categorical kernel density (Figure 12b).[453] Fruitful achievements 

have been realized via deploying Phoenics and Gryffin in ChemOS[454, 455] for performing 

autonomous experiments in optimizing the pseudomobility of thin-film materials (Figure 12c),[74] 

improving quaternary organic photovoltaic (OPV) blends,[165] screening optimal photocatalysts 

for hydrogen evolution (Figure 12d),[64] optimizing stereoselective Suzuki-Miyaura coupling 

reactions (Figure 12e),[167] optimizing the synthesis of o-xylenyl adducts of 

Buckminsterfullerene, and designing the redox active materials for non-aqueous flow 

batteries.[426]  
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Figure 12. (a) Schematics of Phoenics for optimizing continuous parameters. Reproduced with 

permission from Ref.[452], Copyright 2018 American Chemical Society. (b) Schematics of Gryffin 

for optimizing categorical inputs. Reproduced with permission from Ref.[453], Copyright 2021 

AIP Publishing. (c) Evolution of the pseudomobilty of thin-film materials obtained from Phoenics. 
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Reproduced under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC) 

from Ref.[74], Copyright 2020 AAAS. (d) Evolution of hydrogen evolution performance obtained 

from Phoenics. Reproduced with permission from Ref.[64], Copyright 2020 Springer Nature. (c) 

Process optimization of Suzuki-Miyaura coupling reactions by Phoenics and Gryffin. Reproduced 

with permission from Ref.[167], Copyright 2021 Springer Nature. 

 

The abovementioned studies are mainly focused on single-objective optimization (SOO), e.g., 

yield, growth rate, and yield strength, while many cases involve multi-objective optimization 

(MOO), where optimizing one objective usually results in penalizing the others.[435] Unlike SOO, 

the solution of MOO is not a single point in the design space, but rather consists of a set of points, 

named the Pareto set. The optimal points derived from the corresponding objective function are 

named the Pareto front.[456] Two main approaches can be implemented to solve the MOO 

problems: transforming multiple objectives into one objective and identifying a Pareto front that 

trades off among the multiple objectives. 

Aspuru-Guzik proposed Chimera as a generalized approach for MOO, where multi-objectives 

were converted to a single one using a concept of a priori scalarized with the lexicographic 

approaches (Figure 13a).[427] To avoid degradation of the objectives, Chimera strictly follows 

the predefined hierarchy. The hierarchy can construct a single objective function, which shapes a 

response surface that can be optimized by SOO algorithms. Chimera was successfully 

demonstrated in two different cases. The first case was to optimize parameters for realizing three 

objectives: maximizing the response of High-Performance Liquid Chromatography (HPLC), 

reducing the sampling volume, and minimizing the overall running time. The second case was 

about the inverse design of efficient excitation energy transport (EET) for realizing three objectives: 
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maximizing the transferring efficiency and total distance and minimizing the energy gradient. The 

results showed that Chimera achieved the goal by following the defined hierarchy. To 

simultaneously optimize the objectives of the improved photoluminescence quantum yield 

(PLQY), desired peak emission energy (EP), and emission linewidth (EFWHM) of halides produced 

by the Artificial Chemist, Abolhasani and coworkers developed an ensemble neural network 

(NNE)-based BO algorithm (Figure 13b).[68] NNE, the surrogate model, was trained to map the 

five input reaction conditions to the three objectives, which were further converted into a single 

quality metric using an objective function Z for the subsequent optimization. Then, combined with 

three different acquisition functions, i.e., UCB, EI, and EPLT, respectively, NNE was used to build 

three corresponding BO algorithms: NNE-UCB, NNE-EI, and NNE-EPLT. Among them, NNE-

UCB showed the fast convergence of Z value as the increase of the experimental iterations. 

Although NNE-EPLT performed the worst, if it was pre-trained with the collected data, it also 

identified the optimal synthesis conditions. 

      Lapkin et al. proposed a Thompson Sampling Efficient Multi-objective Optimization 

(TSEMO) algorithm to simultaneously optimize the multiple objectives.[435] TSEMO builds an 

independent GP surrogate model for each objective and identifies a set of new evaluation points 

from the Pareto set with the maximum hypervolume at each iteration. TSEMO has advantages 

such as no requirement of prior knowledge, reduced hypervolume calculations, the capability of 

handling noise, and batch-sequential design, making it have performance comparable to Pareto 

Efficient Global Optimization (ParEGO), Expected Hypervolume Improvement (EHI), and Non-

dominated Sorting Genetic Algorithm II (NSGA-II). Thus, it has been widely applied to optimize 

materials synthesis.[327, 347, 428, 429, 457-459] Lapkin and coworkers incorporated TSEMO 

with a continuous flow reactor (CFR) for the automated optimization of four exemplar chemical 
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reactions.[428, 429] Several conflicting objectives, i.e., maximizing spacetime yield (STY) vs 

minimizing E-factor, impurity, and ingredients, were simultaneously optimized. TSEMO fast 

converged to output the Pareto front within a minimized number of experiments. In his latest work, 

Lapkin et al. proposed a pipeline consisting of TSEMO and a Bayesian classifier in conjunction 

with a robotic experimental platform for screening the formulated products (Figure 13b).[347] 

They targeted four optimization objectives of high stability, low turbidity, honey-like viscosity, 

and low-cost precursors. A naïve Bayes algorithm was developed to classify the new evaluation 

points chosen by TSEMO based on the objective of stability while saving time and cost of the 

precursors. With the aid of two desktop robots, nine formulated recipes that are easily implemented 

and cost-effective were successfully screened out within 15 working days. 

MacLeod et al. implemented a posteriori MOO algorithm to identify the Pareto front between 

the electrical conductivity of palladium films and their processing temperatures in a self-driving 

laboratory (Figure 13c).[169] This MOO algorithm used GP and q-Expected Hypervolume 

Improvement (qEHVI) as the surrogate model and the acquisition function, respectively. qEHVI 

can identify the Pareto front in a few experimental iterations.[460] In comparison with the other 

acquisition functions, qEHVI is superior in many ways such as parallelization, a constrained 

evaluation that excludes impossible or impractical data points, and efficient and effective 

optimization via auto-differentiation.[460] With the aid of qEHVI, the self-driving laboratory 

discovered new synthesis conditions that yielded uniform palladium films with moderate 

conductivity but processed at a lower temperature. Erps and his colleagues coupled a MOO 

algorithm with a 3D printer to optimize the mechanical performance of polymers that were 

produced from inks consisting of six primary photocurable monomers (Figure 13d and 13e).[430] 

Using the data collected by the Thompson sampling strategy, the algorithm simultaneously 
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optimized three conflicting objectives of toughness, compression modulus, and strength. The 

MOO algorithm uncovered 12 optimal formulations after 30 experimental iterations, where the 

hypervolume indicator was increased by a factor of 1.65. 

 

Figure 13. (a) Schematics of Chimera for MOO. Reproduced with permission from Ref.[427], 
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Copyright 2018 Royal Chemical Society. (b) The evolution of the Z value obtained from a few 

optimization algorithms. Reproduced with permission from Ref.[68], Copyright 2020 Wiley. (c) 

TSEMO for optimizing formulated products. Reproduced with permission from Ref.[347], 

Copyright 2022 Springer Nature. (d) qEHVI for optimizing the synthesis conditions of metallic 

films with quadruplicate. Reproduced with permission from Ref.[169], Copyright 2022 Springer 

Nature. (e) GP-TS for optimizing the mechanical performance of the 3D printed polymer. (f) A 

hypervolume evolution plot showing improvement of the Pareto front over iterations. Reproduced 

with permission from Ref.[430], Copyright 2021 AAAS. 

 

3.3.2 Reinforcement Learning (RL) 

RL is widely used to solve dynamic decision problems. It makes the sequential actions 

possible in a prescribed environment and estimates the statistical relationship between the actions 

and their possible outcomes to maximize the cumulative reward.[182] Mathematically, RL uses a 

Markov decision process defined by a set of states (S), a set of actions (A), a probability of 

transition from the state (s) to (s’) under action a, Pa(s, s'), and a reward function (R). In the case 

of reaction optimization, S is the set of all possible experimental conditions, A is a set of all possible 

changes made to the experimental conditions, and r is the desired reaction outcome. Reward 

function (R) is applied to map a certain experimental condition (s) to a reaction outcome (r). Also, 

Pa defines the probability of transition of the experimental conditions by applying change a, given 

the inaccuracy in operating equipment. The purpose of RL is to learn an optimal policy that 

maximizes the reward function. The policy function maps the current and previous experimental 

conditions to the next ones. Due to the new advances in the DL algorithms and the availability of 

big data, deep reinforcement learning (DRL) is developed for solving many materials-related 
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dynamic decision-making problems. 

Case studies. Zhou et al. developed a Deep Reaction Optimizer (DRO) to optimize a series 

of chemical reactions (Figure 14a).[188] DRO uses an RNN as the policy function to deicide the 

next reaction (action) that would realize an improved yield (reward) for the chemical reaction 

(environment). DRO reduces the number of reaction steps by 71 % and finds the optimal conditions 

for four real microdroplet reactions within 30 min. DRO also shows superior performance to other 

black-box optimization algorithms in optimizing the synthesis of silver nanoparticles (Figure 14b). 

Moreover, it can learn hidden information from both similar and dissimilar reactions for 

understanding the microdroplet reaction mechanism. Rajak et al. implemented a RL algorithm to 

identify the optimal synthesis of MoS2 via a simulated Neural Autoregressive Density Estimator-

Chemical Vapor Deposition (NADE-CVD) platform (Figure 14c).[187] The RL agent learns the 

policy for designing the optimal synthesis conditions via a policy gradient algorithm as informed 

by the NADE-CVD simulation results. The proposed RL algorithm prefers to synthesize MoS2 

with more 2H phase than that of MoS2 generated by the random search method (Figure 14d). Li 

et al. employed a SNOBFIT-based RL algorithm to optimize the circular dichroism (CD) signal 

from the CsPbBr3 nanocrystals produced by a Materials Acceleration Operating System In Cloud 

(MAOSIC) platform (Figure 14e).[71] SNOBFIT is well suitable for screening and optimizing 

chemical reactions because it can search randomly in the global region while applying the gradient 

descent method in a local region.[461] RL maps a set of actions and receives a reward based on 

the differences between the experimental and the targeted outcomes. Their policy function directs 

the local optimization toward the optimal conditions while searching for unexplored regions to 

obtain the global optima. Significant improvement in the CD signal was successfully achieved 

within 250 experimental iterations. 
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Figure 14. (a) Schematics of the deep reaction optimizer (DRO) that consists of an RNN 

architecture for optimizing chemical reactions. (b) Evolution of the relative absorbance of silver 

nanoparticles obtained from DRO. Reproduced with permission from Ref.[188], Copyright 2017 

American Chemical Society. (c) Schematics of the RL-NADE algorithm for predicting optimal 

synthesis of MoS2. (d) The synthesis schedules of MoS2 obtained from the RL-NADE model. 

Reproduced with permission from Ref.[187], Copyright 2021 Springer Nature. (e) Evolution of 

circular dichroism (CD) signal obtained from SNOBFIT-RL. Reproduced with permission from 

Ref.[71], Copyright 2020 Springer Nature. 
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3.3.3 Evolutionary Algorithm (EA) 

      An evolutionary algorithm (EA), a population-based metaheuristic optimization algorithm, 

iteratively selects the optimal candidates with the highest-ranking scores of defined properties.[462, 

463] EA does not make any assumptions about the nature of the fitness landscape, thus making it 

generic in solving optimization problems across many areas such as drug discovery, molecule 

design, and materials science. There are various EAs including genetic algorithm (GA),[464-466] 

particle swarm optimization (PSO),[467-469] ant colony optimization (ACO),[470, 471] and 

evolutionary programming (EP).[472-474] 

      Among these EAs, GA is the dominant one in materials science and has achieved enormous 

progress in exploring large chemical spaces for materials development (Figure 15a). GA first 

creates the initial population of individuals from chromosomes by a random process or by 

incorporating prior knowledge. Chromosomes are a set of genes represented by a string/sequence, 

and genes are the input variables represented in a binary format (0 or 1). Then, a fitness function 

ranks the fitness of individual candidates among a population. Then the top-ranked ones are 

selected as the parents for subsequent crossover and mutation operations to create a new generation. 

The crossover changes the subsequence between two parents at a random locus, while the mutation 

randomly flips some bits of individual parents based on the probability. The operation of GA 

terminates when either the properties of individuals exceed the threshold or the iteration cycles 

reach the set number of generations.[102, 463, 475] GA has shown applications in designing 

polymers with desired glass transition temperatures,[476] semiconducting polymers for 

OPVs,[477] polymer dielectrics,[478] and MOFs for carbon capture.[479] It is also applied in 

AEPs.[46, 431, 432] 

Case studies. Maruyama and coworkers combined GA and RF as an AI experimental planner 
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to optimize the growth rates of CNTs (Figure 15b).[431] GA guided exploration of the search 

space, while RF recommended the reaction conditions that resulted in high growth rates. The 

growth rates of CNTs gradually converged after > 600 experiments were performed. To optimize 

the crystallinity of MOFs, Moosavi and his colleagues adopted the same strategy to explore the 

search space by a robotic platform (Figure 15c).[46] A gradual converge in the crystallinity was 

observed after three generations of 90 experiments. Salley et al. used GA to guide the synthesis of 

gold nanoparticles with different shapes in an autonomous robotic platform (Figure 15d).[432] 

GA recommended experimental parameters for the next generation after analyzing previous results 

of UV-Vis spectra. The fitness factor for three different shapes (spheres, rods, and octahedrons) 

finally converged to higher values with the evolution of the generations. In addition to the well-

known sphere and rod shapes, GA also discovered a complex octahedron shape. 

 

Figure 15. (a) Schematic of a typical GA. Reproduced with permission from Ref.[102], Copyright 

2021 American Chemical Society. (b) Evolution of the growth rates of CNTs by GA/RF. 

Reproduced with permission from Ref.[431], Copyright 2016 Springer Nature. (c) Evolution of 
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the crystallinity of MOFs by GA/RF. Reproduced with permission from Ref.[46], Copyright 2019 

Springer Nature. (d) Evolution of the fitness function of gold nanoparticles with octahedron shape 

by GA. Reproduced with permission from Ref.[432], Copyright 2020 Springer Nature. 

 

3.3.4 Other Decision-Making Algorithms 

     SNOBFIT. SNOBFIT, a global optimization algorithm, includes a constraint and a fit function 

that fits polynomials to the obtained experimental data for identifying the multiple optima.[480] 

SNOBFIT has a higher chance of finding the global optima than that of finding the local optima 

since it generates a set of experimental variables widely distributed across the search space. 

Moreover, SNOBFIT can avoid false optimization directions due to its ability to take the 

experimental noise into account. Hence, SNOBFIT has achieved much progress in optimizing 

chemical reactions. Bourne et al. incorporated SNOBFIT with CFR to automatically optimize the 

synthesis of EGFR kinase inhibitor AZD9291 (Figure 16a).[433] SNOBFIT successfully 

synthesized AZD9291 at a yield of 89% within 42 experimental iterations. Jensen and coworkers 

applied SNOBFIT to optimize the yield of organic products from 3-5 manipulated variables 

(temperatures, flowrates, and catalyst mass) in a reconfigurable CFR (Figure 16b).[341] The yield 

successfully converged to the optimal values within 30-45 experimental iterations. 

Curiosity Algorithm (CA). CA, the simplest random goal exploration algorithm,[481] can 

actively and autonomously choose the candidates that maximize the number of new and 

reproducible observations (Figure 16c). Rather than optimizing the target properties chosen by the 

user with prior knowledge, CA focuses on exploration with goals randomly chosen from 

observation space. CA starts with a random observation with defined experimental parameters. 

Then it uses the data collected from the previous experiments to build a regression model, which 
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recommends the parameters from the search space to reach the target. Grizou and coworkers 

applied CA in a robotic platform to autonomously explore droplet behaviors.[75] The search space 

consisted of the mixture ratios of four oils, while the observation space was defined as the speed 

of droplets and the number of divisions. Under the same conditions, CA explored 3.3 times more 

search space and identified more extreme cases of the droplet behaviors—showing obvious 

response to a slight change in temperature—than the random search method did (Figure 16b). 

 

Figure 16. (a) SNOBFIT for optimizing AZD9291. Reproduced with permission from Ref.[433], 

Copyright 2016 Royal Society of Chemistry. (b) SNOBFIT for optimizing the reaction conditions 

of Buchwald-Hartwig amination. Reproduced with permission from Ref.[341], Copyright 2018 

AAAS. (c) Schematic of a CA algorithm. (d) Comparison of the explored space over CA against 

the random search. Reproduced under a Creative Commons Attribution License 4.0 (CC BY) from 

Ref.[75], Copyright 2020 AAAS. 
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3.3.5 New Advances in Decision-Making Algorithms 

    These state-of-the-art decision-making algorithms have shown promising applications in 

AEPs. However, due to the inherently agnostic treatment of the objectives, they tend to become 

intractable when (a) the high-dimensional search space leads to too many iterations to reach the 

optimal properties; (b) the trivial or sluggish progress persists after many iterations or even no 

convergence occurs at end of the experiment; (c) further analysis is required to illustrate the 

experimental trends. To tackle these challenges, several reach groups including Buonassisi,[482-

484] Kalinin,[485, 486] Kusne,[65, 487-490] Ghiringhelli,[491-494] and Lipson[495] have made 

new advances in embedding prior knowledge and implementing feature selection in the algorithm 

development. 

The first approach of embedding the prior knowledge into the optimization procedure 

presents several benefits compared to these algorithms that solely decide the next iteration 

experiment via mapping the reaction variables to the results. First, it can greatly increase the 

efficiency in optimizing the explored search space. Second, it can enhance the researchers’ 

confidence in identification of the global optimum. Third, it helps researchers understand the 

mechanisms. The prior knowledge can be obtained from several sources such as explicit 

physicochemical equations, theoretical simulations, archived experimental results, and expert 

intuitions and insights and then be applied to the decision-making algorithms.[496] Buonassisi and 

coworkers designed a two-step BO framework that embeds domain knowledge to optimize the 

growth conditions of photovoltaics (Figure 17a-b).[482] The first Bayesian interference network 

maps the process conditions (e.g. growth temperature) to the materials descriptors, while the 

second neural network as a surrogate model links the materials descriptors with the device 



 

67 

 

performance parameters (Figure 17a). This BO framework improves the efficiency of the solar 

cells by 6.5% compared to a gird search method (Figure 17b). Kusne and his colleagues designed 

a physics-informed Bayesian AL framework in Autonomous Neutron Diffraction Explorer 

(ANDiE) to autonomously control neuron diffraction experiments with a goal of reducing the 

operation time[487] Three physics based models, the Weiss equation, the first-order model, and 

the Ising model, were incorporated into a Markov Chain Monte Carlo (MCMC) framework to 

capture uncertainty and restrict the analysis results. ANDiE reduces the number of the neuron 

diffraction measurements by a factor of ~ 5 for identifying TN of both MnO and Fe1.09Te. Ziatdinov 

and Kalinin et al. designed structured GP (sGP) in an AL framework for exploring phase transitions 

of Sm-doped BiFeO3 using piezoresponse force microscopy (Figure 17c).[497] They included 

both the statistical descriptors such as latent variables and the physics-informed descriptors like 

conductivity and polarization of the materials in the framework, which showed improved 

performance in determining the models of the hysteresis loop behavior. Buonassisi et al. 

incorporated a probabilistic constraint that was derived from the experimental results into the 

acquisition function of BO (Figure 17d).[484] Such an experimental constraint excluded the 

perovskites whose compositions are susceptible to phase segregation. In another work, Buonassisi 

et al. reported a data fusion approach that integrated high-throughput degradation tests with 

theoretical simulations for identifying the most stable perovskites (Figure 17e).[483] Aspuru-

Guzik updated Gryffin by including the known experimental and design constraints.[426] These 

constraints were formulated in the acquisition function by the gradient-based and the hill-climbing-

based approaches or the GA algorithm. This updated Gryffin showed superior performance on two 

practical and simulated chemical reactions to those of the random search method and GA. 

The second approach is to implement feature selection, which chooses the most informative 
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variables to reduce the dimensions of the search space. The CS technique has been one of the 

feature selection approaches. Ghiringhelli and coworkers proposed a CS-based Sure Independence 

Screening and Sparsifying Operators (SISSO) method to identify low-dimensional variables that 

predicted material properties.[493] The sure independence screening technique selectes a subset 

of variables, which is further reduced by a sparsifying operator. SISSO showed superior 

performance to those of Least Absolute Shrinkage and Selection Operator (LASSO),[498] 

orthogonal matching pursuit (OMP),[499] and EUREQA,[495] and was also benchmarked in 

predicting the ground-state enthalpies of theoretically octet binary materials and classifying metals 

and insulators. 
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Figure 17. (a) Workflow of a two-step BO network. (b) Comparison of photovoltaic efficiency 

obtained from the BO net and the random search method. Reproduced with permission from 

Ref.[482], Copyright 2020 Springer Nature. (c) Schematic of exploring phase transition of 
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materials via incorporating physics-informed descriptors. Reproduced with permission from 

Ref.[497], Copyright 2022 Wiley. (d) Schematic of probabilistic constraints for the acquisition 

function of BO from experimental data. Reproduced with permission from Ref.[484], Copyright 

2022 Elsevier. (e) Closed-loop optimization of halide perovskite stability with data fusion from 

DFT calculations. Reproduced with permission from Ref. [483], Copyright 2022 Elsevier. 

 

4. Challenges and Future Directions 

Despite much progress, the research in AEPs for materials development is still in its fancy 

stage. Much effort is required to solve some key challenges. Herein, we put forward some of them 

as well as potential solutions, from which the future trend is envisioned. As summarized in Figure 

18, we envision a future self-driving laboratory that can perform de novo material design enabled 

by physics informed ML/DL models trained by computation and prior knowledge extracted from 

literature and open databases, and then synthesize and characterize target materials by the robots 

and the data-driven optimization algorithms under the guidance of researchers and be digitalized 

by a digital twin (DT) for scalable manufacturing. 
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Figure 18. A future trend of AEPs enabled by big data, physics-based computations and AI 

algorithms, human-machine interactions, and digital/cyber manufacturing methodologies.  

 

4.1 Data Standardization and Sharing 

Big data and AI have been referred to as the basis of both the “fourth paradigm of science” 

and the “fourth industrial revolution”. They have greatly passivated various domains at an 

astounding pace.[500, 501] Over the past two decades, we have seen the availability of several 

public databases containing millions of biological assay results, such as ChEMBL[502] and 

PubChem.[503] They have provided data for training the ML/DL models to predict a variety of 

biological activities or physical properties of molecules. Nevertheless, proper scientific data 

stewardship and management are much needed to make data searchable, accessible, interoperable, 

and reusable to the public.[504] Data should also follow the simple ALCOA (Attributable, Legible, 
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Contemporaneous, Original, and Accurate) principles by US FDA guidance. Such guidelines 

should be updated appropriately.[505] In the next decades, there will be a trend of standardizing 

the experimental and computational data for widespread sharing. Data standardization and sharing 

can also improve research reproducibility.[506, 507] For instance, recording lab details in an 

electronic lab notebook (ELN) is a promising way in materials science, chemistry, and biology[508] 

since it improves data acquisition, archiving, accessibility, sharing, and real-time data presentation. 

Currently, PerkinElmer E-Notebook, Evernote,[509] Microsoft OneNote,[510] and Google 

Docs[511] have been explored. With a predefined framework by researchers, text, images, audio 

and video can be fused for recording at the point of creation and then be used for future data mining. 

Moreover, the wide availability of the ELN in smartphones, tablets, and smartwatches makes data 

sharing easy among different stakeholders and through repository websites such as GitHub. 

 

4.2 Text Mining for Knowledge Extraction 

    A major obstacle to implementing ML/DL for materials discovery is the lack of large publicly 

available and structured data. Although scientific data is available in literature, patents, and 

handbooks, manually mining them for extracting hidden information is very challenging.[512] 

Recent advances in natural language processing (NLP) enable the automatic mining of text, tables, 

and images from various data sources.[513-515] Several research groups led by Cole,[516-522] 

Olivetti,[523-526] Ceder,[123, 527-531] Schwaller,[120] and Jain[119, 532] have conducted NLP-

driven automatic text mining and achieved great progress.  

    Integration of text mining in AEPs for guiding chemical synthesis starts to emerge, which 

may become a promising research field. A computer-aided synthesis planning (CASP) algorithm 

takes the target molecules as input and recommends chemically feasible reaction steps to 
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synthesize the molecules. Jensen’s group proposed an automated system for knowledge-based 

continuous organic synthesis (ASKCOS) that extracts knowledge from millions of reactions stored 

in the U.S. Patent and Trademark Office (USPTO) or tabulated in Reaxys.[66] ASKCOS is an 

open-source software and can do retrosynthetic planning, reaction condition recommendation, and 

pathway evaluation. After that, experienced chemists can refine the recipes for the automatic 

synthesis platforms to perform the experiments. Cronin’s group devoted their efforts to digitizing 

published reaction protocols with NLP, named as SynthReader. With the Chemical Description 

Language (XDL), they standardized description of the synthesis procedures for easy execution by 

the robots.[323, 331, 533, 534] We expect that the new transformers in NLP, e.g., BERT,[151] 

Transformer-XL,[535] XLNet,[536] RoBERTa,[537] and generative pretrained transformer 

(GPT)[538] would promote the development of a future AEP that can automatically mine the 

literature and execute experiments. 

 

4.3 Incorporation of Inverse Materials Design with AEPs 

Due to an enormous chemical space, even high-throughput screening is often powerless.[82, 

539] Inverse design starts with target properties and proceeds toward desired structures, which is 

also called the de novo materials discovery. VAE,[540, 541] GAN,[182, 542, 543], and hybrid 

models[544] have been widely used for this purpose. Combined with RL[182, 545] and BO,[97] 

these generative models can generate candidates with target properties. For instance, Yao et al. 

demonstrated a VAE-based autonomous materials discovery platform for inverse design of 

reticular materials.[546]  

Both BO and GA algorithms show poor scalability when the search space exceeds the 

limit.[547] To tackle this problem, Monte Carlo tree search (MCTS), a powerful global 
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optimization method, has found widespread applications in materials science such as screening Si-

Ge alloy with high thermal conductivity, planning the synthesis of organic molecules, predicting 

the partition coefficient of organic molecules.[31, 51, 548, 549] For instance, Patra and coworkers 

developed an inverse design framework by combining MCTS with MD simulations as to identify 

sequence-specific copolymers that lead to interfacial energy between two immiscible 

homopolymers. Though the search space varies from 210 (1024) to 230 (~ 1 billion), the MCTS-

MD framework showed excellent performance in identifying target sequences within a few 

hundred evaluations.[550] We expect that incoperation of the decision-making algorithms with the 

generative algorithms in an AEP can greatly shrink the initial search space for the AEP to design, 

plan, execute, and analyze the hypothesized experiments.   

 

4.4 Interpretability of ML/DL Models  

Distinguished from chemical/physical simulations that relied on explicit formulas, the ML/DL 

models provide impressive prediction power by learning knowledge from data. However, the 

black-box nature of ML/DL models makes them difficult to be explained or interpreted, which may 

impose an obstacle for widely deploying AEPs.[551] Developing strategies to demystify the inner 

working mechanism of these ML/DL models has become a compelling research task. The 

interpretable ML/DL models have three major advantages including troubleshooting, novel 

insights, and trust.[552] First, the interpretability improves the understanding of the prediction 

mechanism of the ML/DL models. Second, it can help the researchers quickly identify the errors 

or biases happening in the training process. Third, the interpretability improves the trustworthiness 

of the ML/DL models.  

Interpretation of the ML/DL models can be empowered by the intrinsic characteristics of the 
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models or performed by the post-hoc interpretability techniques.[552-554] The intrinsic or model-

based interpretability is inherited in the structures of ML/DL models. There are two ways of 

building intrinsically interpretable models.[555] The first is to add interpretability constraints by 

enforcing sparsity[556] and imposing semantic monotonicity.[557] The second is to use 

interpretable models such as a decision tree, rule-based model, or a linear model.[558, 559]  

The post-hoc interpretability refers to illuminating the parameters or representation in an 

intuitive way that can be understood by researchers, which can be realized by three main strategies. 

The first strategy is to permutate feature importance for doing model-agnostic explanation, which 

calculates how the accuracy varies as a permutation of the values of a specific feature.[48, 560] 

The second strategy is to calculate the accuracy gain or feature coverage in tree-based ensemble 

models such as RF and XGBoost. The accuracy gain removes a new split to a branch of a feature, 

resulting in poor predictive accuracy. The feature coverage calculates the relative quantity of 

observations related to a feature. The third strategy is to visualize the intermediate or last layers of 

CNN models, which helps researchers understand the representation captured by the neurons.[56, 

58] In the future, new advances in data visualization techniques or models/architectures, e.g., the 

physics-informed ML/DL models, will push the research in improving the model interpretability 

to a higher level. 

 

4.5 Human-in-Loop AEPs 

Currently, the involvement of researchers in AEPs is desired while remaining a challenge. 

Communication between researchers and machines is crucial to complementing the capabilities of 

data-driven algorithms with human expertise to realize a human-in-loop AEP. They usually lack 

generalizability when applied to real-world problems even after being trained by large-scaled data. 
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In contrast, human researchers have intuition and are better at learning unexpected events and 

knowledge from small data than a machine. Thus, involving human intelligence in the loop of 

AEPs can maximize the chance of obtaining the global optimum via intuitively understanding the 

most promising regions of the design space. Such a human-in-loop AEP is particularly desired due 

to the higher interpretability, better detection of failures/errors, and easier bug-fixing, improved 

generalizability and robustness of AEPs in practical applications. 

The involvement of humans in AEPs can be done through data visualization, real-time 

updating optimization algorithms, and executing new commands remotely. The data visualization 

reduces the dimensions of the data for better visualization by humans. There are several data 

visualization techniques such as principal component analysis (PCA), t-distributed stochastic 

neighbor embedding (t-SNE), uniform manifold approximation and projection (UMAP), and 

Isomap. They transform data into visual contexts such as graphs and maps, thus helping researchers 

to visualize the search space topology and partial dependencies of performance over the reaction 

parameters. Researchers can better localize the regions that show a higher chance of finding 

promising performance or target properties. Researchers can infer the robots to explore promising 

regions. The data visualization can also leverage the trust in ML/DL models and correct the 

optimization direction in time. To interact with the algorithms and facilitate the communication 

between researchers and platforms, Aspuru-Guzik and his coworker developed a software package 

named ChemOS.[454, 455] As a key component, the communication module was realized using 

common social media platforms such as Twitter, Gmail, and Slack. According to the optimization 

trend, the human researchers can advise the machines to adjust initial conditions or change search 

domains so that the machines can achieve the global optimum with a reduced number of iterations. 
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4.6 Digitalization of AEPs 

Virtual lab. Virtual reality (VR), a classical immersive technology, has achieved much 

progress over the past decade.[561] Previously, VR mainly focuses on video game entertainment 

via generating 3D hologram-like objects in artificial environments to allow players to interact with 

the virtual objects. Recently, VR is gaining increasing attention from materials scientists. Zhu et 

al. built a Materials Acceleration Operation System (MAOS) for realizing the “on-demand” 

synthesis of quantum dots.[562] The MAOS has a customed interface, UI-VR (user interface and 

virtual reality, an isomorphic reflection of the real lab) to interact with MAOS. Communicating 

with reality via a 5G network through the TCP protocol, the UI-VR interface allows the researchers 

to control a virtual robot in the lab.  

   Cloud Lab. To enable the collaboration of researchers across the world through remote control, 

a cloud lab has been proposed.[71, 335, 345, 563, 564] A cloud lab integrates robotic platforms, 

cloud servers, sensing devices, communication tools, and managing software. Ley and his 

coworkers demonstrated the ability to automate the optimization and synthesis of pharmaceutical 

agents through operations in could.[564] In their work, the servers were operated in Japan, while 

devices and chemicals were located in Cambridge, UK, and the operation commands were 

delivered from Los Angeles, USA. Such a Cloud lab not only demonstrates the possibility of 

remote operation of experiments but also avoids machine redundancy since the system can be 

rapidly modified for new experiments.   

   Digital Twin. Digital Twin (DT), initially introduced in 2003,[565] has been one of the most 

promising technologies for realizing smart manufacturing and Industry 4.0.[566] Through 

seamless data transmission between the physical and virtual world, DT allows researchers to 

monitor, understand, and optimize the functions of all involved physical entities.[567] 
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Combination of DT and AEPs would enable the integration of major physical components for 

evolving the properties in a tractable numerical framework. Such a combination has several 

advantages including (i) further minimizing optimization iterations, (ii) shortening the search path 

to global optimization, and (iii) better understanding the optimization mechanism.  

 

5. Conclusions 

AEPs are poised to develop new materials with target properties or to search for parameters 

that realize improved efficiency under constraints of budget and time. In this review, we 

systematically summarize the recent progress on AEPs toward autonomous laboratories. This 

review first describes the fundamentals, concepts, and workflow of AI algorithms, then, how these 

AI algorithms advance three essential components of an AEP. Each section starts with a brief 

introduction of background and summary of methodologies followed by non-exhaustive examples.  

We also outline future research directions that may lead to scientific and technological 

breakthroughs in AEPs. They include advances in data sharing, text mining, explainable ML/DL 

models, de novo materials discovery, human-in-loop AEPs, and digitalization of AEPs. We expect 

that these new advances could push the research in AEPs to a new height and catalyze novel 

materials discovery at a record development pace. We believe that this review would meet the 

needs of both beginners in the field and experts who aim to pursue new research frontiers. 
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