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Abstract— This paper expands on the problem of grasping
an object that can only be grasped by a single parallel
gripper when a fixture (e.g., wall, heavy object) is harnessed.
Preceding work that tackle this problem are limited in that
the employed networks implicitly learn specific targets and
fixtures to leverage. However, the notion of a usable fixture can
vary in different environments, at times without any outwardly
noticeable differences. In this paper, we propose a method to
relax this limitation and further handle environments where the
fixture location is unknown. The problem is formulated as visual
affordance learning in a partially observable setting. We present
a self-supervised reinforcement learning algorithm, Fixture-
Aware Double Deep Q-Network (FA-DDQN), that processes
the scene observation to 1) identify the target object based
on a reference image, 2) distinguish possible fixtures based
on interaction with the environment, and finally 3) fuse the
information to generate a visual affordance map to guide the
robot to successful Slide-to-Wall grasps. We demonstrate our
proposed solution in simulation and in real robot experiments to
show that in addition to achieving higher success than baselines,
it also performs zero-shot generalization to novel scenes with
unseen object configurations.

I. INTRODUCTION

Grasping an unwieldy or irregularly-shaped object requires
additional appendages or intelligent use of the surroundings.
For example, in order to pick up a parcel or a book that is
wider than our hand, we might use both hands or brace the
parcel against a wall or heavier object (i.e., fixtures) to reach
underneath and scoop it up. For a single parallel gripper
that lacks a helping hand, only the latter option is available.
Grasping by first pushing against the wall—referred to in
[1], [2] as the Slide-to-Wall task (see Fig. 1b)—presents an
interesting problem in robotic manipulation as it requires
planning over a multi-step horizon while also understanding
the elements in the scene to identify fixtures.

Robots that rely only on visual perception (e.g., RGB or
RGB-D observations) must infer object intrinsic properties
(e.g., mass, inertia, and friction) from visual cues such
as size, color, and shape. As we explore later in Section
II, prior works in object grasping tend to either reduce
problem complexity and allow implicit learning of certain
objects (e.g., targets are only a specific shape or color), or
train their proposed networks on many different objects to
achieve generality. However, when the Slide-to-Wall task
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(a) (b)

Fig. 1: Slide-to-Wall task with fixture ambiguity. (a) There
are two visually identical candidate fixtures in the workspace
(i.e., white boxes), only one of which is heavy enough to
leverage. (b) The target object can only be grasped if the
robot pushes it against the correct fixture (i.e., the box on
the right).

is extended from walls to arbitrary fixture objects, such
simplifications are not ideal because the approach must
account for relative object properties (i.e., fixture only needs
to be better anchored than the target object). For example, a
robot attempting to grasp a light parcel may only require a
nearby stack of magazines to leverage against, or some cans.
Therefore, the Slide-to-Wall task can be considered an ex-
ercise in resourcefulness where the original tool provided—
the parallel gripper in this case—is insufficient in isolation
and flexible application of the environment is needed for
success. Hence it is also in this same spirit that we investigate
methods that promote online determination of ‘usability’.

The relative object properties that determine what objects
in the scene might be leveraged as fixtures can change
across different environments in the real world. A box that
was filled in one environment and thus usable as a fixture
could also be empty in another, violating prior knowledge
of fixtures. A given environment may even have both types
of boxes at the same time, as shown in Fig. 1a, leading
to ambiguity. Many models, such as the Target-Oriented
Deep Q-Network (TO-DQN) [1], learn to adapt to the
object property distribution during training. Such models
that learn an implicit relationship become unable to adapt
to the change in object properties and require fine-tuning
with substantial data. Presenting both types of boxes (i.e.,
empty and full) during training induces difficulty, as it is
unreasonable to expect to reliably infer fixture likelihood
from only visual observations. Indeed, attempting to learn
a general relationship between external object properties and
intrinsic properties can be detrimental due to the large variety
and be prone to over-fitting.

The Slide-to-Wall task with uncertain fixtures presents a
challenging task in the robotic manipulation domain. First,
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it is unique from other well explored object grasping appli-
cations (e.g., pick-and-place) in that the target and fixture
objects are not directly observable and require additional
information outside of the given visual inputs to infer. The
task also requires the ability to reason about multi-object
interaction—the interplay between the target object, the wall,
and other objects (i.e., clutter) in the scene. Furthermore,
because the target object must be pushed often multiple
times to the wall before it can be grasped, the task has a
longer horizon to contend with, increasing the complexity of
decision making.

In this work, we present an end-to-end reinforcement
learning approach that accomplishes Slide-to-Wall tasks by
processing visual input and identifying likely fixtures that can
be leveraged. As briefly discussed above, since it is restrictive
to train a network to infer fixture likelihood from only visual
observations, we propose to track object fixture likelihood
external to the learned model and provide a likelihood map
as an input channel. As for selecting the target object, we
propose to allow the network to choose by providing yet
another input channel for target similarity (see Section IV
for details). This is in contrast to [1] where the target
object is selected and used as an valid action mask, limiting
exploration of non-targeted objects.

In short, the main contribution of this work is an improve-
ment to the end-to-end vision-to-action pipeline for grasping
an object in the Slide-to-Wall task, and consists of:

• A new Fixture-Aware Double Deep Q-Network (FA-
DDQN) that incorporates a target similarity channel and
a fixture belief channel to generate a visual affordance
map for a shovel-and-grasp action primitive.

• A fixture classification pipeline to suitably track fixture
likelihoods of different objects and inform the fixture
belief channel input.

II. RELATED WORK

1) Leveraging Environment for Grasping: While the ma-
jority of work in object manipulation centers around sim-
plified geometries that can be easily picked up by a single
parallel gripper [3], [4], there exists a much less explored
branch that seeks to leverage the environment in object
grasping. Eppner and Brock proposed a grasp planner in [5]
that is based on traversing a manipulation graph from one
environmental constraint to the next. More recently, Liang
et al. achieve wall-enabled grasping using their presented
Target-Oriented DQN (TO-DQN) [1]. TO-DQN, which is
used as a baseline for this work, forces the output Q-map
(i.e., visual affordance map) to be non-zero only on the
target object. While this enables TO-DQN to learn multi-step
planning from a sparse reward (+1 for successful grasp and
0 otherwise), it is often over-fitted to implicitly identify the
target and wall objects, limiting generalization to new objects
and environments. In contrast, the method described in this
paper explicitly leaves beliefs of the target and fixtures as an
input to the network so as to prevent implicit over-fitting to
objects observed in training.

2) Pushing and Grasping: A related area of object ma-
nipulation, multi-step tasks that require a combination of
prehensile and non-prehensile motion primitives has received
increased attention in recent years. Zeng et al. [6] train a pair
of DenseNet-121 networks [7] to simultaneously predict the
Q-value of pushing and grasping actions to grasp a target
object in spite of adversarial clutter. [8] proposes a goal
re-labeling scheme to overcome the reward delay problem
in push-supported grasping. [9] trains a Generative Residual
Convolutional Network (GR-ConvNet) [10] for each motion
primitive (Push, Pick, and Place) to perform multi-step tasks
such as clutter removal and cube stacking. [11] trains a
motion critic that selects a primitive to arrive at grasping
a target object even if it is initially occluded by clutter.
In these works, when a target object is required for the
task (e.g., grasping in clutter), the networks have been
implicitly trained to recognize the target object according
to some visual property (e.g., a distinct color). Other works
also account for more natural target object specification.
Danielczuk et al. [12] present a heuristics-based mechanical
search to find and retrieve a target object identified using a
Siamese Network [13] from a high clutter bin. We maintain
generalizability to other target objects by following similar
reference-based target recognition ideas, namely using a
Siamese network with a cosine angle output.

While the aforementioned works primarily apply model-
free reinforcement learning (RL) approaches, there also exist
model-based RL approaches to object manipulation that seek
to use machine learning to learn complex dynamics. The
learned dynamics are then used in standard planning and
search algorithms to generate a plausible action policy [14],
[15], [16]. The work in [17] builds an Interaction Network
using encoded object representations to push objects to target
positions. However, a major drawback of such approaches
is that learning accurate dynamics models is extremely
challenging and the performance is sub-optimal if the learned
models are inaccurate or biased which is often the case in
novel settings.

III. PROBLEM FORMULATION

We formulate this problem as a Partially-Observable
Markov Decision Process (POMDP) since the task requires
a sequence of pushing actions to move the target object to
a fixture in order to grasp it, while dealing with uncertainty
in location of the target and fixture objects. A POMDP is
characterized by the tuple 〈S,A, T,R, Z〉, where S defines
the state of the workspace, A refers to the action space
available to the robot, T is the state transition from st to
st+1 as a result of at ∈ A, R is the reward function, and
Z refers to the observation space. In this work, we reduce
the POMDP to a belief-state MDP [19] and solve the MDP
problem using the current belief state in place of the true
state. That is, the robot updates its belief bt at time t given
an observation zt ∈ Z of the current state st ∈ S. It
then computes and executes an action at according to some
policy π(bt), after which the environment transitions to some
new state st+1 and the robot receives an immediate reward
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Fig. 2: FA-DDQN Overview. (a) Objects are segmented via Unseen Clustering Network [18]. (b) A dense target similarity
map is computed by comparing each object segmentation to a reference image via Siamese Network with cosine angle
output. (c) Object segmentation masks are matched across iteration pairs t and t + 1, and the action-conditioned motion
between them is used to generate a fixture likelihood map. (d) Concatenated RGB-D-S -F images are fed into the final
DDQN network (through a rotation angle φ) to generate the rotation-conditioned, pixel-wise visual affordance map.

rt = R(st, at, st+1). Therefore, the objective in this task is
to learn an optimal policy π∗ that maximizes the expected
total return Rt = Σ∞t=0γ

tR(st, at, st+1), where γ ∈ [0, 1) is
the discount factor.

For this particular task, observations of the state st arrive
as RGB-D images of the workspace from a camera with
known parameters. These images are converted to an ortho-
graphic view for use by the algorithm. Following [1], we
adopt the use of the hybrid Shovel-and-Grasp (SaG) motion
primitive to parameterize the action space as

at = (x, y, φ) (1)

where x, y denote the Cartesian coordinates of the action
location in the workspace, and φ denotes the z-axis rotation
angle. The remaining parameterizations (z, roll, pitch) are
fixed hyper-parameters. The SaG primitive pushes for a fixed
distance d with open grippers before closing the grippers
and lifting vertically. By combining the pushing and grasping
motions into a single primitive, we alleviate the need to learn
over multiple action types, reducing the action space and
easing the learning process.

For purposes of this work, we assume that the target object
is always an object that cannot be grasped without the use
of a supporting fixture object. That is, if the SaG primitive
is performed on the target object without a fixture on the
other side, the primitive reduces to a push action. To this
end, we require that the workspace always contains at least
one fixture object F in addition to the target object O. The
fixture objects do not conform to any particular form and can
be visually diverse across episodes. The implication is that
F cannot be inferred directly from the RGB-D images, and
must be determined via interactions in the environment, thus
leading to the POMDP formulation. Clutter objects D, which
are non-target objects that are also not fixtures, may also be
present in the workspace image st and add complexity to the
scene.

IV. METHOD

To solve the fixture-enabled grasping task, we propose
Fixture-Aware Double Deep Q-Network (FA-DDQN), which
consists of target identification and fixture prediction em-
bedded within a Q-learning framework. Fig. 2 presents a
visualization of our pipeline.

A. Object Segmentation

Our approach first identifies and segments all objects in
the workspace using the RGB-D image It. To do this, we
opt to use the Unseen Clustering Network (UCN) proposed
by Xiang et al. [18]. This is in contrast to the current
standard of leveraging variants of Mask R-CNN [20], such
as the depth-only variant [21] and the gray-depth-depth
variant [1]. In addition to the strong results presented in
[18], we empirically find that UCN segments objects in
our environments more robustly than the gray-depth-depth
Mask R-CNN of [1]. Instead of segmenting on the top-down
image, we also perform the segmentation before transforming
the image It into its orthographic projection, and simply
transform the output masks and bounding boxes alongside
the RGB-D pixels. This allows the segmentation network to
operate on the pixel distribution directly from the camera
viewpoint instead of the orthographic projection (which
includes application of smoothing filters) and alleviates the
need for fine-tuning and eases sim-to-real transfer.

B. Fixture-Aware Double Deep Q-Network

The action at is denoted with ax,y,φt to describe the
instantiated form with corresponding pixels in the workspace
image and discretized rotation values (we use increments
of ∆φ = 5◦). With this definition, we employ a Deep
Q-Network to generate the corresponding dense pixel-wise
affordance map. That is, we train a network ΨA to learn to
predict the action-value (Q-value) function as

Qπ(s, a|θ) = Es,a,π
[
Σ∞t=1γ

tRt
]

(2)
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where θ is the learned weights of the DQN. At each training
step, the network parameters are updated according to

θt+1 ← θt − α
(
yQt −Q(st, at|θt)

)
∇θQ(st, at|θt) (3)

with α as the learning rate and yQt as the update target
value. Inspired by [1], we observe that there is no value
for the policy to act at unoccupied points in the workspace.
Therefore we apply invalid action masking and constrain the
update target value so that

yt =


0 if ax,y,φ /∈ G
Q(st, at|θt) if ax,y,φ ∈ G and ax,y,φ 6= at

ŷt otherwise
(4)

where G is defined to be the superposition of all object
masks detected by the object segmentation network ΨM and
represents occupied pixels. ŷt is given by

ŷt =

{
rt if st+1 is terminal
rt + γQ(st+1, arg maxaQ(st+1, a|θ)|θ−) otherwise

(5)
where θ− denotes the target DQN that is updated at a
slower rate than the primary DQN under training. Note that
we utilize the Double DQN formulation for the maximum
expected Q-value [22] in order to reduce the well-known
overestimation issue of vanilla DQN.

In addition, we note that our constraint on the update target
value differs from [1] wherein the authors restrict the update
target value by only the target object mask. By using G
instead of only the target object mask, we allow our network
to potentially act on other objects in the scene (e.g., to
determine if it is a fixture), while still preserving the benefit
of focusing training only on actions that will explicitly
change the environment. By setting yt to zero in unoccupied
pixels, we also provide feedback to the back-propagation and
directly teach the network to suppress background activations
(though only gently through a small scale factor much less
than one).

Since the target and fixture objects are hidden states,
providing only the visual inputs (RGB-D images It) as
is typically done in works like [23], [4] is insufficient
and leads to implicit learning of those objects. Instead we
augment the inputs with a target similarity channel and a
fixture probability channel to form a six-channel input (RGB-
D-S -F ) into the proposed FA-DDQN, thus offloading the
inference of target and fixture objects from the DQN.

C. Target Similarity Channel

We build upon the target-agnostic identification method of
[1] which relies on a Siamese Network [13] to compute the
similarity of an object image to a given anchor image Itgt.
We refer to this network in this paper with ΨT . Although the
typical approach directly ranks the similarity scores and se-
lects the best match as the target [1], [24], we propose instead
to form another image channel—the target similarity channel
S—to provide as additional input to FA-DQN. Much like
the original Siamese network of [13], our implementation

uses cosine angle as the distance metric, computed between
the L2-normalized embedding vectors of a pair of images.
By using cosine angle instead of the standard euclidean
distance (L1- or L2-based) to measure similarity, we arrive
at an arguably more natural formulation of likelihood that is
suitable for ingestion by a neural network. This formulation
is given by:

similarity(I1, I2) = max(ΨT (I1) · ΨT (I2), 0) (6)

where · indicates the dot product operation, and magnitude
normalization to one has been assumed as an output of
ΨT . While the cosine similarity function produces values
between 1 (identical objects) and -1 (polar opposites), we
clip all negative values to zero to produce a target similarity
score similarity(I1, I2) ∈ [0, 1]. Thus, target similarity is
naturally scored based on the projection to the reference
object. As an added benefit, this similarity score is directly
generalizable to output vectors of any length without mod-
ification since the cosine angle is a reduction from an N-
dimensional space to a 2-dimensional space.

The target similarity channel relaxes the need to hand-
select a fixed best target or implicitly teach the network on a
fixed target, while leaving the choice up to the RL network
to focus on any particular action. Furthermore, the use of
the Siamese network enables zero-shot generalization to new
target objects by simply swapping the anchor image used.

D. Fixture Likelihood Channel

To relieve the FA-DDQN from having to implicitly learn
fixture objects, we provide an additional channel containing
the current belief map of pixels likely to belong to the
set of fixtures F . Although the fixture object location is
a hidden state and not directly observable from the input
RGB-D image, its suitability for leveraging against can be
identified quickly via physical interaction. If an object moves
after the manipulator applies a force on it, it is reasonable to
expect that it cannot be used as a fixture. On the other hand,
an object that remains in place even after an interaction is
likely a fixture object. While direct interaction by the robot
is important, we must also account for secondary effects due
to object-environment interactions. Finally, we propose to
begin each episode with a neutral belief of fixture likelihood.
That is, we make no assumptions about fixture likelihood
and initialize each object in the scene to l−o = 0.5, where
lo ∈ [0, 1] indicates the fixture likelihood of an object o
(0 corresponds to a movable object and 1 corresponds to a
fixture).

To determine the motion of an object, correspondence
between object masks across subsequent time steps must first
be identified. This correspondence is found by solving the
linear sum assignment problem using the pairwise distances
between mask centers of objects segmented from subsequent
iterations t and t+1 [25]. Once masks belonging to the same
object in t and in t + 1 have been identified, the algorithm
described in Algorithm 1 is applied to track and formulate
the fixture likelihood map Ft+1 that will be provided to FA-
DDQN in iteration t+1. While simple, this fixture likelihood
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module (referred to herein also as ΛF ) sufficiently captures
the results of the interactions with the scene to inform FA-
DDQN.

E. Visual Affordance Learning

Finally, S and F are passed to the FA-DDQN visual affor-
dance network along with the RGB-D image I to produce a
Q-map for a given rotation. The 6 × W × H six-channel
input image is first pre-rotated by the evaluated rotation
angle φ before passing it through a ResNet backbone. In
particular, we use two ResNet-34 [26] trunks, one for the
RGB channels and the second to process the depth, S , and
F channels. The shovel-angle-conditioned feature maps are
then added together to blend the embeddings from both
trunks, rotated back by −φ, and finally passed through Fully
Convolutional Networks (FCNs) [27] to produce the output
visual affordance map Q(st, a

x,y,φ
t |θt). By evaluating the

DQN portion for varying rotations φ ∈ {0◦, 5◦, 10◦, ..., 90◦},
we build a discretized affordance table of size 19×Wa×Ha

where Wa and Ha denote the width and height of the
action space coordinates. The optimal action according to
the current policy π is selected via

ax,y,φt = arg max
x,y,φ

Q(st, a
x,y,φ
t |θπ). (7)

As will be detailed in a following section, this policy will
be trained in an ε-greedy fashion.

Algorithm 1 Fixture Likelihood Module (ΛF )

Require: {ot, ot+1} ∀ o ∈ O . Matched object masks
Require: l−o ∀ o ∈ O . Prior fixture likelihoods
oπt ← object directly acted on
for ot, ot+1 in O do

if ot is oπt then . Object was acted on
if ||ot+1 − ot||2 < δ then

lo ← min(l−o + 0.25, 1.0)
end if

else . Handle secondary interactions
if was in way(ot, o

π
t ) and ||ot+1−ot||2 < δ then

lo ← min(l−o + 0.25, 1.0)
end if

end if
if ||ot+1 − ot||2 ≥ δ then

lo ← 0 . Object moved
end if

end for

V. EXPERIMENTS

For training and evaluation in simulation environments, we
leverage a UR5 manipulator rendered in CoppeliaSim [28]
v4.1.0 with a parallel gripper attachment. The networks are
constructed using PyTorch [29] v1.9.0.

A. Training
1) Object Segmentation Network: As previously dis-

cussed in Section IV-A, we feed in the RGB-D workspace
image to UCN prior to orthographic projection to retrieve
instance segmentation masks. No fine-tuning was found to
be necessary and the pre-trained weights accompanying [18]
are used.

2) Target Similarity Network: To train the target similarity
network ΨT , 180 RGB-D images were collected of single,
randomly positioned fixtures, targets, and clutter objects in
simulation. Triplets of anchor, positive, and negative samples
were then pulled from the captured dataset to train using
Triplet Loss [30], with cosine angle (not truncated at 0) as the
distance metric. The network is thus trained to maximize the
embedded vector differences between classes. For this task,
we chose to train the Siamese network to distinguish between
three broad classes (target, fixture, and clutter objects) so that
the network remains flexible enough to recognize an object at
any pose. The resulting similarity likelihood values between
objects of same and different classes are shown in Fig. 3.

3) FA-DDQN: After training the preceding networks, they
are integrated into the FA-DDQN architecture in order to
support training of the final visual affordance network ΨA.
Since we aim to learn a pixel-wise visual affordance map
of a sparse reward problem, a fixed-step learning curriculum
is adopted. To wit, the learning process is split into three
phases: 1) single fixture only, 2) two fixtures, 3) two fixture
objects but one is un-anchored and unusable. By introducing
this multi-phase curriculum, we enable progressive fine-
tuning of FA-DDQN from pushing towards a known fixture
to handling multiple potential fixture objects. This also
increases the density of successful grasps for experience
replay to sample from, helping to combat the sparse reward
problem. During the entire training process, however, we
ensure the presence of one target block, one fixture (to ensure
the episode has a success trajectory), and one clutter object.

An episode is defined as a series of sense-compute-act
iterations (i.e., one full execution of the FA-DDQN pipeline)
that terminates and resets when (a) the target object has
been successfully grasped (lifted out of the workspace and
remains in the gripper), (b) the target object is pushed out
of the workspace, or (c) K iterations have passed (we use
K = 8). Training on-policy takes place using an ε-greedy
policy. That is, at every iteration there is a probability of
ε to select a random action, with ε decaying at a rate of
0.997 after the first 100 iterations, and a discount factor of
γ = 0.95. The slow ε decay rate is selected to allow for some
exploration even in the later phases of training. Training
is executed for 4000 iterations. In this work, we leverage
Prioritized Experience Replay (PER) [31], using stochastic
proportional-based prioritization with importance-sampling,
in replay buffer sizes of 10 samples.

As with any RL paradigm, the reward function provides an
important signal for learning an affordance predictor. Here,
the reward function rewards the RL agent only for terminat-
ing in a successful grasp or changing the fixture likelihood
of an object. The change in fixture likelihood happens if
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(a) Target objects (b) Clutter objects (c) Fixtures

Fig. 3: Cosine-based Siamese Network similarity scores on validation data. All non-matching classes are successfully
suppressed to 0, while retaining a high score for objects in the same class.

the manipulator interacts with an object and the resulting
predicted likelihood (̂l

′t
o,ax,y,φ ) is sufficiently different from

the prediction prior to the interaction (̂l to,ax,y,φ ). This is
mathematically represented as:

rt =


+1 if grasp success
+0.25 if |̂l ′to,ax,y,φ − l̂ to,ax,y,φ | > 0.2

0 otherwise
(8)

B. Simulation Evaluation

We begin evaluation of FA-DDQN by empirically explor-
ing its trained performance in simulation. The simulation
environment is identical to the training environment except
that the numbers of clutter objects uniformly vary between
0 and 2 across the workspace. To obtain statistical measures,
we run 4 trials of 50 episodes and report the results in Table
I. In these trials, the fixture object is sampled from the same
object type distribution that the model has been trained on.
For comparisons, we include similar evaluations of TO-DQN
and ablations of FA-DDQN:
• Random: A baseline that randomly samples an action

position from the target object mask, as determined
by the object with the highest target similarity value
(arg maxo∈O S ). The action direction is also uniformly
sampled. This baseline serves as a validation to quantify
the minimum level of performance expected by exam-
ined algorithms.

• TO-DQN: Re-trained in the same simulation environ-
ment as FA-DDQN, using the same training parameters
that were indicated in [1].

• FA-DQN: This ablation uses the vanilla DQN update
target yt instead of the Double DQN form.

• FA-DDQN-no-curriculum: This ablation of FA-DDQN
does not use the curriculum for training.

• FA-DDQN-zero: This ablation forces both the fixture
likelihood and target similarity channels to be zero,
to verify that the added channels do indeed provide
information to the network.

• FA-DDQN: Our proposed end-to-end RL pipeline.
We also introduce another experiment wherein the afore-

mentioned models are tested against an unseen fixture object
to evaluate the generalizability of FA-DQN to new configu-
rations. To be precise, a cylindrical wall is used as the only
fixture in all 50 episodes in this experiment and the trained

Fig. 4: Sample episode from evaluations with novel fixture.
In these evaluations, a cylinder is always introduced as the
fixture at random positions in the workspace.

TABLE I: Test Evaluation Comparisons. Simulated trials
with known fixtures (4 trials of 50 episodes) and novel fixture
objects (1 trial of 50 episodes)

Average Grasp Success (%)
Model Known Fixture Novel Fixture

Random 42.0 ± 9.4 31.5 ± 3.0
TO-DQN [1] 64.0 ± 3.5 41.0 ± 7.0

FA-DQN 65.7 ± 6.7 48.0 ± 7.2
FA-DDQN-no-curriculum 58.2 ± 8.4 43.5 ± 8.9

FA-DDQN-zero 54.0 ± 2.0 35.0 ± 7.0
FA-DDQN (ours) 75.0 ± 6.4 53.0 ± 7.7

network must be able to utilize this information to continue
grasping the target object. This is depicted in Fig. 4, and we
include these results also in Table I.

It can be seen in Table I that although TO-DQN performs
better than the random baseline and manages to push the
target object towards fixtures (or at least what it believes to be
so), it is still outperformed by our proposed FA-DDQN. With
the additional channels of information, FA-DDQN is better
able to grasp objects while leveraging fixtures, especially
if the fixture is novel and not encountered in training. We
note that all models encounter decreased performance in
the novel object case, which is in part due to the more
challenging nature of a cylindrical wall (less likely to get
a stable grasp). This indeed supports the proposal that FA-
DDQN resists implicit learning of fixtures and supports better
generalization to new configurations.

C. Real-world Testing

We also examine the sim-to-real generalization of FA-
DDQN by deploying the trained network to control a Franka
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(a) One fixture only (b) One fixture, one decoy (c) One cylinder as fixture (d) Novel target (e) Novel target w/ decoy

Fig. 5: Sim-to-real test scenes. Setups for real experiments, where (d) and (e) utilize a novel target.

TABLE II: Real-robot Results. Results from the real-robot
experiments described by Fig. 5 where case A is one fixture
only, case B is one fixture and one decoy, and case C is one
cylinder (10 episodes for each case).

Grasp Success (%)
Target Object Case A Case B Case C

Known target (black parcel) 80.0 70.0 50.0
Novel target (cat bowl) 80.0 50.0 -

Emika Panda robot manipulator that has been outfitted with
a parallel-gripper end effector. To this end, several test
scenes are constructed with varying clutter objects and fixture
objects. We evaluate on a scene with only one fixture (Case
A, Fig. 5a) for 10 trials, followed by 10 trials of a second
scene with two visually identical boxes but only one of them
being heavy enough for leveraging (Case B, Fig. 5b). We also
perform experiments with a cylindrical fixture (Case C, Fig.
5c) akin to the simulated experiments. While executing FA-
DDQN on the real robot, we restrict the robot from carrying
out its intended motion if the action target lies on the fixture.
This is done to protect the robot, and otherwise allow the
robot to execute actions on the rest of the scene.

In these real experiments, we achieve successful grasp
rates as reported in Table II. By comparing these results
to Table I, it is apparent that the real world evaluations
are on par with simulation results. We propose that this
real-world generalizability is enabled by the additional input
beliefs that also de-emphasize the RGB channels, which are
notorious for poor extension from simulation to the real
world. Hence, FA-DDQN is able to operate in the real-
world without additional fine-tuning (though it may boost
performance to some extent).

D. Novel Target Objects

In the preceding section, we validated the usability of
novel fixtures. In this section, we validate the use of novel
target objects that were not seen in training. In simulation, we
switch the target object with a purple plate and verify that the
actions correctly focus on the new plate (after the reference
image has been updated). Fig. 6 shows the input scene with
the plate as the target. Note that the plate correctly registers
as the object with the highest target similarity in Fig. 6b. The
resulting Q-maps (Fig. 6c) also show that the high Q-values
on the center of the plate, while pointing in the direction of
the fixture.

(a) Novel target: purple plate (b) Similarity map (white → 1)

(c) Q-maps at various angles activating on plate

Fig. 6: Zero-shot generalization to novel target. A plate is
used as the target object in this experiment. Red arrow in (c)
indicates the chosen action direction.

(a) Novel target

(b) Inputs (white → 1.0)

(c) Q-maps (max at 55◦)

Fig. 7: Demonstration with novel target. Grasping a novel
target unseen in training (a), with input images (b) and
resulting Q-maps in (c).

In addition, we also repeat several real-robot experiments
with two novel target objects to further demonstrate zero-
shot generalization to new targets via the Target Similarity
channel. A sample of this is shown in Fig. 7a, wherein the
robot successfully targeted the blue target object. The second
novel target object for real-world experiments is the cat bowl
shown in Fig. 5d. We perform the same set of experiments
of grasping against a single wall and a single wall and decoy,
and report the results in Table II.

VI. DISCUSSION AND FUTURE WORK

In this work, we introduced a new network architecture,
Fixture-Aware DDQN, to tackle the challenging fixture-
assisted grasping problem. A key component of FA-DDQN
is the explicit handling of likely target and fixture objects as
inputs to the Double Deep Q-Network, instead of relying on
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implicit learning of the task space. By handling the target
and fixture objects outside of the network, we improve both
flexibility and performance over the existing baselines.

A major benefit of the Shovel-and-Grasp (SaG) action
primitive is that it allows the task to be reduced to finding the
optimal shovel direction and location, simplifying the action
space and complexity. However, one limitation encountered
in a few corner cases is the lack of grasp stability when
there is a certain distance between the target object and the
fixture. Due to the fixed pushing distance in SaG, most of
the action is expended on pushing the target object before
the object contacts the fixture. Then the target object is only
partially scooped up in the gripper, resulting in a weak grasp
attempt. One future avenue to handling this limitation (which
is a limitation of any push action) is to make push distance
a part of the action space, so that the agent can select how
far to push before completing the shovel primitive.

Learning to leverage objects in the environment to aid
in a grasping task is a complex skill that requires object-
environment interaction consideration and uncertainty han-
dling over a longer horizon than traditional grasping tasks.
Because of that, progress on the fixture-enabled grasping
task lends to real-world application and helps bring robots
closer to mimicking the resourcefulness of manipulation
by humans. With that in mind, we believe that our work
presented here, FA-DDQN, is the next step in that progress.
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