GLOBECOM 2022 - 2022 IEEE Global Communications Conference | 978-1-6654-3540-6/22/$31.00 ©2022 IEEE | DOI: 10.1109/GLOBECOMA48099.2022.10001657

2022 IEEE Global Communications Conference: Wireless Communications

Regularized Ising Formulation for Near-Optimal
MIMO Detection using Quantum Inspired Solvers

Abhishek Kumar Singh!?3, Kyle Jamieson', Peter L. McMahon? and Davide Venturelli
' Department of Computer Science, Princeton University
2USRA Research Institute for Advanced Computer Science
3Quantum Al Laboratory (QuAIL), NASA Ames Research Center
4School of Applied and Engineering Physics, Cornell University

Abstract—Optimal MIMO detection is one of the most compu-
tationally challenging tasks in wireless systems. We show that the
quantum-inspired computing approach based on Coherent Ising
Machines (CIMs) is a promising candidate for performing near-
optimal MIMO detection. We propose a novel regularized Ising
formulation for MIMO detection that mitigates a common error
floor issue in the direct approach adopted in the existing literature
on MIMO detection using Quantum Annealing. We evaluate our
methods using a simplified, quantum-inspired model and show
that our methods can achieve a near-optimal performance for
several Large MIMO systems, like 16 x 16, 20 x 20, and 24 x 24
MIMO with BPSK modulation.

Index Terms—MIMO detection, Large MIMO, Quantum in-
spired solvers, Coherent Ising machines, Physics-inspired Ising
machine-based computation.

I. INTRODUCTION

Wireless technologies have recently undergone tremendous
growth in terms of supporting more users and providing
higher spectral efficiency, with the next generation of cellular
networks planning to support massive machine-to-machine
communication [1], large IoT networks [2], and unprecedented
data rates [3]. The number of mobile users and data usage is
rapidly increasing [4], and while data traffic has been predomi-
nantly downlink, the volume of uplink traffic is becoming ever
higher [5] due to the emergence of interactive services and ap-
plications. The problem of optimal and efficient wireless signal
detection in a multiple-input, multiple-output (MIMO) system
is central to this rapid growth and has been a key interest
of network designers for several decades. While the optimal
Maximum Likelihood (ML) MIMO detector is well known, it
attempts to solve an NP-Hard problem [6] exactly, and so its
implementation is usually impractical and infeasible for real-
world systems. These computational challenges have prompted
network designers to seek optimized implementations such
as the Sphere Decoder [7], or sub-optimal approximations
with polynomial complexity like Minimum Mean Square
Error decoder (MMSE) [8], successive interference cancella-
tion (SIC) [9], Lattice-reduction based algorithms [10], and the
Fixed Complexity Sphere Decoder [11]. However, even today,
practical methods that achieve near-optimal performance for
large MIMO systems are lacking [6].

In the Computer Architecture and Physics communities,
the last decade has seen a rise of a novel class of analog
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computers that use the dynamics of a physical system to
heuristically find solutions to optimization problems that are
framed as instances of the Ising model, one of the most
studied frameworks for magnetism in statistical mechanics.
These solvers include Quantum Annealing [12], Coherent
Ising Machines [13] (optical systems involving quantum paral-
lel search and quantum filtering), and several classical solvers
inspired by quantum systems [14], [15]. These already show
promise as practical computational structures for addressing
some NP-hard problems arising in practical applications but
recent starting work [16], [17] on the MIMO detection with
Quantum Annealing, leveraging a straightforward mapping of
ML-MIMO decoding problem to the Ising model, experiences
an error floor in the bit error rate (BER) versus the signal-to-
noise ratio (SNR) characteristics, i.e., the BER does not reduce
when the SNR increases. In this paper, we observe that this
error floor is present in the regime of practical deployment
for MIMO detection. More specifically, in the regime relevant
for real systems (uncoded BER of 1072 — 1079), even if we
dismiss the limitations of non-idealized physics-based Ising
solvers, depending on the SNR, there are many interesting
scenarios in which they would not serve as good MIMO
detectors in practical systems if the known Ising formulation
of the ML-MIMO problem is used.

Hence we propose a novel regularized Ising formulation of
the ML-MIMO problem, using a low-complexity approxima-
tion (see Fig. 1 for an overview of our approach). This new
formulation leads us to propose Regularised Ising MIMO (RI-
MIMO) algorithm, that can in principle, provide near-optimal
MIMO detection on Ising machines. The rest of the paper
is organized as follows. Section II provides a survey of
the existing state-of-the-art to solve ML-MIMO. Section III
describes the MIMO system model and the reduction of
the ML-MIMO problem to an Ising optimization problem.
Section IV is a primer on Coherent Ising Machines. Section V
describes our novel Ising formulation and the proposed al-
gorithm. Section VI contains the evaluation of BER of our
method in various scenarios using a simplified Coherent Ising
Machine model. We show that our techniques mitigate the
error floor problem and achieve near-optimal performance for
16 x 16, 20 x 20, and 24 x 24 MIMO with BPSK modulation.
We perform extensive empirical experimentation for parameter
tuning. Finally, we conclude in Section VII and discuss the
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Fig. 1: Uplink Maximum Likelihood MIMO detection (ML-MIMO) using Ising Machines, illustrating the differences between
the proposed regularised Ising approach and the direct application of the Ising formulation.

possible future directions for our work in Section VIII.

In this paper, we present the fundamental design ideas
and evaluation for the proposed method, and further analysis
along with several significant advancements can be found in
the extended version of this work [18]: which proposes a
new tree search algorithm (TRIM), extends the evaluation to
include higher modulations, massive MIMO, finite precision
limitations, and spectral efficiency evaluation. It also provides
a detailed discussion on taking our work from simulation to
an actual hardware implementation of the CIM that can meet
the processing constraints of a typical LTE system.

II. RELATED WORK

The Maximum Likelihood MIMO detection (ML-MIMO)
has been a key problem of interest for wireless systems
for several decades. The Sphere Decoder [7] (SD) is a
reference algorithm to solve this problem, which performs
an optimized, pruned tree search. Its average computational
complexity is still exponential [19], so its deployment is
practically infeasible for MIMO systems with a large number
of users due to the strict timing requirements of state-of-the-art
wireless systems like 5G NR. The Fixed Complexity Sphere
Decoder [11] (FSD) is a polynomial-time approximation to
the sphere decoder that aggressively prunes the search tree. In
practice, wireless network designers resort to simpler meth-
ods like linear detectors (MMSE), which perform channel
inversion, or successive interference cancellation (SIC) based
techniques [9] that focus on decoding each user sequentially
while canceling inter-user interference. Given the practical
importance of MMSE and SIC, many techniques have been
put forward to advance their performance, including Lattice
Reduction (LR), which involves pre-processing the channel
to produce a reduced lattice basis [10]. In [20] authors
explore Gibbs Sampling for MIMO detection. In [21], the
authors use the L2 norm of the solution to regularize the
fixed complexity sphere decoder to deal with a rank defi-
cient channel in an OFDM/SDMA uplink, and in [22], the
authors use the MMSE estimate to determine the search radius
during sphere decoding. In [23], authors explore L1 and L2
regularisation to improve the performance of lattice sphere

decoding. In [24], authors propose a dead-zone penalty and
infinity-norm-based regularisation to improve the performance
of the MMSE detector. Regularised Lattice Decoding, like
the MMSE-regularised lattice decoding, penalizes deviations
from origin to mitigate the out-of-bound symbol events in
lattice reduction-based MIMO detection [25]. In [25], authors
propose a Lagrangian Dual relaxation for ML MIMO detection
and generalize the regularised lattice decoding techniques.
Regularisation techniques are also widely used in Machine
Learning to prevent over-fitting [26]. Many of these works
can achieve near-optimal performance for small systems. How-
ever, as the number of users and number of antennas at the
base station increase, they require an exponential increase in
computation time (to maintain near-optimal behavior), or their
performance becomes progressively worse.

The application of Quantum Annealing (QA) and Ising
machines to MIMO detection is starting to be investigated in
the last couple of years [27], [28] and has shown promising
results. The QuAMax MIMO detector [16] leverages quantum
annealing for MIMO detection. A classical-quantum hybrid
approach to QA-based ML-MIMO was proposed in [29].
Quantum Annealing has shown promising results for other
tough computational problems in wireless systems like Vector
Perturbation Precoding [30]. In [31], authors explore the use
of Oscillator-Ising machine for MIMO detection in Massive
MIMO systems; however, they target 16 x 64 MIMO with
QPSK modulation, which is not a very challenging problem
and even MMSE detector is near optimal. In [17], authors
explore the use of Parallel Tempering for Ising-based MIMO
detection (ParaMax), improving the performance of QuAMax;
however, both QuAMax and ParaMax suffer from the afore-
mentioned bit error floor, which is addressed in our work.

III. MIMO SYSTEMS, ISING PROBLEMS AND MAXIMUM
LIKELIHOOD DETECTION

In this section, we will describe the MIMO system model,
the MIMO Maximum Likelihood Detection (ML-MIMO)
problem, and the transformation between the ML-MIMO
problem and its equivalent Ising problem.
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Consider the UL transmission in a MIMO system with
N, antennas at the base station (BS) and IV; users, each
with a single antenna. x, = {z,¥2,...7n,}T is the trans-
mit vector where x; is the symbol transmitted by user i.
y = {y1,92,...yn, }T is the received vector where y; is the
signal received by antenna j. Each z; is a complex number
drawn from a fixed constellation €2. The channel between user
J and receive antenna 7 is expressed as a complex number h;;
that represents the channel’s attenuation and phase shift of
the transmitted signal x;. Let H denote the complex-valued
channel matrix,

y = Hxo +n, (D

where n denotes Additive White Gaussian Noise (AWGN).
With AWGN, the optimal receiver is the Maximum Likelihood
receiver [7] which is given by

S, = arg min |y — Hx|? )

An Ising optimization problem [32] is quadratic uncon-
strained optimization problem over NN spin variables:

argSI’glein Zh Si — ZJUS s
i#]
=a —hTs —sT7Js, 3
L {rgfll W 3)

where each spin variable s; € {—1,1}, or in its vector form
(RHS) s = {s1, $2,...s5}, where all diagonal entries of the
matrix J are zeros.

The minimization problem expressed in (2) can be equiv-
alently converted into Ising form by expressing x using spin
variables. The first step is derive a real valued equivalent of (1),
which is obtained by the following transformation [6],

I L
- 3

R(H)
ARSI

$(x)

where R(.) and (.) represent the real and imaginary part.
The ML receiver described in (2) has the same expression
under the transformation and the optimization variable X
is real valued. Let us say x has % elements drawn from
a square M-QAM constellation, then each element of the
optimization variable X takes integral values in the range
Q, = {—VM+1,—/M +3,../M —1}. The number of bits
needed to express (2, are given by 7, = [log,(v/M)]. let s
be an NV * 1, X 1 spin vector such than each element of s can
take values {—1,1}. Then, element j of X can be represented

using 7, spin variables {5, 8 {N...8j1(r,—1)N }»

then X can be expressed as,
% =T(s+Lyur,) — (VM — )iy (8)
For BPSK and rectangular QAM constellations, the $(x) and

$(x) in (5) have different range and (6) can be accordingly
modified to construct the transform matrix 7'. We substitute (8)
in the real valued maximum likelihood problem and simplify
to obtain the ising formulation for ML receiver. Let z =y —
HT1 .., + (/M —1)HI y, then the Ising problem for ML-

MIMO receiver is described by,
h=2xz"HT, J= —zeroDiag(TTI‘-'ITI‘-'IT)7 9)

where zeroDiag(W) sets the diagonal elements of matrix W to
zero. We further scale the problem such that all the coefficients
lie in [—1,1]. The Ising solution can be converted to real
valued ML solution using (8), which can be then converted to
the complex valued solution for the original problem described
in (2) by inverting the transform in (5).

IV. COHERENT ISING MACHINES (CIM)

In simple terms, an Ising Machine can be described as a
module that takes an Ising Problem (Eq. 3) as input and out-
puts a candidate solution, according to an unknown probability
distribution that depends on a few parameters. We refer to
a single, independent run on the Ising Machine as an “an-
neal”, borrowing nomenclature from the simulated/quantum-
annealing methods. After each run, the machine is reset. A
common approach is to run several samples of a single Ising
problem instance and then return the best-found solution (the
”ground state”) in the sample.

Coherent Ising Machines (CIMs), as originally con-
ceived [14], implement the search for the ground state of
an Ising problem by using an optical artificial spin network.
Their baseline architecture encodes the Ising spins into a train
of time-resolved, phase-coherent laser pulses traveling on an
optical fiber loop, undergoing controlled interference between
all pairs of wavepackets. The phase dynamics of the pulses
is governed by the presence of a non-linear element in the
form of a degenerate-optical-parametric-oscillator (DOPO).
For the purpose of our work, this version of the CIM can
be modeled using a system of stochastic differential equa-
tions [33]. In this work, we will use a model of the CIM
that describes its continuous-time limit evolution neglecting
quantum effects, which has been proven to be fitting the
experiments of multiple devices and represents a baseline setup
for more sophisticated embodiments. Following Ref. [13], the
in-phase (c;) and quadrature (g;) components of each signal-
variable (that describes the optical pulses) can be modeled
using the following differential equations:

R _ R A iy
- | de; = [(-14+p—c; qi)cl+CZJl]cj]dt
B=Y 2" sy + ) = (VM =1)  (6) 1 : i
=t @ a AW (10)
We define the transform matrix s
1 1
T=[2"""Iy 2" Iy ..Iy], 7 dg = (“1—p—¢ —q})qdt + T i +aq; + 5dW2
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where the normalized pump rate (p) are CIM parameters that
relates to the laser used in the machine and can be tuned easily.
The constant C' is typically fixed by design considerations
(mostly by the power transmission coefficient and the laser
saturation amplitude). J;; is the Ising coupling coefficient
from the j** pulse to the i*" pulse, which is programmable.
The stochasticity is introduced through dW; and dW,, which
are independent Gaussian-noise processes. The variable ¢ is
time (normalized with respect to the photon decay rate).
An Ising problem with the spin-spin-coupling matrix J is
encoded in the CIM by setting the optical couplings @j o< Jij.
The anneal consists of pumping energy into the system by
gradually varying p. Heuristically this is implemented in a
schedule at a speed that is some monotonic function of V.
The solution to the Ising problem is read out at the end of the
anneal by measuring the in-phase component of each DOPO
¢;, and interpreting the sign of each as a spin value s;, i.e.
s; = sign(c;). To enable the study of how an ideal CIM would
perform on solving Ising instances related to the application at
hand (MIMO detection), we implemented a software simulator
of a CIM that integrates the differential equations described
in (11), using double precision in MATLAB.

V. DESIGN

In this section, we propose the RI-MIMO detector, based
on our novel regularised Ising formulation of maximum-
likelihood MIMO receiver, which mitigates the error floor
problem and uses a single auxiliary spin variable to transform
the Ising problem into a form compatible with CIMs.

A. RI-MIMO: Regularized Ising-MIMO

The key idea is to add a regularisation term based on a low
complexity estimate of the solution, which, as we will see later,
will improve the BER performance. The maximum likelihood
MIMO receiver is given by (2). Let us say that we have a
polynomial-time estimate (obtained by algorithms like MMSE
or ZF) xp. Let sp be the spin vector corresponding to xp
obtained from (8). We add to the Ising form a penalty term for
deviations from the poly-time estimate, which would penalize
non-optimal solutions in low noise scenarios, to obtain the
following:

§ = in —hTs—s7J .M, Ny)||s —sp||?

8 arg _min  —h's—s s+r(p t)lls —spl|

= arg min —(h+2r(p, M,Ny)sp)'s —sTIs(11)
se{-1,1}N

where r(p, M, N;) is a regularization parameter dependent
of the SNR, modulation and number of users. This style
of regularisation falls in the class of generalized Tikhonov
regularisation. We will look at the choice of r(p, M, N;) in
Section VI-B. The RI-MIMO-N, algorithm is as follows:
o Convert the ML-MIMO detection problem into the Ising
form as described in Section III.
o Add the regularisation term as described by (11).
e Perform N, anneals using an Ising machine.
o Select the best solution from the candidate solutions
generated by the Ising machine and the MMSE solution.

B. Solution of an Ising problem having access only to pro-
grammable quadratic couplings

Not all CIMs are designed to solve Ising problems con-
taining a bias term (hTs in (3)). In order to solve a general
Ising problem using a CIM that does not natively support bias
terms (although some, such as the implementation used in [14],
do), we introduce an auxiliary spin variable s, and solve the
following Ising problem:

N

arg sa,slrglzr}...s;v ; hzszsa ; J’Lj slsja
which contains no bias terms and can be solved using an Ising
machine that doesn’t support bias terms. (12) has two degen-
erate solutions: [{$;}Y,,8, = 1] and [{—$;}},, 3, = —1].
Note that {$;}¥ | is the solution for the original Ising problem
in (3). Hence we can obtain the solution to the original Ising
problem from the solutions of the auxiliary Ising problem.

12)

VI. EVALUATION

In this section, we will perform an extensive evaluation
of RI-MIMO in various scenarios. We will simulate uplink
wireless MIMO transmission between NN; users with one
transmit antenna each and a base station with [N, receive
antenna. We assume Rayleigh fading channel between them
and additive white Gaussian noise (AWGN) at the receiver.
We further assume, for simplicity, that the channel is known
at the receiver and all users use the same modulation scheme.
The BER is calculated as the mean BER of the N; independent
data streams transmitted by NV, users.

A. BER Performance

We start comparing the optimal decoder (the Sphere De-
coder) and the linear MMSE decoder against RI-MIMO and the
unregularized ML-MIMO using as a test case BPSK 16x16.
This case will represent a baseline for our benchmarks and
their sophistication. Note that a trivial way to remove the
error floor is to take the better solution out of those generated
by MMSE and CIM-ML-M,. We see from Fig 2 that RI-
MIMO provides much better BER than CIM-ML, mitigating
the error floor problem associated with it. We note that if
we run concurrently MMSE and ML-MIMO for each instance
and we select the best of both results (CIM-ML+MMSE), we
are still less performant than RI-MIMO. We can see that RI-
MIMO-64 achieves near-optimal performance for 16 x 16 and
20 x 20 MIMO BPSK modulation, achieving a BER of 10~
at slightly (< 2 dB) higher SNR. For 24 x 24 MIMO, we
see that the performance gap between RI-RI-MIMO-64 and
Sphere Decoder increases, and a higher number of anneals are
required to bridge the gap. Note that increasing the number of
anneals (N,) will improve the performance further; however, it
comes at the cost of increased implementation/computational
complexity. We try to strike a balance between these two
aspects with our choice of N, = 64. A detailed analysis of
the appropriate choice of N, and implementation aspects (to
meet the LTE requirements) of our algorithms can be found
in the extended version of this work [18].
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Fig. 2: Bit Error Rate (BER) Curves for (Left) 16 x 16, (Center) 20x 20, (Right) 24 x24 MIMO and BPSK modulation, illustrating
the error floor problem and performance of all the tested solvers. The curves are computed over ~ 25 x 10> MIMO instances
(128 channel instances, 198 transmit vectors per channel).
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Fig. 4: Bit Error Rate Curves for 4-QAM modulation, illustrat-
ing the performance of RI-MIMO. The curves are computed
over ~ 25 x 10> MIMO instances (128 channel instances, 198
transmit vectors per channel).

B. Optimal regularisation factor for RI-MIMO and Higher
Order Modulations

In this section, we will discuss the tuning of the value for
the regularisation prefactor for RI-MIMO in (11), r(p, M, Ny),
relative to the magnitude of Ising coefficients of the original
un-regularised problem. To maintain consistency of results,
we normalize the Ising coefficients of the original problem
o [—1,1]. Starting from the 16 x 16 BPSK baseline MIMO

system, we compute performance for various values.

In order to determine the impact of modulation(M ), number
of users (IV¢) and SNR (p) on the optimal value of r(p, M, Ny),
we look at BER vs regularisation factor for various MIMO
sizes and modulations, while keeping SNR fixed at 10 dB and
15 dB in Fig. 3. We note that the BER reduces dramatically
from r = 0 (unregularized) to around r = 0.1, beyond which
the sensitivity of BER to choice of 7 is not much. We note that
the optimal value is around 0.15, which acts as a threshold: for
larger r the BER performance is only slightly affected. Based
on these observations, for practicality, in our benchmarks,
we will be using 7(p, M, Ny) = 0.15, irrespective of SNR,
modulation, and the number of users. In a practical system,
similar experiments can be used to construct a lookup table
for the optimal value of r as a function of M, N; and p.

Using the prescriptions above, Fig. 4 provides the BER
performance of RI-MIMO for a 12 x 12 and 16 x 16 MIMO
system with 4 QAM modulation. We see that the error floor
problem appears even for higher modulation, and RI-MIMO
successfully mitigates it. Note that the difference between RI-
MIMO and MMSE reduces as the modulation order increases.
More details on the performance of our methods for higher
modulations, and further enhancements (to improve the BER
for higher modulations) are available in the extended version
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of this work [18].

VII. CONCLUSION

In this paper, we explore the application of Coherent Ising
Machines (CIM) for maximum likelihood detection for MIMO
detection. We see that previous approaches used by MIMO
detectors based on the Ising model suffer from an error floor
problem and, unless many repetitions are allowed, does not
have a satisfactory Bit Error Rate (BER) performance in
practice. We propose a novel Regularized Ising approach and
show that it mitigates the error floor problem. We demonstrate,
using a CIM simulator, that our algorithm can outperform the
previous Ising approach and have the potential to achieve near-
optimal performance for large MIMO systems. By means of
an extensive numerical evaluation, we see that the Regularized
Ising approach has an impressive error performance when
compared to the state-of-art. In conclusion, our results indicate
that Coherent Ising Machines (using the proposed Regularized
Ising approach) are a promising candidate for providing a
superior alternative to the existing MIMO detection approach
and achieving near-optimal performance for practical systems
with a large number of users and antennas.

VIII. FUTURE WORK

Our evaluation is based on simulating a simplified CIM
model; as a next step, we plan to evaluate our methods on
more recent extensions to the CIM (e.g., variants incorporat-
ing amplitude-heterogeneity correction [34], [35]) and on an
experimental CIM implementation [14], [36].
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